
Abstract. Evaporation and condensation processes are intensely
used in various fields of technology. Efforts to understand the
features of film boiling of various liquids, primarily superfluid
helium, inevitably lead to studying the strongly nonequilibrium
processes of heat transfer from the heating surface through the
vapor to the condensed phase. Theoretical studies of evapora-
tion and condensation of single-component substances are brief-
ly reviewed. Corresponding experimental data are analyzed and
compared with calculations. We explore the important, yet
unresolved and actively studied problems of condensation from
vapor±gas media, the formulation of boundary conditions, and
the application of molecular dynamics and kinetic theory meth-
ods to the study of heat and mass transfer at phase interfaces.

Keywords: evaporation, condensation, interphase transition layer,
determination of phase interface, strongly nonequilibrium pro-
cesses, gas±vapor mixture, liquid±vapor saturation curve, experi-
ments on high-rate evaporation±condensation, superfluid helium,
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1. Introduction

Almost 140 years have passed since the publication of Hertz's
pivotal theoretical study [1] on evaporation. A great deal of
research experience has been accumulated since then, which
should be considered to determine the current state of the
problem and the prospects for development in this field. The
processes of evaporation and condensation are at present
theoretically studied using the methods of continuum
mechanics (CM), molecular kinetic theory (MKT), and
molecular dynamics modeling (MD).

Owing to the relative simplicity of the equations of
continuum mechanics, well-developed analytical and numer-
ical methods for their solution, and the available computer
facilities, CM methods are very attractive. However, it is not
possible in CM-based approaches to determine near the
interface the velocity of the vapor produced as a result of
evaporation. This velocity is usually found, using the
constancy of the energy flux in the stationary evaporation
mode and disregarding the kinetic energy of the vapor, by
dividing the specific heat flux supplied to the interface by the
latent heat of vaporization and the equilibrium density of
saturated vapor that corresponds to the interface temperature
on the liquid±vapor equilibrium line. However, this approach
is not always justified for the following reasons.

First, the vapor density near the interface at high
intensities can significantly differ from that of saturated
vapor. Second, the heat flux supplied to the interface may
not be known in advance. For example, consider a solid or
liquid in an environment of its own vapor with a given
pressure. Assume that the condensed medium is affected by
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thermal radiation, which, in general, is quite strong. It is
required in realistic conditions that the temperature of the
evaporation surface not exceed a certain value. What is the
maximum thermal load that corresponds to this value in a
stationary mode? The process develops as follows. Due to the
increase in the interface temperature, part of the supplied heat
is spent on heating the body and is removed from the surface
into the bulk of the medium due to thermal conductivity and,
in the case of a liquid medium, possible convection. Calcula-
tion of this component is not a challenging problem.

The rest of the total heat flux causes evaporation of the
substance. Each component of the heat supplied depends on
the surface temperature. It is clear that a unique determina-
tion of all parts of the heat flux is only possible if the
relationship between this temperature and the flux of the
evaporated material is known.

An example of using the system of CM conservation
equations is the problem of evaporation from one surface
and condensation of evaporated matter on another surface
located at a certain distance from the first one, which was
explored in 1952 by M Plesset [2]. However, it turns out that
an additional relation is needed to close this system. As such,
the Hertz±Knudsen formula was taken, which makes it
possible under certain assumptions to find the mass flux
density of the evaporating substance.

2. Description of evaporation and condensation
using methods of molecular kinetic theory

2.1 Initial stage of exploration. Linear theory
The exploration of evaporation and condensation within the
molecular kinetic theory is divided into stages, each of which
is characterized by a certain level of development of the
kinetic theory.

The study was carried out at an early stage using an
elementary MKT, and later on the basis of conservation
equations and specification of a distribution function of some
known form. Hertz was the first to investigate evaporation
and condensation using MKT approaches [1] (1882). Sum-
marizing the results of his research, Hertz came to the
following seminal conclusion: ``For each substance, there is
a maximum evaporation rate, which only depends on the
surface temperature and the properties of the given substance.
The maximum evaporation rate (by which we mean the
number of molecules that evaporate per unit surface per unit
time) can never exceed that of vapor molecules hitting the
condensate surface in equilibrium.'' Therefore, the upper
limit of the mass flux density jmax is

jmax � V

4
mns � V

4
rs ;

where V is the arithmetic mean velocity of the vapor
molecules, V � ����������������

8RTs=p
p

, R is the individual gas constant,
rs is the vapor density, which corresponds along the
saturation line to the temperature of the interface surface Ts,
rs � mns, ns is the number of saturated vapor molecules per
unit volume (numerical density), and m is the mass of the
molecule. In conducting experiments on the evaporation of
mercury, Knudsen [3] concluded in 1915 that the evaporation
rate at Ts � T1 is determined by the formula

je � b

���������
RTs

2p

r
�rs ÿ r1� ; �1�

where r1 is the vapor density at a distance from the phase
boundaryÐ large compared to the average mean free path of
vapor molecules.

Knudsen's study is of special significance, because it
introduces the concept of evaporation±condensation coeffi-
cient b: the evaporation coefficient was defined as the ratio of
the flow of molecules that escape from the liquid to the
positive flow of molecules from the surface at liquid±vapor
equilibrium. The latter flow is determined by the distribution
of positive velocities obtained from the Maxwell distribution
with zero transfer velocity, the temperature of the interphase
surface, and the density that corresponds to this temperature
on the saturation line, while the condensation coefficient
determines the proportion of molecules that remain on the
surface or, in other words, the molecules that condense, to the
number of molecules incident on that surface. It should be
noted that, at or near equilibrium, these coefficients are equal
to each other [4], which allows the term `condensation
coefficient' to be used.

Equation (1) is one of the forms in which the famous
Hertz±Knudsen formula may be represented. It was assumed
in deriving this formula that far from the interface the
distribution function (DF) is a four-moment double-sided
Maxwellian distribution with the parameters rs, Ts and r1,
T1. This distribution is close at low vapor flow rates to the
equilibrium Maxwellian one, but as the intensity of evapora-
tion or condensation increases, the DF is increasingly
different from this function.

Risch [5] and Crout [6] published in the mid-1930s their
studies in which attempts were made to analyze the vapor
flow in a more accurate way; the derivation of the Hertz±
Knudsen formula is based on two assumptions that, strictly
speaking, are unrealistic, especially if the rates of evaporation
or condensation are high, and if the characteristic dimensions
of the vapor regions under study L are much larger than the
average mean free path of vapor molecules l (continuous flow
regime at low Knudsen numbers, Kn � l=L5 1). The first of
these assumptions is that the vapor is macroscopically
immobile at the interface. The second assumption is that the
velocity distribution function of the molecules both flying
away from the interface andmoving in the opposite direction,
i.e., to the boundary, is half-Maxwellian near the interface.

An attempt to take into account the motion of a vapor
flow during condensation was first made in 1933 by Risch [5],
who assumed that evaporation and condensation are inde-
pendent of each other. Risch also conjectured in analyzing
microscopic characteristics that the absolute values of the
velocities of all molecules are equal to each other in the
intrinsic coordinate system of a moving flow, jVj � ����������

2RT
p

,
while the directions of their motion at a solid angle of 4p are
equally probable. In determining the flow of molecules that
impinge upon the surface, the velocity at which the molecule
hits the interface is determined by the sum of the vectors V
and u, where u is the mass velocity of the condensed vapor.
According to the modern kinetic theory, such an approach,
although it takes into account macroscopic motion at the
interface, is rough due to the overly simplified form of the
assumed molecular velocity distribution function. However,
it must be emphasized that this roughness is much less
significant compared to the macroscopic motion of the
vapor being taken into account.

Of great interest is the method to calculate the evapora-
tion process developed in the study by P Crout [6] in 1936,
where the analysis is based on an ellipsoidal distribution
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function that transforms into aMaxwellian distribution when
leaving the Knudsen layer, L � l. Although the Boltzmann
equation was not solved in Crout's work, this study remains
of interest at the present time, since it provides an example of
how a clear understanding of the physical characteristics of
evaporation makes it possible to determine in an approxi-
mately correct way both the velocity distribution function of
molecules and the basic regularities of this process.

Mentioned next in chronological order should be the
monograph of 1953 by R Schrage [7], in which attempts
were made to construct a `simple' theory of mass transfer
through an interface. In summarizing the analysis of the
explorations made at this stage, it should be emphasized
that, in this group of studies, the most physically substan-
tiated and relatively strictly constructed is one of the early
studies of evaporation carried out by P Crout in 1936.

The next stage in the exploration of evaporation and
condensation dates back to the 1960s, when the rapid pace of
development of the dynamics of rarefied gases and the needs
of modern technology led to the emergence of more rigorous
calculation methods based on an exact or approximate
solution of the kinetic equation. It was at that time that the
linear theory was developed. It was initiated by the studies by
Kucherov andRikenglaz [8, 9], in which the above-mentioned
features were taken into account. The authors of [8, 9]
assumed a form of the velocity distribution function of
molecules near the interphase surface that differs from that
employed in deriving the Hertz±Knudsen formula. Namely,
they assumed that the DF for the molecules that move to this
surface is the same as for the negative half-space of velocities
at a considerable distance from the interface. They deter-
mined then the expression for the mass flux that follows from
the definition and utilized these DFs to obtain a result that
differs by a factor of two from the mass flux calculated using
the Hertz±Knudsen formula:

je � r1u1 � 2

���������
RTs

2p

r
�rs ÿ r1� :

Further, according to Kucherov and Rikenglaz [9], for an
arbitrary value of the condensation coefficient b,

je � 2b
2ÿ b

���������
RTs

2p

r
�rs ÿ r1� : �2�

The linearized (or, more simply, linear) theory of evapora-
tion and condensation from (into) semi-infinite space was
developed by Labuntsov and Muratova [10] in 1969 as an
extension of Labuntsov's study [11] of evaporation±conden-
sation.

A one-dimensional stationary problem was considered,
i.e., the general Boltzmann equation in the absence of mass
forces,

q f
qt
� xx

q f
qx
� xy

q f
qy
� xz

q f
qz
� J ;

where J is the collision integral

J �
�1
0

� 2p

0

� �1
ÿ1

�
� f 0f 01 ÿ f f1�jgjb db de dn1 ;

took the form

xx
q f
qx
� J :

Weuse here standard notations in the Boltzmann equation, as
in [12].

The solution was found by the moments method based on
discontinuous approximations of the molecular velocity
distribution function. The choice of an approximation of
specifically this type is due to the physical features character-
istic of the evaporation±condensation process. Thus, from the
very beginning, the most essential features of the process
mechanism were incorporated in the approximation. To
establish the degree of reliability of the solution, six- and
eight-moment approximations were used in the analysis. The
equation of the Bhatnagar±Gross±Krook model was solved
along with the Boltzmann equation for Maxwellian mole-
cules. Due to the inequalities

rs ÿ r1
rs

5 1 ;
Ts ÿ T1

Ts
5 1 ;

the problems under study being only restricted by processes
with relatively low nonequilibrium and, consequently, low
transfer intensities, the nonlinear terms in the expressions for
the moments of the distribution function and the collision
integral in the system of equations that replaces the
Boltzmann equation could be reduced to a linear form.

Such a simplification of the system of equations enabled
derivation of the following equations for the relationship
between the specific flows of mass, momentum, energy, and
temperature jumps at the interface, and the differences
between the corresponding pressures:

~j � b
1ÿ 0:4b

Ps ÿ P1
2
���
p
p

Ps

ÿ b
1ÿ 0:4b

0:44~q

2
���
p
p ; �3�

T
��
x�0ÿTs

Ts
� ÿ0:45 ~jÿ 1:05~q ; �4�

~j � j

rs
�����������
2RTs

p ; ~q � q

Ps

�����������
2RTs

p ; D ~P � P1 ÿ Ps

Ps
;

~j5 1 ; ~q5 1 ; D ~P5 1 :

The solutions obtained were used to make conclusions
about the specific state of the vapor near the interface.
Namely, if the condensation coefficient is unity, the vapor is
overheated during condensation and supersaturated during
evaporation. The linear theory was further developed in
studies [13±22] that confirmed the validity of Eqns (3) and
(4) and their usefulness for practical applications.

2.2 Intense evaporation and condensation
2.2.1 Intense evaporation. S I Anisimov published in 1968 in
the Journal of Experimental and Theoretical Physics an article
[23] which initiated active studies of intense evaporation that
occurs under laser irradiation and subsequent condensation.
A theory of intense evaporation was developed shortly
afterward in [24±29].

Intense evaporation is realized in a natural way in laser
ablation. Review [30] notes that ``the Russian thesaurus of the
concepts of `loss' and `damage' includes the words `evaporate'
and `escape', which are directly related to the ablation
process.'' The same study showed in considering the thermal
model of ablation (the near-surface evaporationmodel) that a
stationary evaporation wave with calculable parameters may
emerge, and it was argued that ``the results of calculations
based on the thermal model are in good agreement with the
experimental data in the nanosecond range.''

Studies on the theory of intense evaporation and con-
densation are also reported in [31±54]. An approximate
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method was proposed in [34], the essence of which is as
follows. The solution of the conservation equations for
continuous media showed that a Euler inviscid flow is
realized in the gas-dynamic region during evaporation. The
velocity distribution function of molecules, which describes
the state of vapor in this region, is consequently Maxwellian
with a density r1, temperature T1, andmacroscopic transfer
velocity u1. Following the generally accepted diffusion
scheme of evaporation with a condensation coefficient equal
to unity, there are reasons to believe that the velocity DF of
evaporated molecules is a half-Maxwellian with a known
temperature of the interface.

Thus, the formulation of the problem sets the form of the
distribution function ofmolecules far from the interface in the
entire velocity space: it is the Maxwell distribution with the
parameters r1,T1, and u1, one of which is known. The form
of theDF ofmolecules moving from the interface towards the
vapor and the quantities that characterize this DF near this
surface are specified: it is half-Maxwellian with a temperature
Ts and a density rs that corresponds to the temperature Ts

along the saturation line. The form of the DF of molecules
moving to the interface from a vapor and the quantitative
values that characterize the DF near this surface are
unknown. We assume that the DF for these molecules is a
half-Maxwellian with a temperature T1, a transfer rate u1,
and an unknown density rÿ. The assumption made makes it
possible to reduce the problem of determining the mass flux
density during evaporation j � r1u1 to solving a system of
conservation equations represented in terms of the moments
of the velocity distribution functions of vapor molecules near
and far from the interface. Indeed, the conservation equations
in the formulation under consideration are the conditions
that flows of mass, momentum, and energy on the interphase
plane at x � 0 and far from it, at x!1, on the scale of the
mean free path of vapor molecules be the same, where x is the
normal coordinate in the vapor area. The listed flows may be
represented in a known way as the moments of the
corresponding DFs. The three conservation equations con-
tain as a result six quantities: rs, Ts, rÿ, r1, T1, and u1, of
which three, for example, rs, Ts, r1, are considered to be
specified. Consequently, this system of conservation equa-
tions is closed in the sense of determining the remaining
unknown parameters rÿ;T1; u1, and it can be successfully
solved.

The results of the study of intense evaporation are as
follows.
� Evaporation is a one-parameter problem, i.e., to

determine the evaporation rate and all the quantities in the
gas-dynamic region, it is sufficient to set only one quantity far
from the Knudsen layer, for example, the vapor density r1 at
a distance l large compared to the mean free path of vapor
molecules.
� The vapor velocity during evaporation cannot be

greater than the local sound velocity, i.e., the maximum
value of the Mach number of the moving vapor is equal to
one.
� The specific mass flux during evaporation for a one-

dimensional stationary setup is 80±84% of the mass flux
density of molecules evaporated from the interface, in
accordance with the diffuse evaporation scheme.
� Density, temperature, and pressure during evaporation

may significantly differ from the corresponding values for the
interface determined based along the saturation line. For
example, for the limitingmode of evaporation, the pressure in

the gas-dynamic region P1 is only about 20% of the
saturation pressure Ps determined from the interface tem-
perature Ts.
� At high evaporation rates, the form of the DF of

molecules that move to the interface near this surface has
little effect on the value of the determined mass flux density.
� The vapormoving from the interface, which is formed as

a result of evaporation, turns out to be highly supersaturated,
which can lead to spontaneous homogeneous condensation of
this vapor.
� To calculate the evaporation rate, the following formula

is proposed, which approximates the calculations in [54] of
the mass flux density during evaporation in the range where a
one-dimensional stationary solution of this problem exists:

ju � 0:6
�����������
2RTs

p
�rs ÿ r1�

��������
r1
rs

r
: �5�

2.2.2 Intense subsonic and supersonic condensation. It follows
from the system of conservation equations for a continuous
medium [54] that, during condensation in the gas-dynamic
region, the Navier±Stokes flow is realized, in which the
viscosity and thermal conductivity of the condensed flow
manifest themselves. The solution of the conservation
equations in the case of a one-dimensional stationary semi-
infinite formulation may be represented then as a relationship
between the velocities and temperatures of vapor at the outer
boundary of the Knudsen layer and at x!1.

Conjugation with the gas-dynamic region occurs in the
macroscopic sense in a certain section, which we denote as
KÿK. It should be noted that such conjugation occurs on a
kinetic scale in a thin layer (whose thickness is of the order of
the mean free path of vapor molecules in the Knudsen layer).
The velocity DF of vapor molecules in the Navier±Stokes
region should not be Maxwellian, but a nonequilibrium one
that takes into account the viscosity and thermal conductivity
of the medium. The 13-moment approximation is known to
have such properties; it leads in the one-dimensional formula-
tion under consideration to a DF of the form

fk � nk

�
1

2pRTk

�3=2

exp

�
ÿ c 2

2RTk

�
�
�
1ÿ txx

2Pk

c 2x
RTk

ÿ qx
Pk

cx
RTk

�
1ÿ 1

5

c 2

RTk

��
; �6�

where Pk � rkRTk, nk � rk=m, cx is the projection of the
relative velocity of the molecule on the x axis, cx � xx ÿ uk,
txx is the viscous stress tensor component, and qx is the
specific heat flux along the x axis.

