
Abstract. The structure of hadrons (protons) and the dynamics
of their interaction are usually studied in collisional experi-
ments by exploring hard single parton±parton scattering de-
scribed in terms of structure functions (single-particle
distributions). Completely new and unique information comes
from the selection and analysis of events in which two (or more)
hard parton scatterings concurrently occur in a single �pp
(Tevatron; FermiLab, USA) or pp (LHC; CERN, Switzer-
land) collision. The simulation of such double (multiple) parton
scatterings involves two-parton (multiparton) distribution func-
tions. Properties of these functions, which may be extracted
from quantum chromodynamics, are reviewed.

Keywords: multiparton interactions, double parton scatterings,
collinear approach

1. Introduction

As the energy in hadron±hadron collisions increases, the role
of hard multiparton interactions, which are an important and
significant part of the background in the search for new
physics signals at the Large Hadron Collider (LHC), is

significantly enhanced due to the strong growth of the
density of parton fluxes. The inclusive cross section of a
hard process is usually calculated under the assumption that,
in a collision, along with many soft interactions, only one
hard interaction occurs due to its relatively low probability.
Nevertheless, hadron±hadron collisions are possible, in which
two (or more) different pairs of partons undergo hard
scattering. These double parton scatterings have been
theoretically studied for many years, starting from the early
days [1±23] of the parton model. The current state of the
theory of multiparton interactions and the results of many
years of research have been reviewed in the recent monograph
[24], which contains an extensive bibliography. The study of
double, triple, and n-parton scatterings enables the extraction
of completely new and unique information about the
unknown three-dimensional spatial distribution of partons
in hadrons and momentum, flavor, and color correlations in
the hadron wave function.

Double parton scatterings were initially observed by the
AFS (Axial Field Spectrometer) [25] and UA2 (Under-
ground Area 2) [26] collaborations at CERN and later by
the CDF (Collider Detector at Fermilab) [27, 28] andD0 [29,
30] collaborations at Tevatron with statistics sufficiently
large for a primary analysis and study; later, they were
observed at the Protvino-based accelerator [31]. As antici-
pated, the LHC energy and luminosity enabled the observa-
tion [24] of events with hard multiple scatterings in numbers
that are significantly larger than those in the aforemen-
tioned experiments. The contribution from double parton
scattering has now been reliably measured and separated
[24] in a number of processes that contain in the final state
heavy quarks �c; b�, quarkonia �J=c;U�, jets, and gauge
bosons �g;W;Z� (see, for example, some recent results of
the collaborations ATLAS (A Toroidal LHC ApparatuS)
[32±34], CMS (CompactMuon Solenoid) [35±37] and LHCb
(Large Hadron Collider beauty) [38±40], and monograph
[24]). Triple parton scattering has not yet been observed
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experimentally, but the estimated cross sections for the
production of heavy quarks �c; b� via this mechanism are
sufficiently large to be measurable in pp-collisions [41] and
pA-collisions [42] at the LHC and at the energies of the
Future Circular Collider (FCC) [43, 44]. In the future, both
three D-mesons [45] and heavy quarkonia �3 J=c� [46] may
be observed.

We primarily review the properties of multiparton
distribution functions that may be extracted from quantum
chromodynamics (QCD) in a collinear approach with a
focus on results presented in insufficient detail in mono-
graph [24] (evolution equations and their explicit solutions).
This brief review pursues the essentially practical goal of
familiarizing readers (as requested by experimentalists) with
the main tools employed in this phenomenological area. The
text is organized as follows. Section 2 contains formulas for
calculating the inclusive cross section of n-parton scattering
in a factorization approach. The cases of double and triple
parton scatterings that are of most interest for phenomen-
ology are discussed in Section 3. The QCD evolution of
multiparton distribution functions is reviewed in Section 4.
Section 5 contains formulas for calculating inclusive cross
sections of double and triple parton scatterings taking into
consideration the evolution. Overall impacts on phenomen-
ology are discussed in Section 6. Section 7 contains some
conclusions and a discussion of future prospects.

2. Cross sections of n-parton scattering
in hadron collisions

The inclusive cross section sNPS
hh 0!a1... an

of production of n hard
particles in n independent hard parton scatterings in an
hh 0 ! a1 . . . an hadron±hadron collision may be represented
in a factorization approach as a convolution of generalized
n-parton distribution functions and elementary parton cross
sections [47]:
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0
n

an
�xn; x 0n;Q 2

n �
� G

i 0
1
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1 ; . . . ;Q 2

n �
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Here, G i1:::in
h �x1; . . . ; xn; b1; . . . ; bn;Q

2
1 ; . . . ;Q 2

n � are the n-
parton generalized distribution functions that depend on the
fraction of longitudinal momentum x1; . . . ; xn, transverse
coordinates b1; . . . ; bn of scattering partons i1; . . . ; in at the
energy scales Q1; . . . ;Qn of hard subprocesses with cross
sections ŝ

i1 i
0
1

a1 ; . . . ; ŝini
0
n

an , and the production of hard particles
a1; . . . ; an in the final state. The c=n! factor takes into account
the symmetry properties of the final state, i.e., the presence of
identical particles. If all particles are identical (a1 � . . . � an),
c � 1; if the number of distinguishable particles in the final
state increases, c � 2; 3; 6; . . . : For double parton scattering,
which is currently of the most interest in phenomenological
applications, c � 1 if a1 � a2 and c � 2 if a1 6� a2.

These n-parton distribution functions

G i1... in
h �x1; . . . ; xn; b1; . . . ; bn;Q

2
1 ; . . . ;Q 2

n �

theoretically encode all the information about the three-
dimensional structure of a hadron needed to calculate the
cross sections for n-parton scatterings, including data on the
density of partons in the transverse plane and on all kinds of
correlations in both quantum numbers and kinematic
variables. The G i1... in

h functions have in general a very
complex structure, so simplified versions are often used in
phenomenological calculations. Actually, any cross section of
n-parton scattering may be expressed without a significant
loss of generality in terms of inclusive cross sections sSPS

hh 0!a of
single-parton scatterings calculated in perturbative QCD
with standard (`longitudinal') single distribution functions
Di

h�x;Q 2�:

s SPS
hh 0!a �

X
i1; i2

�
Di1

h �x1;Q 2
1 � ŝ i1i2

a �x1; x 01�Di2
h 0 �x 01;Q 2

1 � dx1 dx 01 :
�2�

Any n-parton inclusive cross section can be represented in
amore accurate formulation as the product of n cross sections
of corresponding single-parton scatterings, in each of which
one hard particle is produced, normalized to the effective
cross section to the power nÿ 1:

sNPS
hh 0!a1... an

� c

n!

s SPS
hh 0!a1

. . . sSPS
hh 0!an

s nÿ1
eff;NPS

; �3�

where seff;NPS encodes all unknown information associated
with generalized distribution functions. Equation (3) reflects
the intuitive idea that the probability of production of hard
particles in a particular inelastic hadron±hadron collision
should simply be proportional to a product of n probabilities
of independent production of each of these particles in the
collision under consideration. This probability is normalized
to the effective cross section to the power nÿ 1 to guarantee
the units of measurement required for the final result (3).

