
Abstract. This article is written on the basis of a report given
10 January 2003 at the International Scientific Conference, The
Nuclear Age: Science and Society, dedicated to the 100th anni-
versary of the birth of Igor' Vasil'evich Kurchatov. It presents
the results of work on the experimental study of substance
properties under high pressure shock waves, briefly describes
the use of super-strong magnetic fields for the study of sub-
stances at high pressure, presents the results of computational
and theoretical research methods, and presents some results of
studies of substance properties using liner systems in high-power
pulsed electrophysical facilities (VNIIEF disk explosion-mag-
netic generators and USA Pegasus and ATLAS capacitor
banks).
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From the editorial board. The editorial board of the journal
Physics±Uspekhi (Uspekhi Fizicheskikh Nauk, UFN)
expresses its gratitude to Svetlana Vladimirovna Fortova,
who drew the attention of the UFN editorial board to this
interesting publication, which had not been previously

translated into English and, therefore, most likely, was little
known to the international scientific community. We hope
that the reproduction of this paper in the memorial issue of
UFN, dedicated to the memory of Vladimir Evgenievich
Fortov, will give a `second life' to this publication, which
outlines numerous results. By virtue of the genre of this
paper (report at a conference), the material in it was
presented in an extremely laconic form (mainly in a vivid
illustrative form adopted for the presentation of reports).
Therefore, for the convenience of the readers of the journal
UFN, this publication is supplemented with a list of some
reviews and papers, in which the interested reader can find
more detailed information both on the research results
presented in this paper at the time of publication of this
report in 2004 [1±28] and on the future development of
research in this field at VNIIEF and in other Russian and
foreign scientific centers [29±59].

The editorial board of UFN expresses its gratitude to
AM Buiko, S F Garanin, M V Zhernokletov, E L Kobryans-
kaya, S A Monakhova, V D Selemir, N I Sokolova, and
V G Sultanov for their help in preparing this paper for
publication in theUFN journal.
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1. Investigation of substance properties
at high pressures of shock waves

The need to study the properties of substances at high
pressures of shock wavesÐ the so-called equations of
stateÐarose simultaneously with the implementation of the
Atomic Program of the Soviet Union. Outstanding Soviet
scientists E I Zababakhin, Ya B Zeldovich, Yu B Khariton,
the still living L VAl'tshuler, and others stood by the cradle of
a new, dynamic area in high-pressure physics. Methods were
proposed for determining the kinematic parameters of shock
waves, which are related by conservation laws:

with shock compression pressure P � r0DU,
density r � r0D�DÿU �ÿ1

and energy E � 0:5P�rÿ10 ÿ rÿ1�.
Here, D and U are the velocity of the shock wave and the

velocity of substance motion behind its front, that is, in the
dynamic method, thermodynamic quantities are determined
in terms of kinematic parameters.

Naturally, the first quantities whose compression was
studied in shock waves were those used in the first nuclear
charges: aluminum, iron, and uranium. In 1947, the density of
their shock compression was recorded at pressures of
500,000 atmospheres.

In the 1950s±1960s, special measuring devices were made
that provided pressures in heavy metals up to 30 million
atmospheres. These devices, in the order of increasing
generated pressure, are shown in Fig. 1. On the left side, the
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Figure 1.Diagram of explosion measurement devices and recorded shock compression pressure ranges (for heavy metals).
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iron shock adiabat is shown, along which a researcher makes
his way up to the higher pressure. Shown schematically on the
right are measuring devices for producing pressure in the
substances under study. Topping this column are under-
ground nuclear explosions, which have enabled a series of
unique measurements of compressibility at ultrahigh pres-
sure. The simplest systems, presented in the lower right
column, provide a pressure of 2 million atm. These are so-
called `throwing' systems. A researcher making his way along
the adiabat (left part of the picture) allows himself to calmly
overcome this frontier.
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The next stage is hemispherical systems. Such systems exist
only in Russia, and they have made it possible to ensure the
priority of our research in the million-pressure range. In
hemispherical devices, the explosion products of a spherically
converging detonation wave smoothly accelerate an iron
striker-liner, which `converges' to the center of the system.
Near the center, its pressure ranges up to about 30million atm.