When the molecules flying from the interface (condensa-
tion surface) pass through the Knudsen layer, if they collide
with each other or with other molecules, the function fk
changes. Based on the same arguments as in the analysis of
evaporation, we assume that the DF of incident molecules on
the condensation surface is similar to the function presented
above for xk < 0, i.e., the DF in the immediate vicinity of the
interface (cross section 0ÿ0) has the form (6) in which the
replacement nk ! Cnk is made, where C is a certain para-
meter. If, at a known temperature of the interface Ts and
therefore corresponding ns, two of the three values P1, T1,
u1 are set (in practice, P1, T1 are usually specified to
determine u1), the number of unknown parameters is seven:
u1, Tk, nk, uk, txx=Pk, q1=Pk, and C. To determine them, two
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systems of equations of conservation of fluxes of mass,
momentum, and energy are formulated: one for the cross
sections 0ÿ0 and KÿK, the other for KÿK and1ÿ1, i.e.,
in total six equations. The expressions for the corresponding
fluxes are written in terms of the parameters of the distribu-
tion functions at the coordinates 0ÿ0,KÿK, and1ÿ1. The
seventh equation is obtained from the solution of the system
of Navier±Stokes equations for the gas-dynamic region in the
form of the dependence of u=u1 on x, written for x � 0 (on
the gas-dynamic scale) in the form of the relationships among
T1, u1, Tk, and nk. This yields a closed system of equations,
the solution of which determines all unknown parameters of
the distribution functions and their moments: density,
temperature, pressure, velocities, and mass, momentum, and
energy fluxes.

Results of studies of intense condensation at subsonic
speeds.
� The problem of subsonic condensation is two-para-

metric, i.e., to determine the mass flux density j during
condensation (condensation rate), two of the three gas-
dynamic quantities should be known outside the Knudsen
layer, for example, the density r1 n1� � and the temperature
T1. The third quantity, the velocity u1 or the Mach number
M1, is determined as a result of the solution. Thus, the
solutions for subsonic condensation can be represented as the
dependence of n1 on T1 and M1 (or, possibly, the
dependence of M1 on n1 and T1), i.e., as a surface in the
n1;T1;M1 space or sections of this surface for various
values of M1 on the n1;T1 plane as in Fig. 1; here and
below, n 0 � n1=ns, T 01 � T1=Ts.
� Vapor density can both increase and decrease as vapor

approaches the interface. The macroscopic velocity of the
condensed vapor changes consequently in the opposite way.
In this case, the vapor pressure remains in the first approx-
imation nearly constant.
� The proposed method gives the results in the slow

condensation area that virtually coincide with the predic-
tions of the linear theory by Labuntsov and Muratova.
� Evaporation and condensation are nonsymmetric pro-

cesses, primarily due to the nature of the flow of vapor in the
gas-dynamic region. As the intensity decreases, this asymme-
try decreases.
� To calculate the condensation rate (mass flux density),

the following formula is proposed, which approximates the
calculated density [54] of themass flux during condensation in
the range where a one-dimensional stationary solution of this
problem at subsonic velocities of the condensing vapor flow
exists:

jk � 1:67
P1 ÿ Ps����������������
2pRT1
p

�
1� 0:51 ln

�
P1
Ps

��������
Ts

T1

r ��
: �7�

The calculation made using Eqn (7) is in good agreement
with the results displayed in Fig. 1, which were obtained in
[47] by solving the Boltzmann kinetic equation using the
moment method.

The solution of the system of moment equations shows
that a stationary shock wave may form at certain density and
temperature near the interface. Figure 2 displays such a
solution for the Mach number M1 � 1:18. If the pressure
increases, a solution to the problem exists, but the nature of
the dependences n 0 � f1�x� and T 0 � f2�x� changes.

In investigating the problem of a one-dimensional drain
(an analogue of one-dimensional condensation), the CM

methods were used to prove the uniqueness of the solution
for a supersonic flow with a shock wave structure (see
Appendix 2 of [55]). Reported there is also an analysis of the
stability of possible solutions of the system of one-dimen-
sional stationary conservation equations for any Mach
number in the formulation under consideration. This analy-
sis has shown that the system has a unique solution at
subsonic velocities of vapor motion, while at supersonic
velocities, the number of solutions is infinite large.

The analysis of the solutions for subsonic and supersonic
condensation regimes shows that the results obtained using
different methods of solving the kinetic equation for various
potentials of interaction between moleculesÐhard elastic
balls, Maxwellian and pseudo-Maxwellian moleculesÐare
in the first approximation close to each other.

10

n 01

5

0 2 4 6 T 01

M1 � 0.99

Ts

x

j

0.850.6

0.5

Figure 1. Solutions to the problem for determining the velocity of vapor in

subsonic evaporation presented in terms of dimensionless density

n 01 � r1=rs as a function of dimensionless temperature T 01 � T1=Ts

for various values of the Mach number M1 of the incoming flow of

monatomic vapor. The displayed data enable finding for given n 01 and T 01
the unique value ofM1 and, consequently, the velocity of the vapor.

6.5

n 0

n 01 � 5

T 01 � 1

M 0
1 � 1.18

n 0

T 0

T 0

T 0subs

n 0subs

6.0

5.5

5.0

1.2

1.1

1.0
0 5 10�x

Figure 2. Changes in density and temperature in subsonic condensation in

the limiting regime. The coordinate �x is measured in free path units:

�x � x=l, where l is the free path of vapor molecules calculated using the

phase interface temperature Ts and the equilibrium numerical density of

molecules ns that corresponds to this temperature along the saturation

line. The results obtained from the solution of the Boltzmann kinetic

equation using the moment method show that a structure of a stationary

shock wave (compression shock wave) is formed. The formation of a

subsonic region with the dimensionless density n 0subs and T 0subs near the

interphase surface is seen to occur.
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The results of the study of evaporation and condensa-
tion can be graphically depicted in three-dimensional
space n1�r1�;T1;M1, whose part corresponding to
condensation is shown in Fig. 3 [47]. Thin lines in this
figure are obtained as a result of cutting curvilinear figure
A0BE by planes T1=Ts � const, specifically T1=Ts � 3
and T1=Ts � 5. The sections of this figure divided by planes
M1 � const are shown in Figs 1 and 4. Solutions to the
evaporation problem are displayed in the other half of the
space with positive values of the Mach numberM1.

We now list the main features characteristic of the
presentation employed for the results of the study of

evaporation±condensation problems in the n1;T1;M1
space.

The equilibrium state is determined in this space by a
single point with coordinates n 01 � 1, T 01 � 1,M1 � 0.

As noted above, to solve the problem of evaporation, it is
necessary to set one of the gas-dynamic quantities away
from the interface: n1 or T1, or u1�M1�. Evaporation is
represented as a consequence as a line in the n1;T1;M1
space.

The study of the problem of subsonic condensation
carried out above shows that two quantities should be set to
find its unique solution, for example, n1 and T1. Solutions
are consequently located in the n1;T1;M1 space on curvi-
linear triangle A0B shown in Fig. 3 and on this triangle alone
due to the uniqueness of the solution at subsonic speeds.

It should be noted that the domain of application of the
linear theory of evaporation±condensation is limited in
n1;T1;M1 space by a conventional sphere of small
diameter centered at the origin.

For supersonic condensation (i.e., for M1 > 1), all three
quantities are set: n1, T1,M1, implying that the solution to
the problem becomes a three-parametric one. Any point in
space to the left of the AEB surface represents in this case a
feasible condensation regime with a supersonic vapor
velocity. The points located directly on curvilinear triangle
AEB represent the modes of supersonic condensation with
the structure of the solution in the form of a stationary shock
wave. Figure 3 shows that, as the Mach number M1
increases, the region where supersonic condensation exists
expands. On the other hand, this figure shows a region of
initial values exists for which stationary condensation, both
subsonic and supersonic, cannot occur. This area is deter-
mined by the volume enclosed between the curvilinear
triangle of subsonic condensation A0B and the surface of
the limiting parameters of supersonic condensation AEB.
Sections of the AEB surface by planesM1 � const are shown
in Fig. 4.

2.3 Effect of the condensation coefficient
2.3.1 Recalculation of the solution for the diffuse scheme of
evaporation and reflection of molecules at arbitrary values of
the evaporation±condensation coefficients. The relationships
presented in Section 2.2 were derived for the case of complete
condensation of molecules incident on the interface, i.e., a
condensation coefficient equal to unity. We now derive,
following [25, 44], expressions that enable the calculation of
evaporation and condensation for arbitrary values of the
evaporation be and condensation bc coefficients for the
diffuse scheme of reflection of noncondensed molecules.
Due to this scheme of reflection, the DF of the molecules
that move from the interface is a half-Maxwellian with the
total density of evaporated and reflected molecules. Thus, the
mass flux density of the molecules that move from the
interface, j�, is a sum of the mass flux densities of the
evaporated, je, and the reflected, jr, particles, i.e.,
j� � je � jr.

At the same time je � bensm
��������������������
RTs=�2p�

p
. Using the

definition of the condensation coefficient bc � 1ÿ j jr= jÿj,
where jÿ is the density of themass flux ofmolecules thatmove
towards the interface, given that jr > 0 and jÿ < 0, we obtain
jr � �bc ÿ 1� jÿ. Hence,

j� � bensm

���������
RTs

2p

r
� �bc ÿ 1� jÿ :
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Figure 3. Solution to the problem of condensation displayed in a 3D space

of dimensionless density n 01 � r1=rs, temperature T 01 � T1=Ts, and

Mach number M1 for condensation coefficient b � 1. The subsonic

solutions are located on the surface of the curvilinear triangle A0B, and

the supersonic solutions in the part of the space considered outer with

respect to surface AEB. Solutions with the structure of a stationary shock

wave similar to that displayed in Fig. 2 are located on the surface AEB.
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Figure 4. Sections of the surface AEB shown in Fig. 3 by the planes

M1 � const. Displayed are limiting dependences of the dimensionless

density n 01 on dimensionless temperature T 01 at which supersonic inflow

of vapor with the structure of a stationary shock wave similar to those

displayed in Fig. 2 occurs.
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Since j � j� � jÿ,

j� � bensm

���������
RTs

2p

r
� �bc ÿ 1�� jÿ j�� ;

whence follows

j� � be
bc

nsm

���������
RTs

2p

r
� bc ÿ 1

bc
j :

If the last formula is presented as j�� r0
��������������������
RTs=�2p�

p
, we find

that the vapor density at the interface is

r0 � rs

�
be
bc
ÿ 1ÿ bc

bc

j

rs
��������������������
RTs=�2p�

p �
:

Based on Eqns (5) and (7), an algorithm can be proposed
to calculate the mass flux density during intensive evapora-
tion and condensation for arbitrary values of the condensa-
tion and evaporation coefficients. The essence of the algo-
rithm for subsonic velocities is eventually that a single
calculation relationÐEqn (5) for evaporation or Eqn (7)
for condensationÐ is now replaced by a system of two
equations for evaporation, which contain two unknown
quantities j and r0, and a system of three equations for three
unknowns j, r0, and P0, for condensation. The system for
evaporation is

j � 0:6
�����������
2RTs

p
�r0 ÿ r1�

��������
r1
rs

r
;

�8�
r0 � rs

�
be
bc
ÿ 1ÿ bc

bc

j

rs
��������������������
RTs=�2p�

p �
;

while the system for condensation is

j j j � 1:67
P1 ÿ P0����������������
2pRT1
p

�
1� 0:51 ln

�
P1
P0

��������
Ts

T1

r ��
;

r0 � rs

�
be
bc
� 1ÿ bc

bc

j j j
rs

��������������������
RTs=�2p�

p �
; �9�

P0 � r0RT0 :

2.3.2 Limiting values of condensation coefficients and specific
mass fluxes [44]. We now consider in more detail intense
condensation. Equation (9) at be � bc � b, given that
j j j � r1

��
b 6�1ju1j, may be represented in the form

r0 � rs

�
1� 1ÿ b

b

r1
��
b6�1ju1j

rs
��������������������
RTs=�2p�

p �
: �10�

If the condensation coefficient is other than unity, the role of
rs is played by r0; therefore, the relation

r1
��
b 6�1

r0
�

r1
��
b�1

rs
�11�

holds valid. Taking r0 from Eqn (11) and substituting it into
Eqn (10), we obtain from the latter equation

r1
��
b 6�1 �

r1
��
b�1

1ÿ ��1ÿ b�=b��r1��b�1=rs�ju1j= ��������������������
RTs=�2p�

p :

�12�

This formula determines the minimum value of the condensa-
tion coefficient at which condensation with a given rate u1 is

at all possible. The denominator in Eqn (12) vanishes at this
value, i.e., r1jb 6�1 tends to infinity. As a result, fromEqn (12),
we obtain

blim �
1

1� 1= j 0
; �13�

where j 0 � j j jb�1j=�rs
��������������������
RTs=�2p�

p �.
Intense condensation with given u1 and T1 occurs, for

example, if cryogenic pumps are used in simulators of gas
flow around various bodies, when the Mach number and
temperature are set at the inlet. It is of use sometimes to
represent formula (13) in terms of the Mach number. For
example, for amonatomic gas, where the speed of sound a1 is
calculated using the formula a1 �

�����������������������5=3�RT1
p

, we get

blim �
�
1�

���������
3

10p

r
1

�r1jb�1=rs�jM1j
��������������
T1=Ts

p �ÿ1
: �14�

Equation (14) may be used to find the dependence of blim
on temperature. Figure 5a shows such a dependence for
M1 ! 1, while Fig. 5b does so for M1 � 2. As can be seen
in Fig. 5a, if M1 ! 1 and T1=Ts � 1, supersonic condensa-
tionmodes only exist at values of the condensation coefficient
that lie in a narrow range from 1.00 to � 0:96, and for
M1 � 2 and T1=Ts � 1, in a range from 1.00 to � 0:85. If
the condensation coefficient becomes less than these values,
the supersonic flows in the one-dimensional stationary setup
under considerationmay not exist. In a real situation, a shock
wave with the structure displayed in Fig. 2 emerges near the
interface, which moves towards the incoming flow. Such a
breakdown of this condensation regime can be explained by
the fact that the mass flux density of the incoming vapor flow
is high at high (supersonic) velocities, and should only a small
fraction of this flow be reflected from the phase interface, it is
sufficient for the reflected flow to become comparable to the
evaporating flow. A significant increase in the vapor mass
flow moving from the interface surface, which consists of
evaporated and reflected flows, may be interpreted as a kind
of increase in the temperature of this surface, which causes a
sharp decrease in the condensation rate. In addition to the
curves blim � f �T 01� displayed in Fig. 5, the above relations
enable derivation of the limiting pressure Plim, at which
supersonic condensation with a given Mach number and
temperature can occur, as a function of the condensation
coefficient b. Such functions are shown in Fig. 6, and the
corresponding data are presented in Table 1, where Pb�1 is
taken from [47] and Fig. 4 as Pb�1 � n 01T

0
1, while Pblim �

�r1jb 6�1=rs�T1, r1jb 6�1 is determined using Eqn (12).
The form of results obtained in studying evaporation±

condensation in the n1;T1;M1 space at condensation
coefficient b different from unity is altered. For example, at
b � 0:96, the results displayed in Fig. 3 take the form shown

Table 1. Limiting values of pressure Plim for b � 1 and close to the limiting
blim, i.e., at b � blim � 0:004.

M1 T1=Ts blim Plimjb�1 Plimjb!blim
Pjblim=Pjb�1

1.2
1.2
1.5
2.0
2.0
2.0
3.6

1.0
4.2
1.0
0.5
1.0
4.2
4.0

0.951
0.909
0.906
0.886
0.847
0.779
0.602

5.00
5.31
2.00
0.85
0.85
1.10
0.26

58.5
160.0
52.5
23.3
32.9
9.5
8.5

11.7
30.1
26.3
27.4
38.7
8.6

32.8
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in Fig. 7. It can be seen that even a small decrease in the
condensation coefficient (by only 0.04) results in a noticeable
transformation of the limiting `supersonic' surface AEB and
its shift to the left. Such a transformation describes the
situation when the pressure P1 (or density r1) needed to
ensure at a given value of T1 the required value of the Mach
number M1 significantly increases, and the region of
unacceptable parameters, i.e., such a combination of pres-
sure, temperature, and incoming flow velocity for which the
regime of supersonic condensation with constants T1 and
M1 becomes not possible, expands. Figure 7 shows that the

decrease in b noted above results in a kind of opening of the
depicted curvilinear pyramid.

3. Analysis of experimental data.
Comparison with calculations

This section contains a systematic analysis of experimental
studies of subsonic condensation of mercury and potassium
vapors [56±59], intense evaporation of iodine [60, 61], super-
sonic cryogenic condensation of gas jets of nitrogen, argon
[62±64], and air [65], and transfer processes on the interface of
superfluid helium [66±74].

3.1 Intense condensation of metal vapors
The experimental setup designed to study the condensation of
mercury vapor [56] was a closed circuit made of steel pipes,
which included a boiler, an experimental segment, and an
auxiliary condenser. Mercury vapor, moving downward,
flowed onto the vertical plane of the test condenser, which
was cooled with water or air. The auxiliary condenser located
below the test condenser could be used to ensure the
movement of vapor near the condensation surface to prevent
the accumulation of noncondensable gases. Condensate from
both condensers returned to the boiler as a result of draining.
To observe the test condenser, the experimental setup had a
window equipped with a heater to prevent condensation on it.

Temperature was measured using thermocouples. Holes
for the thermocouples in the condensing unit were located
parallel to the condensation surface in the central horizontal
plane of the condensing unit. The thermocouple wires were
output along isotherms. Two condensing blocks of the same
size were used (the condensation surface was a square with a
side of 40 mm).