The quantity seff;NPS in Eqn (3) may be estimated using
reasonable standard approximations. It is natural to assume
that the n-parton distribution functionsmay be represented as
the product of the longitudinal and transverse components:

G i1... in
h �x1; . . . ; xn; b1; . . . ; bn;Q

2
1 ; . . . ;Q 2

n �
� Di1... in

h �x1; . . . ; xn;Q
2
1 ; . . . ;Q 2

n � f �b1� . . . f �bn� ; �4�

where f �b1� is the transverse density of partons in a hadron,
which is often assumed to be independent of the type of
parton. Next, ignoring the longitudinal momentum correla-
tions

Di1... in
h �x1; . . . ; xn;Q

2
1 ; . . . ;Q 2

n � � Di1
h �x1;Q 2

1 � . . .Din
h �xn;Q 2

n �;
�5�

the effective cross section may be represented in terms of the
integral of the powers of the hadron±hadron overlap function
by the impact parameter b:

seff;NPS �
��

d2bTn�b�
�ÿ1=�nÿ1�

; �6�

where

T�b� �
�
f �b1� f �b1 ÿ b� d2b1 �7�

with the fixed normalization
�
T�b� d2b � 1.
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3. Cross sections of double and triple parton
scattering in hadron±hadron collisions

General expression (1) in the case of double parton scattering
in hadron±hadron collisions hh 0 ! a1a2, which is of impor-
tance for phenomenological applications, takes the form
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2
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0
1 dx

0
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2b : �8�

Original equations (3) and (6) for n � 2 may be used to
represent the inclusive cross section of double parton
scattering as a product of independent single inclusive cross
sections

sDPS
hh 0!a1a2

� c

2

s SPS
hh 0!a1

s SPS
hh 0!a2

seff;DPS
; �9�

where the effective cross section of double parton scattering
(6), which normalizes the product of single scatterings, has
in the factorization approach a simple geometric represen-
tation:

seff;DPS �
� �

d2bT 2�b�
�ÿ1

: �10�

Similarly, in the case of triple parton scattering, it follows
from general expression (1) for the process hh 0 ! a1a2a3 [48]
that
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This cross section may be represented as the product of three
independent inclusive single cross sections,

sTPS
hh 0!a1a2a3

� c

3!

s SPS
hh 0!a1

sSPS
hh 0!a2

sSPS
hh 0!a3

s 2
eff;TPS

; �12�

normalized to the effective cross section of triple parton
scattering (6) squared, which has in the factorization
approach a simple geometrical representation [41]:

s 2
eff;TPS �

� �
d2bT 3�b�

�ÿ1
: �13�

The effective cross sections of the double (10) and triple
(13) parton scatterings may be estimated by using Eqn (7)
for various forms of the parton profiles of colliding hadrons
employed in the state-of-the-art generators of Monte Carlo
events, such as Pythia-8 [49] or Herwig [50, 51]. The
dependence of the proton overlap function on the impact

parameter function is often parameterized in Pythia-8 as

T�b� � m

2pr 2p G�2=m�
exp

��
ÿ b

rp

�m�
; �14�

where T�b� is normalized to one,
�
T�b� d2b � 1, rp is the

characteristic `radius' of the proton, G is the gamma function,
and the index of power m, which depends on generator
`settings', is determined by fitting to experimental data on
pp-collisions [36]. This index of power ranges from m � 2
(purely Gaussian distribution) to m � 0:7; 1 (exponential-
like distribution). The following formulas may be derived for
the corresponding integrals of the second and third power of
T�b�:

seff;DPS �
��

d2bT 2�b�
�ÿ1
� 2pr 2p

22=mG�2=m�
m

; �15�

seff;TPS �
��

d2bT 3�b�
�ÿ1=2

� 2pr 2p
31=mG�2=m�

m
: �16�

Equation (15) shows that, to reproduce the value seff;DPS '
15� 5mb extracted from the measurements of double parton
scattering in the Tevatron [27±30] and the LHC [32±40], the
characteristic `radius' of the proton should be set equal to
rp ' 0:11� 0:02, 0:24� 0:04, and 0:49� 0:08 fm form � 0:7,
1, and 2, respectively. The values of the effective cross sections
seff;DPS and seff;TPS (Eqns (15) and (16)) are not independent:
they are related by the formula seff;TPS � �3=4�1=mseff;DPS.
This relation does not depend on the characteristic `size' rp of
the proton but is sensitive to the overall form of the transverse
parton profile that is characterized by the index of power m.
Using Pythia-8 with the typical values of the index of power
m � 0:7, 1, 2 determined by fitting the experimental data [36]
yields seff;TPS � �0:66; 0:75; 0:87�seff;DPS, respectively.

The Herwig event generator uses another parameteriza-
tion of the proton profile taken from the dipole fit to the two-
gluon form factor in the momentum representation [52]:

F2g�q� � 1

�q 2=m 2
g � 1�2 ; �17�

where the gluon massmg is a parameter that characterizes the
distribution of partons over the transverse momentum q,
while their distribution over transverse coordinates is deter-
mined using the Fourier transform

f �b� �
�
exp �ÿibq�F2g�q� d2q

�2p�2 : �18�

The corresponding effective cross sections of the double (10)
and triple (13) parton scattering have the form [50]

seff;DPS �
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F 4
2g�q�
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�2p�2
�ÿ1
� 28p
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g
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and [41]

sÿ2eff;TPS �
�
�2p�2d�q1 � q2 � q3�F2g�q1�F2g�q2�F2g�q3�

� F2g�ÿq1�F2g�ÿq2�F2g�ÿq3�
d2q1

�2p�2
d2q2

�2p�2
d2q3

�2p�2 :
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A numerical calculation of the last integral and compar-
ison of its value with result (19) yield the relation seff;TPS �
0:83 seff;DPS, which is very close to that obtained earlier for
the Gaussian overlap function used in Pythia-8. To reproduce
the experimentally measured value seff;DPS' 15� 5 mb, the
characteristic `size' of this parameterization should be rg �
1=mg ' 0:13� 0:02 fm.

Thus, the study of a broad set of parameterizations of
transverse parton densities used in the literature makes it
possible to establish a very simple, reliable, and useful
relationship [41] between the effective cross sections of
double and triple parton scatterings:

seff;TPS � kseff;DPS at k � 0:82� 0:11 : �20�

A typical value seff;DPS ' 15� 5 mb extracted frommeasure-
ments in the Tevatron and LHC yields the following estimate
for the effective cross section for triple parton scattering:

seff;TPS � 12:5� 4:5 mb : �21�

These are the values of the effective cross sections that are
usually used [24, 47] in calculating the inclusive cross sections
for those processes where particles are produced through the
mechanisms of double and triple parton scattering.

It should be noted that, to describe the experimental data
on double production of J=c, a much lower value of the
effective double parton scattering cross section, at a level of
5 mb, should be used: the ATLAS, CMS, and D0 collabora-
tions presented the values seff;DPS ' 6:3� 1:9 mb [33],
seff;DPS ' 2:2ÿ6:6 mb [37], and seff;DPS ' 4:8� 2:5 mb [53],
respectively. Such a noticeable disagreement with other
measurements, which was interpreted in publications as the
first indication of the possible dependence of seff;DPS on the
type of scattering partons, triggered a number of studies to
find a solution to this problem by taking into account both
additional mechanisms of J=c production in single scattering
and dynamic QCD correlations in double parton scattering.
For example, it was shown in recent paper [54] in the kt-
factorization approach that the contributions from the color-
octet mechanism, which take into account the combinatorial
effects of multiple emission of gluons in the initial state, are
of importance in the kinematic region of measurements of
the CMS and ATLAS experiments, while the experimental
data from the LHCb collaboration are well described by the
O�a 4

s �-color singlet contributions and the mechanism of
double parton scattering. The authors of [54] obtained as a
result of a comprehensive analysis seff;DPS ' 17:5� 4:1 mb, a
value which is compatible with the estimate derived from
other measurements and partly removes the significant dis-
agreement between the estimated effective cross sections.

