
Abstract. Numerous examples show phase transitions in the
structure of atomic nuclei as the excitation energy and the
moment of rotation increase and the number of nucleons
changes. These are phase transitions of the equilibrium shape
and structure of the ground and low-lying excited states of the
nuclei, associated with a change in their symmetry. The subject
of phase transitions has given rise to a new wave of investiga-
tions into the structure of atomic nuclei. In this review, we
consider examples of phase transitions, discuss the feasibility
of describing themwithin a collective model of the nucleus with a
Hamiltonian depending on a small number of dynamic vari-
ables, and also touch upon microscopic aspects of phase transi-
tions.
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1. Introduction

The subject of this review is mainly heavy atomic nuclei, with
the number of nucleons A greater than 100, although
abundant examples of quantum phase transitions are also
provided by lighter nuclei. Heavy atomic nuclei are systems

with a huge number of degrees of freedom, namely, 3�Aÿ 1�.
Quite remarkably, undermoderate excitation energies, e.g., in
the range of 1±2MeV for heavy nuclei, their properties can be
described based on a Hamiltonian with only a small number
of dynamical variables. For example, the most important
dynamical variable that determines the properties of nuclei at
small excitation energies is the quadrupole mode [1, 2], which
includes five degrees of freedom, by the number of the angular
momentum projections. Certainly, these five degrees of
freedom are related in a most intricate way to the coordinates
describing the motion of individual nucleons (the random
phase approximation, the generator coordinate method,
bosonic expansions, the model of interacting bosons, etc.
[3]), but in a phenomenological analysis the Hamiltonian
contains only these dynamical variables. Describing excited
states of the nuclei associated with rotations and quadrupole
oscillations of the equilibrium shape, such aHamiltonian also
accounts for their effect on themotion of individual nucleons.

Some other dynamical variables, in addition to the
quadrupole mode, can also be called collective variables
because of their relation to changes in the state of motion of
a large number of nucleons. They are the dynamical variables
describing octupole shape oscillations [4], pair correlations of
nucleons [5, 6], fluctuations of the angular momentum
direction of the deformed nucleus with respect to the axial
symmetry axis [7], and chirality in odd±odd nuclei [8].

The collective variables related to the quadrupole and
octupole degrees of freedom are directly related to the notion
of equilibrium shape of an atomic nucleus, primarily in the
ground state. This gave rise to the notions of spherical,
deformed, and transitional nuclei, the last of which occupy
an intermediate position between spherical and deformed.
Studies of the structure of nuclei, mostly with the use of
Coulomb excitation, have shown that the nucleus shape in the
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ground state depends on the proton±neutron content of the
nucleus and changes with the number of protons and
neutrons. This has led to the notion of phase transitions
from spherical nuclei to deformed nuclei as the number of
nucleons changes. Surely, these are not quite the phase
transitions well known from thermodynamics, which occur
as the temperature and pressure vary. Due to the finite
number of nucleons in a nucleus, these transition from one
shape to another are smeared (although sharp changes in
shape are also observed under insignificant changes in the
number of nucleons). It must also be kept in mind that the
number of nucleons, being a discrete parameter, cannot serve
as a rigorously defined control parameter. Strictly speaking,
the signatures and indications of the quantum phase transi-
tion observed in nuclei are arguably `precursors' of real phase
transitions that could have occurred in nuclei if they had been
infinite in volume. At the same time, calculations allow us to
use continuous variations in control parameters, thus making
the `precursor' of phase transitions more pronounced.

In considering stable nuclei, phase transitions have been
observed under a variation in not only the number of
nucleons but also the angular momentum of the nucleus. In
recent years, the interest of nuclear physicists has shifted
toward investigations of nuclei far from the stability domain.
In such nuclei, at different excitation energies, states have
been discovered in which the nucleus takes entirely different
shapes. This has given rise to the concept of coexistence of
shapes [9±11].

2. Deformation generation mechanism

A fundamental feature of an atomic nucleus, setting it apart
from many other microsystems, is the self-consistent field
formed as a result of the collective motion of a large number
of nucleons. A characteristic feature of the self-consistent
field of the nucleus is the presence of nuclear shells, the shell
structure [12]. Studies of the structure of atomic nuclei began
with attempts to explain the origin of magic numbers of
protons and neutrons, i.e., the numbers making the nucleus
especially stable. The explanation has been found: the shell
structure of the nuclei and the existence of an energy gap
separating the shells. Another finding was that all magic
nuclei are spherical. The situation started to change when
experimental investigations of nuclei far from the stability
domain became feasible.

We consider themechanism of the occurrence of deforma-
tions in a nucleus within an approach relying on the notion of
the mean field of the nucleus and of nucleons moving in that
field. In this setting, the deformation occurs as a result of the
polarization of the nucleus core by valence nucleons filling
certain orbits. The relation between valence nucleons and
oscillations of the nucleus core leads to the nuclear Jahn±
Teller effect [13], i.e., to instability of the spherical symmetry
of the mean field under deformations that reduce that
symmetry. The fact that an atomic nucleus is not necessarily
spherical was first noted back in 1936 by Niels Bohr in [14],
where he formulated the main principles of the compound
nucleus model. A model where the relation between nucleus
surface oscillations and the motion of individual nucleons is
taken into account was formulated by Aage Bohr in 1952 [1].

The shell model of a nucleus contains two main elements
of the mechanism that leads to a reduction in the mean field
symmetry of the nucleus: the density of single particle levels as
a function of the occupancy of shells and the coupling of the

motion of nucleons to oscillations of the core. The possibility
itself of separating the nucleus into a core and several
valence nucleons interacting via two-particle forces is
inherent in the shell model. The stability of one atomic
nucleus shape or another is directly related to the density
of single particle levels near the Fermi surface. Variations
in the density of single particle levels as the shells are being
gradually filled have been given an excellent interpreta-
tion in terms of periodic orbits of a suitable classical
Hamiltonian [15]. In the approach based on the shell
model of the nucleus, deformation is related to the
appearance of an energy gap in the neutron and proton
spectra of single particle levels [16, 17].

The distance between single particle levels in a shell and
their relative positions depends on the interaction of valence
nucleons and can change as the shell is being filled. The
microscopic mechanism underlying phase transitions from
spherical to deformed nuclei is the Federman±Pittel mechan-
ism [18], the key role in which is played by the monopole
proton±neutron interaction [19±21] of the nucleons filling the
single particle orbit with a strong spatial overlap. The point is
that the structure of nuclear shells and their content (the
single particle levels they are made of) depend on the proton±
neutron content of the nucleus. The interaction of nucleons,
due to its specific dependence on the orientation of spins and
isospins, can in some cases substantially change the distance
between single particle levels. This gives rise to new shells, i.e.,
a new magic number, and new subshells, i.e., gaps between
single particle levels in one shell. Such examples were first
given by Cohen [22] in 1968 at a Dubna symposium on the
structure of atomic nuclei. An example is provided by the
interaction of protons in the 1g9=2 state with neutrons in the
1g7=2 state.

Later, in the work by Otsuka and his group [23], it
was shown that just the tensor interaction of nucleons is
responsible for the observed effects. Tensor interaction can
essentially change the position of single particle levels in a
shell not only when the proton±neutron content of the
nucleus changes but also during excitation of the nucleus,
when particle±hole excitations lead to a change in the filling of
single particle levels by valence nucleons. The new subshells
can then have characteristics different from those inherent in
the ground state. For example, they can be orbits with a large
orbital momentum, which are therefore also characterized by
high quadrupole momenta. Such excited configurations
exhibit larger distortions, i.e., have a shape different from
the nucleus shape in the ground state. As a result, phase
transitions from the spherical to a distorted shape of the
nucleus become possible as the excitation energy increases.

The leading role in the generation of distortions of the
nucleus is thus played by proton±neutron interaction in the
channel with the isospin T � 0 [24], whereas the interaction
with T � 1 can be associated with short-range pair forces
stabilizing the spherical shape of the nucleus [25±28]. For
example, semimagic nuclei, which have only one type of
valence nucleon, either protons or neutrons, are spherical.
Instructive examples are provided by the spherical nucleus
20O with four valence neutrons and the deformed nucleus
20Ne with two valence protons and two valence neutrons.

3. Collective model of the nucleus

An atomic nucleus is a fully quantum system whose
Hamiltonian has rotation invariance. This means that the
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nucleus has no preferred direction in space. But in that case, it
is difficult to determine the shape of the nucleus. Indeed, the
nucleus shape is not observable. To introduce nucleus shape
into consideration, we must break the rotation invariance,
i.e., define an internal coordinate system rigidly attached to
the nucleus. In addition, we must introduce a semiclassical
model similar to that of a liquid drop in order to define the
parameters characterizing the shape of the nucleus [1]. The
problem then arises of how to identify suitable parameters
using the wave function of the nucleus defined in the
laboratory coordinate system.

Historically, however, the course of investigations took
a different path. In 1953, A Bohr and B Mottelson [29]
related the appearance of rotational bands in excitation
spectra of nuclei to their deformation in the internal
coordinate system. Since then, shapes of the nuclei have
been discussed based on the notion of the mean field of
the nucleus defined in the internal coordinate system. The
deformation parameters are then given by components of
the quadrupole moment of the nucleus density, defined in
the internal coordinate system. From the quadrupole
moment defined in the internal coordinate system, we can
move to the quadrupole moment defined in the laboratory
system. Using quadrupole moment components and cano-
nically conjugate momenta as dynamical variables, we can
construct a rotation-invariant Hamiltonian in the labora-
tory system. This led to the geometric collective model of the
nucleus with A Bohr's Hamiltonian [1].

Distortions of the nuclei and their shapes were also
discussed within algebraic collective models based on one
dynamical symmetry group or another. The first such model,
proposed by Elliott [30, 31], went practically unnoticed,
however, partly because of its limited applicability range.
Popularity was gained by the algebraic collective model based
on the SU(6) dynamical symmetry group [32, 33].

3.1 Geometric collective model
The geometric collective model was formulated by A Bohr as
a hydrodynamic collective model deriving from the already
existing liquid-drop model of the nucleus [34, 35]. However,
many of these early notions turned out to be too restrictive
and were in fact not necessary. In the final formulation, the
collective variables were chosen as the multipole moments of
the nucleus density. This was convenient also because
microscopic expressions for them are known in terms of
nucleon coordinates. Among such moments, the main role is
played by the quadrupole moment of nucleus density. The
corresponding collective coordinates are the five components
of the quadrupole tensor a2m, proportional to the quadrupole
moment of the nucleus. In order to consider rotational
excitations of the nuclei and excitation due to nucleus shape
oscillations, it is convenient to separate dynamical variables
associated with rotational degrees of freedom and the
dynamical variables characterizing the nucleus shape:

a2m � b
�
D 2

m0�X� cos g�
1���
2
p ÿ

D 2
m2�X� �D 2

mÿ2�X�
�
sin g

�
: �1�

Here, D 2
mk�X� is the Wigner function depending on the three

Euler's angles X, which define the orientation of the internal
coordinate system of the nucleus with respect to the
laboratory system. The variable b characterizes the deviation
of the nucleus shape from spherical, and nonvanishing values
of g imply that the nucleus has no axial symmetry. For

example, in the case of axially symmetric quadrupole
deformation, with the nucleus shape represented as an
ellipsoid of rotation, the ratio of the minor semiaxis of the
ellipsoid to the major semiaxis is �1ÿ �2=3�b�=�1� �1=3�b�.
Typical values of b for deformed nuclei from the range of
actinides and rare-earth nuclei are 0.25±0.30.