The experimental procedure was as follows. First, the
setup was prepared, namely, the circuit and its constituent
elements were evacuated at a temperature of 540 K to a
pressure of 10ÿ2 Pa for several days, as a result of which gas
was removed from thematerials of the experimental setup. As
noted in [56], it takes about 40 h to ensure complete wetting of
the surface of the nickel coating of a copper condenser. In the
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Figure 5. Temperature dependence of the limiting values of the condensa-

tion coefficient at which the regimes of supersonic stationary inflow are

possible. (a) If M1 ! 1, even a small decrease in the condensation

coefficient b results in the breakdown of condensation. As the Mach

number increases, the range of the `allowable' values of the condensation

coefficient expands. (b) ForM1 � 2:0 and values of the coefficient b in a

range from 1.0 to 0.85, supersonic condensation may occur at T 015 1.
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study under consideration, the components of the setup were
kept prior to the experiment at a temperature of about 420 K
for 7 h a day for six days.

The vapor temperature under steady-state stationary
conditions was measured using two thermocouples. As
follows from the analysis, the thermocouple readings are
closer to the true temperature value at low vapor velocities
and for the cross sections located near the region where the
flow around the condensing block ends.

The surface temperature was determined in all the experi-
ments by linear extrapolation of the temperature readings of
the condensing unit as a function of the coordinate. The
specific heat flux was consequently determined applying the
Fourier law of thermal conductivity. The value of the heat
flux was found by means of an alternative technique from the
heat balance using the known flow rate of the coolant and the
increase in its temperature as a result of pumping through the
condensing unit. The results of these methods are in good
agreement with each other. The accuracy of determining the
surface temperature was about 0.1 K.

The difference between the readings of the thermocouples
that measured the vapor temperature did not exceed 0.2 K at
the maximum temperature. This difference at minimum
temperatures was 0.6 K if the auxiliary condenser was not
used, and about 1.2 K with it.

An analysis of the experimental techniques [56] and the
estimated uncertainty of the measurements performed allow
an assertion that the condenser surface temperature (accuracy
0.1K) and the heat flux during condensation were determined
in this study with high accuracy. The vapor parameters, the
vapor temperature Tv of the vapor and its pressure Pv, were
foundwith less accuracy. The difficulties related tomeasuring
temperature in a moving flow are well known. Moreover,
these flows were realized in the considered experiment at
reduced pressures (50±5000 Pa), and the working substance
was mercury.

The experimental results in the form of the temperature
drop DT � Tv ÿ Ts as a function of the mass flux density j
are shown inFigs 8 and 9with dots and triangles for two series
of experiments, respectively. The general conclusions made
by the authors of Ref. [56] during the initial analysis of the
data obtained in the experiment are as follows: (1) the results
for two condensing blocks are in good agreement with each
other; (2) points for a given vapor temperature are located
along a smooth continuous curve; (3) the sought-after
relationship significantly depends on the vapor temperature.

To calculate the parameters of vapor with consideration
for its expansion and acceleration as the condenser is
approached, a system of equations for the conservation of
mass, momentum, and energy was formulated in [55] for the
conjugated problem of evaporation in a boiler, movement of
the produced vapor along the working channel, and con-
densation. The rates of evaporation and condensation were
determined in this case using Eqns (5) and (7). The solutions
found are shown in Figs 8 and 9 with solid lines.

An analysis of the experimental data presented in [56]
shows that, for condensation regimes characterized by high
velocities of vapor movement, the effects of vapor compres-
sibility and a decrease in temperature as a result of its expan-
sion as the vapor approaches the condenser are significant. If
the pressure of the condensed vapor P significantly differs
from the pressure Ps along the saturation line, which
corresponds to the temperature of the interphase surface Ts,
the condensation rate is determined by the efficiency of

supplying the condensed vapor to the interface. Indeed, for
the maximum vapor velocity obtained in [56], the ratio
P=Ps � 24 at Tv=Ts � 0:9. It was noted in Section 2.2.2 that
a supersonic condensation regime is realized for such a
temperature ratio at P=Ps > 15. The condensation rate
under these conditions can take on values larger than the
mass flux determined for the conditions of formation of a
shock wave near the condensation surface with the corre-
sponding Mach number close to unity. Consequently, the
condensation rate is not limited in this case by the kinetic
conditions at the interface, but rather is determined by the
efficiency of mass supply to this interface. In other words, the
surface adsorbs all the mass that comes to it, i.e., the driving
factor is the external flow of vapor that supplies the
condensed vapor to the interface. According to the experi-
mental data presented, these conclusions primarily pertain to
modes with minimum temperatures of the interface and
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Figure 8. Results of experiments [56] on intense condensation of mercury

at large velocities of themotion of vapor that are implemented at relatively

low temperatures and pressure. j is the mass flux density, Tv is the

temperature of condensed vapor, and DT � Tv ÿ Ts, where Ts is the

temperature of the condensation surface. The nonlinear behavior of j as a

function ofDT obtained at large values of the difference betweenTv andTs

indicates that the condensation rate is not limited in this case by the kinetic

conditions at the phase interface but is determined by the gas-dynamic

efficiency of the supply ofmass to the interface. In other words, the surface

adsorbs the entire mass delivered to it.
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Figure 9. Results of experiments [56] on intense condensation of mercury

at large mass flux densities. The velocities of the vapor flow in this case are
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in Fig. 8, and the condensation rate is primarily determined by the kinetic

conditions at the interface.
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condensable vapor, since its density is in this case low, and,
therefore, the velocity of motion is significant.

The description of experimental data on intense conden-
sation of potassium vapor presented in [57], which is based on
the considered method, confirmed the validity and effective-
ness of the above approach.

Later experimental data on mercury condensation [58]
were interpreted in report [59] as a development of the above
approach The corresponding results are displayed in Fig. 10.
The following factors and parameters ignored in the minimal
approximation considered above (line 1 in Fig. 10) were
additionally taken into account in this case: the presence of
expanding and narrowing sections of the vapor path (line 2),
friction of vapor against channel walls (line 3), thermal
resistance of the condensate film (line 4), and the possibility
of homogeneous condensation that occurs during the expan-
sion of vapor (line 5).

3.2 Intense evaporation of iodine
Intense evaporation of iodine was experimentally investi-
gated in [60]. The longitudinal, Tk, and transverse, T?,
temperatures, the transfer rate of vapor u, and its density r
in the Knudsen layer were measured in [60] without introdu-
cing diagnostic techniques into this layer, namely, via
fluorescence spectroscopy methods using a tunable laser.
The absorption efficiency was determined from the intensity
of the fluorescent light emitted by the excited (absorbed)
molecules. The laser was tuned to record the full profile of one
or more absorption bands of iodine molecules. Each band
featured a highly pronounced structure consisting of many
lines that overlapped due to Doppler broadening. The area of
the absorption band is a measure of the density, and the
bandwidth is a measure of the transfer rate.

The results of experiments are presented in report [60] for
the interface temperature Ts � 253 K and M1 � 0:66 in the
form of dependences Tk, T?, the Mach number, r, and the
mass flux density j on the coordinate x normal to the interface
surface. The experimental data were compared with the

solution to the problem of intense evaporation obtained by
the authors of [60] based on a five-moment approximation of
the distribution function in the form of a two-flow Maxwel-
lian with unknown r1, T1, r2, T2, and u. Index 1 refers to the
molecules that move from the interface, and index 2 to those
that move in the opposite direction. The moments of the
collision integral were calculated in this case for Maxwellian
molecules.

A comparison of the experimental and calculated data
shows good agreement between the theory and experiment
in the entire region, with the exception of a small mismatch
near the phase interface. This circumstance requires, accord-
ing to the authors of Ref. [60], a more thorough analysis of
the boundary conditions at x � 0. It is also noted that the
calculations based on the five-moment discontinuous
approximation yield a greater thickness of the Knudsen
layer and better agreement with experiment than the solu-
tions previously obtained by the authors of [61] using an
ellipsoidal DF. This situation seems to be quite natural, since
the ellipsoidal continuous DF describes the molecules that
move from the interface at x � 0 in a less accurate way than
the two-sided discontinuous approximation.

3.3 Cryocondensation of nitrogen, argon, and air
A study of supersonic cryocondensation of gas jets of
nitrogen and argon is presented in [62]. The experimental
setup described in detail inRef. [63], which is shown inFig. 11,
enabled the condensation of low-density gas jets to be
explored. The vacuum chamber, which is a cylinder 200 mm
in diameter, was completely immersed in liquid helium, so the
temperature of its walls during the experiment was 4.2 K.

The efficiency of condensationwas estimated based on the
measurementsmade using amicrobalance of the incident flow
and the flow reflected from the cryopanel. It was found that
an increase in the mass flow rate through the gas source leads
to an increase in the mass flux density j and the velocity of the
condensing flow. When complete condensation fails, a
pressure wave is formed near the cryopanel, which begins
moving towards the gas source if the temperature of the
condensation surface rises. The flux reflected from the
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Figure 10.Results of experiments [58] on intense condensation of mercury

and their interpretation. The result obtained in the minimal approxima-

tion (see Figs 8 and 9) (curve 1) in comparison with the results obtained

additionally taking into account the presence of broadening and narrow-

ing segments of the vapor path (curve 2), friction of the vapor against the

channel walls (curve 3), thermal resistance of the condensate film (curve 4),

and possible homogeneous condensation that occurs if the vapor expands

(curve 5), and with experimental results (circles).
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Figure 11. Experimental setup for studying supersonic cryocondensation

of gas jets of nitrogen and argon input through various detachable sources

(nozzles and diaphragms) located in the upper part of the working

chamber. Gas jets are desublimated on a cryocondenser located on the

lower flange. Reflected and direct flows are detected by a quartz

microbalance whose sensitive elements are oriented towards the incoming

flow.
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cryopanel cannot be measured in this case using a quartz
microbalance, but the formation and passage of a pressure
wave can be recorded. The purpose of this experiment was to
determine the temperature of the condensation surface at
which the pressure wave emerges at the cryopanel, i.e., the
complete condensation of the supersonic gas flow fails, as a
function of various parameters (velocity, density, etc.). The
studies were carried out for three gases: argon, nitrogen, and
carbon dioxide.

In the case of a free-molecular flow of a condensed gas, the
flow parameters are considered constant on the entire path
from the gas source to the cryopanel, and the condensation
rate is determined by the effective condensation coefficient.
The following gas sources were used to investigate in the free-
molecular mode: (1) a diffuser 8 mm in diameter, made of
several layers of a wire gauze with 64-mm cells, that enables
production of a gas flow uniformly distributed in all
directions; (2) a 4-mm diaphragm; (3) a Laval nozzle with a
critical section diameter d� � 0:98 mm and a half opening
angle ya � 12�. For sources of all three types, the condensa-
tion surface temperature T, at which the flow reflected from
the cryopanel is detected, as a function of the specific mass
flow j entering the cooled surface was obtained. At high mass
flux rates, the diaphragm and various nozzles were used as gas
sources.

Figure 12 shows the dependence j � f �T � for argon at
high values of themass flux density. The distance from the gas
source to the cryosurface varied from 27 mm to 45 mm; one
nozzle had a throat diameter of d� � 1:5 mm and a half-
opening angle of ya � 15�, the other had d� � 0:98 mm and
ya � 15�; the gas temperature in the settling chamber (slow-
down temperature) in the first case was 100 K, and in the
second 300 K. It can be seen that a higher temperature of the
termination of full condensation corresponds to the regions
of continuous flow of greater length that are formed at lower
values of ya and d� for a fixed flow rate after gas outflow from
the source. This phenomenon is due to the fact that an
increase in the continuous flow region leads to a correspond-
ing change in the parameters of the gas flow (temperature,
velocity, and density).

The conducted experimental study allowed drawing the
following conclusions:
� for j4 10ÿ3 kg mÿ2 sÿ1, the efficiency of condensation

only depends on the specificmass flow onto the cryopanel and
its temperature T;
� an increase in the gas flow rate to larger values results in

the formation of a continuous flow zone at the outlet of the
gas source and, hence, in a change in the condensed flow
parameters. The flow velocity significantly exceeds in this case
that of sound, while the condensation efficiency is determined
by the geometry and type of gas source, the distance from the
source to the cryopanel, and the slowdown temperature.

The presented conclusions are confirmed by the calcula-
tions of supersonic condensation based on solving the
Boltzmann kinetic equation. An example of a solution to a
two-dimensional problem of gas outflow from a nozzle into
vacuum and condensation of the forming flow on a cryopanel
is given in [64], where a flow was explored, which is
characterized by the Knudsen number Kn � 0:33 at the exit
of the slot-like nozzle and the Mach number M � 2. The Kn
number was determined from the nozzle height, and M from
the longitudinal velocity and temperature at the nozzle outlet.
The solutions were found for various temperatures of the
condensation surface.

In the experiment described in report [65], air (amixture of
78% nitrogen, 21% oxygen, and 1% argon) flowed at the
Mach number M1 � 2:8 and temperature T1 � 186 K onto
a cryopanel cooled with liquid helium. The flow time was 18±
25 s, and the temperature of the condensation surface
increased from 4.2 K to 34±38 K. If the cryocondenser was
cooled with liquid neon, the corresponding values were 9 s
and 38.2 K. A pressure wave was formed near the cryosurface
when its temperature was about 38 K, which was visually
recorded. In the first approximation, we take the cryopanel
temperature to be equal to the condensation surface tempera-
ture Ts. The pressure in the air flow P1 was 0.73 Pa, and
the ratio of the flow temperature T1 � 186 K and the
temperature of the interface Ts was 186=38 � 4:9. In
accordance with Refs [45, 47], for such a ratio T1=Ts and
M1 � 2:8, a pressure wave emerges at the interface at
P1=Ps � 0:46, where Ps is the saturation pressure that
corresponds to temperature Ts, i.e., P1 � 0:46Ps. Conse-
quently, Ps � 1:59 Pa for the experimentally determined
pressure P1 � 0:73 Pa. According to the empirical depend-
ence for nitrogen [75], Ps � 10ÿ385:0=Ts�10:3, this pressure
corresponds to Ts � 38:0 K, a value which is in good
agreement with the experimental data (34±38 K and 38 K
(see above)). Similar calculations made for various values of
the condensation coefficient b show that agreement with
experiment is best at b � 1. Thus, it may be concluded that
the condensation coefficient during cryocondensation of a
supersonic air flow with a Mach number of 2.8 is close to
unity.

3.4 Interpretation of experimental data
on transfer processes at the helium II interface
3.4.1 Evaporation of superfluid helium due to heat supply to the
phase interface from the liquid. Experiments were carried out
in the late 20th century to study the evaporation of helium II
(He II) [66, 67]. It is generally believed that studies of the
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Figure 12. Experimental data on cryocondensation of supersonic argon

jets.T is the temperature of the condenser surface, l is the distance from the

source to the surface of the condenser, j is the density of the mass flux of

the gas being desublimated (condensation rate). Used as gas sources were a

Laval nozzle with a critical section diameter d� � 1:5 mm and a half-

opening angle ya � 15� and a Laval nozzle with d� � 0:98 mm and

ya � 12�. For the given values of the condensation rate, the highest

temperatures of the interface were obtained at which complete condensa-

tion occurs, i.e., the entire Tÿj quadrant is divided into two subregions:

complete condensation is possible to the left of the experimental points,

and not possible to the right. For example, for the Laval nozzle with

d� � 1:5 mm and ya � 15� located at a distance of 35 mm from the

condenser, desublimation is complete at j � 0:01 kg mÿ2 sÿ1, i.e., there is
no reflected flow if the interface temperature does not exceed 32.5 K.

February 2021 Heat and mass transfer at condensateëvapor interfaces 119



evaporation and condensation of specifically helium II may
provide themost promising information on transfer processes
on interphase surfaces for the following reasons. First, both
the vapor and the liquid are free of impurities and non-
condensable components, since all other substances at such
low temperatures (< 2:17 K) simply freeze (turn into a solid).
Second, the efficiency of heat transfer in He II is maximal
among all materials. Consequently, the effects on the inter-
face are barely masked by the thermal resistance of the liquid,
i.e., it turns out that phenomena at the interface may be
explored in the clearest way possible.

An experimental cell [66] was immersed in He II main-
tained in a cryostat with optical windows, which made it
possible to visualize themotion of the vapor and the change in
its density during evaporation; a holographic laser inter-
ferometer was used to this end. A heater in the form of a
thin nichrome film was placed at the bottom of the vessel with
He II. The heat produced by the heater propagated from
bottom to top through the helium II by the second-sound
wave and reached the liquid±vapor interface, on which
evaporation occurred. A density perturbation emerged in
this case in the vapor, which propagated from the interface.
The motion of this perturbation was recorded by an
interferometer. A superconducting thermometer, a pressure
sensor, and a hot-wire flow meter were used to measure the
temperature, pressure, and vapor velocity, respectively.

The authors of [66] determined as a result of experiments
the temperatureTs (in the notation of this review) of the liquid
(He II)±vapor interface, and, consequently, the pressure
along the saturation line Ps, the vapor pressure during
evaporation P1, and the velocity of its motion V1. Experi-
mental data were presented in the form of dependences
P1=Ps on V1=

�����������
2RTs

p
similar to those shown in Fig. 13 for

various initial temperatures of superfluid helium T1.
The following interpretation of these results has been

proposed [68]. First, unlike the authors of most studies in
this area, we assume that the evaporation coefficient be is not
equal to the condensation coefficient bc. The formulas of the
linear theory of Labuntsov and Muratova (see Section 2.1)
can be generalized for this case. It is sufficient to this end to re-
derive the Kucherov±Rikenglaz formula for be 6� bc. We
obtain as a result an equation that determines the mass flux
density j for weak evaporation±condensation:

j � 1

1ÿ 0:4bc

���������
RTs

2p

r
�bers ÿ bcr1� ; �15�

instead of j � b=�1ÿ 0:4b� ��������������������
RTs=�2p�

p �rs ÿ r1� for be � bc.
The same transformations yield the following form of the

Labuntsov±Muratova formula for evaporation into a semi-
infinite space for be 6� bc:

j � 1

1ÿ 0:4bc

���������
RTs

2p

r
�bers ÿ bcr1�

� 1

1ÿ 0:4bc

bePs ÿ bcP1��������������
2pRTs

p : �16�

Applying the obtained relations to the experimental data
displayed in Fig. 13 yielded the results presented in Table 2.