4. QCD evolution
of multiparton distribution functions

4.1 Introduction. Momentum representation
As noted in Section 3, the effective cross section seff;DPS is
either determined in phenomenological models or extracted
from experimental data (due to the still unresolved confine-
ment problem). However, much about the properties of
multiparton momentum distribution functions may be
learned in the QCD perturbation theory. Moreover, it is
possible to establish in the collinear approach the status of

factorization assumptions (4) and (5) and find the corrections
caused by the QCD evolution of multiparton distributions.

In what follows, the momentum representation rather
than the mixed (momentum-coordinate) representation turns
out to be more convenient [52] for describing the inclusive
double parton scattering cross section (8):

sDPS
hh 0!a1a2

� c
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X
i; j; k; l

�
G i j
h �x1; x2; q;Q 2

1 ;Q
2
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0
2

d2q
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The functions G i j
h �x1; x2; q;Q 2

1 ;Q
2
2 � in the momentum repre-

sentation depend on the transverse momentum q, which is
equal to the difference between themomenta of the partons in
the amplitude of the hadron wave function and in the
conjugate amplitude. This dependence arises because it is
only the sum of the transverse momenta of the partons in a
pair that is conserved. The momentum q is the Fourier-
conjugate variable for the difference between the transverse
coordinates of the partons used in the mixed representation.

One of the main problems is to find two-parton functions
G i j
h �x1; x2; q;Q 2

1 ;Q
2
2 � without simplifying assumptions (4)

and (5). These functions were only known [55±57] for q � 0
(in other words, integrated over the relative transverse
distance between partons) in the collinear approach. In this
approximation,

G i j
h �x1; x2; q � 0;Q 2

1 ;Q
2
2 � � Di j

h �x1; x2;Q 2� ;

provided that the scales of both processes are comparable
(Q 2

1 ' Q 2
2 � Q 2), satisfying the generalized evolution equa-

tions first derived in [55±57]. A generalization for the case of
two different scales is also available [58].

Similarly, in the case of triple parton scattering, we have in
the momentum representation [48, 52], instead of (11),
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It is necessary to determine in this case the functions

G i j k
h �x1; x2; x3; q1; q2; q3;Q 2

1 ;Q
2
2 ;Q

2
3 � ;

which are known for q1 � q2 � q3 � 0 [48, 55±57] (integrated
over the relative transverse distances between partons) in the
collinear approach, and in this approximation

G i j k
h �x1; x2; x3; q1 � q2 � q3 � 0;Q 2;Q 2;Q 2�
� Di j k

h �x1; x2; x3;Q 2� :

The properties of such multiparton distribution functions are
discussed in Sections 4.2±4.5 in perturbative QCD.
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4.2 Single-parton distribution functions
in leading logarithmic approximation
An analysis of hard processes [59±61] (deep inelastic scatter-
ing of electrons by protons and electron±positron annihila-
tion into hadrons) based on the QCD perturbation theory
leads to a description of these processes in the leading
logarithmic approximation in terms of the parton model
with a variable cutoff parameter L � Q in the transverse
momenta of partons. The dependence of the multiparton
distribution and fragmentation functions on the value of the
cutoff parameter is determined by evolutionary equations, an
elegant way of obtaining which was suggested by Lipatov [60]
for any renormalizable field theory. Either the hardness of the
process Q 2 (most often the transferred momentum squared)
or its logarithm x � ln �Q 2=m2� or the double logarithm (that
explicitly takes into account the behavior of the effective
coupling constant in the main logarithmic approximation) is
used as an evolutionary variable:

t � 1

2pb
ln

�
1� g 2�m2�

4p
b ln

�
Q 2

m2

��

� 1

2pb
ln

"
ln �Q 2=L2

QCD�
ln �m2=L2

QCD�

#
;

where b � �11Nc ÿ 2nf�=�12p� in QCD, g�m2� is the coupling
constant at a certain characteristic scale m2, starting from
which the perturbation theory is applicable, nf is the number
of active flavors, LQCD is the dimensional QCD parameter,
and Nc � 3 is the number of color degrees of freedom.

The evolution equations, most often known as the
Dokshitzer±Gribov±Lipatov±Altarelli±Parisi (DGLAP) equa-
tions [59±62], acquire the simplest form if the natural
dimensionless evolutionary variable t is used:

dD j
i �x; t�
dt

�
X
j 0

� 1

x

dx 0

x 0
D j 0

i �x 0; t�Pj 0!j

�
x

x 0

�
: �24�

Equations (24) describe the change in single distribution
functions of bare quarks and gluons � j � q; �q; g� in dressed
partons (quarks and gluons) with a change in the evolu-
tionary variable t. The kernels P of these equations in the
Lipatov method automatically include regularization at
x! x 0, while in Ref. [62], the regularization was actually
introduced `by hand' based on the requirement that the
momentum conservation law be satisfied.

The input in Lipatov's approach is a set of wave functions
C n

i �br; k?r�, i.e., the amplitudes of the probabilities of finding
a dressed i-type parton in a state consisting of n bare partons
with fractions br of the longitudinal momentum and trans-
verse momenta k?r, r � 1; . . . ; n; that satisfy the normal-
ization condition:

1 � Zi �
X1
n�2

�Yn
r�1

dbr
br

y�br� d2k?r

� jC n
i j2d 2

�X
k?r

�
d
�X

br ÿ 1

�
; �25�

whereZi is the renormalization constant of the wave function
of an i-type parton. To determine some quantities of interest
to us, there is no need to calculateC n

i in an explicit form: the
Feynman integrals for C n

i and integrals over k? in the
normalization condition (25) diverge logarithmically in

renormalizable theories. They are regularized using a cutoff
parameter L. Then, all constants Zi, bare charges become
functions of this parameter, just like quantities that can be
expressed in terms of the wave functions C n

i . Closed
equations determine their dependence on L. To derive these
equations, we should straightforwardly differentiate the
definitions of the quantities of interest to us and use the
equations that are obtained by differentiating the normal-
ization condition with respect to L.

In differentiating the limits of integration with respect to
k?, it should be kept inmind that themain contribution toC n

i

in the leading logarithmic approximation is made by tree
skeleton diagrams that do not interfere with each other in (25)
and suchlike relations. This leads to the classical probabilistic
interpretation of individual terms in the normalization condi-
tion: the probability of decay into n partons is determined by a
product of the probability of decay into nÿ 1 partons and the
probability of subsequent decay into two partons. Moreover,
the transverse momenta are strictly ordered: they increase
along the skeleton diagram in the case of deep inelastic
scattering and decrease in e�eÿ annihilation.

The Lipatov method naturally enables deriving an evolu-
tion equation also for multiparton distribution (and fragmen-
tation) functions by differentiating their definitions in terms
of the introduced sets of wave functions, as is discussed in
Sections 4.3±4.5.