The collective Hamiltonian of the nucleus in terms of b, g,
andX has the form [36]

Ĥ � ÿ �h 2

2B
H 2 � V̂ ; �2�

where V̂ is the potential energy depending only on b and g,
B is the coefficient of inertia, H 2 is the Laplacian in five-
dimensional space,

H 2 � 1

b 4

q
qb

b 4 q
qb
ÿ L̂ 2

b 2
; �3�

where

L̂ 2 � ÿ 1

sin �3g�
q
qg

sin �3g� q
qg
�
X3
k�1

L̂2
k

4 sin2 �gÿ 2pk=3� ; �4�

and L̂k are components of the angular momentum operator.
The potential energy V̂ is a function of two rotation
invariants: b 2 and b 3 cos �3g�.

There are three well-known generally accepted models of
collective motion in even±even nuclei: vibrator, axially
asymmetric rotor, also called the `g-soft nucleus,' and an
axially symmetric rotor. These three models correspond to
three particular cases of collective motion, for which Bohr's
Hamiltonian (2) has analytic solutions.

The first model, the vibrator, is obtained by setting
V̂ � �1=2�Cb 2, where C is the rigidity parameter of the
potential. In that case, Bohr's Hamiltonian reduces to the
Hamiltonian of the five-dimensional harmonic oscillator with
an equidistant spectrum of excited states consisting of
degenerate multiplets (Fig. 1a).

The nucleus shape is frequently characterized by the ratio
of the excitation energy of the lowest 4� state �4�1 � to the
excitation energy of the lowest 2� state �2�1 �: R4=2 �
E�4�1 �=E�2�1 �. In the case of harmonic oscillations about the
spherical shape of the nucleus, R4=2 � 2.

The next model corresponds to the assumption that the
potential V̂ is independent of g [37]. Then, the dependence on
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Figure 1. Spectra of low-lying collective excited states: (a) five-dimensional

harmonic oscillator, (b) soft nonaxial rotor, and (c) axially symmetric

rotor.
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g in the Hamiltonian is concentrated only in L̂ 2, where L̂ 2 is
the Casimir operator of the SO(5) group. Its eigenfunctions
YvaLM and eigenvalues are known [36]:

L̂ 2YvaLM � v�v� 3�YvaLM ; v � 0; 1; 2; . . . ; �5�

where L andM are the respective angular momentum and its
projection, corresponding to rotation in three-dimensional
space, v is the angular momentum quantum number in five-
dimensional space (called the Racah seniority), and a is an
additional quantum number. In this case, Bohr's Hamilto-
nian takes the form�
ÿ �h 2

2B

�
1

b 4

q
qb

b 4 q
qb
ÿ v�v� 3�

b 2

�
� V�b�

�
R�b� � EvR�b� :

�6�
If we assume that the potential has a deep and narrow
minimum at b � b0, then the spectrum of excited states
becomes (Fig. 1b)

Ev � �h 2

2Bb 2
0

v�v� 3� : �7�

Here, R4=2 � 2:5.
The third model, the axially symmetric rotor, follows

from Bohr's Hamiltonian by assuming both b�� b0� and
g�� 0� to be frozen. The spectrum of excited states is then
expressed as

EL;K � �h 2

6Bb 2
0

�
L�L� 1� ÿ K 2

�
; �8�

where L is the angular momentum and K is the angular
momentum projection on the symmetry axis of the nucleus. In
this limit, R4=2 � 3:33. If in the harmonic approximation we
also include b-oscillations about b0 and g-oscillations about
g � 0, then the spectrum of excited states becomes (Fig. 1c)

EL;K � �h 2

6Bb 2
0

�
L�L� 1�ÿ K 2

�� �nb� 1

2

�
�hob� �ng� 1��hog :

�9�
Here, nb is the number of b-oscillation quanta, ob is the
frequency of b-oscillations, ng is the number of g-oscillation
quanta, and og is the frequency of g-oscillations.

3.2 Algebraic collective model
Experimental data allow identifying a sequence of collective
states of a given nucleus that differ only in the values of some
quantum numbers and are associated with large matrix
elements of the quadrupole moment operator. These collec-
tive quadrupole excitations, if discussed only in terms of their
energies, quadrupole moments, and electric quadrupole (E2)
transitions, can be described by either five collective coordi-
nates, as in the geometric approach in Section 3.1, or using
creation and annihilation operators of quadrupole bosons in
the algebraic approach to be discussed below. In the latter
case, the problem is that the microscopic Hamiltonian of the
nucleus depends on a large number of dynamical variables,
among which the collective quadrupole variables are in no
way singled out initially. Attempts have been made to
construct a collective Hamiltonian as a series in powers of
the bosonic operators, with only a small number of terms
taken into account. But calculations have shown that these
series poorly converge in practically interesting cases.

We consider a nucleus with even numbers of protons and
neutrons. Because only states with even numbers of quasi-
particles (elementary excitations of the fermionic-type
ground state) are realized in such nuclei, we are interested
only in the algebraic properties of the pair fermion operators
a�s a

�
t , a�s at, and atas. Here, a�s �as� is the creation

(annihilation) operator of quasiparticles, introduced in the
case of strong superfluidity-type pair correlations of nucleons
in the nucleus. If pair correlations are weak, then the quasi-
particles are given by the hole and particle states of valence
nucleons. The pair fermionic operators generate a Lie algebra
in the chosen configuration space [33, 38]:

A�JMn �
1���
2
p
X
s; s 0

c Jn
ss 0 �a�s a�s 0 �JM ;

�10�
AJMn � �A�JMn�� ;

where

�a�s a�s 0 �JM �
X
msms 0

C JM
jsms js 0ms 0

a�sms
a�s 0ms 0

: �11�

Here, C JM
jsms js 0ms 0

is a Clebsch±Gordan coefficient, s and s 0 are
the full sets of quantum numbers characterizing one-particle
states except the projections of their angular momentams and
ms 0 on the z-axis of the laboratory coordinate system, and js
and js 0 are the angular momenta of nucleons in the s and s 0

states. The operators A�JMn and AJMn are characterized by the
angular momentum J, its projection M, and the additional
quantum number n. The amplitudesc Jn

ss 0 satisfy the orthogon-
ality relationsX

s; s 0
c Jn
ss 0 c

Jn 0
ss 0 � dnn 0 ; �12�X

n

c Jn
ss 0 c

Jn
tt 0 �

1

2

ÿ
dstds 0t 0 ÿ �ÿ1� js�js 0 �Jdst 0ds 0t

�
:

Using these relations, we can evaluate the commutator
�AJMn;A

�
J 0M 0n 0 �:

�AJMn;A
�
J 0M 0n 0 � � dJJ 0dMM 0dnn 0

� 2
X

ss 0t 0Lm

c Jn
ss 0 c

J 0n 0
st 0 �ÿ1� js�js 0 �J

0�L �����������������������������������
�2J� 1��2L� 1�

p
� js 0 js J

J 0 L jt 0

� �
C J 0M 0

JMLm�a�t 0 ~as 0 �Lm ; �13�

where �a�t ~as 0 �Lm �
P

mtms 0
C Lm

jtmt js 0ms 0
a�tmt

as 0ÿms 0 �ÿ1� js 0 �ms 0 . If
we disregard the second term in the last commutator, then
the operators AJMn and A�JMn satisfy the commutation
relations of bosonic creation and annihilation operators.

The set of operators AJMn and A�JMn is only part of
the entire Lie algebra. To close the algebra, we must extend
the set by all their linearly independent commutators,
i.e., �AJMn;A

�
J 0M 0n 0 �. Using orthogonality relations (12), it

can be shown that the set of operators AJMn, A�JMn, and
�AJMn;A

�
J 0M 0n 0 � is equivalent to the set of binary fermionic

operators a�s a
�
s 0 , asas 0 , and a�s as 0 . Therefore, we can exactly

express the nucleus Hamiltonian and all one-particle opera-
tors through the operators AJMn, A

�
J 0M 0n 0 , and �AJMn;A

�
J 0M 0n 0 �

[33, 38].
It is known from analyses of quadrupole excitations in

nuclei in the random phase or the Tamm±Dancoff approx-
imation that only one solution, with the lowest in energy and
corresponding to one of the A�JMn operators, specifically the
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A�2Mn�1, is collective [39], i.e., generates a collective state by
acting on the ground state of the nucleus. Other solutions are
similar to two-quasiparticle ones in structure. Phases of the
amplitude c 21

ss 0 agree with the phases of the matrix elements of
the quadrupole moment operator [39], and therefore matrix
elements of electric quadrupole transitions are coherently
enhanced. The algebra of collective quadrupole operators
includes A�2M1, A2M1, and their commutator.

Let us consider the double commutator [33]��A2M1;A
�
2M 01�;A�2M 001

� � ÿK�dMM 0A�2M 001 � dMM 00A�2M 01�
ÿ
X
L; n 6�1

KLn
MM 0M 00M 000A

�
LM 000n ; �14�

where M, M 0, M 00, and M 000 are values of the angular
momentum projection characterizing the corresponding
operators, and the coefficient KLn

MM 0M 00M 000 is the sum of
products of two Clebsch±Gordan coefficients, two 6 j
symbols, and four amplitudes cLn

ss 0 . The coefficient K can be
expressed through the amplitudes c 21

ss 0 . We see that, strictly
speaking, the algebra of operators A2M1, A�2M1, and
�A2M1;A

�
2M 01� is not closed. However, first, the coefficients

KLn
MM 0M 00M 000 with Ln 6� 21 do not contain coherent terms and

are therefore small. Second, if we are interested in only the
matrix elements of the double commutator that relate to
collective states, then the contribution of noncollective
operators can be ignored in view of its smallness. In that
approximation, the operators A2M1, A

�
2M1, and �A2M1;A

�
2M 01�

generate a closed algebra, and it can be shown that this is the
SU(6) algebra [33]. For the operators A2M1, A�2M1, and
�A2M1;A

�
2M 01�, we then have the following representations in

terms of bosonic operators:

A�2M1 ! d�2M

���������������������������������
1ÿ 1

N

X
n

d�2nd2n

s
! d�2M s

1����
N
p ;

A2M1 !
���������������������������������
1ÿ 1

N

X
n

d�2nd2n

s
d2M ! s�d2M

1����
N
p ; �15�

�A2M1;A
�
2M 01� � d�2M 0d2M ;

where N is a positive number specifying the maximum
number of bosons that can be generated by A�2M1 and
characterizing the SU(6) representation (the value of N
being determined by the coefficient K); d�M �dM� is the
creation (annihilation) operator of the quadrupole boson
with the angular momentum projection M; and s� �s� is the
creation (annihilation) operator of the monopole boson. The
collective Hamiltonian of the nucleus can be constructed
using approximate expressions for pair fermionic operators
in terms of A2M1, A

�
2M1, and �A2M1;A

�
2M 01�. This Hamiltonian

has the form [33, 38]

Hcoll � e
X
m

d�2md2m � k1

�X
m

d�2m�ÿ1� md�2ÿmss� h:c:

�

� k2

�X
m

�d�2 d�2 �2md2ms� h:c:

�

� 1

2

X
L�0; 2; 4

CL

X
M

�d�2 d�2 �LM�d2d2�LM ; �16�

where the parentheses �. . .�LM denote vector coupling. The six
constants entering Hamiltonian (16) are functions of the

amplitudes c 21
ss 0 , i.e., of the one-quasiparticle energies and

the parameters characterizing the effective interaction of
nucleons in the nucleus. In principle, they can be calculated
within some microscopic model of the nucleus, but in the
overwhelming majority of studies they are taken as fitting
parameters.

