
Abstract. We present an analytic description of the generation
of undulator radiation (UR) harmonics in a generalized elliptic
undulator with field harmonics. The obtained analytic expres-
sions for generalized Bessel and Airy functions describe the UR
spectral lines and radiation intensity in the general and parti-
cular cases of two-frequency planar and helical undulators and
also for other elliptic and planar undulators. We analytically
describe the effect of finite electron beam size, beam emittance,
off-axis deflection of electrons, electron energy spread, and
beam-bending permanent magnetic components. The obtained
analytic expressions distinguish the contributions made by each
field component and by the beam and undulator parameters to
the generation of radiation harmonics. Using an analytic model
of single-pass free-electron lasers (FELs), we analyze the power
evolution of harmonics in the LCLS, LEUTL, and SACLA
FEL experiments. We discuss the effect that the beam and
undulator parameters have on the generation of harmonics. It
is shown that the strong second harmonics of radiation observed
in experiments are caused by the detected beam deviation from
the axis by 15 lm over one gain length of 1.5 m in the X-ray
LCLS FEL and by the large beam cross section of� 200 lm in
the LEUTL FEL. The results of modeling are fully consistent
with experiments, which confirms the validity of the presented
theoretical description of FEL power and radiation spectral
density.

Keywords: undulator, magnetic field, free-electron laser, harmonic
generation

1. Introduction

Undulator radiation (UR) was first proposed by Ginzburg
[1]; the first undulator was constructed by Motz [2], who was
also the first to conduct observations ofUR.Over the decades
that have passed since then, progress in technology has
resulted in the appearance of free-electron lasers (FELs), in
which, in full accord with Ginsburg's hypothesis, coherent
radiation is generated by electrons that are grouped into
microbunches less than the radiation wavelength l0 in size,
separated by a distance equal to the wavelength l0. The
electron energy E in an undulator is typically high, such that
the corresponding relativistic factor is by order of magnitude
g � E=�mc 2� � 103ÿ104 4 1, where m is the electron mass
and c is the speed of light. This allows obtaining X-ray
coherent radiation for investigating processes occurring on
the nanoscale [3±10]. We note that coherent radiation in the
X-ray range and gamma range can also be generated, besides
by FELs, by inverse Compton scattering on electrons and
inverse resonance scattering of optical-range laser beam
photons by partially ionized ions [11].

The efficient bunching of electrons requires a high quality
of the beams and undulators: deviations of the field from an
ideally periodic one must be reduced to a minimum; non-
periodic components, off-axis deviations of the beam, and
energy spread of electrons in the beammust be suppressed. In
reality, all these factors are present in undulators to some
extent, leading to losses, UR spectrum line broadening, and
worsening of the electron bunching, whose efficiency is
determined by the conditions on the energy spread se 4r=2
and the emittance ex; y 4l0=�4p� (see, e.g., [5, 12]), where r is
the Pierce parameter of the FEL (see, e.g., [12, 13]) and l0 is
the radiation wavelength. It must also be taken into account
that an ideal harmonic field in undulators has not yet been
realized in real devices, because it does satisfy the Maxwell
equations off the axis, and also because of the presence of
field harmonics. In undulators with permanent magnets, a
biharmonic field can be obtained by shimming with ferro-
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magnetic materials [14±20]. In some cases, the measured
amplitude of field harmonics is as high as � 20ÿ30% of the
main field strength [18, 21, 22]. The effect of biharmonic
components on the emission of electromagnetic undulators
was studied, e.g., in [23, 24]; emission of higherURharmonics
was enhanced compared with the case of a standard
undulator [19, 25]. The effect of field harmonics on UR in
undulators with permanent magnets and with electromagnets
was also studied in [26±29]; it was shown that field harmonics
can facilitate the enhanced generation of higher radiation
harmonics in FELs, which is advantageous from the stand-
point of the possible use of lower-energy electrons to obtain
higher-frequency radiation. Besides planar undulators, ellip-
tic undulators are also in use (see, e.g., [25]), as are undulators
in which the radiation ellipticity can be varied, as in the
APPLE-III undulator for the SwissFEL [30], the Delta
undulator [31] for the LCLS (Linac Coherent Light Source)
[32], and others. Numerical modeling of the emission from
such undulators was done in [33].

We note that in an ideal planar undulator only odd
harmonics are emitted on the axis, and in a helical undulator
only the main pitch is emitted. The radiation power is
typically equal to 1±3% and 0.1% of the main pitch power
for the respective n � 3 and n � 5 FEL harmonics. Even
harmonics are also observed in the spectrum of some FELs;
their power varies strongly depending on the device and can
reach � 0:1% of the main pitch power (see, e.g., [34±37]).

The power of harmonics of both spontaneous and
induced UR can be modeled numerically in each particular
case using dedicated software. However, numerical computa-
tion requires personnel ready to work with that software,
computational resources, and the software itself. This can be
justified when designing an FEL, but is not necessarily
available in the course of investigations or when comparing
different devices with each other. In numerical modeling, in
addition, it is difficult to reveal the physical reasons for the
occurrence of some harmonics in the spectrum. It is therefore
relevant to study the generation of harmonics in real devices
analytically, taking the parameters of the undulators and
beams into account.

In this paper, we theoretically analyze and investigate the
behavior of harmonics of spontaneous and induced UR in an
undulator with a multicomponent magnetic field, including
its harmonics taking all the main losses into account. The
analytic relations that we obtain for such an undulator imply
limiting cases of planar, helical, and elliptical undulators with
the additional periodic and nonperiodic components.We also
investigate and quantitatively explain the appearance of even
harmonics in some FELs and their measured power.

2. Radiation from a generalized elliptical
undulator and its limiting cases

We consider the UR of an elliptical undulator; the radiation
of an electron in it can be calculated using the integral
radiation

d2I

do dO
� e 2

4p2c

�����o
�1
ÿ1

dt
�
n��n�b�� exp �io�tÿ nr

c

�������
2

; �1�

where n � �y cosj; y sinj; 1ÿ y 2� is the unit vector in the
direction from the charge to the observer, o is the radiation
frequency, b is the velocity of the charge, and r is the radius

vector of the charge. Let us consider the magnetic field H of
an elliptical undulator with amplitude H0, fundamental
period lu, and multiple periods:

H � H0

ÿ
sin �klz�� d sin �pklz�; d1 sin �hklz�� d2 cos �lklz�; 0

�
;

kl � 2p
lu;x

; lu;x � lu ; h; l; p 2 Z ; d; d1; d2 2 R ; �2�

where Z and R are the respective sets of integer and real
numbers. The field harmonics can have an arbitrary intensity
in the model. This allows using field (2) to obtain limiting
cases of a planar two-frequency undulator and some elliptical
undulators (including with field harmonics) that have been
investigated previously [39±44]. In the calculations in what
follows, we use the method of generalized Bessel functions,
which we developed in [43], and a similar formalism
developed by other authors in [45±48], where the generation
of hard circularly polarized gamma radiation at higher UR
harmonics was studied. In [49], the inverse problem was
solved of finding the undulator field distribution with
linearly polarized radiation on the axis in optimum condi-
tions. The conclusion was that the field of such an undulator
is essentially described by the sum of the first and third
harmonics, and we use this in choosing the field configura-
tion. Proceeding similarly, we obtain the following expression
for theUR intensity in field (2) in the relativistic limit 1=g5 1:

d2I

do dO
� e 2N 2k 2

4g 2c
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�
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�
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Here, sinc �. . .� describes the ideal line shape of the UR
spectrum as a function of the undulator detuning parameter
nn � 2pnN�o=on ÿ 1�, where on � 2pc=ln,

ln� lu
2ng 2
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is the resonance UR length, and fn; x; y are the Bessel
coefficients of the corresponding UR polarizations

f 1n;x �
d1
h
�J n

n�h � J n
nÿh� � i

d2
l
�J n

n�l ÿ J n
nÿl� ; �5�

f 2
n;x �

2

k
J n
n gy cosj ;

f 1
n; y � �J n

n�1 � J n
nÿ1� �

d

p
�J n

n�p � J n
nÿp� ; �6�

f 2
n; y �

2

k
J n
n gy sinj ;

expressed in terms of the undulator parameter k � H0lu;xe=
�2pmc 2�, the off-axis deviation angle y, the azimuthal anglej,
and the generalized Bessel functions

Jm
n �xi� �

1

2p

� p

ÿp
da exp

h
i
�
na� x1 sin �ha� � x2 cos �la�

� x3 sin a� x4 sin �2a� � x5 sin �2ha� � x6 sin �2la�
� x7 cos

��l� h�a�� x8 cos
��lÿ h�a�� x0 sin �pa�

� x9 sin
��p� 1�a�� x10 sin

��pÿ 1�a�� x11 sin �2pa�
�i
: �7�
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They have the indices m, n and depend on the following
arguments xi:

x4 �
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4
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2
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�
�
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�2�
� g 2y 2

; �8�
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kp 2

gy sinj ; x1 �
x48d1
kh 2

gy cosj ;
�9�

x2 �
x48d2
kl 2
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x48
k
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d 2
1

h 3
x4 ; x6 � ÿ

d 2
2

l 3
x4 ; x11 �

d 2

p 3
x4 ;

�10�
x7 �

4d1d2
hl�l� h� x4 ; x8 �

4d1d2
hl�lÿ h� x4 ;

x9 �
4d

p�p� 1� x4 ; x10 �
4d

p�pÿ 1� x4 : �11�

On the axis, y � 0 and the expressions are greatly
simplified, but the dependence on the angle y is of funda-
mental importance, because it allows tracing the origin of the
even UR harmonics. Analytic expressions (3)±(11) give the
dependence of the UR intensity on the undulator parameters
and angles in the most general form and allow finding the
contribution of each parameter to the generation of UR
harmonics.

We consider several limiting cases of field (2). In the field
with a sinÿsin configuration,

H � H0

ÿ
d1 sin �hklz�; sin �klz�; 0

�
; �12�

kl � 2p
lu

; h 2 Z ; d1; h � const ;

in accordance with [45±48], we obtain the Bessel coefficients

f 1; sin sin
n;x � �J n

n�1 � J n
nÿ1� ; f 2; sin sin

n;x � 2

k
J n
n gy sinj ; �13�

f 1; sin sin
n; y � d1

h
�J n

n�h � J n
nÿh� ; f 2; sin sin

n; y � 2

k
J n
n gy cosj :

The angular dependence on y and j is taken into account
in the arguments x4, x1, x3, and x5 of Bessel functions (7);
d � d2 � 0 in the corresponding expressions. Skipping the
trivial case h � 1 in (13), in accordance with the suggestion in
[49], we consider the case h � 3: H � H0�d1 sin �2pz=�lu=3��;
sin �2pz=lu�; 0�. For x-polarized radiation, we have the
Bessel coefficient fn;x that is practically independent of d;
for y-polarized radiation, the coefficient f3; y turns out to
be the largest, f5; y is slightly less, and f1; y is much less than
f3; 5; y� 0:1ÿ0:3 for jd j� 0:5ÿ1.

We thus see that in asymmetric field (12), UR has stronger
higher harmonics in the y-polarization, with the Bessel
coefficients being larger than those for the main pitch:
f3; 5; y4f1; y. The case h � 5 and other higher field harmon-
ics, in full agreement with [49], do not make a significant
contribution to UR. We note that the choice d1 � 1 in (12)
allows obtaining a planar undulator with the field amplitude���
2
p

H0; the corresponding Bessel coefficients are given by
expressions (13).

In the limiting case of an elliptical magnetic field with the
sinÿcos configuration,

H � H0

ÿ
d2 cos �lklz�; sin �klz�; 0

�
; �14�

kl � 2p
lu

; l 2 Z ; l; d2 � const ;

we obtain Bessel coefficients (7) with d � d1 � 0 in the
remaining arguments x4, x2, x3, and x6; for x- and y-
polarizations, we then obtain the expressions

f 1; sin cos
n;x � J n

n�1 � J n
nÿ1 ; f 2; sin cos

n;x � 2

k
J n
n gy sinj ; �15�

f 1; sin cos
n; y � d2

l
�J n

n�l ÿ J n
nÿl� ; f 2; sin cos

n; y � 2

k
J n
n gy cosj :

At l � 3, with the third field harmonic, we obtain the
coefficients fn; x; y and the behavior of harmonics similar to
those in the case of a sinÿsin field. At l � 1, we have identical
undulator periods, and for d � d2 � �1 we obtain the known
helical undulator.

A planar undulator with the field harmonics

H � H0

�
0; sin

2pz
lu
� d sin

2ppz
lu

; 0

�
;

�16�
p 2 Z ; d; p � const ;

where x4, x0, x3, x11, x10, and x9 are the remaining arguments
(7) and d1 � d2 � 0, was investigated in detail, for example, in
[50]. The corresponding Bessel coefficients are

f 1; sin� sin
n;x � �J n

n�1 � J n
nÿ1� �

d

p
�J n

n�p � J n
nÿp� ;

f 2; sin� sin
n;x � 2

k
J n
n gy sinj ; �17�

f 1; sin� sin
n; y � f 2; sin� sin

n; y � 2

k
J n
n gy cosj :

In addition to the analysis performed in [50], we note that
the main conclusion in that case is that, for d > 0, higher UR
harmonics are amplified and themain pitch intensity becomes
somewhat weaker for k > 1:5 and p � 3, thus confirming the
conclusion in [49] regarding the decisive effect of the third
field harmonic. Other field harmonics have no decisive impact
on the generation of UR harmonics. The main effect of the
higher UR harmonic amplification is achieved for d � 0:5
and, naturally, is increased as the undulator parameter k
increases (see [50]) (Fig. 1).