Equations (24), after the Mellin transform (introducing
the moments of functions)

Mj
i �n; t� �

� 1

0

dx xnD j
i �x; t� ; �26�

are reduced to a system of ordinary linear differential
equations of the first order with constant coefficients:

dMj
i �n; t�
dt

�
X
j 0

Mj 0
i �n; t�Pj 0!j�n� ; �27�

where

Pj 0!j�n� �
�1
0

xnPj 0!j�x� dx : �28�

The solutions of this system may be found explicitly by
diagonalization [59±62]. Then, the inverse Mellin transform

xD j
i �x; t� �

�
dn

2pi
xÿnMj

i �n; t� �29�

enables the distribution functions to be determined in the
x-representation. The integration is carried out in this case
along the imaginary axis to the right of all singularities in n,
and in the general case is not possible in an explicit form.
However, the asymptotic behavior can be assessed in some
interesting and useful limits of the kinematic variable x. For
example, it is possible to explicitly calculate in the double
logarithmic approximation the Green's function, solutions of
Eqns (24) with singular initial conditions Dj

i �x; t � 0� �
d�xÿ 1�di j. For instance, the distribution of gluons in gluons
may be obtained (see, e.g., [61, 63]):

xD g
g �x; t� � 4Nct exp �ÿat� I1�v�

v

' 4Nctv
ÿ3=2 exp �vÿ at�������

2p
p ; �30�
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where

v �
��������������������
8Nct ln

1

x

r
; a � 11

6
Nc � 1

3

nf
N 2

c

; �31�

and I1 is the standard modified Bessel function. Result (30)
shows that the unitarity condition is violated at small x due to
too rapid a growth of gluon densities. It should be noted as
well that the average number of bare partons of type j in the
dressed parton i,

hn jii �Mj
i �0; t� �

�
exp

ÿ
P�0�t�� j

i
; �32�

cannot be correctly determined in the collinear approach,
since the kernels Pg!g�0� and Pq!g�0� diverge at small x, and
it is necessary to go beyond this approach.

4.3 Two- and three-parton distribution functions
in the leading logarithmic approach
The evolution equations for two-parton distribution func-
tions have been derived in [55±57]:

dD j1j2
i �x1; x2; t�

dt

�
X
j 0
1

� 1ÿx2

x1

dx 01
x 01

D
j 0
1
j2

i �x 01; x2; t�Pj 0
1
!j1

�
x1
x 01

�

�
X
j 0
2

� 1ÿx1

x2

dx 02
x 02

D
j1j
0
2

i �x1; x 02; t�Pj 0
2
!j2

�
x2
x 02

�

�
X
j 0

D j 0
i �x1 � x2; t� 1

x1 � x2
Pj 0!j1j2

�
x1

x1 � x2

�
; �33�

and the kernel

1

x1 � x2
Pj 0!j1j2

�
x1

x1 � x2

�
; �34�

included in the inhomogeneous part of the equations, does
not contain a d-like term that is present in the Pj 0

1
!j1�x1=x 01�

kernels. The equations describe the behavior in the double
distribution functions of bare quarks and gluons in dressed
partons (quarks and gluons) as the evolution variable t
changes, i.e., when the scales of both hard processes are
comparable, Q 2

1 ' Q 2
2 , and there is no other large logarithm

j ln �Q 2
1 =Q

2
2 �j, which would require going beyond the leading

logarithmic approximation, in which, it should be recalled,
another more frequently used evolution variable x is defined
up to a constant due to the nonunique choice of the
normalization scale m2.

All terms on the right-hand side of Eqns (33) may be
interpreted in the parton model in simple physical terms.
Consider the inclusive probability D j1j2

i �x1; x2; t�dx1dx2 to
find in a dressed parton i a pair of bare partons like j1 and j2
with fractions of longitudinal momentum ranging from x1 to
x1 � dx1 and from x2 to x2 � dx2, respectively, on a scale t.
Apparently, as t increases to t� Dt, this probability may be
altered by two types of processes. The decay of partons with
large momenta, which increases the number of j1 j2 pairs with
the sought momenta, leads to an increase in the probability,
while the decay from the j1 j2 pair into partons with smaller
momenta decreases its value.

Three types of decay processes are possible, which
increase the number of pairs of partons j1 j2 with long-
itudinal momenta in the range x1! x1� dx1, x2! x2 � dx2.

In the first process, we begin our consideration with a pair of
partons j 01 j2 with longitudinal momenta in the range x 01 !
x 01 � dx 01, x2 ! x2 � dx2. The quantities x 01 must satisfy the
condition x1 < x 01 < 1ÿ x2, i.e., be sufficiently large so that
parton j 01 can decay into parton j1, and sufficiently small so
that the momentum of the initial pair of partons does not
exceed that of the dressed parton i. The parton j 01 decays then
in such a way that one of the newly produced partons is of
type j1 with longitudinal momentum in the range x1!
x1� dx1. This process is described by the first term on the
right-hand side of Eqn (33), in which the kernel Pj 0

1
!j1�x1=x 01�

does not contain terms proportional to the d-function, i.e., it
corresponds to the actual decay of the parton. The second
process (the second term on the right-hand side of Eqn (33)) is
similar to the first one and corresponds to the decay of the
second parton. The interpretation of these two contributions
just corresponds to the interpretation of a similar contribu-
tion from the actual decay of partons in the case of evolution
(24) of one-parton distribution functions. In the third process
(the third term on the right-hand side of Eqn (33)), one parton
j 0 with the `correct' longitudinal momentum x1 � x2 !
x1 � x2 � dx2 decays in such a way that a j1 j2 pair is
produced with the required longitudinal momenta in the
required range. The number of j1 j2 pairs decreases when
either parton j1 or parton j2 decays into partons with smaller
(than the sought) longitudinal momenta. These are just the
contributions from the first two terms on the right-hand side
of the equations generated by the presence of d-functions in
the kernels (`virtual corrections').

Solutions to Eqns (33) can be represented as a convolution
of single distribution functions and kernels of equations [55±
57]:

D j1 j2
i �x1; x2; t�

�
X
j 0j 0

1
j 0
2

�t
0

dt 0
�1ÿx2
x1

dz1
z1

�1ÿz1
x2

dz2
z2

D j 0
i �z1 � z2; t

0�

� 1

z1 � z2
Pj 0!j 0

1
j 0
2

�
z1

z1 � z2

�
D j1

j 0
1

�
x1
z1
; tÿ t 0

�
D j2

j 0
2

�
x2
z2
; tÿ t 0

�
:

�35�

This convolution, which coincides with the jet calculus rules
[64, 65] formulated for multiparton fragmentation functions,
is a generalization of the well-known Gribov±Lipatov
relation derived for single functions [59±61, 66]: the distribu-
tion of bare partons in dressed ones is identical to the
fragmentation of bare partons into dressed ones in the
leading logarithmic approximation. Solutions (35) displayed
above show that the two-parton functions are strongly
correlated in the leading logarithmic approximation:

D j1 j2
i �x1; x2; t� 6� D j1

i �x1; t�D j2
i �x2; t� : �36�

In the case of triple parton distributions, we have [48, 55, 67]

dD j1 j2 j3
i �x1; x2; x3; t�

dt

�
X
j 0
1

�1ÿx2ÿx3
x1

dx 01
x 01

D
j 0
1
j2 j3

i �x 01; x2; x3; t�Pj 0
1
!j1

�
x1
x 01

�

�
X
j 0
2

�1ÿx1ÿx3
x2

dx 02
x 02

D
j1 j
0
2
j3

i �x1; x 02; x3; t�Pj 0
2
!j2

�
x2
x 02

�
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�
X
j 0
3

�1ÿx1ÿx2
x3

dx 03
x 03

D
j1 j2 j

0
3

i �x1; x2; x 03; t�Pj 0
3
!j3

�
x2
x 02

�

�
X
j 0

D j 0j3
i �x1 � x2; x3; t� 1

x1 � x2
Pj 0!j1 j2

�
x1

x1 � x2

�
�
X
j 0

D j 0j2
i �x1 � x3; x2; t� 1

x1 � x3
Pj 0!j1 j3

�
x1

x1 � x3

�
�
X
j 0

D j1j
0

i �x1; x2 � x3; t� 1

x2 � x3
Pj 0!j2 j3

�
x2

x2 � x3

�
: �37�

The two-parton distribution functions Dj 0j3
i �x1 � x2; x3; t�

determined above, which are contained in the inhomoge-
neous part of evolution equations (37), satisfy equations (33)
with known solution (35). The solutions of Eqns (37) may be
represented as a convolution of single and double distribution
functions with the kernels of equations [48]:

D j1 j2 j3
i �x1; x2; x3; t�

�
X

j 0j 0
1
j 0
2
j 0
3

�t
0

dt 0
�1
x1

dz1
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�1
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dz2
z2

�1
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dz3
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y�1ÿ z1 ÿ z2 ÿ z3�

�
�
D

j 0j 0
3

i �z1 � z2; z3; t
0� 1

z1 � z2
Pj 0!j 0

1
j 0
2

�
z1

z1 � z2

�
�D

j 0j 0
2

i �z1 � z3; z2; t
0� 1

z1 � z3
Pj 0!j 0

1
j 0
3

�
z1

z1 � z3

�
�D

j 0
1
j 0

i �z1; z2 � z3; t
0� 1

z2 � z3
Pj 0!j 0

2
j 0
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�
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��
�Dj1

j 0
1
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z1
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j 0
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D j3

j 0
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�
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; tÿ t 0

�
: �38�

Equations for n-parton distribution functions and their
solutions expressed in terms of a convolution of �nÿ 1�-
parton functions and kernels of the equations have also been
derived and obtained in [55, 67] using the Lipatov method;
however, they are very cumbersome and not displayed here.

4.4 Multiparton distribution functions in hadrons
More interesting in phenomenological applications are the
distribution functions of bare quarks and gluons in hadrons.
Equations for these functions can be obtained using the
widely employed and phenomenologically justified hypo-
thesis of factorization [68] of the physics of small and large
distances. The evolution of the distribution functions of bare
quarks and gluons in hadrons is described then by the same
equations that were discussed in Sections 4.1±4.3, where the
index of the dressed parton i is replaced by the index of the
hadron under consideration h. We only consider here two-
parton distributions, as the most interesting in phenomeno-
logy, the equations for which have the form [56, 57]

dD j1 j2
h �x1; x2; t�

dt
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X
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D
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D j 0
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�
: �39�

In addition to Section 4.3, in which a probabilistic
interpretation of all contributions on the right-hand side of
the evolution equations is given, they are displayed for clarity
in a graphical form in Figs 1 and 2.

However, the initial conditions for the new distribution
functions in hadrons on the initial scale t � 0 �Q 2 � m2� are
now a priori unknown, in contrast to the initial conditions
for the parton-level functions (for which Dj

i �x; t � 0� �
di j d�xÿ 1�; Dj1j2

i �x1; x2; t � 0� � 0), and they must be intro-
duced in a phenomenological manner or determined from
experiment or models that claim to have the confinement
problem solved. Nevertheless, solutions of equations with
given initial conditions may be represented in terms of
convolutions of parton-level functions in the form [56, 57]

D j1 j2
h �x1; x2; t� � D j1 j2

h�fact��x1; x2; t� �D j1 j2
h�QCD��x1; x2; t� ; �40�

where D j1 j2
h�fact��x1; x2; t� and D j1 j2

h�QCD��x1; x2; t� are the pertur-
bation-theory dynamic correlations induced by the evolution
of the two-parton functions (compare (35) and (42)),
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�
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Figure 1. Decays of partons in which the number of j1 j2-pairs with the

fractions of longitudinal momentum in the range x1 ! x1 � dx1, x2 !
x2 � dx2 increases by the value D��D j1 j2

h �x1; x2; t�dx1dx2�. PR
j 0!j�x� is the

part of the Pj 0!j�x� kernel that corresponds to the actual decay of the

partons, i.e., does not contain the terms proportional to d�1ÿ x�.

Dÿ�D j1 j2
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Figure 2.Decays of partons that decrease the number of j1 j2-pairs with the

fractions of the longitudinal momentum in the range x1 ! x1 � dx1,
x2 ! x2 � dx2 by the value Dÿ�D j1 j2

h �x1; x2; t�dx1dx2�. PV
j 0!j�x� is the part

of the Pj 0!j�x� kernel that contains the terms proportional to d�1ÿ x�.
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�42�

The first term on the right-hand side of Eqn (40) is a
solution of homogeneous QCD equations (independent
evolution of two branches of a parton cascade), in which the
two-parton distribution functionsD

j 0
1
j 0
2

h �z1; z2; 0� at the initial
scale m2 are, generally speaking, unknown. Factorizationmay
be suggested for these nonperturbative two-parton functions
at small z1 and z2,

D
j 0
1
j 0
2

h �z1; z2; 0� ' D
j 0
1

h �z1; 0�D
j 0
2

h �z2; 0� ; �43�

if the restrictions (z1 � z2 < 1) imposed by the law of
conservation of longitudinal momentum are disregarded.
This approach results in

Di j
h�fact��x1; x2; t� ' Di

h�x1; t�D j
h�x2; t� �44�

and provides a partial justification of the factorization
hypothesis for the two-parton distribution functions, which
is widely employed in the literature in the form

D j1 j2
h�fact��x1; x2; t� � D j1

h �x1; t�D j2
h �x2; t��1ÿ x1 ÿ x2� : �45�

The longitudinal momentum factor �1ÿ x1 ÿ x2� was actu-
ally introduced `by hand' to smoothly zero the two-parton
distribution functions at x1 � x2 ! 1 as required by the law
of conservation of momentum.

Equations (40) and (42) show that, even if the two-parton
distribution functions are factorized (43) on a certain scale,
this factorization is inevitably broken as a result of evolution,
and additional dynamic correlations emerge, which was first
noticed in [69±71]. A similar conclusion can be reached in the
case of triple parton distributions in hadrons, which were
studied in detail in [48], but they are very cumbersome and,
therefore, not presented here.