For simplicity and compactness of the formulas, the
above expressions for collective operators in terms of binary
fermionic operators are given in the Tamm±Dancoff approx-
imation. A more general analysis using the random phase
approximation can be done similarly. In the general case,
along with the amplitudes c 21

ss 0 , the so-called backward
amplitudes f 21

ss 0 are also introduced [33].
Considering all the 36 operators generating the U(6)

algebra, namely, d�2ms, s
�d2m, d�2md2m 0 , and s�s, we see that

some of these operators generate subalgebras. We can select
three chains of subalgebras [32]:

U�6� � U�5� � O�5� � O�3� � O�2�;
U�6� � O�6� � O�5� � O�3� � O�2�; �17�
U�6� � SU�3� � O�3� � O�2�:
In the general case, the Hamiltonian has to be diagonal-

ized numerically, but there are still cases where the eigenvalue
problem can be solved analytically: in cases of dynamical
symmetries, which had played amajor role in working out the
algebraic collective model of the nucleus. These cases occur
when the Hamiltonian can be represented as a sum of the
Casimir operators for the groups entering one of the
subalgebra chains in (17). For the first chain, the eigenfunc-
tions of the Hamiltonian are simultaneously eigenfunctions
of the particle number operator of quadrupole bosons. This
case is equivalent to the limit of a spherical nucleus in the
geometric collective model. Depending on the parameters of
the Hamiltonian, the spectrum of excited states consists of
degenerate or split multiplets of quadrupole bosons. Because
the maximum number of quadrupole bosons is bounded, the
spectrum of such a Hamiltonian consists of finitely many
excited states, in contrast to the spectrum of the geometric
collective model.

In the case of the second reduction chain, eigenfunctions
of the Hamiltonian are no longer eigenfunctions of the
number-of-bosons operator and the state spectrum is similar
to the excitation spectrum of a g-soft nonaxial rotor in the
geometric collective model.

In the third case, the spectrum of excited states of the
Hamiltonian consists of rotational bands, as in the case of the
axially symmetric Hamiltonian for the rotor in the geometric
collective model.

In the framework of the algebraic collective model, we
have thus obtained the same three limit cases of the nucleus
shape and the spectrum of excited states as in the geometric
collective model.

4. Description of phase transitions
in the algebraic collective model of the nucleus

In this section, we outline the general strategy for considering
phase transitions between different shapes of a nucleus in the
framework of the model of interacting bosons. In Sections 5
and 6, we discuss the geometric collective model.

Like any model with a definite group structure, the model
of interacting bosons is closely related to the internal
geometric structure of the nucleus, which highlights its
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similarity to the geometric collective model. At the same time,
the Hamiltonian of themodel of interacting bosons has a very
simple algebraic structure, which allows obtaining many
results analytically.

The study of the geometric properties of the model of
interacting bosons is associated with the introduction of
coherent states into consideration [40±43]. For our pur-
poses, it is convenient to work in terms of the so-called
projective coherent states, which are given by

jN; ami �
�
s� �

X
m

amd�m

�N

j0i : �18�

Here, N is the maximum number of bosons characterizing a
given representation of U(6), typically set equal to half the
number of valence nucleons in the chosen nucleus; the state
vector j0i is the bosonic vacuum; and am are directly related to
the variables describing the nucleus shape. As in Section 3,
instead of the five variables am, we can use the three Euler
anglesX � �y1; y2; y3� and two internal variables characteriz-
ing the nucleus shape, b and g:

am �
X
n

D 2
mn�y1; y2; y3�an ; �19�

where a0 � b cos g, a�2 � �1=
���
2
p �b sin g, and a�1 � 0. Thus, a

normalized coherent state can be expressed as

jN; b; gi � 1�������������������������
N!�1� b 2�N

q �B��Nj0i ; �20�

where

B� � s� � b
�
d�0 cos g� 1���

2
p �d�2 � d�ÿ2� sin g

�
: �21�

We introduce the Hamiltonian that is frequently used in
investigations based on the model of interacting bosons [32]:

Ĥ�N; x; w� � �1ÿ x�n̂d ÿ x
N

Q̂ w Q̂ w : �22�

Here, n̂d �
P

m d
�
m dm is the particle number operator of

quadrupole bosons, and the quadrupole moment operator
Q̂ w is

Q̂ w
m � d�m s� s� �dm � w�d� �d �2m ; �dm � �ÿ1� mdÿm : �23�

The parameters x and w play the role of control parameters,
similarly to the temperature and pressure in thermodynamics.
The x parameter takes values between zero and one, x 2 �0; 1�.
At x � 1, we have the limit case of a nucleus with quadrupole
deformation, which includes the cases of a prolate axially
symmetric nucleus, an oblate axially symmetric nucleus, and a
nucleus with broken axial symmetry. At x � 0, we have the
limit case of a spherical nucleus, described by the five-
dimensional harmonic oscillator. The w parameter ranges as
w 2 �ÿ ���

7
p

=2;
���
7
p

=2�. At x � 1 and w � ÿ ���
7
p

=2, we have the
case of a prolate deformed nucleus, and at x � 1 and
w � ���

7
p

=2, the case of an oblate deformed nucleus. In both
cases, the nucleus has axial symmetry. At x � 1 and w � 0, the
energy of the nucleus is unchanged as its shape changes from
prolate to oblate. From the group theory standpoint, at x � 0
we have the case of U(5) dynamical symmetry, at x � 1 and
w � ÿ ���

7
p

=2, the case of SU(3) dynamical symmetry, at x � 1
and w � ���

7
p

=2, SU�3� dynamical symmetry [44], and at x � 1
and w � 0, O(6) dynamical symmetry.

In the literature on the model of interacting bosons, the
two-dimensional space defined by the parameters x and w is
represented by an extended Casten triangle [45], shown in
Fig. 2, where x varies along the direction from the U�5� point
to the O�6� point. Along this direction, w � 0. The w
parameter varies along the direction of the line connecting
the SU�3� and SU�3� points. On that line, x � 1. At the U�5�
point, x � 0. Instead of the thermodynamical potential used
in classical physics, we analyze the mean value of Hamilton-
ian (22) in coherent state (18) as a function of the control
parameters x and w [46]:

E�N; x; w; b; g� � 
N; b; g
��Ĥ�N; x; w���N; b; g

�
� ÿ5x� 1

�1� b 2�2
�ÿ

N�1ÿ x� ÿ x�4N� w 2 ÿ 8��b 2

� 4�Nÿ 1�x
����
2

7

r
wb 3 cos �3g�

�
�
N�1ÿ x� ÿ x

�
2N� 5

7
w 2 ÿ 4

��
b 4

�
: �24�

The problem is to minimize the energy functional
E�N; x; w; b; g� by varying b and g for each value of x and w.
The simple dependence on g in (24) allows us to easily find the
value of g that corresponds to a minimum of E�N; x; w; b; g�.
When w < 0, the minimum is at g � 0, and when w > 0, at
g � p=3. In the general case, w cos �3g� � ÿjwj.

We regard the value of the energy functional at the global
minimum point as an approximate value of the ground state
energy of the nucleus. This last quantity is a continuous
function of the control parameters x and w, although the
position of the global minimum on the plane of b and g can
change jump-wise. However, the derivatives E�N; x; w; b; g�
with respect to the control parameters can have discontinuity
points. Discontinuities of the first- and second-order deriva-
tives correspond to respective first- and second-order phase
transitions.

Landau's approach [47] is entirely applicable to the
analysis of phase transitions among different shapes of
the nucleus in the model of interacting bosons, i.e., to the
analysis of the energy functional E�N; x; w; b; g�. Expand-
ing (24) in a series in powers of b and setting g � 0, we

U(5) SU(3)

SU�3�

O(6)

b � 0

b5 0

b4 0

Figure 2. Phase diagram of the model of interacting bosons. The dot in

the center of the triangle shows the triple point, at the junction of the

spherical and two deformed phases. The x parameter inHamiltonian (22)

changes in the direction from the U�5� point to the O�6� point. Along this

direction, the parameter w of the quadrupolemoment operator is equal to

zero. The w parameter changes along the direction defined by the line

connecting the SU�3� and SU�3� points. On this line, x � 1. At the U�5�
point, x � 0.
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obtain

E�N; x; w; b; g � 0�� ÿ5x� �N�1ÿ x�ÿ x�4N� w 2ÿ 8��b 2

ÿ 4�Nÿ 1�x
����
2

7

r
jwjb 3

�
�
x
�
8Nÿ 2Nÿ 9

7
w 2 ÿ 12

�
ÿN�1ÿ x�

�
b 4 � . . . : �25�

The equilibrium configuration changes the value of b from
b � 0 to b 6� 0 if the coefficient at b 2 changes from positive to
negative. Therefore, this coefficient vanishes at the phase
transition point. For the phase transition point to be stable,
the coefficient at b 3 must also vanish in it. But this is possible
only if w � 0. At w � 0, the coefficient at b 2 vanishes if
x � xtrip � N=�5Nÿ 8�. These values of x and w are coordi-
nates of the so-called triple point inside the Casten triangle
(see Fig. 2), located at the junction of the spherical phase
�b � 0� belonging to the domain x < xtrip and two deformed
phases occurring for x> xtrip. We note that, if w < 0, then the
nucleus is prolate, and if w > 0, it is oblate. Two deformed
phases are separated by the line w � 0. In the rest of the
Casten triangle, except at the triple point, phase transitions
between spherical and deformed phases and between two
deformed phases are first-order phase transitions in this
model.

At w 6� 0, the transition from the deformed phase to the
spherical one occurs as follows. As x decreases from x � 1 and
reaches the value x � N=�5N� w 2 ÿ 8�, the energy functional
E�N; x; w; b; g� acquires a minimum at b � 0. But, at the
beginning, this is only a local minimum. The global mini-
mum remains at b 6� 0. As x decreases further, the depths of
the spherical and deformed minima equalize. For w 6� 0 and
some values of x, we thus have an energy functional with two
minima. This implies that the spherical and deformed phases
can coexist for w 6� 0. On the other hand, two minima do not
occur at the triple point [48]. As regards the transition from
the oblate to the deformed prolate shape, no two-minimum
pattern occurs either. The position of the minimum in g
changes jump-wise from g � 0 to g � p=3 under the change
of sign of w.

5. Phase transition
from spherical to deformed shape
in nuclei at the beginning of the rare-earth range

A well-known and experimentally studied example of nuclei
exhibiting a transition from a spherical to a deformed shape is
given by isotopes of Nd, Sm, Gd, and Dy. As the number of
neutrons increases, the spectra of low-lying excited states of
these nuclei undergo a transition from the typically vibra-
tional spectrum to a typical rotational one.