Finally, the highest pressures were reached in the
immediate vicinity of the explosion site of a nuclear device
during underground tests and, according to our measure-
ments, are 200 million atm. In this area of the diagram, our
researcher is no longer up to running: let's hope he can stay on
all fours on the adiabat! To lighten the weight, even the
backpack had to be jetisoned!
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Figure 8. Photograph of the experimental device without the HE charge.
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Let us now see (Fig. 2) what the compressibility is of some
metals obtained using the measuring devices considered.

Data are given in pressure±density coordinates. The
highest pressures were obtained on ironÐ105 million atm
(these are absolutemeasurements, i.e., those inwhichD andU
are measured simultaneously). Lead shrinks best. At a
pressure of 60 million atm, it contracts by a factor of 4.2.

Figure 3 shows the dependence of pressure on the
ordinal number of an element in the periodic system.
Shown in red are the data obtained at our institute during
the lifetime of Igor Vasilyevich, who, realizing their
importance, was always interested in these studies. The
position at the present time is shown in lilac. One can see
that the vast majority of elements have been studied
(including, in particular, a number of transuranic elements,
which are not shown in the diagram).

To date, we have studied the shock compression of more
than 250 different substances. In addition to elements, this
number includes alloys, hydrides, nitrides, oxides, minerals,
and other substances.
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Figure 14. In experiments at the ISKRA-5 facility, a high degree of

compression symmetry of X-rayed glass microspheres with DT gas was

realized. A pinhole camera image of the glass microsphere.
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Let us dwell in somewhat more detail on the study of the
shock compression of condensed deuterium, in whose
behavior researchers at the Livermore Laboratory discovered
an anomaly associated with a sharp increase in the density on

its shock adiabat. They investigated liquid deuterium. The
data are shown in Fig. 4. Coordinates: pressure±density.
Pressure was produced by irradiating a deuterium target
with a powerful laser beam at the NOVA facility. On the
irradiation side, a plane sample of deuteriumwas coveredwith
aluminum foil, which transmitted a shock wave of megabar
amplitude to the deuterium.

Up to a pressure of 0.3Mbar, data were obtained with the
so-called two-stage gas gun (Livermore); at megabar pres-
sures (experiments are indicated by triangles), usingNOVAat
the same place.

The increase in density at a pressure of 500 kbar is so
unusual thatmany scientists, both here and abroad, expressed
doubts about the correctness of the Livermore results. These
doubts are based both on an insufficiently clear recording of
the mass velocity and on the influence on the recorded
parameters of the possible nonequilibrium of processes at
the screen±deuterium interface. Such processes, with a
thickness of the studied samples in tenths of a millimeter,
may indicate the values of the compression of deuterium. And
although there seemed to be no direct measurement errors,
the unusual position of the compression curve called for
independent verification using other technical options.

Such options are provided to us, in particular, by
explosive systems with the convergence of hemispherical
shells to the center. In existing devices, the flight speed of the
shell near the center of the system reaches 24 km/s. When it
strikes a nucleus containing deuterium, pressures of approxi-
mately 1.1Mbar arise in the latter. The advantage of spherical
systems is that the samples (deuterium) are significantly
thicker (by a factor of 10±20).

We started experiments with deuterium in 2000. For
technical reasons, we began measurements with solid deuter-
ium, assuming that the conclusions obtained with it apply
equally to liquid deuterium.

At the present time, we have obtained data on the
compression of solid 1 deuterium at pressures of 0.6 and

1 Here and wherever solid and liquid deuterium are referred to, we mean

their initial state.
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Figure 16.Main processes included in the simulation.
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1.1 Mbar. The points, red asterisks, are the data averaged
over several experiments. They are shown in Figure 4.
Recently, verification measurements were carried out on
liquid deuterium at a pressure of 500 kbar. The preliminary
data are consistent with the measurements on solid deuter-
ium.

One can see that our data are indicative of smooth
monotonic dependences without an anomalous increase in
density.