4.5 Estimation of correlations
It is of interest for practical applications to determine the
magnitude of induced correlations (42) in comparison with
the factorization component (41). This problem was partially
investigated in a theoretical approach in Ref. [72]. If moments
of the distribution functions are introduced,

M j1 j2
h �n1; n2; t� �

�1
0

dx1 dx2 y�1ÿ x1 ÿ x2�

� xn1
1 xn2

2 D j1 j2
h �x1; x2; t� ; �46�

the evolution integrodifferential equations are transformed
into systems of ordinary differential equations of the first
order with constant coefficients, whose solutions are found in
explicit form. Then, the inverse Mellin transform

x1x2D
j1 j2
h �x1; x2; t� �

�
dn1
2pi

xÿn11

�
dn2
2pi

xÿn22 M j1 j2
h �n1; n2; t�

�47�

enables the distribution functions to be determined in the
x-representation. Integration is carried out in this case along
the imaginary axis to the right of all singularities in n, and in
the general case is not possible in an explicit form. However,
the asymptotic behavior can be assessed: as t increases, the
second term in solution (40) for finite x1 and x2 becomes
dominant [72], and thus the asymptotic behavior of two-
parton distribution functions does not depend on the a priori
unknown two-parton initial data D j1 j2

h �x1; x2; 0�.
The asymptotic behavior only indicates a trend, but does

not provide any information about the values of x1, x2, and
t�Q�, starting fromwhich the correlations caused by the QCD
evolution become significant (especially since the asymptotic
behavior occurs in terms of the double-logarithmic variable
t). The answer to this specific question can be obtained as
well. The contribution of evolution-induced correlations in
comparison with the factorization component was first
estimated numerically in Ref. [70]. The initial data required
in these calculations of single parton distribution functions
D j

h�x; 0� were specified at the scale Q0 � m � 1:3 GeV in
accordance with the CTEQ parameterization (Coordinated
Theoretical Experimental project on QCD) [73]. Results for
the ratio of gg-correlations in the proton, which emerge as a
result of evolution, and the factorization component

R�x; t� �
D gg

p�QCD; corr��x1; x2; t�
D g

p �x1; t�D g
p �x2; t��1ÿ x1 ÿ x2�2

����
x1�x2�x

�48�

are shown inFig. 3. It can be seen that, at the scaleQ � 5GeV,
which is typical of measurements of the CDF collaboration,
ratio (48) is about 10% and increases to 30% at the scale
Q � 100 GeV, accessible for measurements at the LHC, for
fractions of the longitudinal momentum partons x4 0:1. For
fractions of longitudinal momentum x � 0:2ÿ0:4, correla-
tions are large, up to 90%. They become noticeable with
increasing t�Q� for an ever larger range of x in accordance
with the asymptotic behavior obtained in [72].

It should be noted that, instead of the longitudinal
momentum factor �1ÿ x1 ÿ x2�, which `zeroes out' in a
smooth manner the product of two single parton distribution
functions at x1 � x2 ! 1 in factorization ansatz (45), in
calculating ratio (48), the factor �1ÿ x1 ÿ x2�2 was intro-
duced with a higher power of zero at x1 � x2 ! 1, as follows
from the evolution equations. Integration over the phase
volume alone leads in (41) and (42) to the second power of
zero:� 1ÿx2

x1

dz1

� 1ÿz1

x2

dz2 � �1ÿ x1 ÿ x2�2
2

:

This power should actually be greater than two and
depend on t, increasing with the growing hardness of the
process, as is the case for single distribution functions in the
regime x! 1 [61, 74]. A similar result was obtained for two-
particle fragmentation functions in the asymptotic regime
x1 � x2 ! 1 in [75]. Numerical results confirm that the power
of zero at x1 � x2 ! 1 is greater than two and increases with
increasing t�Q�, as is shown in Fig. 3. However, the intro-
duced factor �1ÿ x1 ÿ x2�2 barely affects relation (48) in the
region of relatively small fractions of longitudinal momenta
x1, x1, which is the most interesting from the experimental
perspective, since it is from this region that the contribution to
the cross section from multiple interactions may be experi-
mentally extracted.
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The properties of double parton distributions in hadrons
were investigated in more detail later using direct integration
of evolution equations (39) [76, 77] (in [77], only homo-
geneous equations). This method turned out to be more
efficient in numerical calculations than using solutions (40) of
these equations in the form of convolutions of single distribu-
tion functions, since in this case there is no need to deal with
singular Green's functions (single parton-level functions
with singular d-like initial conditions). Available programs
allow tabulating double parton distribution functions in a
wide range of variables: 10ÿ6 < x1 < 1; 10ÿ6 < x2 < 1;
1 < Q2 < 109 GeV2. The initial data for double distributions
are specified in this case in an improved `factorized' form,
taking into consideration additional constraints that follow
from the momentum and quark sum rules:

D j1 j2
h �x1; x2; 0� � D j1

h �x1; 0�D j2
h �x2; 0��1ÿ x1 ÿ x2�2

� �1ÿ x1�ÿ2ÿa� j1��1ÿ x2�ÿ2ÿa� j2� ; �49�

where a� j� � 0 for sea partons and a� j� � 0:5 for valence
partons. The point is that evolution equations (39), due to the
properties of their kernels, ensure conservation of both the
total momentum of partons and the number of valence
quarks (as is the case for single distributions):X

j1

� 1ÿx2

0

dx1 x1D
j1 j2
h �x1; x2; t� � �1ÿ x2�D j2

h �x2; t� ; �50�� 1ÿx2

0

dx1 D
j1 j2
h �x1; x2; t� � ND j2

h �x2; t� ; �51�

where N � Nj1v for j2 not equal to j1 or �j1; N � Nj1v ÿ 1 for
j2 � j1; N � Nj1v � 1 for j2 � �j1; j1v � j1 ÿ �j1 ( j1 is not equal
to g); andNj1v is the number of valence quarks of type j1 in the
proton (hadron). It should be noted that without additional
factors �1ÿ x1�ÿ2ÿa� j1��1ÿ x2�ÿ2ÿa� j2� in the improved `fac-
torization' ansatz (49) neither the momentum (50) no quark
(51) sum rules may be satisfied for two-parton initial data.

It is also worth noting here that the particular solution
(42) of inhomogeneous equations contributes to the inclusive
cross section for two-parton scattering with a weight larger
(with a different effective cross section [78±84]) than the
solution of homogeneous equations (41). This issue is

discussed in more detail in Section 5. Solutions to homo-
geneous equations, as noted, are usually taken in factoriza-
tion form, considered to be a good approximation to the exact
solution if there are no nonperturbative correlations. These
initial correlation conditions are not known a priori, but they
are not entirely arbitrary either, since they must satisfy
nontrivial sum rules [76, 85, 86], which are preserved in the
course of evolution. The problem of setting `correct' initial
data for evolution equations with the correct behavior near
kinematic boundaries has also been actively studied and
discussed [76, 85, 87±92].

5. Cross sections for double
and triple parton scattering
taking into consideration QCD evolution

Numerous successful attempts have been made over the last
decade [24, 78±83, 93±98] to take into account in hadron-
hadron collisions the evolution-related dynamic QCD corre-
lations discussed in Section 4. Solutions to evolution equa-
tions for double distribution functions are the sum of
solutions for homogeneous and inhomogeneous equations.
The former describes the independent (concurrent) evolution
of two branches of the parton cascade: one branch contains a
parton with a fraction of the longitudinal momentum x1 in
the final state, while the other, a parton with x2. Solutions of
inhomogeneous equations support the feasibility of splitting
one-parton evolution (one branch j splits into two different
branches: j1 and j2) with the standard splitting kernel
Pj!j1j2�z�. These two different structures generate three
different contributions to the inclusive cross section of
double parton scattering [78]:

sDPS
hh 0!a1a2

� sDPS; 1�1
hh 0!a1a2

� sDPS; 1�2�2�1
hh 0!a1a2

� sDPS; 2�2
hh 0!a1a2

; �52�

where

sDPS;1�1
hh 0!a1a2
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� ŝ jl
a2
�x2; x 02�Dk

h 0 �x 01; m2;Q 2
1 �Dl

h 0 �x 02; m2;Q 2
2 � ; �53�
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� ŝ jl
a2
�x2; x 02�Dkl