FromTable 1, which gives experimental values of the ratio
R4=2 for different numbers of neutrons in isotopes of these
elements, we see that R4=2 sharply increases for N5 90
neutrons, indicating that the transition from the spherical to
the deformed shape in isotopes of Nd, Sm, Gd, andDy occurs
at N � 90.

The transition from the spherical to the deformed shape in
isotopes of Nd, Sm, Gd, and Dy is probably a second-order
phase transition, because in most of the calculations the
potential energy of the deformation of these nuclei has only
one minimum as a function of the deformation parameter,
and the energy of the nucleus at the minimum is a mono-

tonically decreasing function of the degree of deformation at
the minimum; hence, the first derivative experiences no jump.

In [49], however, it was hypothesized that the phase
transition in nuclei we considered is still a first-order phase
transition, and the quadrupole deformation of the nuclei
occurs due to the following mechanism. In the nuclei under
consideration, protons fill the single particle levels d5=2 and
g7=2 (Fig. 3). The next single particle level h11=2 is separated
from d5=2 and g7=2 by an energy gap. At values ofN starting at
N � 90, neutrons fill the single particle state h9=2, in which
they strongly interact with protons if the latter are in the h11=2
state. Therefore, the nucleus gains in energy if protons start
filling the h11=2 state. As a result, the binding energy of a
proton in the h11=2 state increases, and the energy gap between
the single particle proton states d5=2 and g7=2, on the one hand,
and h11=2, on the other hand, sharply decreases. The space of
single particle states that can be occupied by valence protons
increases, which enhances the collective effects in the motion
of nucleons and helps create the deformation.

This argument, however, is based on the model of single
particle levels of a spherical nucleus and does not involve
changes in the mean field due to deformation [50]. As a result
of the deformation of the mean field of the nucleus, the role of
specific proton and neutron single particle levels also changes,
but the order of filling these states is essential for the
realization of the Federman±Pittel mechanism. At N � 90,
neutrons find it energetically advantageous to occupy the
single particle level i13=2. Due to a larger orbital momentum in
that state and the associated large magnitude of the quad-

E, MeV

Protons Neutrons

5.5

h11=2

i13=2

h9=2
f7=2

d3=2
s1=2

6.0

5.0

g7=2
d5=2

Figure 3. Part of the arrangement of spherical single particle levels in the

shell model of the nucleus (Z > 50, N > 82).

Table 1. Values of R4=2 in isotopes* of Nd, Sm, Gd, and Dy.

N

Z
84 86 88 90 92 94 96

60Nd

62Sm

64Gd

66Dy

1.89

1.85

1.81

1.81

2.30

2.14

2.02

2.05

2.49

2.32

2.19

2.24

2.93

3.08

3.01

2.93

3.27

3.28

3.24

3.21

3.29

3.29

3.29

3.27

3.31

3.30

3.30

3.29

*Experimental data are taken from [56].
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rupole moment, the equilibrium deformation of the nucleus
smoothly grows starting from zero, and the deformation
energy of the nucleus at the minimum smoothly changes as
the i13=2 states are being filled with neutrons. Although the
number of neutrons in a nucleus is a discrete quantity, this can
be formally regarded as an indication that the derivative of
the deformation energy of the nucleus at the minimum with
respect to the deformation parameter changes smoothly. A
major part of the calculations of the potential energy of
deformation for the nuclei in question also suggests that, as
the number of neutrons increases, the potential energy in the
nucleus at the beginning of the rare-earth domain evolves, as
is shown in Fig. 4.

We next discuss the experimental data. In 150Nd, 152Sm,
and 154Gd nuclei, low-lying 0�2 and 2�2 states are known that
are associated with strong E2-transitions. But the probabil-
ities of these transitions are comparable to the probabilities of
2�1 ! 0�1 transitions, and the E2-transition 2�2 ! 0�2 in 154Gd
is three times weaker than the 2�1 ! 0�1 transition. Therefore,
it would be groundless to assume that the relevant nuclei, for
example, are deformed more strongly in the 2�2 and 0�2 states
than in the 2�1 and 0�1 states. If these E2 transitions differed
greatly in their magnitude, we would be able to speak of the
coexistence of states characterized by different nucleus shapes
at different excitation energies in the same nucleus. This
would then suggest that in 150Nd, 152Sm, and 154Gd nuclei,
the transition from the spherical to the deformed shape can be
regarded as a first-order phase transition. However, it is not
impossible that, although the potential energy of these nuclei
has two minima, the amplitude of oscillations in b is large,
and the wave functions of collective states are not localized in
one of theminima. In [51], a simple analyticmodel for just this
case is proposed.

In [51, 52], a simple description is given for transitional
nuclei within the geometric model of the nucleus, based on
potentials of a simple shape, which allows obtaining an
analytic solution to the problem. The main idea in [51, 52] is
illustrated in Fig. 5, where the dashed line shows the potential
energy of a nucleus that is transitional between spherical and

deformed nuclei. This potential has two minima that corre-
spond to the spherical and deformed shapes of the nucleus but
are separated by a moderate barrier; the potential sharply
increases under deformations exceeding the deformation in
the second minimum. Iachello [51] suggested approximating
such a potential with a rectangular infinitely deep well (solid
line in Fig. 5), which, evidently, is somewhat of an over-
simplification, but the results of the calculation turned out to
be close to the experimental data for transitional nuclei at the
beginning of the rare-earth domain. Based on such a
potential, it was proposed to consider two cases that differ
in how the potential depends on g. In the first case, the
proposal was that, as a function of g, the potential has a deep
minimum at g � 0, and in the second case a potential
independent of g was considered. Together with the assump-
tion that the b and g variables separate, this leads to an
analytic solution of the Schr�odinger equation with Bohr's
Hamiltonian. In both cases, the eigenfunction of Bohr's
Hamiltonian is factored:

C�b; g;X� � f �b�j�g;X� : �26�

In the first case, the function f �b� is a solution of the
differential equation�
ÿ 1

b 4

q
qb

b 4 q
qb
� 1

3b 2
I�I� 1�� u�b�

�
f �b�� eb f �b� ; �27�

where u�b� � 0 for b4bb and u�b� � 1 for b > bb, with bb
being the width of the potential well. The functionj�g;X� has
the formj�g;X� � ZK�g�DI

MK�X�, where ZK�g� is a solution of
the equation�
ÿ 1

hb 2i
1

g
q
qg

g
q
qg
� �K=2�

2

hb 2i
1

g 2
� 1

2
Cgg 2

�
ZK�g� � egZK�g� ;

�28�
hb 2i being the effective value of b 2 formed as a consequence
of the assumption about the separation of b and g variables.
Equation (27) is solved by the function bÿ3=2Jn�xsIb=bb�,
where Jn is the Bessel function, xsI is its sth zero, and
n � �����������������������������������������1=3�I�I� 1� � 9=4

p
. In this case, the ratio of the

lowest 4�1 and 2�1 state energies R4=2 � E�4�1 �=E�2�1 � � 2:91
is just between the values characteristic of spherical
�R4=2 � 2:0� and axially deformed �R4=2 � 3:33� nuclei. The
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Figure 4. Example of the evolution of the potential energy of nucleus

deformation at the beginning of the rare-earth domain as the number of

neutrons increases. A spherical nucleus corresponds to the dashed-double-

dotted line. The solid line shows a strongly deformed axially symmetric

nucleus. The dashed-dotted, dotted, and dashed lines correspond to

transitional nuclei with increasing quadrupole deformation.
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b

Figure 5. Example of the deformation potential energy for a transitional

nucleus (dashed line) and the rectangular well potential of infinite depth.
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key result is the value R0=2 � E�0�2 �=E�2�1 � � 5:67 predicted
in the approximation under consideration. This result is
independent of the parameters of the Hamiltonian. In the
transitional nucleus 152Sm, this ratio is 5.62. Numerous other
experimental results pertaining to excitation energies and
probabilities of electric quadrupole (E2) transitions in
150Nd, 152Sm, and 154Gd also turned out to be close to the
results obtained in this approximation. Significant deviations
of theoretical results from experimental data were found for
the E2 transitions between states belonging to different
quasirotational bands, i.e., bands based on the ground (0�1 )
state and the 0�2 and 2�3 states. It was shown in [53], however,
that the agreement with experimental data is strongly
improved if the difference in the values of the coefficient of
inertia for rotational and vibrational modes is taken into
account.

If we assume that the potential energy is independent of g,
then the function f �b� satisfies the equation�
ÿ 1

b 4

q
qb

b 4 q
qb
� v�v� 3�

b 2
� u�b�

�
f �b� � e f �b� ; �29�

where u�b� has the same shape as in the preceding case. The
solution of Eqn (29) has the form bÿ3=2Jv�3=2�xsv; b=bb�,
where xsv is the sth zero of the Bessel function Jv�3=2 and v is
the seniority of the state (see (5)). The spectrum of eigenstates
of Eqn (29) and the ratios of probabilities of E2 transitions
obtained with the use of eigenfunctions of this equation are
close to the corresponding experimental data for some
isotopes of Xe and Ba [54].

6. Phase transitions and shape coexistence
in nuclei with about 100 nucleons

Quantum phase transitions discovered in atomic nuclei can be
divided into two groups. The first contains transitions in
those nuclei whose mean fields have only one stable config-
uration for any values of the control parameters. In other
words, the potential energy of the nucleus has only one
minimum, which, however, can be responsible for both
spherical and deformed shapes, depending on the values of
control parameters. The control parameters can include the
numbers of protons and neutrons. In that case, the phase
transition, i.e., a change in themean field symmetry, occurs as
the numbers of protons and neutrons change.

The second group contains transitions in nuclei whose
mean fields, depending on many dynamical variables, have
two stable configurations with different mean field symme-
tries and total energies. In that case, the phase transition from
one configuration to the other occurs as the excitation energy
of the nucleus changes.

Both types of phase transitions were discussed in Section 5
in relation to phase transitions from spherical nuclei at the
beginning of the rare-earth domain to deformed nuclei. We
gave both interpretations, although the majority of research-
ers tend to assign phase transitions in those nuclei to the first
group. In this section, we consider the case of the 96Zr nucleus,
where the phase transition occurring as the excitation energy
increases belongs to the second group.

Atomic nuclei with themass numberA � 100 are nuclei in
which states characterized by a spherical or deformed shape
coexist. The transition from one nucleus shape to another
occurs as the excitation energy increases. The class of such
nuclei comprises isotopes of Sr, Zr, andMo (see the references

in [10, 55]). As an example, we consider Zr isotopes in which,
from the standpoint of the single particle shell model, protons
fill the p1=2 state, and the single particle proton state g9=2 that
is next in energy is separated from p1=2 by an energy gap, such
that Zr can also be regarded as a semimagic nucleus. The
number of valence neutrons in light isotopes of Zr is not high.