In the helical undulator field

H � H0

ÿ
sin �klz� ÿ d sin �hklz�; cos �klz� � d cos �hklz�; 0

�
;

�18�
a third harmonic (h � 3) has been detected with amplitude
d � 0:08 [25]. For field (18), we obtain the Bessel coefficients
[50]

f 1; asym
n;x � i�J n

n�1 ÿ J n
nÿ1� � i

d

h
�J n

n�h ÿ J n
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�19�
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k
J n
n gy cosj ;

f 1; asym
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n�1 � J n
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h
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n�h � J n
nÿh� ; �20�

f 2; asym
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k
J n
n gy sinj ;
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where d and h correspond to field (18), the superscript asym in
(19) and (20) denotes the asymmetric field configuration (18)
in the corresponding undulator, and the generalized Bessel
functions are [50]

J m
n �

� p

ÿp
exp

n
i
�
na� x1 cos a� x2 cos �ha� ÿ x3 sin a

� x4 sin �ha� ÿ x5 sin
��h� 1�a��o da

2p
; �21�

with their arguments expressed as

x0 �
2mk

1� k 2
�
1� �d=h�2�� g 2y 2

; �22�

x1 � x0gy cosj ; x2 �
d

h 2
x1 ; x3 � x1 tanj ; �23�

x4 �
d

h 2
x1 tanj ; x5 � x0

kd

h�h� 1� :

It was shown in [50] that the fifth UR harmonic in field (18) is
already apparent at d � 0:1 and becomes dominant in the
spectrum of spontaneousUR for d > 0:5. This is illustrated in
Fig. 2, which complements the analysis in [50].

However, in the spectrum of FELs with self-amplified
spontaneous emission (SASE), the fifth radiation harmonic
of undulator field (18) is only slightly stronger than the
original noise of the electron bunch. Although the power of
the fifth harmonic of FEL emission is greater than the third
harmonic power, the fifth FEL harmonic remains four orders
of magnitude weaker than the main FEL pitch, even for the
field harmonic amplitude d � 0:3ÿ0:5 [50, 51].

3. Corrections to undulator radiation
due to the energy spread and off-axis effects

In real devices, it must be taken into account that each
electron in the beam has its own energy and direction of
motion, and its trajectory can run at a distance from the
undulator axis, where the magnetic field differs from the

simplest model field of form (2), (12), (14), (16), (18), etc. The
UR on the undulator axis is discussed most frequently, but,
even in that case, the energy spread of electrons in the beam
must be taken into account, which is done by using the
convolution in the expression for the radiation intensity�1

ÿ1

d2I �nn � 4pnNe; y�
do dO

������
2p
p

se
exp

�
ÿ e 2

2s 2
e

�
de :

In addition, the emittance and size of the beammust be taken
into account, together with the possible effect of nonperiodic
field components, which result in somewhat shifting the UR
spectrum down in frequency and changing the UR line shape.
Taking these factors into account in FELs, together with the
fact that the electron±photon interaction at higher UR
harmonics is more sensitive to losses, is a complicated task.
Typically, this is done using a software code that solves the
entire set of equations ofmotion for electrons interacting with
the wave field in one- or three-dimensional cases. This
software is written for a fixed configuration of the undulator
field, and working with it requires a qualified staff. Adapting
a given software to an arbitrary undulator field is impossible;
its modification to another field configuration, different from
the specified one, is done by software developers. On the other
hand, analytic tools for describing the operation of FELs, and
in particular a phenomenological FEL model in its most
recent version [52], allow for a good description of the
evolution of the power of FEL harmonics for virtually any
undulator, but require an exact analytic expression for all
losses.

3.1 Effect of a permanent magnetic field
The effect of nonperiodicmagnetic components in undulators
should be brought to aminimum [53], because they lead to the
broadening of the UR sinc �nn=2� spectrum lines. For this, the
integrals of the field must be carefully evaluated and
minimized [44, 45], with the effect of external fields screened
or compensated. Some numerical estimates, for example, for
the Sibir-2 device, are given in [54, 55]. The permanent field
essentially leads to a drift of the electron away from the
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Figure 1. (Color online.) Dimensionless intensity In; x of the n � 1; 3; 5 UR

harmonics in a planar undulator with the third field harmonic (16), p � 3,

1 < k < 4. Surfaces correspond to the UR harmonics: the brick red one to

n � 1, green to n � 3, and blue to n � 5.
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Figure 2. (Color online.) Dimensionless intensity In; x; y of the n � 1; 2; 3; 5
UR harmonics in undulator field (18) with h � 3 and 1 < k < 4,

ÿ1 < d < 1. Surfaces correspond to the UR harmonics: the brick red
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undulator axis and the appearance of a field-induced bend
angle yH. On the axis, the UR user thus sees the radiation of
an electron at the induced angle

yH � 2p���
3
p k

g
N�k 2 � r 2�1=2 �24�

due to the transverse permanent components Hx � H0r and
Hy � H0k. These lead to the appearance of additional
nonperiodic terms in the exponent in the radiation integral,
which in turn result in theUR spectrum line shape being given
not by the known function sinc �nn=2� but by the generalized
Airy function written in integral form

S�nn; Z; b� �
� 1

0

dt exp
�
i�nnt� Zt 2 � bt 3�� : �25�

The angles y and j are involved in the arguments of the
special function S�nn; b; Z�

Z � 4p2N 2nkgy
1� k 2=2

�k cosjÿ r sinj� ; �26�

b � �2pnN� nn� �gyH�
2

1� k 2=2
� 2pnN

�gyH�2
1� k 2=2

: �27�

The UR intensity of a planar undulator can then be expressed
as

d2I

do dO
� e 2N 2g 2k 2
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S 2�nn; Z; b��J n

n�1 � J n
nÿ1�2

�
�
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k
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���
3
p qS

qnn
J n
n

�2
#
: �28�

We note that even UR harmonics on the undulator axis
that are due to the permanent field, i.e., the second term
in square brackets in (28), are described by the factor
�2=k�gyH

���
3
p

qS=qnn, whence we see that the effect produced
by the field is accumulated along the undulator length
L � luN in yH. In the ideal case yH � 0, the second term
in (28), which corresponds to even UR harmonics on the axis,
also vanishes, and S�nn; b; Z� reduces to sinc �nn=2�:

S�nn; 0; 0� � exp
inn
2

sinc
nn
2
: �29�

For multiperiodic undulator fields (2), (12), (14), (16),
(18), and others, the structure of expression (28) is preserved;
instead of sinc �nn=2� in (3), the function S defines a spectrum
line of odd harmonics with the corresponding Bessel coeffi-
cients f 1; 2

n; x; y given in (5), (6), (13), (15), and (17), and the
even harmonics on the axis are given by generalized Bessel
functions (7) with the coefficients �2=k�gyH

���
3
p

qS=qnn
(see (28)). For simpler field configurations, the correspond-
ing expressions for f 1; 2

n; x; y and J m
n �xi� are simplified (see

Section 2).
We briefly discuss the main properties of generalized Airy

functions (25). They are related to the generalized Hermite
polynomials in three variables,
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X1
n�0

i nHn�x;ÿiy;ÿz�
�n� 1�! : �30�

The Hermite polynomials Hn�x; y; z� can be expressed
through the sums of two-variate Hermite polynomials

Hn�x; y�:
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where [56]
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xnÿ2ry r

�nÿ 2r�! r! �32�

can be expressed through the standard Hermite polynomials
as
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�����
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The generating exponentials for the Hermite polynomials
Hn�x; y� andHn�x; y; z� are

exp �xt� yt 2� �
X1
n�0

t n

n!
Hn�x; y� ;

�34�
exp �xt� yt 2 � zt 3� �

X1
n�0

t n

n!
Hn�x; y; z� :

The generalized two- and three-variate Hermite polynomials
Hn�x; y� and Hn�x; y; z� can be represented in operator form
as the result of acting with exponential differential operators
of the respective second and third order on monomials:

Hn�x; y� � exp �yq2x�xn ; Hn�x; y; z� � exp �yq2x � zq3x�xn :

�35�

These operator definitions reveal a nonobvious relation
between apparently unrelated mathematical objects and
allow a more profound understanding of their physical
meaning. For the generalized Airy function S�x; y; z�, we
obtain the following operator relation to the function sinc x
of the UR spectrum line:

S�x; y; z� �
� 1

0

dt exp
�
i�xt� yt 2 � zt 3��

� exp �ÿiyq2x ÿ zq3x�
� 1

0

exp �ixt� dt

� exp �ÿiyq2x ÿ zq3x�
�
sin x=2

x=2
exp

�
i
x

2

��
: �36�

On the undulator axis, S�x; y; z� in (25) is simplified to

S�x; y; z���
on axis

� S�x; z� �
� 1

0

exp
�
i�xt� zt 3�� dt

�
X1
m�0

imHm�x;ÿz�
�m� 1�! : �37�

The modified shape of the spectrum lines is determined by the
behavior of the functionsS and qS=qnn. For odd harmonics of
the corresponding Bessel coefficients f 1

n , the shape of
spectrum lines is determined by the function S�nn; b; Z�
(Fig. 3). The induced angle yH is involved in the argument b;
emission into the angle y off the axis is taken into account in
the argument Z; the maximum of the function is equal to
unity: maxS � 1.
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The angles yH and y can partially compensate the effect of
one another. For the spectral linemaximum to be preserved at
the point nn � 0, i.e., without detuning the spectrum frequen-
cies, the condition

nn � ÿ�b� Z� for nn; b; Z 2 �ÿ2p; 2p� �38�
must be satisfied (see Fig. 3). It follows from (38) that the
compensation resulting in nn � 0 is only possible at the angle

y � 2p
3

k

g
N

k 2 � r 2

r sinjÿ k cosj
:

With no loss of generality, we assume for simplicity that only
one component of the permanent field is present, r � 0; in the
directionj � p, we then conclude that emission into the angle
~y occurs at the unchanged UR resonance frequency nn � 0:

~y � 2p
3

k

g
Nk �

���
3
p

yH :

The UR resonance frequencies involve the angles yH induced
by the permanent field:

on � 2no0g 2�
1� k 2

2

�
� �gy�2� �gyH�2ÿ g 2

���
3
p

yHy
r sinjÿ k cosj�����������������

k 2 � r 2
p :

�39�

Hence, the permanent component kH0 leads to a bend of the
electron trajectory at the angle yH, and the radiation
propagating along the undulator axis at the angle y � ÿyH
to the direction ofmotion of the electron has resonances at the
frequencies

on � 2no0g 2

1� k 2=2� 0:27�gyH�2
:

For even harmonics, due to the yH angle, the UR spectral
line shape is determined by the function qS=qnn, as shown in
Fig. 4; its maximum is equal to 0.5: max qS=qnn � 0:5.

We note that the factor

2

k
gyH

���
3
p qS

qnn
J n
n

appearing in (28) has the same structure as regards the angle
gyH as does the angular part � gy in f 2n;x; y (see (13), (15),
(17), etc.). Moreover, given the coefficient

���
3
p

present in

that factor in (28) and in view of the behavior of qS=qnn,
we obtain

f 3
n �

2

k
gyH

���
3
p

max
qS
qnn

J n
n �

1:73

k
gyHJ n

n ; �40�

which is similar to the expression present in the angular part
of f 2

n; x; y: �2=k�gyJ n
n . Thus, to estimate the contribution of the

angle yH, we can use the standard expressions for f 2
n; x; y from

(5)±(7), (13), (15), (17), etc. with y! yH.We also note that the
angle yH is induced by the field

H �T� �
���
3
p

gyH
2plu �cm�N ;

and a rather weak magnetic field is required in order to create
a significant angle gyH � 0:1. For example, in the LCLS FEL
undulator with L � 3:4 m, the field H � 0:8 G only slightly
exceeding Earth's field is required for the angle gyH � 0:1.
Naturally, such fields are carefully compensated and
screened. Nevertheless, as we show in Section 3.2, even a
beam deviation by 15±20 mm off the axis along the FEL gain
length can result in considerable emission of the second
harmonic in the FEL, as has been detected experimentally
[34±36].

3.2 Effect of betatron oscillations
The contribution of betatron oscillations to UR has been
studied well (see, e.g., [39±45, 57]). We recall that the simplest
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Figure 3. (Color online.) Absolute values of the function S�a; b� depending on detuning parameter nn and argument b for (a) Z � 0 and (b) Z � 1.
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Figure 4. (Color online.) Absolute values of the function qS=qnn depending
on the detuning parameter nn and the argument b at Z � 0.
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harmonic dependence of the field on the coordinate along
the undulator axis, Hy � H0 sin �klz�, does not satisfy the
Maxwell equations; additional components, for example,
Hy� H0 sin �klz� cosh �kly� andHz� H0 cos �klz� sinh �kly�,
are considered for theMaxwell equations to be satisfied in the
entire gap of the undulator. This leads to the appearance of
betatron oscillations at the frequency

ob �
���
2
p

pckd
lnng

� 2
���
2
p

pcgkd

lu
�
1� �k 2=2��1� �d=p�2� �d1=h�2� �d2=l �2�	 ; �41�

where, for the standard planar undulator, d � 1 and d � 0;
the frequency ob / on=g is much lower than the UR
resonances on for g4 1. In modern FELs, ultrarelativistic
electrons with g � 103ÿ104 are used and UR line splitting is
barely visible. We note that a detailed analysis of UR with
betatron oscillations taken into account was recently done
in [23] for a two-frequency undulator with field (16). In the
case of multiperiodic fields in an undulator, the physics of
betatron oscillations is essentially the same. We obtain Bessel
coefficients (5), (6), (13), (15), (17), (19), and (20) (depending
on the undulator field harmonics) factored through the
following generalized Bessel functions, which occur due to
betatron oscillations:

f 1; 2
n !

X
p

~Jp�x; z� f 1; 2
n ;

�42�
~Jp�x; z� � 1

2p

� 2p

0

cos
�
pqÿ z sin qÿ x sin �2q�� dq ;

with the arguments involving the off-axis deviation of the
electron by y0:

x � p2y 2
0 kd

2ng
���
2
p

luln
� p2gy 2

0 kd���
2
p

l2u�1� k 2=2� ; �43�
z � 2pyy0

nln
� 4pyy0g 2

lu�1� k 2=2� :

In FELs where beams of relativistic electrons are used, the
coefficient ~Jp�0 is in many cases close to unity, and the other
coefficients Jp��1;2;3... are small,� 10ÿ1ÿ10ÿ2. But even if the
splitting of spectrum lines is considerable, the p subharmonics
are positioned close to each other, at the distance dl �
lk=

���
2
p

g; for relativistic beams, dl=l is typically much less
than the relative width of the UR spectrum lines and the
Pierce parameter r, which gives an estimated value of the
spectral density of FEL emission.We note that the splitting of
UR spectrum lines can be due to a combination of the off-axis
deviation by y0 and emission at an angle y entering argument
z. Numerical estimates are given in Section 4, where we study
the origin of the strong second harmonic in the X-ray FEL
LCLS [35, 36] and in the LEUTL (Low-Energy Undulator
Test Line) FEL [37, 38] emitting in the optical and long-
wavelength ultraviolet (UV-A) ranges.