h 02�x 01; x 02; q 2;Q 2
1 ;Q

2
2 �

�Di j
h2�x1; x2; q 2;Q 2

1 ;Q
2
2 �ŝ ik
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� ŝ jl
a2
�x2; x 02�Dk

h 0 �x 01; m2;Q 2
1 �Dl

h 0 �x 02; m2;Q 2
2 �
�
; �54�

sDPS; 2�2
hh 0!a1a2

� c

2

X
i; j; k; l

�
dx1 dx2 dx

0
1 dx

0
2

�min �Q 2
1
;Q 2

2
� d2q

�2p�2

�Di j
h2�x1; x2; q 2;Q 2

1 ;Q
2
2 �ŝ ik
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Figure 3. Ratio of the evolution-induced correlations to the factorization

component for double gluon±gluon distributions in the proton as a

function of x � x1 � x2 for Q � 5 GeV (solid curve), Q � 100 GeV

(dashed curve), and Q � 250 GeV (dashed-dotted curve).
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where as�k 2� � g 2�k 2�=�4p� is the running coupling constant.
The single distribution functions Di

h�x1; m2;Q 2
1 �, presented

here explicitly as functions of both scales, are solutions of
DGLAP equations with given initial conditionsDi

h�x1; m2� on
the initial scale m2. They can be defined through Green's
functions Di

i 0 �z; m2;Q 2�:

Di
h�x; m2;Q 2� �

X
i 0

� 1

x

dz

z
Di 0

h �z; m2�Di
i 0

�
x

z
; m2;Q 2

�
: �57�

It should be noted from the very beginning that the three
terms (53)±(55) contribute to the inclusive cross section with
different dimensional (geometric) weights, which are referred
to as effective cross sections. For example, the first �1� 1�
component describes the production of two hard particles, a1
and a2, as a result of interaction between two parton pairs
from two independent branches of parton cascades. The
probability of such a double parton interaction depends on
the spatial distribution (in the transverse plane of the impact
parameter) of the parton-cascade branches. This spatial
distribution is governed in the momentum representation by
a two-parton form factor (primarily two-gluon at small x) F2g

[52]. Having integrated over q, we obtain�
F 4
2g�q�

d2q

�2p�2 �
1

seff;DPS
: �58�

The quantity seff;DPS, usually called the effective cross section,
characterizes the transverse area occupied by the partons that
are involved in the hard collision.

Thus, the inclusive cross section of double parton
scattering depends on the spatial correlations between two
partons in the wave function of the colliding proton (hadron).
Due to the strong ordering of transverse momenta in the
course of DGLAP evolution, the position of partons in the
transverse plane of the impact parameter bt is actually
`frozen', and the form factor F2g describes the initial bt-
distribution formed in the nonperturbative region at a
certain scale smaller than the scale m2 from which DGLAP
evolution begins.

However, there is another type of correlation that is due to
the splitting of one branch of the parton cascade into two
branches. The splitting at the scale k 2 results in the emergence
of two branches with a relatively small transverse spatial
separation, db 2

t � 1=k 2. This effect of a purely perturbative
origin can significantly increase the inclusive cross section for
double parton scattering and result in a significant decrease in
the effective cross section seff;DPS (extracted from relation (9))
in comparison with the value estimated in the geometric
representation (10).

Depending on the kinematics of the process under
consideration and experimental cutoffs, the study may be
focused on exploring either two-parton correlations that are

due to the nonperturbative region, i.e., the �1� 1� compo-
nent, or correlations of a purely perturbative origin, i.e., those
that are due to the �2� 2� component.

The contribution of the mixed �1� 2� 2� 1� component
is governed by the form factor F2g�q� from the side of one
incident proton and perturbative splitting from the other.
Since the form factor F2g�q� alone ensures the rapid conver-
gence of the integral over q in the region of small q 2 < m2, here
we are actually dealing with primarily long-range correlations
from the nonperturbative region.

The �2� 2� component has been actively discussed [79±
82, 93±97]; however, in our opinion [82], this discussion is
primarily of a terminological nature. This contribution
includes two splitting kernels, and the integration over q
does not contain the strong suppressing factor F2g�q�.
Formally, this contribution in the collinear approach in the
region of not too small x should be considered a result of the
interaction of a single pair of partons that includes a 2! 4
hard subprocess [79±82, 93, 94], since the dominant contribu-
tion to the phase volume is due to the region of large q 2 �
min �Q 2

1 ;Q
2
2 �. However, as shown in [78, 82], configurations

are possible with a relatively large interval between the
splitting point �k 2; z1 � z2� and the (momentum) coordinates
�Q 2

i ; xi� of the hard subprocess. Should this be the case, an
evolution (described either by DGLAP, if k 2 5Q 2

i , or
Balitskii±Fadin±Kuraev±Lipatov (BFKL) [63, 99±101] if
z1 � z2 4xi) with the production of many secondary parti-
cles becomes possible. The corresponding process cannot be
described by a 2! 4-hard matrix element, and all contribu-
tions should be taken into account in Eqn (52), especially in
the case of configurations with completely different scales (for
example, Q 2

1 5Q 2
2 ).

The structure of the additional contributions �1�2� 2�1�
and �2� 2� that contain one and two splitting kernels,
respectively, was investigated in the double logarithmic
approximation in Ref. [82], where the kinematic region is
specified in which the �2� 2� component should be attributed
to double parton scattering. The problem of so-called double
counting was studied in detail later with a prescription for its
solution [96, 97] and confirmation of the need to consider the
�2� 2� component as double parton scattering in the region
of sufficiently small longitudinal momenta.

The formulas for calculating the inclusive cross section for
triple parton scattering taking into consideration the QCD
evolution were also obtained in [48] with an estimate of
geometric factors for various contributions generated by
solutions of the corresponding homogeneous and inhomoge-
neous equations, and a discussion of the double counting
problem; however, the corresponding expressions are cum-
bersome and not displayed here.

6. Phenomenological impacts of QCD evolution

As noted, the double parton distribution functions as a result
of evolution become strongly correlated at largeQ 2 and finite
fractions of the longitudinal momenta x1 and x2, even if they
were factorized on the initial scale Q 2

0 � m2. However,
experimental data do not yet support the presence of strong
correlations in the longitudinal momentum fractions, which
can be explained by the fact that the kinematic region of
variables (relatively small x and Q 2) accessible for investiga-
tion is still far from the asymptotic region where the dynamic
QCD correlations dominate. With an increase in luminosity
in the LHC, it will be possible to study double parton
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scattering in the regime of large x and Q 2, in which
correlations can manifest themselves in a direct way.

It was shown in Ref. [102] that measurements by the D0
collaboration [29] of the effective cross section s exp

eff;DPS,
presented as a function of the momentum of a second jet
p jet2
T (ordered in the transverse momentum), can be regarded

as the first indirect indication of the evolution of double
parton distributions. Figure 4 shows that this cross section
tends to decrease with an increase in the hardness of the
process, which can be characterized in this case by the
transverse momentum of the jet. The dimensional geometric
factor seff;DPS contains at first glance information about the
nonperturbative structure of the proton and reflects the
distribution of parton matter in the overlap region of two
colliding hadrons; it therefore should not depend a priori on
the hardness of the parton subprocess. However, in both
CDF and D0 experiments, the effective cross section sexpeff;DPS

was not measured directly, but was calculated (extracted)
using the normalization to the product of two single cross
sections (as in Eqn (9)):

sg�3j
DPS

sgjs j j
� �s exp

eff;DPS�ÿ1 ; �59�

where sg�3j
DPS is the inclusive cross section of events with a

photon and three jets in the final state, which are produced in
double parton scattering, sg j is the inclusive cross section of
the process with a photon and a jet in the final state, and s j j is
the inclusive cross section of two-jet events. It should be noted
that neither collaboration has used any theoretical calcula-
tions (predictions) for inclusive cross sections but compared
the number of double parton events with a photon and three
jets in the final state observed in one hard p�p collision with the
number of events with a photon and three jets in the
interactions that occur in two different p�p collisions.