An analysis of the data displayed in Table 2 shows that the
coefficients be and bc are close to each other and to unity. It
should be stressed at the same time that they are only close
rather than exactly equal to each other. However, the equality

leads to a significant difference from unity. Such a strong
effect is due to a basically different form of calculation ratios.
Namely, for be � bc � b,

P1
Ps
� 1ÿ 1ÿ 0:4b

b
2
���
p
p

V1�������������
2RT1
p ;

b � V12
���
p
p

=
�������������
2RT1
p

0:4V12
���
p
p

=
�������������
2RT1
p � 1ÿ P1=Ps

;

and for be 6� bc,

bc �
be ÿ V12

���
p
p

=
�������������
2RT1
p

P1=Ps ÿ 0:4V12
���
p
p

=
�������������
2RT1
p : �17�

Moreover, the calculation of the measurement errors
carried out in [68] shows that, for example, given the same
initial data, the error in determining bc under the assumption
be � bc is approximately twice as large as for be 6� bc.Wemay
conclude as a result that the approach in which it is assumed
that be 6� bc is more substantiated.

3.4.2 Reflection of sound from the vapor±liquid interface. We
consider the incidence of a sound wave from the vapor phase
onto a flat surface of helium II. The vapor is considered to be
in a saturation state. The amplitude of pressure oscillations
in this wave p̂i is known, i.e., the vapor pressure is considered
to have the value p0 � p̂i, where p0 is the unperturbed
saturated vapor pressure, thus p0 � psat�T0�, where psat�T0�
is the pressure along the saturation line that corresponds to
the unperturbed temperature of the vapor, interface, and
liquid T0.

T1 � 1.94 K

T1 � 2.04 K

T1 � 1.74 K
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Figure 13.Results of experiments [66] on evaporation of superfluid helium

due to impingement of a wave of the second sound from the liquid to the

interface. The authors used the experimental data to determine the

temperature Ts of the liquid (He II)±vapor interface and, hence, the

pressure along the saturation line Ps that corresponds to this temperature,

the vapor pressure of evaporation P1, and the velocity of motion V1.
Experimental data are presented as dependences P1=Ps on V1=

�����������
2RTs

p
for various initial temperatures of superfluid helium.

Table 2. Results of calculations at various values of the evaporation and
condensation coefécients.

V1=
�������������
2RT1
p

0.005 0.010 0.015 0.020

P1=Ps

bc for be � 0:95

bc for be � 0:90

be � bc � b

0.97

0.97

0.92

0.48

0.95

0.98

0.92

0.55

0.93

0.99

0.93

0.58

0.91

1.00

0.94

0.60
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Due to an increase in pressure, vapor condensation occurs
at the interface, and the temperature of this interface begins to
increase. After a time interval equal to a half-cycle of the
sound wave, the picture changes to the opposite. The vapor
pressure turns out to be lowered, p0 ÿ p̂i, evaporation of the
surface layer of the liquid begins, and the temperature of the
interface decreases. A reflected sound wave with amplitude p̂r
emerges as a result in the vapor, and, in the liquid, a
propagating sound wave with amplitude p̂ 0t (the character-
istics of the liquid are primed). It is required to determine the
amplitude of the sound wave reflected from the interphase
surface p̂r or the ratio p̂r=p̂i, whichwe refer to as the coefficient
of sound reflection from the liquid±vapor interface.

Themathematical description of the problem is based on a
system of equations that represent universal and special
consistency conditions at the phase interface [76]. Thus,
three conservation equations are formulated for the one-
dimensional problem under consideration: for mass, momen-
tum, and energy at the interface; these equations link the
corresponding characteristics of the liquid and vapor phases.
The linear Labuntsov±Muratova formula obtained by MKT
methods is used as a special consistency condition, which
allows calculation of themass flux density during evaporation
and condensation for a known interface temperature and
vapor pressure. These four equations are supplemented by the
relationships between the pressure fluctuations in the incident
and reflected waves in vapor and the propagating wave in the
liquid (helium II) with the velocities of motion of the vapor
and liquid, respectively, in the media under consideration.
These equations are derived from Euler's equations of
conservation of mass and motion.

The system is closed by an equation that determines the
heat flux propagating through helium II as a result of an
increase or decrease in the interface temperature. In the
process under consideration, due to periodically alternating
evaporation and condensation at the interface, which are
caused by a periodic decrease and increase in vapor pressure
during the incidence and reflection of sound waves, the
temperature of the interface changes in a periodic way. Such
a change in temperature is a kind of source of a second-sound
wave that moves into the bulk of He II. A heat flow
propagates along with the second-sound wave, the value of
which is determined taking into consideration the positive
direction of the coordinate axis from the interface towards the
vapor, by the following relation:

q̂ 0 � ÿr 0a2CT̂ 0i ; �18�

where q̂ 0 is the amplitude of oscillations of the heat flux
propagating from the interface into the bulk of helium II, r 0 is
the density of He II, a2 is the speed of the second sound, C is
the heat capacity of helium II, and T̂ 0i is the amplitude of
temperature oscillations of the interface. These oscillations in
helium II, in contrast to those in ordinary liquids, are known
not to decay as theymove into the bulk of the liquid, at least in
the nondissipative approximation.

As a result of solving the considered system of equations,
the following expression is obtained for the coefficient of
reflection of sound R from the surface of helium II that
borders the saturated vapor:

R � 1ÿ wÿ 0:86�r 0 ÿ r�=�Ar 0�
1� w� 0:86�r 0 ÿ r�=�Ar 0� ; �19�

where r is the helium vapor density,

A � 1� 0:86 r

r 0a2Ca

�
qp
qT

�
sat

;

r is the evaporation heat of helium II, a is the speed of sound in
helium vapor, w � ra=�r 0a 0� is the reduced wave resistance of
the vapor with respect to the liquid, and a 0 is the speed of the
first sound in helium II. The derivative �qp=qT �sat can be
found from the Clapeyron±Clausius equation.

A calculation using Eqn (19) shows that, for example, if
the temperature of unperturbed He II T0 � 2 K, the sound
reflection coefficient R � 0:15. The value of R 2 is nothing
more than the ratio of the energy fluxes of the reflected and
incident sound waves. Since in this case R 2 � 0:02, it implies
that only 2% of the energy flux brought by the incident sound
wave is reflected from the interface. The remaining 98%of the
incoming energy flow `passes' into helium II, transforming
into waves of the first and second sound. Thus, the interface
between the phases of He II±vapor, in contrast to an ordinary
liquid, does not really reflect sound, i.e., such a phenomenon
as `echo' is not possible on the `smooth surface' of superfluid
helium.

The calculations made using Eqn (19) are compared with
experimental data [69] in Fig. 14. This problem is considered
in detail in manual [70], and, for classical liquids, taking into
account the nonequilibrium effects on the liquid-vapor
interface, in publication [71].

3.4.3 Determination of the recovery load during boiling of
helium II. This section presents a technique to calculate the
recovery heat flux [72] that was developed in 1980±1981. The
so-called noiseless boiling regime is considered, in which the
liquid±vapor phase interface is a smooth surface that retains
its shape in a stable manner. Along with this type of boiling, a
noise boiling regime can be realized in experiments with
significant heat loads and large depths of immersion of the
heater in He II, in which constant motion of the interface, a
change in its shape, and the emergence of an audible sound
are observed.

Figure 15 illustrates the location of the heating surface
and the vapor and liquid phases during noiseless film boiling.
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0.10
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Figure 14. Comparison of calculations with experimental data [69]

(squares) on the reflection of a sound wave incoming from vapor to the

interface of superfluid helium (He II). R is the coefficient of the reflection

of sound from the interface of helium II phases andT is the temperature of

this surface. The curve shows the results of our calculations.
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It can be seen that a vapor film separates the heater from the
bulk of helium II.We analyze next the processes that occur on
a cylindrical heater. In a stationary mode at a certain value of
the heat load, i.e., specific heat flux q coming from the surface
of the heater, there is a vapor film on this surface with a quite
definite thickness d that does not change with time. An
increase in q results in an increase in thickness d, while a
decrease in q leads to a decrease in d. The film thickness
attains the largest value at the maximum value of q equal to
the density of the peak heat flux qp. The specific heat flux in
the boiling regime is minimal at a recovery heat load qR, when
the direct contact of the heater surface with helium II is
restored, i.e., d! 0.

The system of equations necessary to determine qR is
formulated as follows. It follows from the molecular-kinetic
description of evaporation±condensation (see Eqn (3) for
~j � 0) that there is a relationship between the vapor pressure
near the interphase surface p 00 and the specific heat flux
arriving at this interface (in this case, qR), which may be
represented as

qR � 2:27
ÿ
p 00 ÿ ps�Ts�

� �����������
2RTs

p
; �20�

where Ts is the temperature of the liquid±vapor interface,
ps�Ts� is the pressure that corresponds to this temperature
along the saturation line, and R is the individual gas constant
(for heliumR � 2079 J kgÿ1 Kÿ1). Formula (20) is valid if the
mass flux through the interface is zero. There is no need to
substantiate this requirement in the stationary setting under
consideration. It should be noted that Eqn (20) is valid at a
relatively low intensity of heat transfer when

~qR � qR

ps�Ts�
�����������
2RTs

p 5 1 :

If this inequality is not satisfied, the following formula should
be used instead of (20):

qR � 8

�
p 00

ps�Ts� ÿ 1

�
p 00

���������
RTs

2p

r
; �21�

which is obtained from the conservation equations written for
a four-moment approximation of the distribution function of
vapor molecules over the velocity components. No assump-
tions about the smallness of the relative heat flux ~qR were
made in deriving Eqn (21). Equations (20) and (21) take into
account the specific features of heat transfer at the interface in
the problem under analysis.

Heat transfer across helium II is described by the Gorter±
Mellink relation [73], which can be represented in the one-
dimensional case in a scalar form:

dT

dr
� ÿ f �T � q 3 : �22�

The heat supplied through the interface propagates further
across the liquid (He II). The following equality should be
fulfilled for the stationary regime by virtue of the energy
conservation law:

qi ri � qr ; �23�
where r is the current radius in the liquid, q is the heat flux
density at this distance from the axis of the cylindrical
coordinate system, ri is the radius of the interphase surface,
and qi is the density of the heat flux that enters this surface.
Since the mode of restoration of direct contact of He II with
the heater is considered, the thickness of the vapor film is
d! 0; i.e., ri � rs, where rs is the heater radius and qi � qR.
Thus, q � qRrs=r. If this expression for q is substituted into
the Gorter±Mellink formula (22), we arrive at

dT

dr
� ÿ f �T � q

3
Rr

3
s

r 3
; �24�

where f �T �, qR, and rs do not depend on r; therefore, the
variables in this equation are separated, which allows us to
write� T1

Ts

dT

f �T � � ÿq
3
Rr

3
s

�1
rs

dr

r 3
: �25�

We now integrate both sides of formula (25), setting the
corresponding limits and taking into account that T1 � Tb,
whereTb is the temperature of He II not perturbed by the heat
flux (this is the temperature of the free surface of helium II).
As a result, we arrive at

Ts ÿ Tb � ~f �T � q
3
Rrs
2

; �26�

where ~f �T � � �Ts ÿ Tb�=
� Ts

Tb
�1= f �T �� dT. The vapor pres-

sure above the free surface of helium II along the saturation
line corresponds to the temperature of this surface, i.e., is
equal to pb. The vapor pressure inside the film p 00 should be
equal in stationary conditions under mechanical equilibrium
to the sum of pb and the hydrostatic pressure, the value of
which is determined by the depth h to which the heater is
immersed in He II:

p 00 � pb � rgh ; �27�
where g is the acceleration of gravity.

x Tb
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T00q d

hHe II

Vapor élm

Heater

Figure 15. Schematic rendering of noiseless boiling of helium II. A vapor

film with thickness d separates the bulk of superfluid helium from the

surface of the heater immersed to the depth h into this liquid. q is the

specific heat flux supplied to the lower boundary of the vapor±helium II

interface, which has temperature Ts, T
00 is the temperature of vapor in the

film, and Tb is the temperature of free space of helium II (evaporation

surface).
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For given Tb, h, and the known dependence of the satura-
tion pressure of helium on temperature, the system of three
equations, (20), (26), and (27), contains three unknown
quantities, qR, p

00, and Ts, which can be found by solving
this system. The surface temperature of the liquid (He II)Ts in
contact with the vapor filmmay vary, depending on the depth
to which the heater is immersed in helium II, from Tb to
Tb � �dT=dp�sat rgh.

The solutions to the problem obtained by the method
described above show that the temperature of the He II inter-
face for small diameters of heaters is close to Tb, and for large
ones, to Tb � �dT=dp�sat rgh. It follows from Eqn (20) that
the value of the recovery heat flux qR at small diameters
should be higher, since ps�Tb� < ps�Tb � �dT=dp�rgh�. It
should be noted that in the formulation of the problem
under consideration the vapor pressure p 00, by virtue of (27),
only depends on the pressure pb above the free surface of
helium II and the heater immersion depth h. A comparison of
the calculated data to the experimental results presented in
[72] shows that agreement is better at small heater diameters,
i.e., when the thermal resistance in the liquid is relatively
small, and the efficiency of heat transfer is driven by processes
that occur at the interface between helium II±vapor phases.

The considered approach was used later to determine the
recovery heat loads in experiments on the boiling of super-
fluid helium on the surface of spherical heaters 4.8 and
6.0 mm in diameter [74]. Good agreement was obtained
between the calculated and experimental results for the
spherical geometry.

It should be noted at the end of this section as a summary
of the experimental studies in which the condensation
coefficient was determined that its value is close in the first
approximation to unity. This conclusion may be based on the
results of [56, 77] for the condensation of mercury and
potassium vapor [57, 78], intense evaporation of iodine [60,
61], supersonic air condensation [65], and reflection of sound
from the interface of superfluid helium [66±68]. The same
conclusion follows from reviews of the condensation coeffi-
cients for water [4, 79], since this is quite explicitly asserted in
[79], while it can be seen from [4] that a significant dispersion
of experimental data on the condensation coefficient of water
is apparently due to the fact that themeasurements weremade
under different conditions. Smaller values were obtained in an
indirect way and at a distance from the interface that was
significant compared to the average mean free path of vapor
molecules. If this circumstance is taken into account, the
conclusion that the water condensation coefficient is close to
unity becomes substantiated.

4. Condensation from a vapor±gas medium

The problem of evaporation and condensation from a vapor±
gas mixture is more involved than analogs for a one-
component medium; indeed, in the molecular-kinetic
approach, it is necessary to solve not one, but two kinetic
Boltzmann equations, which contain four collision integrals.
Consequently, finding the solutions becomes a more challen-
ging task, and the time needed to obtain them increases.
However, the problem itself is more interesting, also from the
perspective of basic studies, since it enables unknown features
of the behavior of such systems to be discovered. This
problem is also of importance for applied research, since
most processes of transfer through interfaces implemented in
practice occur specifically in the contact of the condensed

phase with a vapor±gasmixture, for example, the evaporation
of water into air.

Transfer processes occur in many heat and mass exchang-
ers and devices, which are due to the evaporation of a liquid at
a certain temperature, the movement of the formed vapor
through the vapor±gas mixture, and the condensation of this
vapor on the surface, the temperature of which is maintained
lower than that of the evaporation surface. Phenomena of this
kind take place during the drying of various bodies, the
formation of protective coatings for elements of power
generation equipment, the distillation of substances under
conditions of reduced pressure (vacuum distillation, chemical
vapor deposition), etc. It is noted in today's publications on
this topic that the exploration of condensation±evaporation
processes in the presence of a noncondensable component is
important for the development of technologies for storage
and transportation of cryogenic fuel, both on earth and in
space. Consequently, finding the conditions for efficient
condensation of vapor from a vapor±gas mixture is a very
important task in studying the corresponding processes of
heat and mass transfer and the design and development of
engineering devices intended for various purposes.

It is well known that the presence of a noncondensable
component in a vapor±gas mixture reduces the intensity of
condensation to such an extent that a kind of blocking of the
condensing surface occurs in a number of cases, i.e., vapor
ceases to condense at all. It is clear that finding such
conditions is very important for the design and development
of various types of condensers.

It is generally believed that vapor is `delivered' to the
surface due to diffusion, and the phase interface is imperme-
able to gas, i.e., the gas mass flux is zero, jg � 0. It should be
noted that the diffusion model is strictly valid for low
concentrations of vapor or gas. Using the condition that the
mass flux density of the noncondensable gas is zero, i.e.,
rD dCg=dxÿ rCgux � 0, the following formula may be
derived for the mass flux density of the condensing substance:

jv � rD
L

ln

�
1ÿ Cv�x � L�
1ÿ Cv�x � 0�

�
: �28�

Here, Cv � rv=r is the relative partial density, rv is the vapor
density, r is the density of the entire mixture, D is the
coefficient of mutual diffusion, jv is the vapor mass flux
density, and L is the size of the region under study.

It should be emphasized that the use of a purely diffusion
approach to condensation or evaporation is not always
justified. As a result of the evaporation of substance, the
noncondensable component (gas) is apparently `driven away'
by the vapor moving from the interface. Situations are
possible where the gas content in the system is small, while
the evaporation rate is quite high to completely `drive the gas
away' from the interface. The relative partial density near the
evaporating surface tends in this case to unity, i.e.,
Cv�x � 0� ! 1. Formula (28) is not applicable in such a
situation and, as a consequence, calculations should be
made using alternative approaches. However, another limit-
ing case can also be realized, when the pressure of the
noncondensable component is much higher than the vapor
pressure. The process of cryopumping of water vapor through
a region filled with gaseous argon was studied in [80].