Even harmonics of a planar undulator occurring due to
betatron oscillations are well known; they have the following
Bessel coefficients, to which the more complicated expression
for a two-frequency undulator in [23] also reduces:

f 4
n; p; y �

���
2
p

py0d
lu

ÿ
~Jp�1�x; z� ÿ ~Jpÿ1�x; z�

�
~Jn��x;�z� ; �44�

where

�x � ÿ 1

8

k 2

g 2
lu
ln
� ÿ 1

4

nk 2

1� k 2=2
; �z � 8�xgy

k
;

with x and z defined in (43). For the planar undulator field
with harmonic (16), Hy � H0�sin �klz� � d sin �pklz��, calcu-
lations performed in [23] give Bessel coefficient (17) with
factor (42), as was to be expected. The undulator field
harmonic d makes a contribution to d � ��������������

1� d 2
p

and to the
resonance of radiation wavelengths

ln � lu
2ng 2

�
1� k 2

2

�
1�

�
d

p

�2��
:

Instead of ~Jn��x;�z� for the two-frequency undulator, expres-
sion (44) involves J n

n (see the angular part of f 2n; y in (17) and
in [23] in another notation); the functions J n

n are the limiting
case of (7) for d1 � d2 � h � l � 0. The contribution of
betatron oscillations is generalized to the case of multi-
periodic undulator field (2) with nonzero d1; 2, p, h, and l in
(7)±(11) and d � �1� d 2 � d 2

1 � d 2
2 �1=2 in ob: in expression

(44), we use J n
n �xi� in (7) instead of ~Jn��x;�z�.

Thus, the nth UR harmonic is split into p subharmonics.
This splitting is insignificant because ob / on=g. As a result,
for p � 0 we have f 4

n; p�0; y � 10ÿ2; for other p we obtain even
lower values, and the contribution to the generation of even
harmonics due to betatron oscillations and the correspond-
ing Bessel coefficients f 4

n; p; y are small compared with (5), (6),
(13), (15), and (17), where f 1; 2

n�1; 3; 5 � 0:15ÿ0:8. Examples
pertaining to real FEL installations are given in Section 4,
where we discuss some FEL experiments using an analytic
model (see the Appendix) involving the logistic function [58±
60].

4. Modeling the generation of harmonics
in experiments with free-electron lasers

Deviations of an electron beam from the undulator axis are
typically small; however, even a deviation by � 5ÿ25 mm
over the gain length of an X-ray FEL can change the spectral
content of emission. In experiments with the X-ray LCLS
FEL, the centering of the electron beam on the axis was
required to be 5 mm over the gain length Lg � 1:6ÿ3:5 m,
whereas the available methods for control and adjustment
had an accuracy of 50 mm [34±36]. The deviation of a beam
electron with energy E � 13:6 GeV by just 10 mm over the
gain length Lg � 3 m leads to a considerable effective bend
angle yg � 0:1. This can affect the emission, as we show in
what follows. In the LEUTL FEL, the beam has an order of
magnitude greater size, � 0:2 mm. To model and analyze the
effect of various factors on the power of harmonics emitted by
an FEL, we use the analytic FEL model [52], which has been
tuned in FEL experiments, together with a description of the
oscillation power in the saturation mode (see the Appendix),
and the analytic expressions for Bessel coefficients derived in
Sections 2 and 3 with the angles and corrections for betatron
oscillations in a finite-size beam taken into account.

In LCLS experiments [35, 36], X-ray radiation was
generated in the range of 1:5ÿ20 �A. The installation consists
of 33 undulator sections, each 3.4 m in length. Undulators
with permanent magnets have the period lu � 3 cm, para-
meter k � H0lue=�2pmc 2� � 3:5, and the electron current is
1±3.5 kA. In experiments with X-ray radiation whose main
pitch wavelength is l1 � 1:5 nm, the second and third
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harmonics were detected. According to [36], in most cases the
measured power of the third harmonic was� 2ÿ2:5% of the
main pitch power, the measured power of the second
harmonic was � 0:04ÿ0:1% of the main pitch in the normal
mode of the FEL [36], while the fifth harmonic was not
measured, but numerical simulations suggest that its power is
� 10% that of the third harmonic. It was noted in [35, 36] that
in some cases the magnitude of higher FEL harmonics
decreased by an order of magnitude and additional studies
were needed, especially as regards the strong second harmo-
nic. We modeled this experiment. The main results are
collected in the table.

The evolution of the power of FEL harmonics along the
undulator length is illustrated in Fig. 5; the measured power
of the harmonics is shown with colored bands in the satura-
tion domain on the right-hand side of Fig. 5, taking the spread
of the measured power of the harmonics into account (see
[36]). The saturation and gain lengths and the main pitch
power of the FEL exactly reproduce the experimental data in
[34±36]. Higher FEL harmonics also fit the measurement
error well (see Fig. 5). We note that the field harmonics
themselves cannot cause the appearance of a strong second
URharmonic; theymainly affect the intensity of the third and
fifth harmonics [50, 52] as well as the saturation length and
power of these harmonics in an FEL. The leading correction
to the radiation spectrum is due to the third harmonic of the
undulator magnetic field [49], the other field harmonics
producing little effect. Even a perceptible presence of field
harmonics of � 10% of the main undulator field strength
hardly changes the emission characteristics of FELs such as
LCLS [52].

We investigated the behavior of FEL harmonics as a
function of the beam parameters analytically. Using a
phenomenological FEL model, we took the dependence of
Bessel coefficients on the angles and the beam size into
account, together with all the corrections due to the energy
spread, emittance, diffraction, etc. The respective values of
the FEL parameters for a beam centered on the axis and
with its off-axis deviation by 15 mm over the gain length
Lgain � 1:5 m are shown in the Table with italic and boldface
fonts for visual clarity. The analysis confirms the conclusion
in [36] that ``the proportion of the third harmonic decreases as
the FEL performance and beam quality degrade.''

In the case of beam centering to within 5 mm of the
undulator axis, we obtained a theoretical value of the third
harmonic power somewhat exceeding the one in Fig. 5

(somewhat above the upper boundary of the green domain
on the right in Fig. 5). At the ideal centering, the theoretical
power of the second harmonic was significantly lower than
the one measured in experiment. We carefully estimated the
contribution of betatron oscillations: the corresponding
Bessel coefficients turned out to be negligibly small: f 4

n; p; y�
2� 10ÿ3. This can be compared with the second-harmonic
Bessel coefficients due to emittance alone, which are an order
of magnetic higher: f2; y � 0:025. In the LCLS experiment
with electron energy Ee � 4:3 GeV [36], an off-axis drift of
beam trajectories by 10±20 mm over the gain length Lgain �
1:5 m was observed (see [34, 35]). This off-axis deviation of
the beam is comparable to the photon beam size sphoton �
sg � �sx; y

���������������������
l1Lg=�4p�

p �1=2 � 20 mm.
We note that the target deviation of the beam in the

installation was 5 mm, and adjustment methods allowed
reliably controlling the deviation of 50 mm. With a 5-mm
minimal deviation, we obtain a theoretical value of the FEL
second harmonic power of� 10 kW and the minimal UR line
splitting ~Jp�ÿ1; 0; 1�x; z� � f0:1; 0:98; 0:1g. Given the size of
the photon beam and the actual centering of the electron
beam attainable to within� 15 mm, we obtain an FEL second
harmonic power within the range of measured values (see the
dashed-dotted orange line and the orange domain in Fig. 5).