In Fig. 6, we give experimental spectra of the low-lying
states of 96ÿ106Zr [56]. We can see that, among the low-lying
states in 96ÿ100Zr, there is the excited 0�-state �0�2 �. The
probabilities of E2 transitions between the first excited 2�

state �2�1 � and the ground state in 96ÿ98Zr are characteristic of
transitions in spherical nuclei and amount to several one-
particle units (Weisskopf units) (2±6 W.u.) [56]. At the same
time, the reduced probability of the E2 transition
B�E2; 2�2 ! 0�2 � measured in 96Zr is 36 W.u. Such a large
value is characteristic of deformed nuclei. This suggests that
in light isotopes of Zr the ground state �0�1 � and the 2�1 state
are characterized by a spherical shape, whereas the 0�2 and 2�2
states are deformed ones. The situation changes dramatically
in 100Zr, where B�E2; 2�1 ! 0�1 � � 75W.u. Such a large value
of the E2-transition probability is characteristic of deformed
nuclei. In addition, the relation of energy intervals in the band
based on the ground state of 100Zr �0�1 ; 2�1 ; 4�1 ; 6�1 � suggests
the rotational character of these states, which also is evidence
that the ground state of this nucleus is deformed.

The following pattern therefore transpires. The ground
state of light isotopes of Zr is spherical, but already at
moderate excitation energies, the deformed 0�2 state exists in
these nuclei. As the number of valence nucleons increases, the
deformed state goes down in energy and becomes the ground
state in 100Zr. The mechanism conducive to the appearance of
deformation in the ground state is in this case the Federman±
Pittel mechanism. When the valence neutrons start filling the
single particle state g7=2, the next one after d5=2, it becomes
energetically advantageous for the nucleus that the protons
simultaneously occupy the single particle state g9=2, the next
one after p1=2. It is known that protons in the g9=2 state and
neutrons in the g7=2 state strongly interact due to tensor forces
[23]. Hence, the binding energy of neutrons in the g7=2 state
increases, and it drops in energy in the single particle spectrum
of the nucleus. The space of single particle states available to
valence neutrons sharply expands, which enhances the
collective quadrupole mode, increasing the amplitude of
collective quadrupole motion. In addition, the single particle
g9=2 state occupied with protons is characterized by a large
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Figure 6. Experimental spectra of 94ÿ106Zr nuclei.
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quadrupole moment, which also facilitates the deformation
of the nucleus. Due to this mechanism, the deformed excited
state exists in light isotopes of Zr. However, because the
transition of neutrons from the d5=2 to the g7=2 state requires
additional excitation energy, the deformed state is realized at
a higher energy than the spherical one.

The most exhaustive collection of experimental data on
low-lying collective quadrupole excitations has been obtained
for 96Zr [57]. We consider this nucleus within the geometric
collective model. Obviously, interpreting the coexistence of
differently shaped states in a nucleus is the task of a
microscopic theory. But the collective model in which
variable shapes of the nucleus are directly used as dynamical
variables allows describing dynamical consequences of the
coexistence of shapes in the simplest way. In addition, it is of
interest to see to what degree the collective model can
reproduce the experimental data.

A sharp change in the shape of the ground state in isotopes
of Zr is an exception. However, the mixing of spherical and
deformed components is possible in wave functions of
eigenstates of the nucleus. It is therefore interesting how
strong this mixing is. This question can be analyzed in the
framework of the collective model of the nucleus. Data on E2
transitions between excited states [58] suggest that spherical
and deformed states in 96Zr are very pure.

In Ref. [59], the properties of 96Zr are studied within the
collective model with a potential having two minima (Fig. 7),
spherical and deformed. An analogue of this picture in the
algebraic model of the nucleus is the treatment in the bosonic
space embracing configurations with different values of the
maximum number of bosons, namely, N and N� 2. To
simplify the problem, it was assumed that the g variable can
be separated from b in the Hamiltonian. This assumption was
also justified by the fact that experimental data give no
indication of the existence, among low-lying states, of those
that are explicitly related to excitations in g. It was also
assumed that g oscillates with a moderate amplitude about
g � 0. The results of the calculation are given in Table 2. As
we can see, the obtained results are in good correspondence
with experimental data.

We note the following, however. In [60, 61], as a result of
analyzing experimental data on rotational and vibrational
states of deformed nuclei, it was shown that the coefficient of
inertia for rotational motion is several times smaller than the

coefficient of inertia for the vibration mode. Taking this into
account has allowed obtaining a good description of the 2�2
state energy in 96Zr.

The calculation of B�M1; 2�2 ! 2�1 � within the geometric
collective model leads to a result three orders of magnitude
smaller than the experimental value. It was therefore taken
into account in [59] that the calculation within the shell
model, done under the assumption of a spherically shaped
nucleus, leads to a negative value of the gR factor, namely, to
gR � ÿ0:26, in contrast to the gR factor equal to Z=A in the
geometric collective model with only the contribution of the
orbital motion of protons to the magnetic moment taken into
account. We note that the result obtained within the shell
model was expected because, in the case of a purely spherical
configuration, the valence nucleons are solely neutrons, and
the spin g-factor of neutrons is negative. It was assumed in
[59] that the magnetic dipole moment operator has the form
M̂1 � gR�b�I, where I is the nucleus angular momentum
operator, and also that gR�b� is equal to ÿ0:26 at the
spherical minimum and Z=A at the deformed minimum, i.e.,
it changes sign inside the barrier separating the two minima.

7. Phase transitions
in molecular-type rotational bands

Let us consider examples of second-order phase transitions in
nuclei associated with octupole deformation. They are phase
transitions in rotational bands that contain states of both
parities; just such rotational bands are encountered in
asymmetric two-atomic molecules. In fact, these are phase
transitions from states in which the nucleus is not octupole-
deformed to states with octupole deformation, occurring as
the moment of rotation increases. The moment of rotation of
the nucleus is a control parameter in this case. We see in what
follows that the octupole deformation of the nucleus
stabilizes as the moment of rotation increases.

In the discussion that follows, we assume that the main
role in describing rotational bands of different parities is
played by the octupole degree of freedom of the nucleus,
which preserves the axial symmetry, i.e., b30. The dynamical
variable b30 is similar to the b variable introduced in Section 3,
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levels for the 96Zr nucleus [59].

Table 2. Results of calculating energies and reduced probabilities for
electromagnetic transitions* for 96Zr.

Energies and transition probabilities Calculation Experiment

E�2�1 �
E�2�2 �
E�0�2 �
B�E2; 2�2 ! 0�2 �
B�E2; 2�1 ! 0�1 �
B�E2; 2�2 ! 0�1 �
r 2�0�2 ! 0�1 �
B�E2; 2�2 ! 2�1 �
B�E2; 2�1 ! 0�2 �
B�M1; 2�2 ! 2�1 �
Q�2�2 �

1748

2268

1582

26.1

3.6

0.26

0.0013

2.25

6.8

0.11

ÿ 0:51

1750

2226

1582

36(11)

2.3(3)

0.26(8)

0.0075

2:8�1:5ÿ1:0
ì

0.14(5)

ì

* The value of brot characterizing the ratio of rotational-to-vibration
coefécients of inertia is taken equal to 0.2. The values B�E2� are
expressed in units of W.u., and of B�M1�, in nuclear magnetons. The
value Q�2�2 � is expressed in e bn. Excitation energies are expressed in
keV. The dimensionless quantity r22�0�2 ! 0�1 � characterizes the
electric monopole transition between 0�2 and 0�1 states. The experimen-
tal energy of the 0�2 state is used to éx B0. Experimental data are taken
from [58].
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but, in contrast to the latter, which describes quadrupole
deformation of the nucleus, b30 describes its octupole
deformation. The b variable in Section 3 could have been
denoted as b20. Nonzero values in the second subscript imply
deviations from axial symmetry. Other octupole dynamical
variables, which do not preserve the axial symmetry of the
nucleus's shape, b31, b32, and b33, also manifest themselves in
excitations of the nucleus, but the corresponding states have
higher excitation energies.

Let us comment on the spectrum of low-lying excited
states of even±even deformed nuclei that have negative-parity
states at moderate excitation energies. The lowest excited
states of such nuclei are rotational bands, which in the vicinity
of the ground state include positive-parity states with even
moments of rotation, i.e., 0�, 2�, 4�, 6�, and so on. At higher
excitation energies, negative-parity states appear, having odd
moments of rotation: 1ÿ, 3ÿ, 5ÿ, and so on. At moderate
moments of rotation of the nucleus, negative-parity states are
shifted up in energy by several hundred keV with respect to
positive-parity states with similar angular momentum values,
but as the angular momentum increases, this shift decreases,
and a molecular-type rotational band is formed with the
sequence of states I�, �I� 1�ÿ, �I� 2��, and so on. The
formation of such a rotational band is a consequence of the
stabilization of the octupole deformation of the nucleus.
Negative- and positive-parity states are associated with
strong E1 transitions, considerably exceeding one-particle
estimates in magnitude, which testifies to the similarity of
the microscopic structure of such states. This problem is
discussed in more detail in what follows.

Restricting ourself to only one dynamical variable, b30, we
start with the Hamiltonian [62, 63]

HI � ÿ �h 2

2B

d2

db 2
30

� VI�b30� : �30�

The subscript I on the potential means that the shape of the
potential depends on the moment of rotation. This is related
to the fact that the potential VI�b30� also includes the energy
of rotation.We also assume that the quadrupole deformation
of the nucleus is fixed, i.e., is not a dynamical variable.
Therefore, our analysis applies only to nuclei with a static
quadrupole deformation, namely, to rare-earth and actinide
nuclei. We do not assume any specific shape of the potential
VI�b30�, but use a procedure from supersymmetric quantum
mechanics that allows determining the shape of the potential
based on the expression for the wave function of the ground
state. The following ansatz for the wave function of the lowest
state for a given I captures all the necessary features of the
phenomenon under discussion:

CI�b30� �
(
exp

"
ÿ 1

2
s 23 �I�

�
b30

bm�I�
ÿ 1

�2
#

� exp

"
ÿ 1

2
s 23 �I�

�
b30

bm�I�
� 1

�2
#)

: �31�

Wave function (31) is a sum of twoGaussians with maxima at
b30 � �bm�I�. Because the change of sign of b30 simply
implies spatial reflection of the coordinate system and is not
related to a change in the state of the nucleus, Hamiltonian
(30) is invariant under the transformation b30 ! ÿb30, and
the wave function has a definite parity with respect to this
transformation. Formally, the Schr�odinger equation with the
potential VI has an entire family of solutions with both

parities for each value of I. But as follows from the symmetry
properties of the wave function in the laboratory coordinate
system [17], the lowest-energy rotational band of variable
parity has only one state for a given I, whose parity is �ÿ1�I.
In other words, this is a negative-parity state for an odd I. But
among the eigensolutions of the Schr�odinger equation with
the potential VI in (30), the negative-parity solution is not the
lowest but the first excited state. The corresponding excita-
tion energy characterizes the experimentally observed parity
shift in energies of the rotational band states based on the
ground state.

The ansatz proposed in (31) allows describing both states
of the nucleus without octupole deformation and octupole-
deformed states. In the first case, bm is close to zero and small
compared with s3�I�, and wave function (31) has only one
maximum at b30 � 0. This implies that the most probable
shape of the nucleus is the shape without octupole deforma-
tion. For bm�I�4 s3�I�, the maximum of the wave function
shifts into the octupole deformation domain. As regards the
s3�I� parameter, it follows from expression (31) that s3�I�
characterizes the softness of the nucleus with respect to the
octupole deformation. As s3�I�! 1, the wave function
acquires a sharp maximum at b30 � �bm�I�. As s3�I� ! 0,
the wave function is spread over a large domain of values
of b30.