The argon pressure in the systems under consideration
ranges from 0:5� 10ÿ3 Torr to 20:0� 10ÿ3 Torr, while the
water vapor pressure is several orders of magnitude lower,
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being 10ÿ8ÿ10ÿ6 Torr. The flows of the noncondensable
component (argon) in such systems correspond to the
transient or viscous flow regime. The setup of the problem is
shown in Fig. 16 for rectangular and cylindrical interfaces.

Water vapor enters the system from a `hot interface' (gas-
releasing surface in Fig. 16); the rate of gas release from the
surface is considered to be known and is determined by the
material from which surfaces that limit the area under study
are made. It is usually assumed that water vapor released
from the surface is delivered to the opposite surface due to
diffusion and condenses there (cryosurface in Fig. 16). How-
ever, the use of this diffusion approach does not enable
experimentally observed data to be obtained. For example,
if the argon pressure is PAr � 2� 10ÿ3 Torr, the argon
density, respectively, is rAr � 4:27� 10ÿ6 kg mÿ3. As noted
above, the water vapor pressure is several orders of magni-
tude lower: PH2O � 10ÿ6 Torr; therefore, the density of water
vapor is rH2O

� 0:96� 10ÿ9 kg mÿ3. Thus, the density of the
mixture r � rAr. As a consequence,

CH2O �
rH2O

r
� 0:96� 10ÿ9

4:27� 10ÿ6
:

If CH2O 5 1, we obtain then from Eqn (28)

jv � rD
L

ÿ
CH2O�0� ÿ CH2O�L�

�
: �29�

The experimentally observed mass flux density of water
vapor is 10ÿ8 kg mÿ2 sÿ1. Equation (29) may be used to
determine what difference in relative densities is necessary to
obtain such a value of the mass flux density, i.e.,

CH2O�0� ÿ CH2O�L� �
jvL

rD
: �30�

The size of the area under investigation is L � 0:914 m,
and the diffusion coefficient isD � 3� 10ÿ5 m2 sÿ1. Further,
it follows from (30) that CH2O�0� ÿ CH2O�L� � 71:35. Since
the relative density is by definition less than unity, the
obtained values of CH2O�0� and CH2O�L� cannot be realized.
Thus, the use of the diffusion approach does not allow
obtainment of experimentally observable results.

It turns out that the problem of cryopumping of water
vapor through an argon medium may only be solved and
the dependence of the pressure on the distance to the
cryopanel be determined using the molecular kinetic
approach [80]: the Knudsen numbers for argon and water
vapor under the considered conditions are fundamentally
different: 3:0� 10ÿ3 < KnAr < 2:0, KnH2O 4 1, i.e., the state
of argon is close to continuous, while that of water is close to
free-molecular. The corresponding results and the calculation
technique are presented in [80]. However, to apply this
method in the entire domain under study at low Knudsen
numbers for both components, significant computer resources
are required. It is proposed to use in this case a `matching'
approach, in which the outer region is described using the
equations of gas dynamics, while the near-surface Knudsen
layer is described by kinetic methods. Thus, there are three
options to describe condensation from a vapor±gas mixture.
In the first, most general, approach, the system of kinetic
equations is solved in the entire domain of computations. The
second option is based on the `matching' technique. In the
third, most approximate, approach, results of the corre-
sponding solution for a one-component medium may be
used. It is clear that the last option has a narrower field of
application, which is limited by the available `one-compo-
nent' results.

A solution to the system of two kinetic Boltzmann
equations in the entire computational domain was obtained
in [81] for the problem of recondensation in the presence of a
noncondensable component for the Knudsen numbers for
vapor equal to 0.5, 0.1, and 0.01. The method of direct
numerical solution was used to this end [82]. Good agree-
ment with the results obtained in [83] by the adapted Direct
Simulation Monte Carlo (DSMC) method has been shown.
Proposed and implemented in [81, 84] was a technique for
calculating essentially nonequilibrium flows of three-compo-
nent mixtures, for which the collision cross sections and
masses of the components differ by several orders of
magnitude. The technique developed is based on the applica-
tion of method [82]. This approach was used to investigate
recondensation during themovement of vapor through a gas±
dust mixture, taking into account evaporation and condensa-
tion on the surfaces of particles (dust grains, drops, clusters)
with a relatively large size and mass. A solution was found in
[85] for a system of two kinetic Boltzmann equations for the
problem of droplet evaporation in a vapor±gas medium at a
large ratio of the gas and vapor densities. The real situation of
water evaporation at room temperature into the ambient air
was considered.

We discuss next the second (`matching') and third (`quasi-
continuous') approaches to the description.

4.1 Conjugation of solutions of a system
of kinetic and gas-dynamic equations
The method of joint solution of the Boltzmann kinetic
equation (BKE) and the CM equations enables, on the one
hand, the Navier±Stokes equations to be `provided' with the
correct boundary conditions that take into account non-
equilibrium singularities near the interfaces, and, on the
other hand, a significant reduction in computation time.

In using this approach, the kinetic region, i.e., the domain
in which the problem is solved using a single BKE or a BKE
system (for a mixture of gases), is located directly near the
interface, and its thickness is several free paths of vapor (or
gas) molecules.
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Figure 16. Cryopumping of water vapor through a region filled with

gaseous argon. Two implementations of recondensation of water vapor

through the volume occupied by gaseous argon are shown: for (a) planar

and (b) cylindrical geometries. Water vapor is supplied from a surface that

has a temperature Thot � 300 K, passes through a layer of gaseous argon,

and condenses (desublimates) on a cryosurface whose temperature is

Tcold � 125 K. L is the distance between the surface that releases the

water vapor and the cryosurface in the case of planar geometry, R is the

radius of the surface that releases gas, and d is the diameter of the

cryosurface for the cylindrical geometry.
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The rest of the semi-space is the region of a `continuous'
medium, in which the solution is found using the system of
conservation equations for the mechanics of a continuous
medium (Fig. 17, where the subscripts v and g refer to vapor
and gas, respectively).

If the degree of rarefaction of a gas is relatively small, i.e.,
the Knudsen number is much less than unity, the behavior of
the gas may be described without going into the details of
molecular interactions. Consequently, the deviations from
local thermodynamic equilibriumare small far from the phase
interfaces, and the conservation equations can be used to
describe heat and mass transfer. It is known at the same time
that for small Knudsen numbers the DF is close to the
Chapman±Enskog function, which, in the absence of heat
flux and viscous stresses, transforms into the Maxwell
distribution. Thus, the entire domain under investigation
may be schematically divided into a `kinetic' region, which
is directly adjacent to the interface, and a region of a
`continuous' medium, which is separated from the interface
by a distance of several averagemean free paths of gas (vapor)
molecules. At the boundary between the kinetic region and
the `continuous'-medium region, solutions are `matched'.
This procedure is schematically illustrated in Fig. 18. Both
domains are separated by a conventional border, indicated in
the figure by a dashed line.

As noted above, the flow parameters of the `kinetic region'
are determined from the solution of one BKE (for pure vapor
or gas) or the BKE system (for a mixture). The algorithm to
solve the Boltzmann kinetic equation assumes that to do so
the velocity distribution function ofmolecules `flying' into the
kinetic region from the region of a continuous medium must
be known. This function is denoted in Fig. 18 as fi, where
i � v; g for a two-component mixture and i � v (or g) for a
one-component medium.

Used as such an input is the Chapman±Enskog function
with parameters from the first point of computation in the
`continuousmedium region' f 1

i � f �r1i ; u 1
i ;T

1
i �, i � v; g. This

function for a one-dimensional flow may be represented as
follows:

f 1
i � fM

�
1ÿ txx

2p

c 2x
RT
ÿ qx

p

cx
RT

�
1ÿ 1

5

c 2

RT

��
; �31�

where fM is the Maxwell distribution function calculated
using the parameters at point 1,

f 1
M �

n1

�2pRT1�3=2
exp

�
ÿ�xx ÿ u1�2 � x 2

y � x 2
z

2RT1

�
; �32�

cx is the projection of the relative velocity of the molecule on
the x axis,

cx � xx ÿ u1 ; �33�
txx is the viscous strain,

txx � 4

3
m
qu
qx
� 4

3
m�T1� u2 ÿ ufin

2Dx
; �34�

and qx is the heat flow,

qx � ÿl qT
qx
� ÿl�T1� T2 ÿ Tfin

2Dx
: �35�

The pressure p and temperature T in (31) are equal to the
corresponding parameters at point 1 at the nth time step.

The solution of the kinetic equation is used to determine
the velocity distribution function of molecules at each point
of computation in the `kinetic domain'. The function
obtained is then used to calculate in this region the macro-
parameters of the mixture, including the macroparameters at
the point nfin, i.e., rfin, ufin, pfin, andTfin (see Fig. 18). Next, the
system of conservation equations for the continuous medium
is solved, the boundary conditions for these equations being
the macroparameters previously found at the point nfin.

It should be noted that, in performing calculations using
the matching of solutions, negative values of function (31)
may emerge. This may be due to an incorrect choice of the
boundary where the solutions are matched. To eliminate this
defect, the kinetic domain should be extended by shifting this
boundary to the region of a continuous medium.

An important condition for obtaining smooth conjuga-
tion of the solutions is the exact equality of the fluxes of mass,
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Figure 17. Combined method of solving a system of kinetic and gas-

dynamic equations for an evaporation±condensation problem. The

solution is found in the kinetic region using the MKT methods for gases

(in terms of the velocity distribution of molecules), while in the continuum

medium, the CM system of conservation equations is employed.
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Figure 18. Illustration of the matching procedure. The flow macropara-

meters in the kinetic region are determined from the solution of a single

Boltzmann kinetic equation or a system of such equations. The quantities

from the last calculated point nfin in the kinetic region, i.e., r �nfin�i , u
�nfin�
i ,

and T
�nfin�
i , are used as boundary conditions for the equations of

continuum mechanics. Used as a boundary condition for the BKE at the

boundary of the matching of the solutions is the Chapman±Enskog DF

with the parameters from the first computational point of the `continuous

medium region': r 1
i ; u

1
i ;T

1
i , i.e., fi � f �r 1

i ; u
1
i ;T

1
i �.
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momentum, and energy across the boundary where the
solutions are matched. In performing the numerical integra-
tion of function (31) (Chapman±Enskog), the requirement of
exact equality of flows is not satisfied. To fulfill this
condition, the fM function is corrected in the following way:
the macroparameters n, T, u in fM are replaced by close
parameters n �, T �, and u � obtained as a result of the iterative
procedure.

Thus, the combined solution of the conservation equa-
tions and the Boltzmann equation consists of the following
operations.

(1) The solution of the conservation equations at the
previous step in time (at the first step, initial conditions) is
used to determine the distribution functions of the molecules
that move out of this region.

(2) The Boltzmann equation is solved in the regions close
to the interface (evaporation or condensation surface).

(3) The solution of the Boltzmann equations is used to
find the macroparameters of the vapor at the boundaries of
the computation regions.

(4) The equations of conservation of mass, momentum,
and energy are solved in the continuous medium region.

We consider as an example a one-dimensional semi-
infinite problem of condensation of vapor on an interface.
The condensed-phase temperature is Ts, and the coordinate
of this surface x � 100. The gas in the 0 < x < 100 region has
at the initial moment pressure p1, temperature T1, and
velocity u1.

Solutions to the nonstationary problem for various values
of theMach number are displayed in Figs 19±21. The profiles
of macroparameters (density, temperature, and velocity) at
various times for subsonic condensation (Mach number
M1 � 0:109) are shown in Fig. 19a, and the results for
supersonic condensation (Mach number M1 � 1:09) are
shown in Fig. 19b. The condensation surface is located at
the coordinate x � 100. The values are displayed in Figs 19±
21 in dimensionless form. The pressure and temperature of
the gas at infinity �p1;T1� are used as the baselines to reduce
the parameters to a dimensionless form, and the speed of
sound at infinity a1 is employed as the velocity scale. In the
figures, ps is the vapor pressure that corresponds to the
temperature of the condensed phase, i.e., ps � p�Ts�.

Figure 20 compares the results obtained in the matching
approach with the solution to a model BKE (the Bhatnagar±
Gross±Krook (BGK)model) [86]. The results of thematching
approach are shown by curves, while the solutions to the
model BGK equation are displayed as squares, triangles, and
dots.

Figure 21 shows the stationary solution to the problem of
subsonic condensation with the Mach numberM1 � 0:34.

4.2 Description of vapor condensation
through a vapor±gas mixture using an approximate
kinetic solution for a one-component medium
We now consider the one-dimensional stationary problem of
condensation from a vapor±gas mixture in the following
formulation [87]. The system contains a certain amount of
gas (noncondensable component). The temperature of the
interface and the pressure and density that correspond to this
temperature along the saturation line are known. A vapor
flow is supplied to this condensation surface from afar.
Similar to condensation of pure vapor, which is considered
in Section 3, two gas-dynamic quantities, for example, the
density and temperature of the oncoming vapor flow, are

assumed to be known far from the interface. It is required that
the distribution of density and temperature along the
coordinate and the mass flux density of the condensing
vapor be found. Since a vapor±gas mixture is considered, it
is of importance to determine, among other things, at what
amount of gas the vapor condensation on the cooled surface is
at all possible.

The presented problem is described in the mechanics of
continuous media by four conservation equations: three
equations of conservation of mass, momentum, energy for
themixture as a whole and the equation of conservation of the
mass of the component. The solution to the system of three
equations of conservation of mass, momentum, and energy
obtained for pure vapor at a Prandtl number of Pr � 3=4 [54]
is in this case also valid for the entiremixture, since only vapor
flows from afar. Therefore, information additional to this
solution can be obtained from the equation of conservation of
the mass of a component, gas or vapor. The latter can be
represented as follows:

j � rvuÿ rD
dCv

dx
; �36�

where rv is the vapor density, r is the density of the mixture, u
is the velocity of its movement, D is the coefficient of mutual
diffusion of vapor and gas, Cv � rv=r is the relative partial
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vapor density, x is the coordinate along the axis normal to the
interphase surface, and j is the vapormass flux density (in the
considered one-dimensional stationary formulation, this
value is constant). Consequently, the solution of Eqn (36)
with the Lewis±Semyonov number equal to one, Le � 1, has
the form

Cv�x� � 1ÿ exp

�
3 j

4

� x

0

dx

m

��
1ÿ Cv�0�

�
; �37�

where m is the dynamic viscosity of the mixture. By definition,
Le � D=a, where a is the thermal diffusivity of the mixture.

Thus, if the specification of two gas-dynamic quantities,
as in the case of condensation of pure vapor, makes it possible
to calculate the mass flux density j, Eqn (37) allows
obtainment of the sought-after dependence of the partial gas
density on the coordinate for the value of this quantity set at
x � 0. The equality Cv�0� � 0 determines the maximum
possible condensation mode, since any further increase in
the amount of gas should lead to a negative vapor density.
For this case, i.e., for Cv�0� � 0, Eqn (37) takes the form

C lim
g �x� � exp

�
3 j

4

� x

0

dx

m

�
: �38�

Formula (38) may be used to calculate the largest
(blocking) amount of gas in the mixture. Condensation is
only possible in this setup until the inequality� 0

ÿ1
rg dz4

� 0

ÿ1
r lim
g dz �39�

holds valid, where dz � �3=4�� j=m� dx. It follows from
Eqn (38), given that C lim

g � r lim
g =r, that

r lim
g

r
� exp

�
3 j

4

� x

0

dx

m

�
; i:e:; r lim

g � r exp
�
3 j

4

� x

0

dx

m

�
:

If we substitute into Eqn (39) the density r lim
g obtained in this

way, where r is found from the solution of equations of
conservation ofmass as r � r1u1=u, and u=u1 is determined
from the solution of the equation of conservation of
momentum for the one-component medium [54], we arrive at� 0

ÿ1
rg dz4r1

� 0

ÿ1

exp z

1� a1 exp z
dz ; �40�

where a1 is the coefficient in the aforementioned equation of
motion [54], u=u1 � 1� a1 exp z, u is the velocity of vapor in
the cross section z, and u1 is the velocity of vapor at z! ÿ1.
Integration of the right-hand side of Eqn (40) gives� 0

ÿ1
rg dz4

r1
a1

ln j1� a1j : �41�

The same transformations for Le � 3=4 yield the following
expressions, which differ from formulas (37), (38), (40), (41)
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obtained for Le � 1:

Cv�x� � 1ÿ exp

�
j

� x

0

dx

m

��
1ÿ Cv�0�

�
; �42�

C lim
v �x� � 1ÿ exp

�
j

� x

0

dx

m

�
; �43�� 0

ÿ1
rg dz4r1

� 0

ÿ1

exp �4z=3�
1� a1 exp z

dz ; �44�� 0

ÿ1
rg dz4

r1
a1

�
3ÿ ln j1� a

1=3
1 j

a
1=3
1

� 1

2a
1=3
1

ln

�����a1=31 ÿ
1

2

�2

� 3

4

����ÿ ���
3
p

a
1=3
1

arctan

� ���
3
p

a
1=3
1

2ÿ a
1=3
1

��
:

�45�

Calculations of the right-hand sides of inequalities (41)
and (45) for the solutions u=u1 � 1� a1 exp z are presented
in Table 3, wherein the values of a1 are taken from [54].

The above description is developed, as for pure vapor,
with consideration for the compressibility of the condensed
medium, implying that both the density of themixture and the
density of its individual components (vapor and gas) may
vary along the coordinate. The faster the vapor flow moves,
the stronger the noted compressibility is manifested. On the
contrary, ifMach numbers for this flow are low, the density of
the vapor±gas mixture may be considered in the first
approximation to be constant. Condensation from a vapor±
gas mixture in this approximation is considered, for example,
in monograph [88].