1010

108

106

104

5 10 15 20 25 30
z, m

P, W

n � 1

n � 3

n � 5

n � 2

Figure 5. (Color online.) Evolution of the power of FEL harmonics in the

LCLS experiment with E � 4:3 GeV, l1 � 1:5 nm, se � 0:3� 10ÿ4, and
I0 � 1 kA. The n � 1 harmonic corresponds to the red solid line, the n � 2

harmonic to the dashed-dotted orange line, n � 3 to the green dotted line,

and n � 5 to the blue dotted line. Colored strips on the right show the

experimentally admissible ranges of the measured quantities. The fifth

harmonic power estimate is P5 � 0:1P3.

Table. Some data on the modeling* of the LCLS experiment with l � 1:5 nm.

FEL harmonic number n � 1 n � 2 n � 3 n � 5

Bessel coefécient accounting for off-axis beam drift by 15 mm over a length of 1.5 m
Bessel coefécient fn for on-axis beam

0.742
0.744

0.075
0.025

0.330
0.338

0.213
0.229

Pierce parameter ~rn accounting for off-axis beam drift by 15 mm over a length of 1.5 m
Pierce parameter ~rn for on-axis beam

0.0010
0.0010

0.0002
0.0001

0.0006
0.0006

0.0005
0.0005

Harmonic wavelength ln, nm 1.5 0.75 0.5 0.3

Saturation power accounting for off-axis beam drift by 15 mm over a length of 1.5 m, PF; n, W
Saturation power for on-axis beam, PF; n, W

5:5� 109

7� 109
1:5� 106

104

1:2� 108

2 � 108

1:3� 107

2 � 107

* Electron beam parameters: energy E � 4:3 GeV, g � 8400, beam power PE � 4:29 TW, current I0 � 1 kA, current density J � 2:23� 1011 A mÿ2,
cross section S � 2psxsy � 4:79� 10ÿ9 m2, emittance at injector ge 135 meV

x; y � 0:4 mm, emittance at projection on undulators ge 4:3 GeV
x; y � 0:6 mm, Twiss

parameter b � 10 m, transverse size sx; y � 27 mm, divergence ydiv � 2:7 mrad, and energy spread se � 0:3� 10ÿ3. Undulator parameters: k � 3:5,
lu � 3 cm,N � 113, and section length=3.4m. Calculated FEL parameters: saturation lengthLs � 25m, gain lengthLgain � 1:5m, and photon beam
size sphoton � 19 mm.
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Other harmonics also fall in the range of measured
quantities. The corresponding effective angle is then given by
y � 9 mrad, yg � 0:08, but UR line splitting due to betatron
oscillations remains small, as is evidenced by the Bessel
function values for the p subharmonics: ~Jp�ÿ2; 1; 0; 1; 2�x; z� �
f0:06; 0:34; 0:87; 0:34; 0:07g.

The contribution of subharmonics and the main pitch
spectrum line splitting l1 � 1:5 nm depending on the distance
from the axis are shown in Fig. 6.

As a result of the high energy of electrons in the beam,
E � 4:3 GeV, the UR spectrum line splits by a very small
quantity dl � l1k=�g

���
2
p � � 0:0005 nm, and the deviation of

subharmonics of wavelength l1 � 1:5 nm and its resonances
l1=n is negligibly small. Given the splitting (see Fig. 6), we
have a theoretical linewidth D � 2 pm and relative spectral
density D=l1 � 0:15%. The emitted subharmonics p � 0;�1;
�2 are within the natural width of the spectrum line, and the
electrons in the beam interact with all the subharmonics of the
nth FEL harmonic, even at significant off-axis deviations of
the beam, as was registered in the LCLS experiment. We note
that the equivalent angle gyH � 0:08 can be caused by field
strength H � 1:4 G, which is � 2:5 times stronger than
Earth's field; such a field must always be compensated.

In the LEUTL experiment [37], radiation in theUV-A and
optical ranges was generated at the wavelengths l1 � 385
and 532 nm; the size of the electron and photon beams
was an order of magnitude greater than in the LCLS FEL:
sx; y � 0:26 mm, sg� 0:2 mm; the angle of divergence
y � 0:15 mrad was almost two orders of magnitude greater
than in the LCLS FEL. Under such conditions, betatron
oscillations can be assumed to exert a significant effect on
LEUTL FEL emission. Calculation of the Bessel coefficients
f 1; 2 in (17) for x- and y-polarizations with the beam
divergence gydiv � 0:07 gives the values

f 1; 2
n�1;...;5; x � f0:75; 0:07; 0:34; 0:07; 0:23g ;

f 1; 2
n�1;...;5; y � f0; 0:015; 0; 0:015; 0g :

The spectrum splitting caused by betatron oscillations is small
because g � 5004 1. Furthermore, at gydiv � 0:07, the split-

ting is expressed weakly: the fundamental subharmonic with
p � 0 and ~Jp�0 � 1 is mainly present. For the second FEL
emission harmonic, n � 2, we obtain the following Bessel
coefficients (44) for the p � f0;�1;�2;�3g subharmonics
due to betatron oscillations:

f 4
n�2; p�0;�1;�2;�3 � f0:012; 0:008; 0:005; 0:002g ;

whose total contribution is small:
�������������������������P

p� f 4
n�2; p�2

q
� 0:014.

This is comparable to the contribution made by the diver-
gence angle ydiv for the y-polarization of UR, fn�2; y � 0:015,
but is less than the contribution of the divergence angle ydiv
for the main, x, polarization: fn�2;x � 0:04. But even with all
these factors taken into account, the calculated power of the
second harmonic is much less than the one measured in
experiment.

To explain the high power of the second harmonic in
the LEUTL experiment, we recall that the angle of
interaction of radiation with electrons in a wide beam
sx; y � 0:2 mm in size over the gain length Lgain � 0:88 m
is �y � sx; y=Lgain � 2:4� 10ÿ4 rad, or g�y � 0:12, which is
greater than the divergence angle y � 1:4� 10ÿ4 rad.
Because of the effective angle of electron±photon interac-
tion �y, subharmonics with p � f0;�1g appear, ~Jp�ÿ1; 0; 1 �
f0:22; 0:95; 0:19g, but the UR lines split by the small
quantity dl=l � 1=g5 1 because g � 5004 1. The Bessel
coefficients are then as follows:

fn�1;...;5; x � f0:75; 0:14; 0:31; 0:15; 0:18g ;

fn�1;...;5; y � f0:006; 0:04; 0:010; 0:026; 0:012g :

For the even harmonics, the Bessel coefficients are several
times greater, and for the odd, somewhat less than in the case
where only the beam divergence is taken into account (see
above). The contribution of betatron oscillations (44) to the
emission of even harmonics remains small, comparable to the
angular contribution of y-polarized emission (17):
f bn�2; p � 0:03 � fn�2; y � 0:04. For emission with x-polariza-
tion, which constitutes the main part of the emission, we have
a much greater Bessel coefficient for the second harmonic,
fn�2;x � 0:14, which exceeds the corresponding coefficient
for y-polarized emission fn�2; y and the betatron contribution
f bn�2; p (see above). Taking all this into account, we obtain the
emission power for all the LEUTL FEL harmonics in
agreement with the experimental values in [37, 38], as is
shown in Figs 7 and 8.