With this normalization (59) and the presence of addi-
tional correlations in double parton distributions, the experi-
mentally `extracted' s exp

eff;DPS will differ from seff;DPS deter-
mined from Eqn (10) in terms of the parton matter density

f �b� in the plane of the impact parameter, and will depend on
the hardness of the process. A functional form of the
dependence of s exp

eff;DPS on p jet2
T , inspired by the explicit form

of the evolutionary variable t and the solution of evolutionary
equations, was proposed in [102],

s exp
eff;DPS � s 0

eff

�
1� k ln

p jet2
T

p jet2
T0

�ÿ1
; �60�

and is shown in Fig. 4 for k � 0:1 (dashed line) and k � 0:5
(solid line). These curves illustrate two possible behaviors of
s exp
eff;DPS: a barely noticeable decrease (virtually constant

value) and a distinct decrease in the measurement area. The
normalization point p jet2

T0 � 22:5GeVwith s 0
eff � 16:3mbwas

fixed to reproduce the measured value in the central bin p jet2
T .

The measurements carried out in three p jet2
T ranges do not

yet enable making assertions about a serious check of the
`prediction' (60) with two fitting parameters, s 0

eff and k.
Thus, in contrast to naõÈ ve expectations, the existence of

additional dynamicQCD correlations implies the dependence
of the experimentally extracted effective cross section s exp

eff;DPS

on the energy scale of the resolution, an observation that has
been confirmed in subsequent theoretical studies [78, 83, 98,
103]. Moreover, the relative contribution of the mixed
�1� 2� 2� 1� component (54) to the inclusive cross section
of double parton scattering proves to be numerically signi-
ficant [83, 98] at LHC energies and grows as the energy scale
increases. The first estimates of these additional contributions
to the inclusive cross section of actual processes were made in
Ref. [84] in a simplified phenomenological approach with an
encouraging conclusion regarding their experimental obser-
vability. A close estimate for the observability frequency of
so-called joint interactions [19] was also obtained using the
Pythia generator [49]. It was shown in [83] that taking into
account additional dynamic QCD correlations (three-parton
interactions in the author's terminology) provides a resolu-
tion to a long-standing problem: why the observed inclusive
cross section of double parton scattering is twice as large as its
estimate made in the approximation of independent parton
interactions (factorization �1� 1� component (53) alone with
a `standard' geometric transverse profile and proton radius).

As noted in the introduction, the contribution from
double parton scattering has been by now reliably measured
and picked out [24] in a number of processes that contain in
the final state heavy quarks �c; b�, quarkonia �J=c;U�, jets,
and gauge bosons �g;W;Z�. There are also many theoretical
estimates of cross sections for rarer processes, the observation
and study of which will become possible with an increase in
LHC luminosity and at higher energies of the colliders under
design. Most of these estimates have been made in the
approximation of independent parton interactions (the
factorization �1� 1� component alone (53), but with a
typical value seff;DPS ' 15� 5 mb rather than with the
`standard' geometric transverse profile and radius of the
proton, to effectively take into account additional non-
factorization contributions). However, more detailed calcula-
tions of the cross sections are now possible in the recently
developed Monte Carlo model [104] of double parton scat-
tering, which explicitly takes into account evolution effects.

In concluding this section, attention should also be paid to
processes with the production of two W-bosons with the
same-sign electric charge and the production of a W-boson
accompanied by heavy mesons with the same-sign electric
charge: despite the low probability of such events, these

25
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Figure 4. Effective cross section sexpeff;DPS measured for three values of the

transverse momentum of the second jet p jet2
T (taken from [29]). The solid

curve �k � 0:5� and dashed curve �k � 0:1� present calculations made

using Eqn (60) with p jet2
T0 � 22:5 GeV and s 0

eff � 16:3 mb.
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processes were proposed in [105±108] as the most suitable and
`purest' for studying the mechanism of double parton
scattering owing to a significantly lower relative background
from single scattering. Moreover, if two same-sign W bosons
are produced, the dynamic QCD correlations can manifest
themselves in nontrivial kinematic correlations [106] of these
bosons by their rapidity, which are absent in the approxima-
tion of independent parton interactions. Processes with the
production of two heavy quarkonia in various combinations
are also very promising candidates [24, 109±111] for studying
double parton scatterings.

7. Conclusions

Two-parton distribution functions in the leading logarithmic
approximation of QCD perturbation theory satisfy certain
evolutionary equations. It follows from these equations that
the factorization hypothesis, which is often used for two-
parton distribution functions in the analysis of experimental
data on double parton scattering, may be taken as a first
approximation in a limited range of variation in the hardness
of the process. The momentum and quark sum rules, which
are preserved during evolution due to the properties of the
kernels of the equations, yield additional constraints on the
form of the `factorization' ansatz for the initial data. As the
hardness of the process grows, the contribution of the
emerging dynamic QCD correlations to the two-parton
distribution functions and the inclusive double parton
scattering cross section increases in comparison with the
factorization component, behavior that gives hope for their
direct observation.

The effective cross section s exp
eff;DPS measured by the D0

collaboration [29], if represented as a function of the
momentum of the second jet p jet2

T , may be regarded as the
first indirect indication of the evolution of double parton
distributions. Measurements in a wider range of variation of
the hardness of the process with lower experimental uncer-
tainties are needed to observe this effect more clearly and
compare it in detail with calculations [83], which explicitly
take into account dynamic correlations (three-parton inter-
actions).

It should be noted that double parton scattering is also
actively discussed in proton±nucleus (pA) collisions [42, 112±
126], since their relative contribution increases in comparison
with the naõÈ ve scaling expectation, and new unique options
for the further study and measurement of QCD momentum
correlations emerge. The latest achievements in and prospects
for these studies may be found in review [47]. Nucleus±
nucleus (AA) collisions are less interesting [47, 124] for
studying multiparton interactions, since in this case multiple
nucleon±nucleon scatterings that reflect the well-known
distribution of nucleons in the nucleus rather than the parton
distribution in the nucleon of interest to us dominate.

As the collision energy increases, the region of increas-
ingly smaller fractions of longitudinal parton momenta in
which parton densities strongly increase becomes accessible
for exploration, and it is necessary to go beyond the standard
approaches [63, 127±129]. In relation to this, the issue of the
relationship between competing effectsÐan increase in
parton densities due to the splitting of the parton cascade
branches vs. their decrease as a result of parton diffusion by
rapidity [129]Ðbecomes especially interesting.

The results covered in this review emphasize the impor-
tance of a profound understanding of the dynamics of

multiparton interactions in hadronic collisions in operating
and projected colliders. This observation refers to both
investigating basic QCD phenomena and the background
for the search for new physics in rare events in which many
heavy particles and particles with large transverse momenta
are produced.
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