To analyze the calculated quantities, we emphasize that,
as per the formulation of the problem, a vapor flow is
continuously supplied to the working volume through the
right inlet section and, having passed through a layer of a
binary vapor±gas mixture, it successfully condenses on the
left section of the system. The system initially contains some
amount of gas. Solutions (41) and (45) make it possible to
determine the largest values of this amount, at which, in
principle, one-dimensional stationary condensation is possi-
ble. If the amount of gas in the system is larger, it will prevent
the entire incoming vapor from reaching the interface and
successfully condensing on it. The vapor mass flux density
will be in this case less than the value that corresponds to the
given values of the density and temperature of the vapor at the
inlet. As a result, the vapor density in the inlet section should
increase, while, according to the formulation of the problem,
it is considered given ab initio. In another real setup, in which
the vapor temperature in the inlet section T1 and the vapor

mass flow density j are known, the solution of the momentum
conservation equation [54] enables determination of the
vapor density in this section r1 that corresponds to the
given T1 and j. If the maximum amount of gas is exceeded,
the system will not be able to maintain this value of r1;
consequently, the mass flux density j must also be different,
while initially it is assumed to be given.

The one-dimensional setting, apparently, is themost rigid,
since the gas has noway to escape under the pressing action of
the oncoming vapor. It can only collect near the interface,
thereby preventing condensation and eventually resulting,
under some of the conditions considered above, in the
complete termination of the removal of vapor from the
system. Two-dimensional and three-dimensional settings
may be more `liberal' in this sense, since the gas can move
away from the condensation surface in a tangential direction.
However, if the system is closed, then, when a certain initial
amount of gas is exceeded in it, conditions for blocking the
condensation surface will eventually also emerge in multi-
dimensional problems. These conditions depend on the
relationship between the condensing and vapor-imperme-
able surfaces, their temperatures, etc., but it is unlikely that
the blocking amount of gas will be less than the estimate made
for the one-dimensional setting. Consequently, it may be
assumed that, if inequality (39) is satisfied in designing a
condenser, such a device will be able to provide the designed
condensation rate j determined by r1 and T1.

Consequently, vapor will successfully condense in the
system under consideration with the same mass flux density
j for various amounts of gas in the system. The only condition
of importance is that this quantity not exceed the value
determined by inequality (39). The distributions of the
density and temperature of the mixture along the coordi-
nate, which do not depend in this case on the amount of gas
the system initially contained, are determined by solutions of
the momentum conservation equation [54]. An increase in the
amount of gas from zero (condensation of pure vapor) to a
limiting value only leads to a redistribution of partial
densities. The density of the mixture near the interface in the
absence of gas is exactly equal to the vapor density. However,
in approaching the blocking regime, the vapor density at the
interface decreases, while the gas density increases. It should
be kept in mind that, according to the formulation of the
`semi-infinite' problem under consideration, the mass con-
centration of vapor far from the interface is always equal to
unity, i.e., vapor alone rather than the mixture is supplied to
the system. If the density and temperature of the components
in a one-dimensional stationary problem are required to be
constant far from the interface, it cannot be otherwise, since
the interface does not allow gas to pass through. If themixture
rather than pure vapor were continuously inflowing, the
density rg and the pressure Pg of the gas would inevitably
increase in time, and the flow region wherein the gradients rg
and Pg are different from zero would shift in the positive
direction of x. The specific dependence of the vapor density
on the coordinate is determined by solution (37). The quantity
Cv�0� that this formula contains may be estimated for the
known initial amount of gas in the system

� 0
z r in

g dz using the
following relations:

Cv�0� � 1ÿ Cg�0� ; �46�

Cg�0� �
rg�0�
r1

; �47�

Table 3. Quantities calculated for limiting condensation regimes.

a1

� 0
ÿ1 rg dz
r1

4 1, Le � 1

� 0
ÿ1 rg dz
r1

4 1, Le � 3

4

ÿ0.162
0.195

ÿ0.134
0.043

ÿ0.189
ÿ0.127
ÿ0.087
0.039

0.137

ÿ0.013

1.09

0.91

1.07

0.98

1.11

1.07

1.05

0.98

0.94

1.00

0.84

0.68

0.83

0.80

0.85

0.83

0.81

0.81

0.71

1.23
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rg�0�z
2
�
� 0

z

r in
g dz : �48�

It can be seen from Eqn (37) that the mass concentration
of vapor increases most sharply with an increase in the
coordinate at low values of this concentration near the
interface. Consequently, the mass concentration of the gas
sharply decreases in this case. The density of the mass flux of
the condensing substance j is defined in the MKT as the
difference between two oppositely directed molecular fluxes:
the flux ofmolecules j �moving from the interface (as a result
of evaporation) and the flux of molecules j ÿ moving to the
interface. As the interface temperature decreases, the flux of
evaporating molecules j � decreases and, as a consequence,
the resulting condensation flux j increases. Thus, an increase
in the intensity of the process for a pure substance may be
achieved by lowering the temperature of the interface. On the
other hand, if the region under study contains a noncondens-
able gas, the main `resistance' to movement of vapor is due
precisely to collisions with the molecules of this gas. The flow
of vapor molecules to the condensation surface is blocked by
frequent collisions with noncondensable gas molecules.
Moreover, even if the conditions for condensation are
improved by lowering the temperature of the interface, the
required mass flux density of the condensed substance cannot
be attained in this case (and this is the difference from the case
of a pure substance).

The approach presented above does not take into account
the specific features of collisions between vapor and gas
molecules that occur in the immediate vicinity of the inter-
face in the Knudsen layer. To obtain more accurate estimates
of the effect of the noncondensable component on the
features of condensation, it is necessary to use the kinetic
description. Simulations of this kind were carried out in [89],
where it was also assumed that far from condensation surface
vapor alone is located. To find the parameters of the mixture
and each of the components, a model kinetic equation for gas
mixtures was used. The temperature of the phase interface,
the vapor density far from it, and the Mach number of the
incoming vapor were considered to be given. The solution
yields distributions of themacroparameters of themixture for
various initial gas contents in the system. The authors of [89]
note that situations may occur in which the gas present near
the condensation surface prevents the movement of vapor,
which leads to the termination of condensation. Such results
were obtained for several values of the Mach number. For
example, calculations for M1 � 0:1 have shown that one-
dimensional stationary condensation of vapor that passes
through a vapor±gas mixture becomes impossible if� 1
0 rg d�x=l1�5 9:0r1, even at an arbitrarily low tempera-
ture of the interface. This feature near the phase interface is
due to the blocking effect of the gas, which does not allow
vapor to pass to this interface in the required amount.

Using kinetic calculations [89], it is easy to assess the
correctness of the evaluation procedure considered above. It
follows from Table 3 that

� 0
ÿ1 rg dz4r1. Since

dz � 3

4

j

m
dx ; j � r1 u1 ; m � 1

3
r1l1

��������������
8RT1
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r
;
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���
p
p
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�������������
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The Mach number for a monatomic gas is

M1 � ju1j������������������������5=3�RT1
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Hence,
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rg dz � 1:82

�1
0

rgM1 d

�
x

l1

�
:

For a Mach number equal to 0.1, we obtain

1:82

�1
0

rg0:1 d
�
x

l1

�
4r1 :

This implies that, for
� 1
0 rg d�x=l1�5 5:5r1, condensation

of vapor passing through the vapor±gas mixture becomes
impossible. Thus, an accurate kinetic calculation shows that,
if the initial gas content in the system is greater than 9:0r1,
then condensationwith a velocity ofM1 � 0:1 will not occur.
The simplified approach indicates at the same time that
condensation with such a Mach number terminates if the
gas content in the system exceeds 5:5r1.

The following conclusion may be drawn as a result. The
`one-component' method presented in [54] to describe the
condensation of a vapor±gas mixture enables determination
of the limiting amount of gas in the system at which vapor
condensation on the surface is at all possible. In solving this
problem, there was no need to resort to theMKTmethods. It
was sufficient to employ the known results of the application
of such methods to studies of a one-component system (pure
vapor) and to solve the equation of conservation of mass of a
continuous medium component. This is due to the accurate
formulation of the boundary condition for the gas at the
interface owing to its impermeability for this component.

Approach [54] was developed in [90] for vapor condensa-
tion in the presence of a noncondensable component. The
authors of [90] presented their results as a formula that
generalizes Eqn (7) (Section 2.2.2), applicable in the range of
the ratio of molar masses of components 0:034mg=mv 4 1:24
and the corresponding density 0:0084rg=rv 4 2:40 at
1:74rg1=rvs 4 44:0, where rvs is the density of saturated
vapor at the interface temperature Ts.

The authors of Ref. [91] apparently used for an analysis of
condensation from a vapor±gas mixture `one-component'
approximate relations of their own, which are intended to
describe the ``kinetic boundary conditions at the interface.''
They came, as a result, to the conclusion that even a small
amount of noncondensable gas strongly affects the rate of
mass transfer, an observation ``of great practical importance,
especially for the storage of cryogenic liquids.''

Solutions to two problems were presented earlier in [92] in
the linearized formulation: recondensation in a flat layer in
the presence of a noncondensable gas and condensation±
evaporation at the boundary of a semi-infinite volume of a
vapor±gas mixture. The moment method was used to solve
the model kinetic equation. Formulas have been derived that
enable determination of the mass fluxes and concentration
fields in the entire range of Knudsen numbers. As a develop-
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ment of this approach, it was shown in [93] in considering
condensation from a layer of a vapor±gas mixture of
thickness d that the kinetic effects near the interface cannot
be disregarded if the inequality 1ÿ g�0�4Kn is fulfilled,
where g � rv=rmixt, Kn � l=d, and l is the mean free path of
vapor molecules.

4.3 Experimental data on evaporation±condensation
in the presence of a noncondensable component
Adescription of an experimental study and the corresponding
experimental data on the recondensation of naphthalene in
the presence of air are presented in [94]. The experimental
setup was a sublimation chamber consisting of two spheres,
one of which was symmetrically located inside the other.
Deposited on the surface of the inner sphere 30 mm in
diameter was a naphthalene layer, which sublimated in the
course of the experiment. The produced vapor passed
through a spherical gap 60 mm thick and deposited on the
inner surface of the outer sphere 150 mm in diameter. Heat
was supplied to the evaporator, the role of which was played
by the inner sphere, by an electric heater located inside the
evaporator. The condenser (outer bronze sphere) was cooled
by pumping methanol at temperatures from� 0 �C toÿ40 �C
through copper pipes of a heat exchanger wound on the outer
surface of the condenser. The mass flux, i.e., the recondensa-
tion rate, wasmeasured by the weightmethod; thermocouples
measured the surface temperatures of the sublimator and
condenser, which were used to find the corresponding
saturation pressures of naphthalene. The total pressure in
the chamber was measured using a diaphragm vacuum meter
and a U-shaped oil pressure gauge in the range from 10ÿ4 to
10ÿ1 mmHg. The sublimator temperature varied in the range
of ÿ21 �Cÿ10 �C, and that of the condenser, from about
ÿ31 �C to zero. The uncertainties in measuring the tempera-
tures of the inner and outer spheres were �0:1 �C and
�0:4 �C, respectively. The error in the measurement of the
sublimation flow rate estimated by the authors of [94] is�2%.

The experiments yielded values of the mass flux
density (recondensation rate) that ranged from 10ÿ5 to
10ÿ3 kg mÿ2 sÿ1. The minimum saturation pressure at the
corresponding evaporator temperature (about ÿ21 �C)
was 0:485� 10ÿ3 mm Hg, the maximum at a temperature
of � 10 �C was 18:200� 10ÿ3 mm Hg. These values for the
condenser were 0:115� 10ÿ3 mm Hg at ÿ31 �C and
� 6� 10ÿ3 mm Hg at a temperature � 0 �C. The pressure
of the noncondensable component (air) ranged from
1:88� 10ÿ3 mm Hg to 137:10� 10ÿ3 mm Hg. Good
agreement is noted with the results of calculations that
use the diffusion formula for continuous medium condi-
tions and the Hertz±Knudsen formula at a condensation
coefficient of 0.9 for the free-molecular limit.

An experimental study of the recondensation of water,
freon 113, and mercury in the presence of a natural
noncondensable component, air, is reported in [95]. Alumel-
chromium thermocouples with a bead about 0.3 mm in size
were used in the experiment to measure the temperature
distribution in the recondensation gap at an average pressure
of 1±2 mm Hg for water and freon 113 and for mercury at a
pressure from 0.025 to 0.28 mm Hg. It was found in the
experiments that temperature jumps near the interphase
surfaces in the process of mercury recondensation may
amount to about 50% of the total temperature difference.
The authors of [95] came to the conclusion that an important
role is played in suchlike phenomena by the presence of a

noncondensable component, the presence of which must be
quantitatively controlled, and that the most expedient
approach in exploring recondensation is the study of mono-
atomic vapors with a large molar mass at low pressures.

Review [96] contains a formula for determining the mass
flux density during evaporation, which was obtained using
themethods of quantummechanical statistical theory [97]. To
substantiate this formula, the authors of [96] presented the
results of experiments on the evaporation of water near the
triple point in a three-dimensional problem in the presence of
a noncondensable component, the quantitative content of
which was apparently either not recorded by them or not
quoted in [96].

5. Problem of formulating boundary conditions

It becomes necessary in studying transfer phenomena to
formulate boundary conditions at interphase surfaces that
limit the areas under consideration. The so-called quasi-
equilibrium scheme [76], which is the simplest version of
special consistency conditions, is usually (and rather success-
fully) used to this end. A well-known example of this kind is
the so-called sticking conjecture. The temperatures and
velocities of the phases that contact at the interface are as
per this hypothesis equal, i.e., neighboring media do not slide
relative to each other. However, as the transfer rate increases
in the direction normal to the interface, these simple
conditions fail to adequately describe the actual picture near
the interface. The reason for the resulting misrepresentation
of the actual situation is that, in the general case, the transfer
process is a nonequilibriumone and, as a consequence, the use
of the quasi-equilibrium approach is not substantiated. It
becomes relevant in this situation to use the methods of
physical kinetics, in which no restrictions are initially
imposed on the degree of nonequilibrium of the processes
under study. To estimate the degree of nonequilibrium of
transfer problems, it is convenient to introduce nonequili-
brium parameters, the calculation of which enables determi-
nation of whether the quasi-equilibrium scheme or methods
of physical kinetics should be used in each specific case.

(1) The ratio of the flows realized in specific conditions with
respect to the maximum possible flow values determined by the
MKT. We consider the effect of a heat flux with a specific
quantity q on the surface of the condensed phase. When heat
is supplied from the surface of the condensed phase,
evaporation begins. The mass flux density of the evaporating
substance is denoted as j. It is necessary to determine the
relationship between the vapor pressure P 00 and the interface
temperatureTs and the value of j. As noted in Section 2.2.1, to
calculate the mass flux density in the process of evaporation,
Eqn (5) may be used, which approximates the results of
Ref. [54]. This formula shows that, in general, the vapor
pressure during evaporation differs from the equilibrium
pressure that corresponds to the temperature of the interface
Ts along the saturation line.

We consider as an illustration the following situation. A
heat flux q � 2� 106 W mÿ2 is assumed to affect the surface
of water with a temperature Ts � 281 K. Using the relation-
ship between the heat flux and the specific heat of vaporiza-
tion j � q=r, it is easy to obtain the following value: j �
0:81 kg mÿ2 sÿ1. It is assumed in this case that all incoming
heat is consumed for evaporation alone. Equation (5) shows
that at Ts � 281 K (Ps � 1072 Pa, rs � 0:0083 kg mÿ3), the
mass flux density j � 0:81 kg mÿ2 sÿ1 is realized at
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r1 � 0:0048 kg mÿ3. The calculation based on method [54]
shows that in this case P1 � 530 Pa; the pressure in the vapor
at a certain (in the macroscopic sense, rather small) distance
from the interface differs by a factor of approximately two
from the pressure that corresponds to the temperature of this
interface along the saturation line.

For another temperature, namely that of the triple point
of water, Ts � 273:16 K (Ps � 611 Pa) and, thus,
rs � 0:0048 kg mÿ3. Consequently, the maximum mass flux
density of the molecules je that escape from the condensed
phase, which is determined by the formula je�rs

��������������������
RTs=�2p�

p
,

is 0.69 kg mÿ2 sÿ1. The maximum possible evaporation rate
for a stationary setting is approximately 0.80±0.84 of this
value (see above), i.e., about 0.56 kg mÿ2 sÿ1. The maximum
heat flux removed as a result due to evaporation is
q � j r � 1:41� 106 W mÿ2. If the heat flux supplied to the
phase interface is greater than this value, the excess heat will
be spent on heating the condensate, and the temperature of
the interface will increase, which in turn will lead to an
increase in the evaporation rate. Thus, the relation q � j r
will fail due to the capacities of the condensed medium being
finite rather than unlimited, as is implicitly assumed in the
standard approach. Figuratively speaking, the flow of mass
fails to cope with the flow of heat.

It is convenient to introduce in the situation under
consideration the following nonequilibrium parameter,
which is the ratio of the evaporation rate that corresponds
to the incoming heat flux in terms of the vaporization heat
and the mass flux density of molecules that escape from the
condensed phase:

~j � q

rrs
��������������������
RTs=�2p�

p : �49�

The heat flux q that actually arrives at the interface may be
compared with the heat flux Psat

�����������
2RTs

p
determined by the

MKT in the form of the ratio

~q � q

Psat

�����������
2RTs

p : �50�

If the values of ~j and ~q are close to or greater than unity, the
quasi-equilibrium approach cannot be used, and the MKT
methods should be applied.