We note that the analytic description of LEUTL experi-
ments is more precise than the numerical simulation by the
authors of the experiment in [36, 37].

To conclude, we give the results of analytic modeling of
the high-current SACLA experiment (Spring-8 Angstrom
Compact free-electron LAser) [61] with electron energy
E � 7:8 GeV, electron bunch duration te � 10 fs, current
I � 27 kA, energy spread se � 0:087%, emittance ge �
0:6 mm, and emission at the wavelength l1 � 0:125 nm from
undulators with k � 2:115 and period lu � 1:8 cm. We thus
obtain photon pulse duration tg � 6:3 fs, a gain length of
� 2:1 m, and saturation after 32 m with a power of� 70 GW,
in accordance with [61]. Experimental values are shown with
dots; the power values obtained in the model are shown with
colored curves in Fig. 9a. The fractions of the power of the
harmonics in the saturation mode are � 0:4% for n � 3,
� 0:01% for n � 5, and 0.006% for n � 2.
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Figure 6. Splitting of the main pitch spectrum line l � 1:5 nm at the p

subharmonic as a function of the distance D from the axis in the LCLS

FEL.
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Using the theory expounded in Section 3 together with the
generalized special Bessel andAiry functions, we theoretically
calculated the shape and width of the emission spectral line
(Fig. 9b). The spectral density of emission at the wavelength
of the main pitch is determined by splitting into more than
20 subharmonics and amounts to � 0:2%. This agrees well
with the experimental result for the spectral width of� 30 eV
for photons with an energy of 9.85 keV and the corresponding
density of � 0:3% (see Fig. 2 in [61]).

The most recent results of other experiments with X-ray
FELs also confirm the validity of our theoretical approach to
the investigation of characteristics of FEL emission [62±64].

A comparison of the above analytic results and FEL
experiments shows that the results of our theoretical analysis
are virtually no worse in accuracy than those of numerical
modeling on powerful computers, done by large groups of
developers and researchers with the use of sophisticated
three-dimensional numerical simulations within appropriate
computational platforms. The above analytic formalism is
applicable to virtually any FEL undulator; it allows investi-
gating the generation of harmonics in FEL undulators using a
personal computer with standard software, explains the
origin of harmonic generation, and corresponds well with
experiments.

5. Conclusions

We have theoretically investigated the generation of UR
harmonics in undulators with field harmonics and with the
off-axis effect and nonperiodic magnetic components taken
into account. We obtained exact analytic expressions for the
Bessel coefficients and the intensity and spectrum of the
emission of relativistic electrons in quadratures expressed
through elementary functions. For a generalized elliptical
undulator with two different field harmonics in both polar-
izations, we obtained exact analytic results in the form of
generalized Bessel and Airy functions. The effect that the
finite size of the electron beam, the divergence, and the
electron energy spread exert on the characteristics of emis-
sion were taken into account.We studied the possible effect of
permanent magnetic field components on the spectrum and
the intensity and shape of UR lines. The results are obtained
in integral form for an arbitrary undulator.
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Figure 7. (Color online.) Evolution of the power of FEL harmonics in the

LEUTL experiment with E � 255MeV, l1 � 385 nm, se � 1� 10ÿ3, and
I0 � 184A. The n � 1 harmonic is shownwith the red solid line, n � 2with

the orange dashed-dotted line, and n � 3 with the green dotted line.

Colored areas on the right-hand side of the figure show the harmonic

power ranges evaluated by the authors of the experiment. Experimental

values are shown by dots.
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Figure 8. (Color online.) Evolution of the power of FEL harmonics in the

LEUTL experiment with E � 217MeV, l1 � 532 nm, se � 1� 10ÿ3, and
I0 � 210A. The n � 1 harmonic is shownwith the red solid line, n � 2with

the orange dashed-dotted line, and n � 3 with the green dotted line.

Colored areas and dashed-dotted lines on the right-hand side of the figure

show the harmonic power ranges evaluated by the authors of the

experiment. Experimental values are shown by dots.
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Figure 9. (Color online.) (a) Evolution of the power of FEL harmonics in the high-current SACLA experiment with E � 7:8 GeV, se � 0:87� 10ÿ3,
I0 � 27 kA, and lu � 1:8 cm. The n � 1 harmonic (l1 � 0:125 nm) is shown with the red solid line, n � 2 with the orange dashed-dotted line, n � 3 with

the green dotted line, and n � 5 with the blue dotted line; experimental values are shown by dots. (b) Theoretically calculated spectrum line of the main

pitch.
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The obtained exact analytic expressions for Bessel
coefficients of the UR harmonics take all the main losses in
real installations into account. They are used in an analytic
FEL model to study the evolution of the power of the
harmonics of a single-pass FEL along the undulator length.
We investigated the generation of FEL harmonics in the
LCLS experiment in the X-ray range and in the LEUTL
experiment in the optical and longwavelength ultraviolet
ranges. The second harmonic registered in experiments
cannot be caused by the undulator field harmonics, which
can affect only the odd UR harmonics. The analytic form of
all the obtained expressions has allowed us to study the
contributions of each component of the Bessel coefficients
separately. We have shown that the electron beam emittance
in the X-ray LCLS FEL alone cannot cause a second
harmonic with the intensity registered in experiment. The
contribution of betatron oscillations to the generation of even
harmonics also turns out to be negligibly small; also small is
the UR line splitting induced by betatron oscillations in the
LCLS experiment. The second harmonic generation for soft
X-ray LCLS FEL emission is explained by the observed
deviation of the electron beam trajectory from the axis by
� 15 mm over the FEL length of � 1:5 m; such a deviation is
comparable to the photon beam size. This gives rise to
substantial angular contributions, taken into account analy-
tically, which lead to the considerable power of the second
harmonic in the FEL. The results of our modeling of the
evolution of FEL harmonics in LCLS undulators with the use
of analytic expressions exactly agrees with experimental data
(see Fig. 5). The spectral width of emission at the main pitch
wavelength l1 � 1:5 nm with the theoretically calculated
splitting (see Fig. 6) amounts to � 0:15%, which is compar-
able to the Pierce parameter value r � 10ÿ3. In the LEUTL
experiments in the optical range and in the UV-A range,
including only the betatron effects and the emittance of a wide
electron beam gives a theoretic power of the second harmonic
of the emission that is two orders ofmagnitude less than in the
experiment. The measured values of the second harmonic
power in the LEUTL experiments are explained by the
significant angle g�y � 0:1 of the electron±photon interaction
in a wide beam � 0:2 mm in size over the gain length
Lgain � 0:88 m. Taking this into account, we obtain several-
fold greater Bessel coefficients for even harmonics and
somewhat lower values for odd harmonics; theoretical
results for the evolution of the power of FEL harmonics
agree with experimental data (see Figs 7 and 8).