We substitute wave function (31) in the Schr�odinger
equation with Hamiltonian (30). This yields the following
relation for the potential VI�b30�:

VI�b30� �
�h 2

2B
Cÿ1I �b30�

d2CI�b30�
db 2

30

� E �I ; �32�

where, for even I, E �I coincides with the experimental
excitation energy of the lowest state of the nucleus for a
given I. For odd values of the moment of rotation, E �I is
determined by interpolation between experimental energies of
neighboring states with even moments of rotation, i.e.,
between E �Iÿ1 and E �I�1. This procedure is underlain by the
fact that odd-I states have negative parity and are shifted
upward in energy relative to positive-parity states. At the
same time, excitation energies of even-I states are smooth
functions of the moment of rotation. We assume that the
derivatives E �I are also smooth functions of I.

Substituting the expression forCI fromEqn (31) into (32),
we express the potential VI as

VI�b30� �
�ho
2

"
ÿ1� s 23 �I�

�
1� b 2

30

b 2
m�I�

�
ÿ 2s 23 �I�

b30
bm�I�

� exp
ÿ
s 23 �I�b30=bm�I�

�ÿ exp
ÿÿs 23 �I�b30=bm�I��

exp
ÿ
s 23 �I�b30=bm�I�

�� exp
ÿÿs 23 �I�b30=bm�I��

#
� E �I ;

�33�

whence we see that the form of the potential is entirely
determined by the parameter s3�I�. An analysis of experi-
mental data on state energies in variable-parity rotational
bands has shown in [64] that s3�I� is described with good
accuracy by a linear function of the moment of rotation,

s3�I� � c0 � c1I ; �34�
where constants c0 and c1 are to be determined for each
nucleus from experimental data.

In Fig. 8, we show the results of a calculation based on
experimental data on the 240Pu potential VI�b30� for I � 2,
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12, 22 [65]. The 240Pu nucleus was chosen, because there
is more available experimental information on it than on
other nuclei with known rotational bands of variable
parity. We see from Fig. 8 that, at I � 2, the potential is
close in shape to the harmonic oscillator potential near the
b30 � 0 minimum. At I � 22, the potential has two minima,
which suggests that the nucleus has an octupole-deformed
shape. At I � 12, the potential takes a form characteristic of
the transitional domain from the octupole-nondeformed to
octupole-deformed shapes. Although the minimum of the
potential at I � 12 is localized at b30 � 0, the amplitude of
oscillations about the minimum is high. Therefore, in
rotational bands containing states of both parities, a phase
transition occurs as the moment of rotation increases.

In our case, the role of free energy in Landau's theory [47]
is played by the value of VI at the minimum, b30 is the order
parameter, and the moment of rotation I is the control
parameter. The position of the minimum of the potential is
defined by the condition

dVI�b30�
db30

����
b30��b30�min

� �ho s 23 �I�
�b30�min

b 2
m�I�

�
 
1ÿ �b30�min

bm�I�
tanh

�
s 23 �I�

�b30�min

bm�I�
�

ÿ s 23 �I�
cosh2

�
s 23 �I��b30�min=bm�I�

�! � 0 : �35�

One of the solutions of this equation is trivial: �b30�min � 0,
which occurs if s3�I� < 1=

���
2
p

, when the second derivative of
VI�b30� with respect to b30 at the point of the minimum is
positive. If s3�I� > 1=

���
2
p

, the potential attains a maximum at
the point b30 � 0, and the minimum smoothly shifts toward
nonzero values of b30. The value at theminimum is the root of
the equation

1ÿ�b30�min

bm�I�
tanh

�
s 23 �I�

�b30�min

bm�I�
�

ÿ s 23 �I�
cosh2

�
s 23 �I��b30�min=bm�I�

� � 0 : �36�

If s3�I� is greater than but close to 1=
���
2
p

, the root of Eqn (36)
can be approximately expressed as

�b30�min � bm�I�
����������������������������������������

3

2s 63 �I�
�
s 23 �I� ÿ

1

2

�s
: �37�

We next find the value of the potential at the minimum. If
s3�I� < 1=

���
2
p

, then �b30�min � 0 and

VI

ÿ�b30�min

� � 1

2

�h 2s 23 �I�
Bb 2

m�I�
ÿÿ1� s 23 �I�

�� E �I : �38�

If s3�I� > 1=
���
2
p

but is close to 1=
���
2
p

, then

VI

ÿ�b30�min

� � �h 2s 23 �I�
Bb 2

m�I�

�
"
ÿ1� s 23 �I� ÿ

3

s 43 �I�
�
s 23 �I� ÿ

1

2

�2
#
� E �I : �39�

In expressions (38) and (39), higher-order terms in
�s 23 �I� ÿ 1=2�2 are omitted. Comparing (38) and (39), we see
thatVI��b30�min� is a continuous function of I at s3�I��1=

���
2
p

.
The first derivatives of expressions (38) and (39) with respect
to I also coincide at s3 � 1=

���
2
p

. But the second derivatives
undergo a discontinuity at s3�I� � 1=

���
2
p

. In differentiating,
we used the fact that s3�I� is a linear function of I. Thus, in this
case, we have a second-order phase transition.

Because the value s3�I� � 1=
���
2
p

is critical for the phase
transition under consideration, the critical value of the
moment of rotation Icrit is determined in accordance with (34)
by the relation

c0 � c1Icrit � 1���
2
p : �40�

The expression for �b30�min can then be represented in the
form

�b30�min�I� � bm�Icrit�
�
12

���
2
p

c1�Iÿ Icrit�
�1=2

: �41�

Relation (41) is valid near the critical point. It follows from
(41) that the critical exponent, i.e., the quantity describing the
behavior of different characteristics of the system in a close
neighborhood of the phase transition point, is equal to 1=2.
The exact �b30�min dependence can be obtained numerically
from (36). The exact result for 240Pu is shown in Fig. 9
together with the approximate result (41).

The values of Icrit determined for 232Th, 238U, and 240Pu
are as follows: 14.6 for 232Th, 12.7 for 238U, and 12.1 for 240Pu.
Because our treatment of the phase transition is semiclassical,
it is unsurprising that Eqn (36) yields noninteger values for
Icrit.

We have thus shown that, as the moment of rotation
increases, a second-order phase transition from octupole-
nondeformed to octupole-deformed states occurs in rota-
tional bands comprising states of both parities.

To characterize a nucleus, it is not enough to know only
the equilibrium value of the octupole deformation. It is also
important that the magnitude of fluctuations of the deforma-
tion parameter about the equilibrium value be known. If a
nucleus is octupole-deformed, then the octupole deformation
potential energy has two physically equivalent minima,
localized at positive and negative values of b30 and separated
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by a barrier. The probability of transmission through the
barrier determines the shift in negative-parity energy levels
with respect to positive-parity levels with close values of the
angular momentum. The same probability also determines
the amplitude of fluctuations. To characterize the amplitude
of fluctuations, it is convenient to introduce a dimensionless
quantityRoct, the ratio of two energies, the energy that a state
with angular momentum I would have in the case of
stabilization of the octupole deformation to the experimental
energy of that state:

Roct�I� � Einterpol�I�
Eexp�I� : �42�

The energies Einterpol�I� can be determined by interpolating
between the energies of positive-parity states withmoments of
rotation Iÿ 1 and I� 1. The dependence of Roct on I for
various nuclei is shown in Fig. 10, whence we see that, at small
values of I, Roct is close to zero. This is caused by the high
probability of transmission through the barrier. As I
increases, Roct increases, tending asymptotically to unity.
This suggests that, at large I, positive- and negative-parity
states form a single band of states with a similar microscopic
structure. The dependence of Roct on the moment of rotation
shown in Fig. 10 can be approximated with good accuracy by
an exponential, similarly to the dependence of the relaxation
of dielectric polarization in Debye's theory [66].

8. Superdeformed and hyperdeformed states

Another, and quite conspicuous, example of the coexistence
of different shapes of a nucleus at different excitation energies
is given by superdeformed states, whose deformation corre-
sponds to the shape of an ellipsoid with the semiaxis ratio 2:1.
Such states have already been known for more that 40 years,
starting with the discovery of a fission isomer in Dubna [67].
But the most intense investigations of superdeformed states
began in the late 1980s [68] due to their manifestation as
higher-spin yrast states of rotational bands, i.e., the lowest-
energy states among states with a given moment of rotation,
with very high moments of inertia. For a long time, it had
been impossible to experimentally find all the states of such

bands with I up to I p � 0� in even±even nuclei, which did not
allow determining absolute values of excitation energies and
angular momenta of these states. The reason was that, at
moderate angular momenta, the superdeformed states are in
the domain of excitation energies with a high density of states
that have the same angular momentum but a different
structure. It is because of the high density of such states that
superdeformed states, starting with some values of the
angular momentum, undergo transitions, with the emission
of gamma quanta, into states of a different structure rather
than into superdeformed states with lower angular momenta.
Later, the absolute values of superdeformed state energies
were determined in the domain of nuclei withA � 50 [69±71].

The stability of superdeformed states is a consequence of
shell effects, which are especially pronounced under certain
relations between the deformation parameters of the mean
field of the nucleus. For example, superdeformation is
stabilized if the mean field of the nucleus can be approxi-
mated by a deformed oscillatory potential such that the ratios
of frequencies corresponding to the different semiaxes are
rational numbers [17].

A typical shape of the potential energy of deformation of a
nucleus whose excitation spectrum contains a superdeformed
rotational band is shown in Fig. 11. We see that, besides the
minimum at which the ground state of the nucleus is localized,
the potential has another minimum located at a higher
deformation and higher energy, with the superdeformed
band states localized there. As the angular momentum
increases, due to a much larger moment of inertia, which is
approximately proportional to the deformation squared,
superdeformed states become lowest in energy among the
states of the nucleus with the given angular momentum. As a
result, in collisions with other heavy nuclei, when the nucleus
is imparted a sufficiently large angular momentum, just the
superdeformed states are observed.

In Fig. 11, we can see yet another minimum, which
initially appears in calculations of the potential energy of
deformation of the nuclei. It corresponds to hyperdeformed
states, i.e., states of the nucleus with the deformation
significantly exceeding b � 0:6. Hyperdeformed states are
known in light nuclei. A classic example is provided by
hyperdeformed states of 12C, based on 0�2 states with the
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excitation energy 7.65 MeV. The shape of 12C in that state is
represented as a linear chain of three alpha particles.
Calculations predict that hyperdeformed states also exist in
heavy nuclei. They are expected to become yrast states at
moments of rotation of about 80�h. Hyperdeformed states that
are symmetric and nonsymmetric under spatial reflection are
expected in Hg and Pb at excitation energies of the order of 6±
8 MeV.

An example of a lighter nucleus with a superdeformed
band and a distinct E2 transition into the ground-state band is
provided by 60Zn. Interestingly, in nuclei with A � 60 and in
lighter nuclei, superdeformation is closely related to the
formation of a cluster structure.