(2) The degree of rarefaction of the medium that is
characterized by the Knudsen number. The free-molecular
limit, for which the Knudsen number is large, is usually
associated with a high or ultrahigh vacuum. However, given
the current interest in nanosystems, this regimemay also be of
importance under normal conditions. Suppose, for example,
that the magnitude of the heat flux from one wall of a
nanochannel (with temperature Th) to the other (with
temperature Tc) through a flat gas layer 1 nm thick at
atmospheric pressure should be calculated. The average free
path under normal conditions is � 10ÿ7 m, consequently,
Kn � 10ÿ7=10ÿ9 4 1. This implies that the free-molecular
regime is realized in this situation; the use of the standard
Fourier law of thermal conductivity is inappropriate, and the
following formula should be used to calculate the heat flux at
DT=Th 5 1, where DT � Th ÿ Tc:

q � 2 �P

������������
R

2pTh

r
DT : �51�

(3) The ratio of the characteristic times of the correspond-
ing transfer processes. The necessity of using the MKT
methods may be assessed in each specific situation by

comparing the time of kinetic relaxation with the character-
istic time of the process under consideration:

~t � tkin
tproc

: �52�

The kinetic relaxation time under normal conditions is
� 10ÿ9 s. Consequently, if the characteristic time of the
process is about 10ÿ9 s, then ~t � 1. It is necessary to use in
this case the methods of physical kinetics. On the other hand,
if the characteristic time of the process is� 10ÿ3 s, then ~t5 1,
and the methods of continuum mechanics may well be used.

(4) The ratio of the characteristic pressure drops caused by
nonequilibrium effects and specific features of the phenomena
under study (hydrostatic pressure, pressure difference asso-
ciated with surface tension, etc.). For example, in determining
the shape of the interface during film boiling on the surface of
a heater immersed in a liquid (Fig. 22), the following
nonequilibrium parameters may be introduced:

rgh0
0:44 qs=

������������
2RT 0
p ;

2s=Rs

0:44 qs=
������������
2RT 0
p : �53�

The hydrostatic pressure and the pressure jump according to
the Laplace formula are compared in this case with the
pressure difference due to the nonequilibrium heat transfer,
which is determined on the basis of the molecular kinetic
approach. If the presented parameters are comparable to
unity, the methods of physical kinetics should be used.

It seems attractive to use a combined (matched) version of
the description. It implies that the liquid phase and the region
near the interface are described using molecular dynamics
(MD) methods; next, the methods of the kinetic theory of
gases are applied; and at a distance exceeding 10±20 free path
lengths of gas molecules, CM equations are employed.
However, suchlike attempts face certain problems and
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Ps�T 0� � Pv
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Figure 22. Shape of the interface in film boiling on the surface of a

spherical hot body. Rs is the radius of the heated sphere, Ts is its

temperature, T 0 is the temperature of the vapor±liquid interface, Ps�T 0�
is the vapor pressure that corresponds to this temperature along the

saturation line, Pv is the vapor pressure over the free surface of the liquid,

h is the depth to which the center of the sphere is immersed into the liquid,

z and r are the longitudinal and radial coordinates in the spherical

reference frame, h0 is the depth to which the `zero' point of the spherical

reference frame is immersed, j is the angle between the z axis and the

normal to the interface, and d is the thickness of the vapor film.
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difficulties [98]. The characteristicMD time scale is the period
of vibrations of the atoms of the crystal lattice, i.e.,� 10ÿ13 s.
This value is approximately 104 times less than the kinetic
relaxation time in vapor under normal conditions, � 10ÿ9 s.
The time step in the numerical implementation of MD is
usually � 10ÿ14ÿ10ÿ15 s. Consequently, to obtain informa-
tion on the behavior of a system of atoms during the average
time of one collision between them, 105 steps are needed.
Moreover, while in using the matching MKT±CM version
there are no conceptual difficulties in the `exchange' of
information, unresolved difficulties emerge in matching MD
and MKT. One of them is as follows. The MD simulation
methods operate with the coordinates and velocities of the
particles of the system under consideration. It is known at the
same time that such a description of the gas motion is too
detailed in the molecular-kinetic approach. Therefore, a less
complete statistical description of the system's behavior
should be used. Thus, the molecular kinetic calculations do
not enable obtaining the information on the coordinates and
velocities of particles necessary for MD. Consequently, the
exchange by the results of calculations obtained by molecular
kinetic andmolecular dynamics simulation methods becomes
problematic and, as a consequence, these approaches are
difficult to combine.

There are only a few studies wherein the liquid and gas
phases are modeled in considering evaporation and conden-
sation on the basis of a single computational methodÐMD
or kinetic equations suitable for describing both rarefied
(vapor) and dense (liquid) media. Studies [99±103] may be
quoted as examples of such an approach. An original
development of this technique was presented at the 31st
International Symposium on the Dynamics of Rarefied
Gases in report [104], wherein it was proposed to use Grad's
moment method to formulate a closed system of 26 moment
equations. In the opinion of the authors of [104], ``within the
appropriate limits, these equations will be reduced to a system
of Navier±Stokes±Fourier equations for liquid and vapor.
Our primary interest is focused on the study of nonhydro-
dynamic effects, in particular, transfer through the transition
region and interactions of the transition region with the
Knudsen layer.''

6. Application of molecular dynamics methods

It should be noted that the formulation of the problem for
kinetics differs from that for molecular dynamics. The
differences are as follows. The condensate±vapor phase
interface in the kinetic approximation is a geometric surface,
while a transition layer emerges in theMD approach, wherein
the properties change quite significantly, but continuously,
from the values for condensate to the values for vapor. To
carry out kinetic calculations, a condensate-vapor phase
equilibrium line (saturation line) should be specified, i.e.,
dependence of the equilibrium pressure or density of
saturated vapor on temperature. Such information, which
was obtained experimentally for most substances, is pre-
sented in the form of tables, approximating formulas or
graphs. This dependence is described by the Clapeyron±
Clausius equation (CCE), which allows calculating the
derivative of the saturation pressure with respect to tempera-
ture �dP=dT �sat:�

dP

dT

�
sat

� rr 00r 0

T�r 00 ÿ r 0� ; �54�

where r is the heat of vaporization, and r 00 and r 0 are the
densities of saturated vapor and liquid, respectively. It is not
difficult to find a solution to this equation under the
assumption that the vaporization heat is constant for states
far from the critical point, when r 005 r 0 and the Mendeleev±
Clapeyron equation is valid:

Psat � r 00RT ; �55�

where R is the individual gas constant. The two presented
equations yield in this case

Psat�T � � Psat�T0� exp
�
r

R

�
1

T0
ÿ 1

T

��
; �56�

where Psat�T0� and Psat�T � are the saturation pressures at
temperature T0 and T, respectively. Consequently, if the
saturation pressure at a certain temperature T0 and the heat
of vaporization r are known, the saturation pressure at any
temperature T can be easily calculated.

The MD methods make it possible to avoid empirical
determination of the saturation pressurePsat�T0� and the heat
of vaporization r. It is sufficient to only set the parameters of a
potential of interaction between the condensate molecules
(atoms), and the saturation line can be obtained by calculat-
ing the corresponding equilibrium states, moreover, in the
entire temperature range, including near the critical point.

To determine the concentration (density of the number of
atoms) of saturated vapor as a function of temperature, a
series of MD calculations for argon has been carried out in
our studies [105±107], where theMDmethodwas successfully
applied to study intense evaporation in vacuum and to solve
the recondensation problem. The smoothed Lennard-Jones
potential [108] with s � 0:3426 nm and a cutoff radius of
0.8125 nm was used for modeling. The results of these
calculations obtained in Ref. [107] are displayed in Fig. 23.

The performed calculations of the saturation line of the
model argon are a necessary first step, whichmakes it possible
to match the MD and MKT approaches for comparative
modeling. Thus, for kinetics, the temperatures of the inter-
phase surfaces and the equilibrium vapor densities corre-
sponding to them along the saturation line are set, while, in
molecular dynamics, only the temperatures of condensed
phases (`hot' and `cold' liquids) are specified.
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Figure 23.Density of the number of atoms in saturated argon vapors as a

function of temperature.
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The progress made from the Hertz±Knudsen formula to
the solution to rather complex problems, including those for
vapor±gas systems, under strongly nonequilibrium condi-
tions has shown that application of the MKT methods is
very fruitful. However, to solve the main equation of this
theory, the Boltzmann kinetic equation, boundary conditions
are needed in the form of the velocity distribution function of
molecules that move from the interface. Two flows of
molecules are involved in the formation of the DF. One of
them is due to directly evaporated molecules, while the other,
to reflected ones. A more complex classification is proposed
in [109±112]. For example, molecular exchange is also
considered in [112], which is understood as a short-term stay
of an arriving molecule in a condensed phase, after which this
molecule returns to vapor. This implies that in the opinion of
the authors of [112] the reflected molecules are those that,
without lingering on the surface, immediately move into the
vapor phase, while those that have undergone molecular
exchange appear there after a relatively short time. It is not
very clear what the purpose of such a division is, so we assume
further that the evaporated particles are the molecules that
come from the bulk of the condensate into the vapor, while
the reflected molecules are those that, initially being in vapor,
return to it after a stay in the interphase transition layer
(interphase). Strictly speaking, such a stay may affect the
formation of a flow of evaporating molecules, but for now we
ignore this effect, leaving for further research the identifica-
tion of the conditions under which such an effect may be
significant.

To determine the DF of evaporated particles, we consider
the movement of atoms from the bulk of the condensed phase
to its surface through the interphase layer. Assuming that the
condensed phase is at rest, and a flow of evaporated matter
flows out of the interphase layer, it should be recognized that
a mass flow emerges inside this transition layer. The density
gradually decreases, and the flow rate increases in the
transition from the condensate to the outer boundary of the
interphase layer. The heat flux supplied to the condensate is
spent in this case on the formation of the corresponding mass
and heat flux in the interfacial layer, the atoms of which
acquire a nonzero flux velocity and continue to exchange
kinetic energy in collisions with the nearest neighbors. As a
result of such interactions, part of the energy flux is used to
overcome the attraction of atoms, and the other part, to
maintain the thermal energy of the atoms (feeding their
kinetic energy). Molecular dynamics simulations [105, 107]
show that what occurs is not individual atoms abruptly
overcoming a high potential barrier equal to the vaporiza-
tion energy, but rather a gradual decrease in the effective
work function, since the density of atoms near the outer
boundary of the transition layer is relatively small and
approaches the density of saturated vapor.

The MD simulations show that the DF of atoms in the
condensed phase, represented in terms of kinetic energy
el � mu 2

l =2, where u1 is the component of the velocity of an
atom in the liquid normal to the interface, is Maxwellian, i.e.,
has the form

f �ul� dul �
�

m

2pkBT

�1=2

exp

�
ÿ mu 2

l

2kBT

�
dul : �57�

It may be assumed in the naõÈ ve mode of evaporation
that if an atom that escapes from a fluid had in the fluid
average potential energy eb and kinetic energy el related to

the velocity component directed to the vapor, it would
have in the vapor kinetic energy e � e1 ÿ eb. Since
de � mu du, del � mul dul, and de � d�el ÿ eb� � del, where
u is the component of the atom velocity in the vapor
normal to the interface, Eqn (57) may be used to derive a
formula for the DF of vapor atoms over this velocity F�u�.
Using the definition eb � kBTb, we introduce dimension-
less quantities T � � T=Tb, e � � e=�kBTb�, and u � 2=2 �
mu 2=�2kBTb�. Taking into account that 2 f dul � Fdu �,
we transform the expression for F into

F�u �� � 1���������
pT �
p exp

�
ÿ u � 2=2� e �b

T �

�
u �����������������������

u �2=2� e �b
p : �58�

Figure 24 displays the distribution functions F calculated
for the fixed value of the potential barrier, eb � 1, and various
temperatures of liquid. We omit below the � superscript of
T �, e �b , and u

�. The figure shows that the maximum of the DF
of evaporated particles is shifted at higher temperatures to
higher velocities. Thismay be explained by the fact that, as the
temperature of liquid increases, the energy of motion and,
consequently, velocities of the particles increase as well. It can
also be seen that an increase in the temperature of the surface
results in a growth in the number of particles that escape the
surface of the liquid.

Figure 25 displays the distribution functions F�u� calcu-
lated for the fixed temperature of liquid T � 1 and various
heights of the potential barrier eb. The black curve corre-
sponds to the function calculated using Eqn (58) for eb � 0.
Other curves are obtained for eb > 0.

In analyzing the plots, it can easily be seen that, as the
potential barrier increases, the maximum of the velocity DF
of molecules shifts to higher velocities. An explanation of this
behavior is that a larger kinetic energy is required to
overcome a `higher' potential barrier. It can be seen at the
same time that an increase in the barrier height results in a
decrease in the number of evaporated particles.

Thus, the main conclusion of the presented analysis of the
naõÈ ve model of evaporation is that, as the barrier for
evaporation tends to zero, the DF for evaporated molecules
tends to half-Maxwellian, and the fraction of molecules
evaporated in the case of a large potential barrier decreases.
We show below that in reality evaporation is not an event by
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Figure 24. (Color online.) Distribution function F of evaporated atoms for

various temperatures of liquid T � and fixed potential barrier e �b � 1 in the

naõÈ ve model of evaporation.
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which a molecule individually overcomes a barrier, as is
assumed in the naõÈ ve model, but occurs gradually due to the
collective supply of energy by all molecules in the interphase
for themovement of individual molecules from the interphase
into vapor [107].

It should be noted that the potential barrier that prevents
the `escape' of a molecule from the liquid surface to the vapor
region is due to the forces of attraction from the atoms located
in the immediate environment of the evaporating molecule. It
is well known that the boundary of a liquid is not a clear-cut
geometric surface. There is an interphase transition layer
from the liquid to vapor whose thickness is several nano-
meters, wherein the local density of the number of atoms
averaged over a sufficiently large area in this layer smoothly
decreases from the density of the liquid to that of the vapor.
The structure of the interphase was investigated in detail in
MD calculations [105, 106], which demonstrated, in particu-
lar, the change in the pair correlation function of the
distribution of atoms in the transition from liquid to vapor
and showed that due to capillary waves the correlation radius
in the interphase significantly exceeds that in liquid.

MD simulation [107] of the stationary regime of evapora-
tion of argon atoms from the surface of a liquid atT � 80:4K
and condensation onto a cold surface atT � 72:4K yields the

coordinate dependences of the density of the number of argon
atoms and the average potential energy of atoms in the
vicinity of the transition layer between the evaporating liquid
and the outgoing vapor, which are shown in Fig. 26a. The
numbered gray stripes indicate the position of thin layers
(with a thickness of about 0.26 nm) parallel to the interphase
in which the planar sections of the pair correlation functions
n2�r1; r2� were calculated. Due to the symmetry of the liquid±
vapor system with a planar interphase, these sections are
radial functions of the distribution of pairs of atoms n2(r; x)
over the interatomic distance r � �x 2

12 � y 2
12 � z 212�1=2, which

have close coordinates, jx12j � jx1 ÿ x2j < 0:05 nm, on the
evaporation axis. The radial functions n2�r; x� displayed in
Fig. 26b tend to the function n�x�, n2�r; x� ! n�x�, at r!1,
where n�x� is the average density of the number of atoms in a
thin layer with coordinate x. It is clearly seen that, as the
interphase is passed through, the distant coordination peaks
in n2�r� vanish, and long falling `tails' emerge in the
distribution functions. These tails are determined by long-
range correlations of density fluctuations in the transition
layer, which arise due to thermally excited capillary waves
[106, 113].

It is of importance to note the following phenomenon
found in MD simulation [107]. The density changes signifi-
cantly in the transition layer, while the temperature remains
approximately equal to that of the liquid in most of the
interphase. This can be seen in the coordinate dependences of
the density of the number of argon atoms and temperature in
the vicinity of the transition layer displayed in Fig. 27. The
observed drop in temperature only occurs at the very interface
of the interphase with the vapor phase, where the average
potential energy of atoms, and, consequently, their barrier for
evaporation has already significantly approached zero.

The presented calculations show that the transition from
liquid to vapor occurs not through a sharp transformation
(instant loss of phase transition energy by particles of liquid),
as a result of which the heat of evaporation is consumed, but
due to the gradual, on the MD scale, consumption of energy
of the interphase medium for the advancement of the atom
from the bulk of the condensate outward. It should be noted
that the probability of evaporation (i.e., transition from the
domain of liquid to the domain of vapor) of particles located
in the regions of the transition layer closest to the vapor is
greater than that for particles located in the `deeper' regions
of the transition layer. Moreover, the potential barrier, which
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these particles must overcome, approaches zero, and the
temperature of the `escape region' is close to the temperature
of the liquid. It should be emphasized that temperature of the
liquid is maintained constant in the considered version of the
calculation; therefore, the loss of energy of the phase
transition as a result of movement from deep layers of the
liquid to the outer boundary of the transition layer is
compensated by the constant supply of heat to the evaporat-
ing atoms.

In approaching the outer boundary of the interphase, the
behavior of an ensemble of molecules becomes increasingly
similar to that of vapor molecules, which means that the
attractive forces and the average potential energy of mole-
cules decrease, and their average kinetic energy barely
changes due to intermolecular collisions during which energy
can be transferred to particles in the interphase from deeper
particles. Thus, the effect of the attraction forces that
determine the work function decreases in passing to the
outer boundary of the interphase, while the effect of
collisions, i.e., the repulsion branch, increases. As a result,
nothing slows down a moving atom (molecule) on the
external boundary, and it escapes into the vapor, virtually
without spending its own kinetic energy on this transition.

An approach was proposed in [107] for a more thorough
derivation of the distribution function of evaporated mole-
cules. It is noted that evaporation is always accompanied by
the condensation of evaporated atoms, which gain a reverse
velocity due to interatomic collisions in the outgoing vapor.
The probability of such collisions that throw the molecules
back to the interface increases as the vapor region expands.
To eliminate the backflow generated by the collisions, an
absolutely cryogenic surface was placed near the interface
during the simulation, which adsorbed the molecules incident
on it. This technique enabled determination of a flux of
evaporated atoms and the corresponding distribution func-
tion not distorted by collisions with atoms that move from the
bulk of the vapor region to the interphase. The results
obtained (for the recondensation problem) are shown in
Fig. 28a.