Thus, the detailed analysis of the generation of harmonics
in FELs with the use of the obtained exact analytic
expressions for the Bessel coefficients and analytic formulas
for the dynamics of the FEL power has allowed selecting and
analyzing the contributions of all the main factors to the
generation of each FEL harmonic. Our theory explains the
physical reasons behind the generation of emission harmonics
in different conditions. In particular, the measured second
harmonic in the X-ray LCLS FEL is explained by the
experimentally observed deviation of the electron beam
from the axis by � 15 mm, comparable to the photon beam
size; the powerful second harmonic in the LEUTL FEL
occurs due to wide, � 200 mm, electron and photon beams
and the corresponding large angle of the electron±photon
interaction.

The modeling of the recent SACLA FEL experiment also
confirms the validity of our theoretical approach. The
calculated evolution of the emission power, saturation,

spectral line shape, and spectral density are fully consistent
with the experimental data.

Our analytic description of spectrum lines and the
intensity of spontaneous and induced UR allows us to select
and analyze all the contributions to harmonic generation in
the emission. The use of the obtained results make it possible
to analytically investigate the effect of different character-
istics of the beam and of the magnetic field on the generation
of FEL harmonics. This can also be used to assess the quality
of the beam and its centering in undulators based on the
emission characteristics.

6. Appendix. Phenomenological model
of a single-pass free-electron laser

An effective description of the evolution of the power of
harmonics along the FEL length with diffraction taken into
account involves the Pierce parameter rn [12, 13, 60]:

~rn �
rn

�1� mD; n�1=3
; rn �

J 1=3�lukeff fn�2=3
2g�4pi�1=3

;
�45�

mD; n �
luln

16prnS
;

where n is the number of the harmonic, S � 2p
������������������
bxexbyey

p
is

the cross section of the beam, ex; y � sx; yyx; y is its emittance,
sx; y �

����������������
ex; ybx; y

p
is the transverse cross section, yx; y is the

divergence, gx; y and bx; y � ex; y=y
2
x; y are the Twiss para-

meters, J � I0=S [A mÿ2] is the current density, I0 [A] is the
electron current, i � 1:7045� 104 A is the Alfv�en constant,
lu [m] is the fundamental period of the undulator, ln is
emission wavelength (4), keff is the undulator parameter (for
a planar undulator, keff � k � eH0lu=�2pmc 2� � H0lu
[T cm]), H0 is the magnetic field amplitude on the undulator
axis, and fn are the Bessel coefficients of the nth harmonic (see
(5) and (6)). The Pierce parameter ~r determines the gain
length Ln; g� Fnlu=�4p

���
3
p

n1=3~rn� for the nth harmonic:
L1; g � Lg. The corrections describing the loss in an FEL are
taken into account phenomenologically as

Fn � �z n � 0:165m 2
e; n� exp �0:034m 2

e; n� ; ~Fn � Fn

��
me; n!~me; n

;

�46�
me; n�se; n� �

2se
n 1=3rn

; ~me; n�se; n� �
2n 2=3se

~rn
; �47�

Zn �
exp

�ÿFn�Fn ÿ 0:9��� 1:57�Fn ÿ 0:9�=F 3
n

1:062
;

�48�
~Z � Zn

��
Fn!~Fn

;

z �
���������������������������������Y
i�x; y; ~x; ~y

�1� m 2
i �

s

�
�
1� 0:159

X
i�x; y; ~x; ~y

m 2
i ÿ 0:066

X
i�x; y; ~x; ~y

mi

�ÿ1
; �49�

m~x; ~y �
1

~r1

g 2ex; y
�1� k 2

eff�lubx; y
; mx; y �

1

~r1

g 2p2k 2ex; y
�1� k 2

eff�g 2l2u gx; y
:

�50�

The beam is typically adjusted to the undulator; then, z �
1:00ÿ1:05. In X-ray FELs, z � 1ÿ1:02. Phenomenological
formulas (46)±(50) and formulas (51)±(53) for the power
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evolution obtained by comparing them with the results of
FEL experiments are substantially different from the expres-
sions used previously in [43, 60]. They take the loss in real
installations into account separately for each harmonic and
allow a good description of the FEL power dynamics,
including in the saturation mode. The expression describing
the increase in the emission power of the nth harmonic in the
z coordinate includes an independent term/ exp �z=Ln; g� and
an induced term / exp �nz=Lg�:

Pn�z� � PL; n�z� �
~Pn; 0 exp �nz=Lg�

1� �exp �nz=Lg� ÿ 1
�

~Pn; 0= ~Pn;F

� Pn; 0 exp �nz=Lg�
1� 1:3Pn; 0

�
exp �nz=Lg� ÿ 1

�
Pn;F

�
1� 0:3 cos �n�zÿ Ls�=�1:4Lg�

�	ÿ 0:3 ~Pn;F

; �51�

where for a nonbunched electron beam we have the
independent term

PL; n�z� � P0; nA�n; z� exp �0:223z=Ls�
1� 1:3Pn; 0

ÿ
A�n; z�ÿ 1

�
Pn;F

�
1� 0:3 cos

�
n�zÿ Ls�=�1:4Lg�

�	 ;

A�n; z� � 1

3
� cosh �z=Ln; g�

4:5

�52�

� cos
� ���

3
p

z=�2Ln; g�
�
cosh

�
z=�2Ln; g�

�
0:444

;

and for a cascade of undulators with an already bunched
beam at the entrance,

PL; n�z�
� P0; nF�n; z�

1� 1:3P0; nF�n; z�=Pn; f

�
1� 0:3 cos

�
n�zÿ Ls�=�1:3Lg�

�	 ;
F�n; z� � 2

���� cosh� z

Ln; g

�
ÿ cos

�
z

2Ln; g

�
cosh

�
z

2Ln; g

� ���� ;
�53�

where Ls � 1:07L1; g ln �9Z1PF=P0; 1� is the saturation length

[60], Pn;F � ZnPF f
2
n =�n 5=2f 2

1 � is the full saturation power and
~Pn;F � ~Zn ~PF f

2
n =�n 5=2f 2

1 � is the preliminary saturation power,

PF �
���
2
p

PeZ1~r
2
1 =r1, ~PF � PFjZn!~Zn

, P0; n are the initial

harmonic powers, Pn; 0 � nb 2
n Pn;F and ~Pn; 0 � dnb

2
n

~Pn;F are

the initial powers induced by the main pitch due to bunching

b 2
n � �P0; 1=9Pe~r1�n, and dn�1;...;5 � f1; 3; 8; 40; 120g [60].

An additional contribution of the noise bunch emission,
Pnoise � 6pr 2gmc 3=l1, to the first SASE FEL cascade is
described by the approximate phenomenological formula

Nn�z� � Pnoise
Sn�z�

1� �300PnoiseSn�z�=�nPn; f�
� ;

�54�

Sn�z� � 2

�����cosh z

Ln; g
ÿ exp

�
z

2Ln; g

�
cos

�
p
3
�

���
3
p

z

2Ln; g

�

ÿ exp

�
z

2Ln; g

�
cos

�
p
3
ÿ

���
3
p

z

2Ln; g

������ ;
which agrees with the experimental results (see Figs 7±9).
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