Typical examples of clusterization in light nuclei are well
known: 16O and 20Ne, in which the structures 12C� a and
16O� a are especially stable [72±74]. Interestingly, the cluster
structure in 20Ne is realized in the rotational band of the
ground state, whereas, in 16O, the cluster structure is
associated with a rotational band constructed in the excited
state with the excitation energy of 6.06 MeV. In papers [74,
75], clusterization is associated with the excited deformed
rotational band in 40Ca and the ground-state band in 44Ti. In
pairs of nuclei 16Oÿ20Ne and 40Caÿ44Ti, one of the partners
is a doubly magic nucleus and the other is a doubly magic
nucleus plus an alpha particle. The next pair of this type is
given by 56Ni and 60Zn. It is known that in 56Ni a deformed
rotational band based on an excited state exists at I values up
to I p � 12�. In 60Zn, the a-decay threshold exceeds the
ground-state energy by only 2.7 MeV. Therefore, it is quite
probable that the wave functions of the ground-state band
have a more extensive a-cluster component. However, a
superdeformed band is also known in 60Zn [69], in which
only E2 transitions between the band states are observed for
I > 12. However, in the range I � 8ÿ12, E2 transitions from
superdeformed band states are only possible into the ground-
band states. The situation in 60Zn can therefore be character-
ized as the coexistence of different shapes of the nucleus, and
the phase transition from one shape to another occurs as the
excitation energy increases.

The moment of inertia of the superdeformed band of
60Zn, which depends on the angular momentum, takes values
in the range of �692ÿ750�m fm2, where m is the nucleon
mass. These values of the moment of inertia are close to the

rigid-body moment of inertia of the cluster configuration
52Fe� 8Be, which is equal to 750m fm2. We note that the
thresholds of the 60Zn decay into 52Fe� 8Be (10.8 MeV) and
into 48Cr� 12C (11.2MeV) are close to the extrapolated value
of the 0�-state energy (the base of the superdeformed band),
7.5 MeV.

It is therefore entirely possible that two families of states
are realized in 60Zn. The first includes all states of the ground
band with the cluster configuration 56Ni� a as the main
component, and the second includes states of the super-
deformed band, whose main component is the cluster
configuration 52Fe� 8Be (or a� 52Fe� a). We also note
that the experimental value of the quadrupole moment of
60Zn, extracted from the values of the probabilities of E2
transitions at I � 12ÿ22, is �2:75� 0:45�e bn. For the cluster
configuration 52Fe� 8Be, depending on the accepted inter-
cluster distance (0 or 0.5 fm), we obtain �2:96ÿ3:43�e bn.
Thus, the cluster interpretation of the structure of the 60Zn
superdeformed band is entirely justified.

Nuclear systems that have a cluster structure and consist
of one heavy fragment with mass A1 and one light fragment
with massA2 belong to the class of double nuclear systems. In
describing their shapes, it is convenient to use not the
multipole expansions of the surface shape but the following
two variables: the mass asymmetry Z � �A1 ÿ A2�=�A1 � A2�
and the distance R between the fragment centers [76]. In
strongly asymmetric double nuclear systems, the frequency of
R oscillations is much greater than the frequency of Z
oscillations, and therefore in averaging over the oscillations
we can set R � Rm�Z�, where Rm�Z� is the distance between
fragments at the minimum of the interaction potential. As a
result, the problem reduces to describing the system with one
dynamical variable Z and the Hamiltonian

H � ÿ �h 2

2

d

dZ
1

B�Z�
d

dZ
�U�Z; I� ; �43�

whereU�Z; I� is the potential energy andB�Z� is the coefficient
of inertia. Eigenfunctions of Hamiltonian (43) are character-
ized by a definite parity under the transformation Z! ÿZ,
which is actually the spatial reflection. For double nuclear
systems, the potential U�Z; I� has the form

U�Z; I� � B1 � B2 ÿ B12 � VC � Vn � Vrot ; �44�

where B1 and B2 are experimental values of the binding
energy of the fragments, B12 is the binding energy of a
mononucleus with A � A1 � A2, VC is the Coulomb poten-
tial,Vn is the nuclear potential of interaction of the fragments,
and Vrot is the rotation energy of the double nuclear system.
Calculations show that the 60Zn configuration with a light
fragment, an a particle, has a potential energy 4.5 MeV less
than the potential energy of the mononucleus. The next
important minima of the potential, corresponding to config-
urations with the light fragments 8Be and 12C, are respectively
higher than the mononucleus potential by 5.1 and 9.0 MeV
(Fig. 12).

In Fig. 13, we show the distribution in x (x � Z� 1 if
Z4 0 and x � Zÿ 1 if Z5 0) of the squared wave functions of
states with I � 8 from the ground and superdeformed bands.
We see that the wave functions of states from different bands
are clearly separated, but the overlap of the wave function
tails is already sufficient for the superdeformed-band state to
decay primarily into the ground band. At higher values of I,
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the separation of the wave functions becomes more pro-
nounced.

9. Phase transitions
and pair correlations in nuclei

The concept worked out for describing pair correlations of
electrons in relation to superconductivity found immediate
application in nuclear physics [77, 78] and played a key role in
explaining the spectra of excited states of even±even nuclei,
the even±odd mass difference, the rotational moments of
inertia, and many other effects in nuclear physics.

The collective model for the description of pair correla-
tions has been constructed both similarly to the geometric
collective model of the nucleus [79±82] and based on the
microscopicmodel of pair correlations with the use of bosonic
representations of bifermionic operators [83, 84]. In consider-
ing pair correlations of nucleons of the same type (protons or
neutrons), the dynamical variables are usually chosen as the
pair correlation strength D and the angle f describing
orientation in the gauge space and canonically conjugate to

the number-of-particles operator. The followingHamiltonian
was proposed for describing collective motion associatedwith
pair correlations [80]:

Hpair � ÿ �h 2

2B

q2

qD2
ÿ �h 2

4

�
1

=B
q=
qD
ÿ 1

D2

qB
qD

�
q
qD

�
�
V�D� � �h 2N̂ 2

2=
�
: �45�

Here,= andB are the respective coefficients of inertia for pair
rotations and pair vibrations, and N � Aÿ A0 is the number
of particles in nucleus A with respect to the number of
particles in the base nucleus A0. The form of the potential
V�D� depends on the nature of pair correlations in a chosen
nucleus. In nuclei with a moderate number of particles (holes)
in the unfilled shell, there are no static pair correlations, and
fluctuations of the pair field generate a vibrational spectrum
[79]. For example, pair vibrational states are realized in nuclei
adjacent to the doubly magic 208Pb, albeit with a significant
anharmonicity. In nuclei whose valence shell is approximately
half-filled, static pair correlations appear, and the ground
states of the neighboring nuclei differing by two nucleons of
the same type form the so-called pair rotational band [79].
The role of the angular variable is then played by the angle f
canonically conjugate to the number-of-particles operator N̂.
In that case, similarly to the collective model of the nucleus,
we can speak of spontaneous symmetry breaking.

In the vibration limit, the potential V�D� has a minimum
at D � 0 and can be approximated by a harmonic oscillator;
we can therefore setB � const and= � 4BD2 [80]. Solving the
Schr�odinger equation with Hamiltonian (45) leads in this
limit to an equidistant spectrum of pair excitations: E �
jAÿ A0j. The transition to static pair correlations is asso-
ciated with a shift of the potential minimum to a nonzero
value D � D0. Assuming the potential to be more rigid at the
minimum, we obtain a parabolic dependence of the energy of
pair excitations on the number of particles: E � �Aÿ A0�2.
This dependence of the energy of ground states on the number
of neutrons is observed in isotopes of Sn if 114Sn is taken as
the base nucleus.

To describe the transition from the vibrational limit to
static pair correlations, it was proposed in [85] to use an
infinite rectangular well as the potential V�D�.

In Table 3, we list the energies of the lowest states for each
value ofN expressed in terms of the energy of theN � 2 state.
The results are given for the harmonic oscillator potential, for
the potential corresponding to the limit of static pair
correlations, and for an infinite rectangular well modeling
the domain of the phase transition from the vibrational to
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Table 3. Energies of the lowest states for each value of N, normalized to
the energy of the N � 2 state.

N Vibrational
limit

Potential
of inénite

rectangular well

Limit of static
pair correlations

Experimental
data*

0
2
4
6
8
10
12

0
1
2
3
4
5
6

0
1

2.31
3.92
5.82
7.99
10.44

0
1
4
9
16
25
36

0
1

2.29
3.77
5.46
7.36
9.46

* For Pb isotopes with fewer than 126 neutrons (from [56]).
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rotational limit. In the last column in Table 3, we list experi-
mental data for Pb isotopes with the number of neutrons
fewer than themagic number 126.We see that these results are
close to those obtained for the phase transition domain.

We have considered pair correlations between nucleons of
the same type in the case of heavy nuclei in which protons and
neutrons fill different shells and, therefore, their wave
functions overlap only weakly, while the difference between
single particle energies is large compared to the pair
interaction constant. Another picture is observed in lighter
nuclei withN � Z, where wemust consider not only neutron±
neutron and proton±proton but also neutron±proton pair
correlations. Thus, in discussing these nuclei, we must
introduce isospin into consideration. To date, there has been
no explicit experimental indication of the presence of
isoscalar pair correlations, and we therefore introduce a
collective pair Hamiltonian that takes only the isovector
pair correlations into account. Under the assumption that
the coefficient of inertia is independent of the collective
variables, this Hamiltonian is given by [82, 83]

Hpair � �h 2

2B

�
ÿ 1

D5

q
qD

D5 q
qD
ÿ 1

D2 sin �4y�
q
qy

sin �4y� q
qy

� 1

D2

�ÿ
N̂=2� T̂3 sin �2y�

�2
cos2 �2y� � T̂ 2

3 �
T̂ 2
1

cos2 y
� T̂ 2

2

sin2 y

��
� 1

2
cD2 � dD4

�
3ÿ cos �4y�� : �46�

Here, D determines the magnitude of pair correlations and y
determines their isospin structure. The operator N̂ charac-
terizes the number of particles relative to the number of
particles of the base nucleus, and T̂i is the component of the
isospin operator.

A detailed analysis of experimental data on nuclei with
N � Z has shown [86] that the 56Ni and 100Sn nuclei can be
taken as the basic ones. However, because of the effect of
subshells in 28Si and 80Zr nuclei, only a few nuclei with
N � ZÐthose located in the vicinity of 56Ni and 100SnÐ
can be regarded as excited pair states. Calculations based on
Hamiltonian (46) for states with T � 0 have shown that the
spectra of the first excited states in this domain of the nuclei
are nearly equidistant. Thus, experimental data on the
energies of ground states of the nuclei under consideration
give no indications of phase transitions from the nonsuper-
fluid to the superfluid state.

10. Alignment of the angular momentum
of an odd nucleon as a phase transition
in rotational bands of odd deformed nuclei

An important role in determining the properties of rotational
bands of odd deformed nuclei is played by the coupling of the
angular momentum of an odd nucleon to the angular
momentum of the even±even core, i.e., the Coriolis coupling.
At small values of the total angular momentum of the nucleus
I, this coupling is weak, the projection of the angular
momentum of an odd nucleon on the symmetry axis K of
the nucleus is a good quantum number, and its value is
defined by the mean field of the nucleus and the order of
filling single particle levels [17]. As the total angular
momentum increases, it becomes energetically advantageous
to align the angular momentum of the odd nucleon along the
rotation axis of the core (the axis that is perpendicular to the

symmetry axis of the nucleus), because the associated increase
in the single particle energy is then compensated by a greater
decrease in the rotation energy. As a result, K ceases to be a
good quantum number, and the wave function of the odd
nucleon becomes a superposition of components character-
ized by different values of K [7]. Thus, K becomes a
dynamical variable.