The interphase region (interphase) may be divided into
two almost equal parts. The first of them is the inner part
between the bulk (deep) phase and the cross section, on which
the temperature profile is separated into longitudinal Tx and
transverse Ty. The left boundary of the nonequilibrium part
of the interphase layer (left vertical dashed line) is determined
by the point where the longitudinal, Tx, and transverse, Ty,
temperatures diverge. This point is used to determine the

surface temperature Th. The right boundary (right dashed
line) corresponds to the point at which the density and Tx

begin to decrease in a linear way. Maxwell's demon ensures
the fulfillment of the inequality Vx > 0 for atoms in the gray-
shaded zone. The atoms pass through the interphase almost
without losing their longitudinal component of the kinetic
energy Kx. The temperature equilibrium in the inner part of
the interphase is well maintained, since the drift velocity is
low, and a sufficiently long time (more than 200 ps) is needed
to cross this part.

As the density decreases by a factor of 3.5 at the end of the
inner equilibrium part, the temperatureTx begins to decrease,
and the drift velocity increases, attaining a value of more than
5 m sÿ1. This coordinate may be considered the beginning of
the second nonequilibrium part of the interphase, within
which the flow velocity increases to 100 m sÿ1 at the
coordinate shown by the right straight dashed line in
Fig. 28a. The drift time is reduced in this case to 20 ps, a
value which is comparable to the collision time. This leads to
significant changes in the shape of the DF, which occurs
between approximately the middle of the interphase and its
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cryogenic layer at x > 14 nm. Kinetic energy Kx is measured in units of
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numbers of the thin layers in which the DFs are calculated. (b) Evolution

of the distribution function Fx for the longitudinal component of the

velocity Vx measured in several thin layers within the nonequilibrium part

of the interphase layer. The numbers on the curves correspond to the

numbers of the layers indicated in Fig. a. The last DF near the interphase

boundary has number 1, and the DF in the vapor is number 0. The thin

black curve shows the DF for the transverse component of the velocityVy.

The dashed curve corresponds to the DF obtained in the naõÈ ve model of

evaporation for the barrier equal to 0.0032 of the binding energy of atoms

in the liquid.
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right boundary, namely, between points 5 and 1 shown in
Fig. 28a.

Figure 28b illustrates the changes in the DF obtained by
MD simulation within 1.2 ns after steady-state evaporation
regime has been attained. It can be seen that the main changes
in the DF occur in the interphase layer; the fraction of the DF
with negative velocities decreases and its width greatly
decreases as well when approaching the right edge of the
interphase, while the width of the DF for positively directed
particles remains almost unchanged. As a result of this
evolution, the temperature Tx sharply decreases, but the
average kinetic energy of the evaporated atoms Kx changes
insignificantly, which can be seen in Fig. 28a. Thus, the
formation of the DF of the vapor immediately behind the
interphase looks like the evaporation of individual atoms
without the loss of their kinetic energy to overcome the
potential barrier, as is the case in the naõÈ ve model of
evaporation, since the barrier should be assumed to be close
to zero (see the dashed DF in Fig. 28b).

The results displayed in Fig. 28 show that the DFs of
evaporated atoms at the outer boundary of the interphase
(curve 1 in Fig. 28b) and in the vapor immediately beyond this
boundary (curve 0 in Fig. 28b) are close to the half-
Maxwellian for positive normal components of the velocities
Vx. The problem of recondensation for argon was investi-
gated in Ref. [107] taking this observation into account by
two methods: MD simulation and solution to BKE. The
vapor layer was limited on the one side by `hot' condensate at
Th, and on the other side, by `cold' condensate at Tc. Two
settings were considered: in one of them, Th � 80:4 K,
Tc � 72:4 K, in the other, Th � 79:4 K, Tc � 60:5 K. The
thickness of the vapor layer was in both cases such that the
Knudsen number was 0.021. The average free path was
determined using Th. The BKE was solved for the settings
described above using the method reported in [82]. The
distribution functions for atoms that escape from hot and
cold condensates were taken in the half-Maxwellian form
with a zero transfer rate, based on the MD results considered
above. These DFs were used as boundary conditions required
for the BKE. The BKE solutions obtained for various values
of the evaporation and condensation coefficients were
compared with the MD simulation data. This comparison
showed that the best agreement between the MD results and
BKE solutions is achieved if evaporation and condensation
coefficients are close to unity.

Thus, the assertion that evaporation occurs according to a
diffuse scheme with an evaporation coefficient equal to unity,
and the corresponding DF has a form close to a half-
Maxwellian with a zero transfer rate, may be considered to
be sufficiently substantiated.

Several studies in which the DF of evaporated molecules
had been determined were reported at the 31st International
Symposium on the Dynamics of Rarefied Gases held in 2018.
For example, a theoretical study of the evaporation of one-
component liquids into a vacuum was presented in report
[114]. The authors formulate the conclusion of their study as
follows: ``Preliminary results based on the numerical solution
of the Enskog±Vlasov equation show that no matter how low
the temperature is, the distribution function of evaporated
atoms is approximated by the anisotropic Maxwellian with
different temperatures for the normal interface and the
velocity components parallel to it. This anisotropy
diminishes with decreasing temperature.'' It is also noted
that the average temperature of thisMaxwellian is close to the

temperature at which the separation of the longitudinal and
transverse temperatures of the liquid occurs. Reported in
[115] was the intention to measure the DF of water molecules
evaporated from the surface of a water droplet with a
diameter of 5±10 mm fixed on the end cut of a glass capillary
tube. The authors justify the setup they propose by the fact
that, in their opinion, the velocity DF of molecules near the
interface cannot be represented by the results of measure-
ments using a sensor located at a certain distance from the
evaporation surface, as was done in previous experiments by
various researchers. This conclusion is based on the con-
jecture that significant changes in the DF may occur in the
process of the collision of molecules on the way from the
evaporation surface to the sensor.

Transfer processes near the interface were recently studied
in [116] using the MKT and MD methods. The authors solve
themodel kinetic equation by themoment method, taking the
four-moment ellipsoidal distribution as an approximation of
the DF of vapor molecules, and came as a result to a
conclusion regarding the existence of the above-mentioned
anisotropy of vapor temperature in the region occupied by the
evaporated particles. An MD simulation with 500,000 argon
atomswas performed using theVerlet algorithm. To carry out
kinetic calculations, the coefficients of evaporation and
condensation were set, and it was assumed that in this case
they are equal to each other. It should be noted that the
solution of the BKE by the moment method for Maxwellian
molecules based on the same approximation was obtained in
the problem of intense evaporation by one of the authors of
this review (A P Kryukov) and published in [54].

Evaporation in nanoporous membranes was explored in
[117, 118]. In the first of these studies, the authors successfully
applied in 2015 approach [54] to describe evaporation from
nanostructures. In the second publication, at the stage of
testing the method of direct statistical modeling used by the
authors to calculate evaporation, the data they obtained were
compared with the corresponding calculations made using
Eqn (5) in Section 2.2. Good agreement was found between
the results obtained by these two methods.

In general, determination of the DF for reflected atoms is
a more challenging task.

The following three-level hierarchy is proposed.
1. The best approach would be to solve the transfer

problems at the interface using the MDmethods in the entire
macroscopic domain. This is, however, impossible for both
technical and, apparently, conceptual reasons. Given the
involved time and material costs, it is most likely not
necessary, since the `noise' of the extensive information
obtained may be so great that it turns out to be comparable
in order of magnitude to the values determined in the
macroscopic region.

2. MD is used to determine the DF of particles (molecules
or atoms) that move from the interface, i.e., evaporated and
reflected particles. This DF is used as a boundary condition in
solving the BKE, which is matched with the CM equations.
Study [107] shows that the DF of evaporating atoms is half-
Maxwellian on both `hot' and `cold' surfaces, and the
condensation coefficients on both these surfaces are close to
unity. Thus, the boundary conditions for the solution of the
BKE are formulated. If an artificial (auxiliary) recondensa-
tion problem is set for another specific problem in which a
`cold' surface is located, for example, at a distance of 20 free
path lengths (or Maxwell's demon is placed at the same or a
smaller distance), its solution using MD methods will yield
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the DF both near the interface and at a distance of 10 free
path lengths. If the DF near the interface is known, it is
possible to solve the BKE. If a distribution function is found
as a result that coincides with the DF found by the MD
method at a distance of 10 free paths (distribution functions
are obtained that coincide with the DFs found by the MD
method at a distance from 0 to 10 mean free paths), the
solution to the general problem is found. If there is no such
coincidence, then a new recondensation problem is set with
new parameters of an artificial `cold' surface. The DF is again
found near the `evaporating' boundary and at a distance of
10 free paths from it. Then, the BKE is again solved with the
boundary condition in the form of a DF determined by the
MD method near the `evaporating' boundary. As a result of
solving the BKE, the DF, which is determined at a distance of
10 free path lengths from the `evaporating' boundary, is
compared with the DF determined by MD methods at this
distance. When the MD DF coincides with the BKE DF, the
iterative process ends. This agreement must be attained at
every step of the BKE solution.

An approximate end-to-end method, either in modifica-
tion [103] or involving the determination of the condensation
coefficient by the MD method as in the version of [119, 120],
seems promising from the point of view of applications.

An approximation is conceivable in which the positively
directed flow (the sum of the reflected and evaporated flows)
is assumed to be independent of the negatively directed flow
(that enters the surface). The full MDmethod is used then up
to the first `kinetic' step to find the distribution function of
positively directed molecules (direct DF). Next, it is used as a
boundary condition at each kinetic step, at both the first and
subsequent steps. The less intense the process under study is,
the more justified such a simplification is, since reasons
emerge to believe that the DF of negatively directed
molecules (reverse DF) changes insignificantly during the
evolution of the flow over the entire solution interval. The
described simplification may be considered justified even in
the case of high rate evaporation, since several researchers
have shown that the form of the inverse DF for strong
evaporation regimes weakly affects the solutions, inasmuch
as this function itself is smaller, and in the limiting situation
even much smaller, than the DF of atoms that move in a
positive direction (from the interface). Since at present it may
be considered confirmed that the DF of evaporated atoms is
half-Maxwellian with the temperature of the interface and the
corresponding density along the saturation line [107], the
main part of the DF for positively directed particles is known.
Consequently, a relatively small addition to the DF of
positively directed particles from possibly reflected atoms,
which is found using MD methods, is unlikely to undergo
significant changes during the entire time of the evaporation
under study. Thus, it is now sufficient to determine the DF of
positively directed molecules only once for the first `kinetic'
step.

The situation is more complicated in the case of strong
condensation, where the reverse and direct distribution
functions are comparable, and, for supersonic flows, one of
them can be much larger than the other. However, if it is
necessary to investigate a flow that is stationary on the CM
scale in the case of strong condensation, it is proposed to first
obtain a BKE solution with a half-Maxwellian for evaporated
atoms, the specified (in a relatively arbitrary way) condensa-
tion coefficient, and the diffuse character of evaporation as
boundary conditions. The results obtained are used further

for MD simulation and determination of the DF and,
consequently, the condensation coefficient. If the last of these
coincides with the value specified at the kinetic stage, the
solution is found. Otherwise, a new value of the condensation
coefficient is set, and the procedure to solve the BKE andMD
modeling is repeated. This iteration is repeated until coincid-
ence occurs. The approach described above is apparently also
suitable for nonstationary problems on the CM scale, since
the steps on the CM scale are an alternation of the results that
are stationary on the kinetic scale.

Difficulties will arise in solving problems of strong
condensation on a kinetic time scale.

3. If item 2 cannot be implemented due to its complexity
and excessively large number of calculations (in particular, in
the problems of strong condensation mentioned in item 2),
the following approximate approach is proposed. The limit-
ing value of the condensation coefficient blimis calculated, and
the BKE is solved next for the diffuse nature of the reflection
for b � 1 and for blim. Conceptually feasible solutions are
obtained in this way, and the effect of the condensation
coefficient on the solution of a specific problem is determined.

7. Conclusions

Evaporation±condensation problems can be described, in
principle, at three levels: within the mechanics of continuous
media, using methods of molecular-kinetic theory, and with
molecular-dynamic modeling. Each of these approaches has
its own advantages, disadvantages, and limitations.

The advantage of CM methods is the deep and multi-
faceted development of both analytical and numerical
methods for solving corresponding equations (usually
Navier±Stokes) adapted for research and engineering prac-
tice. The list of disadvantages includes the limited degree of
nonequilibrium of transfer processes due to assumptions
that underlie the derivation of the CM equations and the
conceptual unfeasibility of providing a correct formulation of
the boundary conditions for problems with permeable inter-
phase surfaces.

The advantages of the MKT are the absence of restric-
tions on the degree of nonequilibrium of the processes under
study, the need to use empirical data much smaller than in the
CM (only at the level of the interaction potentials of atoms
and molecules), and the feasibility of formulating boundary
conditions for problems with permeable interfacial surfaces,
this being possible owing to the adaptation of the formulation
of problems for the Boltzmann kinetic equation in the
language of the molecular velocity distribution function.
The disadvantages are the complexity of the BKE that results
in the need for high computer performance and large memory
and the above-mentioned approach to formulating boundary
conditions, which requires the DF for the molecules which
escape from condensed media to be known. This DF is
usually specified using various models (diffuse or mirror
reflection scheme, etc.); less often it is found experimentally
and by setting the condensation coefficient.

The condensation coefficient introduced as early as the
beginning of the 20th century has apparently exhausted its
productive potential, since it depends on a large number of
factors and setups, i.e., is not a coefficient, but rather a
complex function of many arguments, which does not
simplify, but, on the contrary, complicates the solution to
the corresponding problems. Several interesting reports on
evaporation and condensation coefficients were presented at
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the 31st International Symposium on the Dynamics of
Rarefied Gases held in 2018. The sound resonance phenom-
enon was used in [121] to experimentally show that the water
evaporation coefficient is close to unity in the temperature
range from 295 K to 313 K. An analysis of study [122]
presented in report [123] shows that agreement with experi-
ment can only be achieved at a value of the condensation
coefficient equal to 0.05. It should be noted that it is the direct
experimental determination of the condensation coefficient
which is of extreme importance, since it allows proposed
calculation models to be confirmed or refuted. Direct
experiment is understood as the direct determination of the
flux of particles arriving at (incident on) the interface surface
at a distance as close to this surface as possible and the similar
direct determination of the flux of reflected atoms or
molecules.

The advantages of MD are the absence of restrictions on
the degree of nonequilibrium of the processes under study, as
in theMKT, the need for empirical data only at the level of the
interaction potentials of atoms and molecules, and the
absence of the need to formulate boundary conditions at the
interphase surfaces. Disadvantages are very large computer
times required and, as a result, solutions that can only be
found for times that do not exceed a few nanoseconds.
Progress in the development of computer technology raises
hope that this time interval will gradually increase, but the
conceptual feasibility of performing classical MD simulation
of a system of an acceptable size for an interval of several
microseconds seems doubtful, even in the next decade.

One of the most important and urgent tasks is to combine
these three approaches to solve actual problems, or at least to
suggest ways to implement such a combination.

The experience of `matching' shows that this procedure is
feasible if the solutions of the CM equations and the basic
equation of the MKT, the Boltzmann kinetic equation, are
conjugated. However, attempts to `match' MD and MKT
failed, and it seems at present that this goal may not be
attained.

Prospects may be viewed in at least two directions, which
may enrich each other in the process of their development.
The first is the creation of a bank of solutions to transfer
problems obtained by MD methods for various substances,
temperatures, conditions of energy effects, and geometric
dimensions. The second avenue is the development of
approximate approaches for engineering practice, including
those based on the MD results [120, 124]. The use of the
Vlasov±Enskog equation for the study of interphase energy
and mass transfer in various vapor±liquid systems also
deserves special attention.

Study of recondensation problems shows that at known
temperatures of `hot' and `cold' condensates the mass flux
density can be determined with good accuracy using the
Hertz±Knudsen formula, even for the limit of a continuous
medium. However, this conclusion has become clear only
now, almost after 70 years M Plesset [2] published his study,
time which was spent obtaining solutions to this problem
by various methods of solving the BKE and its models in a
wide range of the Knudsen number. The importance of this
finding is somewhat devaluated by the observation that the
problem of recondensation is more of a model nature rather
than a real one, sincemost of the processes of evaporation and
condensation implemented in practice occur in a space that is
semi-infinite on the scale of the mean free path of vapor
molecules.

Problems with mixtures, even if they only contain two
components (vapor and gas), are much more complicated
than single-component ones. First and foremost, it is
necessary to solve two kinetic equations rather than one, and,
as a result, four collision integrals emerge instead of one.
Determination of the limiting values of the initial parameters
as in Ref. [87] seems to be of use in this situation.

Some interesting features of the behavior of the tempera-
ture of evaporating water droplets have been discovered
during the study of their vaporization into the air [125]. It
has been experimentally observed that the temperature of
drops increases at the final stage of their existence. However,
a calculation based on the standard approach, wherein the
mass transfer rate is computed exclusively from the diffusion
equation, and therefore the density of water vapor near the
surface of a drop is found as the equilibrium vapor density
that corresponds to the temperature of this surface along the
saturation line, fails to predict such behavior. Even so, if the
kinetics, i.e., the Knudsen layer, are taken into account,
qualitative agreement with experiment may be obtained
even for relatively crude kinetic models. The effect of kinetic
features in studying droplet evaporation into a vapor±gas
medium was noted both at a relatively early stage of the study
and in the recent past, but such a nontrivial behavior of
temperature has only been noticed quite recently. The
application of the MKT methods to the study of processes
at the interphase surfaces of helium II enabled a number of
interesting conclusions to be drawn, some of which are
successfully confirmed by experiments.
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