The values taken by K are, of course, discrete, but if the
range ofK is not small, i.e., the angular momentum of an odd
nucleon is sufficiently large, then a semiclassical treatment of
the problem becomes possible, in which K, as was proposed
byMottelson, is considered a continuous variable. Assuming
for simplicity that the angular momentum of an odd nucleon
can take only one value j (for example, in the case of the so-
called intruder state with the opposite parity: h11=2; i13=2), we
obtain the Hamiltonian [87]

H � ÿ �h 2

2=
����������������������������������������
�I 2 ÿ K 2�� j 2 ÿ K 2�

q
d2

dK 2
�U�K� ; �47�

where U�K� is the potential energy as a function of K:

U�K� � �h 2

2= �Iÿ j�2
�
1� K 2

Ij

�
�

����������������������������������
D2 � �kK 2 ÿ l�2

q
: �48�

Here, = is the moment of inertia of the core, D is the
parameter characterizing the strength of pair correlations, l
is the chemical potential, and k is the quadrupole coupling
constant between the odd nucleon and the core.

The potential energy U�K� contains contributions from
both the rotation energy of the nucleus and the energy of the
odd nucleon. The first term has a minimum atK � 0, which is
due to the fact that the rotation energy is minimal in the case
of perfect alignment of the angular momentum of the odd
nucleon along the axis perpendicular to the symmetry axis of
the nucleus. The second term is minimal at the value ofK that
characterizes the one-particle level nearest to the Fermi
surface. As a result, the minimum of the total potential
energy is determined by competition between these two
terms. If

�h 2

2= �Iÿ j�2 < lkIj����������������
l2 � D2

p ; �49�

then U�K� has a minimum at K � �K0, where K0 6� 0. This
solution is realized if the deformation of the nucleus is large or
the total angular momentum I is close to j. This is the case of a
strong coupling of the odd nucleon to the deformation of the
mean field of the nucleus. The wave function of the lowest
state for a given I can be represented as the sum of two
Gaussians located symmetrically at positive and negative
values of K. Due to the symmetry of the Hamiltonian under
the change of sign ofK, the wave functionsmust be symmetric
or antisymmetric combinations of two Gaussians. Tunneling
through the barrier shifts the state with a symmetric wave
function downward in energy, and the state with a nonsym-
metric wave function upward. As a result, the expression for
the state energy takes the following skeleton form:

E�I� � A�I� ÿ �ÿ1� IÿjB�I� ; �50�

where A�I� and B�I� are smooth functions of I. In the case
under consideration, B�I� is small compared with A�I� and
can be treated perturbatively. Equation (50) describes the
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experimentally revealed effect of a staggering in the nucleus
state energy as I is stepped by one.

If condition (49) is not satisfied, the minimum of the
potential is at K � 0, which corresponds to the perfect
alignment of the angular momentum of the odd nucleon
along the rotation axis of the nucleus, i.e., to the phase
transition from one scheme of coupling the angular momen-
tum of the odd nucleon and the angular momentum of the
even±even core to another scheme. The potential can then be
approximated by a harmonic oscillator centered at K � 0.
The energies of states with different I are still described by
(50), but B�I� is no longer small compared with A�I�.

In Fig. 14, we show the spectrum of excited states of Er
isotopes [57], corresponding to the case of aligning the odd-
nucleon angular momentum along the rotation axis of the
even±even core at large values of the angular momentum.We
see that, as the angular momentum increases, doublets start
forming in the spectrum, comprising states with DI � 1. The
doublets appear because states with a symmetric wave
function (9=2, 13=2, 17=2) are shifted downward in energy,
and states with a nonsymmetric wave function (11=2, 15=2),
upward.

11. Chirality in atomic nuclei

In rotating odd±odd nuclei that are not axially symmetric in
shape, three angular momentaÐ the angular momentum of
the even±even core and the angular momenta of the valence
particle and holeÐcan determine the chiral geometry. These
three pairwise perpendicular angularmomenta constitute two
physically equivalent coordinate systemsÐ left-handed and
right-handedÐwhich are related by a chiral transformation
that includes time reversal and rotation through 180� about
one of the axes. When the chiral symmetry is broken in the
internal coordinate system associated with the deformed
core of the nucleus, two rotational bands with DI � 1 appear
in the laboratory system, each containing one of the members
of the degenerate doublets with the same angular momenta
(Fig. 15).

Static chirality is an effect well known in chemistry and
biology as a geometric property of manymolecules, especially
biomolecules. In particle physics, chirality is a dynamical
property dividing massless fermions into groups with
parallel and antiparallel spins and momenta.

In the case of atomic nuclei, both chiral structures that
pass one into another under time reversal and rotation
through 180� about one of the principal axes of the core are
realized as eigenstates of the nucleus, in contrast to the case of
rotational bands, which we have seen include states of both
parities. Therefore, associated with chirality in atomic nuclei
is the appearance of two identical rotational bands with the
same parity.

The occurrence of chirality in atomic nuclei was predicted
in [88] in considering the coupling of angular momenta in
nonaxial odd±odd nuclei. Since then, more than 20 such
bands have been identified in the domains of the nuclide
chart with A � 100, 130, and 190 [88±92]. The observed
moderate difference in energies of states with the same
angular momenta I in rotational bands of chiral partners
points to the existence of chiral vibrations from the right-
handed (left-handed) configuration to the left-handed (right-
handed) one [93, 94]. A decrease in energy splitting suggests
that chiral vibrations transform into tunneling between well-
stabilized chiral configurations (static chirality). This hap-
pens as the angular momentum I of the nucleus increases. In
calculations with the 135Nd nucleus [94], chirality attains the
maximum staticity at I � 39=2, when both rotational partner
bands come very close to one another in energy.

To describe the energy splitting of chiral doublets, we
must go beyond the mean field approximation, to which the
cranking model belongs, where the direction of the moment
of rotation does not coincide in general with any of the
principal axes of the nucleus [95]; a collective Hamiltonian
must be constructed instead. The orientation of the rotation
axis of the nucleus relative to the principal axes of the density
distribution in a deformed nucleus is given by

x� �o sin y cosj;o sin y sinj;o cos y� ; �51�
wherex is the angular velocity vector. The system of principal
axes can be determined using the quadrupole moment of the
density distribution Qm. In the coordinate system associated
with the principal axes,

Q1 � Qÿ1 � 0 ; Q2 � Qÿ2 : �52�
In Ref. [96], an operator ŝ was introduced that characterizes
the chiral degree of freedom of the nucleus:

ŝ � ÿ ĵp � ĵn
�
R̂ � j jpj j jnj jRj sin yPN sin y sinj ; �53�

161Er
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25=2 1207.7 25=2 1186.4
25=2 1153.3
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19=2 848.7

23=2 1308.4

23=2 1164.1
23=2 1080.2

11=2 296.7

189.49=2

163Er
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11=2 167.5
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47.25=2

Figure 14. Experimental spectra of rotational states in Er isotopes

illustrating the case of odd-nucleon angular momentum alignment along

the rotation axis of the even±even core.
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I

Figure 15. Example of the spectrum of degenerate rotational bands with

DI � 1 in the case where a potential barrier arises that separates the left-

handed and right-handed configurations of angular momenta.
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where ĵp is the angular momentum operator of the proton
particle, ĵn is the angular momentum operator of the neutron
hole, R̂ is the angular momentum operator of the even±even
core, and yPN is the angle between ĵp and ĵn. The eigenvalues of
ŝ have opposite signs for left-handed and right-handed
systems. As defined in [88], the angle y ranges in the interval
04y4 p=2, and thej angle, in the intervalÿp=24j4 p=2.
Thus, j is a dynamical variable that describes the transition
from the left-handed to the right-handed system. The
collective Hamiltonian incorporating the chiral degree of
freedom then becomes

Ĥcoll � Tvib�j� � V�j� ; �54�
or in the quantized form

Ĥcoll � ÿ �h 2

2
�����������
B�j�p d

dj

�����������
B�j�

p d

dj
� V�j� : �55�

Details of the calculation of the mass coefficient can be found
in [97]. The volume element in this collective space is given by�

dtcoll �
�
dj

�����������
B�j�

p
; �56�

and, hence, with collective measure (56), Ĥcoll is Hermitian.
The potential V�j� can be calculated in the mean field
approximation, given the magnitude and direction of the
angular momentum of the nucleus [98]. The potential V�j� is
symmetric with respect to j � 0. This means that eigenfunc-
tions of Hamiltonian (55) are characterized by a definite
parity under the change of sign of j.

As the rotation frequency increases, the minimum of the
potential, which was first located at j � 0, shifts toward
nonzero values ofj. At small angular momenta, the potential
V�j� can be approximated by a harmonic oscillator potential.
At large angular momenta, V�j� acquires two symmetric
minima. Accordingly, the barrier that separates them
increases as the rotation frequency o increases.

In Fig. 16, we show how the potential and the spectrum of
excited states evolve [98] as the rotation frequency increases.
Six eigenstates of the Hamiltonian that are lowest in energy
are presented. We see that, as the angular momentum
increases, the levels in three pairs (1st and 2nd, 3rd and 4th,
and 5th and 6th) come closer to each other. As the angular
momentum increases, the barrier in the potential grows in
height and width, and therefore the tunneling probability
decreases and the energy split of levels in the pairs tends to
zero.

The wave function of the lowest-energy state is symmetric
under the transformation j! ÿj and has no nodes. The
wave function of the next-in-energy state is asymmetric.
Among the states of the following doublets lower in energy
is a state, there is one whose wave function is symmetric under
j! ÿj.

Both rotational bands, which are chiral partners, have
been revealed in a number of nuclei. Examples are given by
134Pr and its isotones: 130Cs, 132La, and 134Pm [89].

12. Conclusions

Phase transitions in atomic nuclei, the coexistence of shapes
revealed in various domains of the nuclide chart, are no
longer a curiosity, as they used to be at the initial stage of
investigations of the structure of nuclei. These phenomena
can naturally be studied within collective models of the
nucleus, containing a moderate number of degrees of free-
dom of the nucleus that are most important for describing
phase transitions. At the same time, understanding the
mechanism behind these phenomena requires an underlying
microscopic approach, with its most important component
being the concept of the mean field of the nucleus, its most
prominent feature being shells and subshells in the spectrum
of one-particle states.

All examples of phase transitions considered above,
associated with different degrees of freedom of the nucleus
and characterized by different control parameters, can in the
simplest approximation be considered within a general
scheme: one-dimensional or two-dimensional Schr�odinger
equations with a two-minimum potential. This allows reveal-
ing common features in different observable phenomena and
drawing analogies with well-known phase transition phenom-
ena in macrophysics.

This paper was supported by the Russian Foundation for
Basic Research, grant no. 19-12-50172.
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