Figure 4 also shows the calculated adiabat of deuterium
according to the well-known equation of state (EoS) SESAM,
which is a standard in the USA. In addition, green points
show the Sandia Laboratory data obtained (at about the same
time as our experimental point for solid deuterium at a
pressure of 600 kbar) on a system with a striker accelerated

by a strong magnetic field. Despite the significant `scatter' of
the experimental points, their data do not confirm the NOVA
measurements, either.

It is possible, apparently, to assert with a high degree of
confidence that the experiments on NOVA are faulty.

Nevertheless, our plans include the completion of con-
densed and liquid deuterium studies and the beginning of
research on the compressibility of protium.

A device for experimental investigations of deuterium
properties is shown in Figs 5 and 6. For a number of years,
work has been underway on the quasi-isentropic compressi-
bility of hydrogen and deuterium gases.

To this end, cylindrical explosive devices are used, in
which a metal shell accelerated by an exploded HE quasi-
entropically compresses a cavity with gaseous hydrogen or

Altitude in PU, cm

MIMOZA

0 ms

R
ad

iu
s
in

P
U
,c
m

0

6

5

4

3

2

1

1 2 3 4 5 6 7

MIMOZA

9 ms

R
ad

iu
s
in

P
U
,c
m

0

6

5

4

3

2

1

1 2 3 4 5 6 7

MIMOZA

8 ms

R
ad

iu
s
in

P
U
,c
m

0

6

5

4

3

2

1

1 2 3 4 5 6 7

Altitude in PU, cm

MIMOZA

10.5 ms

1 2 3 4 5 6 7

MIMOZA

11.2 ms

1 2 3 4 5 6 7

MIMOZA

10 ms

1 2 3 4 5 6 7

Figure 20. (Color online.) Two-dimensional MHD simulation of the compression of a

cylindrical A1 liner in a ponderomotive unit (PU) with different shapes of end-face PU

electrodes (Cu): significant interaction of the liner with the electrodes is possible, which

prevents the liner from being efficiently used. Isodensity maps at successive points in time.

Characteristics of the liner in the simulation: radius R � 5 cm, thickness D � 2 mm,

current Imax � 22 MA (t1=4 � 6 ms, ATLAS bank, USA, planned experiment RUS-8),

speed � 7 km/s at a radius of � 2 cm.

t � 24

t � 55

t � 64

t � 68

t � 74

24

22

20

18

16

14

12

10

8

6

ÿ5.0 ÿ2.5 0 2.5 5.0

1.5000
1.5938
1.6875
1.7813
1.8750

1.9688
2.0625
2.1563
2.2500
2.3438
2.4375
2.5313
2.6250
2.7188
2.8125
2.9063
3.0000

Radius in PU, cm

Altitude in PU, cm

Figure 21. (Color online.) Results of a two-dimensional

MHD simulation of the acceleration of a cylindrical Al

liner, confirmed by the joint VNIIEF±LANL experiment

HEL-1. Isodensity maps of the liner at different times, ms.
The liner was accelerated by a current of� 100 MAdirectly

from a 5-module DEMG 1 1 m in diameter and had the

following main characteristics: R � 24 cm, D � 4 mm,

H � 10 cm, velocity � 8 km/s at a radius of � 6 cm.

November 2021 Use of powerful shock and detonation waves to study extreme states of matter 1173



deuterium. The geometry of the compressed gas is determined
by X-ray radiography.

A sketch of the device, a photograph, the experimental
setup, experimental X-ray radiographs, and a graph are
shown in Figs 7±11.

2. Use of superstrong magnetic fields to study
substance properties at high pressures

The MK-1 generator of superstrong magnetic fields,
proposed by Andrei Sakharov, is widely used in research

on the physics of high pressures and temperatures. As a
result of the long-term work of a group of VNIIEF staff
members, it was possible to make a cascade generator of
reproducible magnetic fields in the 10 megagauss (10 MGs)
range.

Based on this generator, a device was developed for the
isentropic compression of substances, including frozen
gases, using the megabar pressure of a superstrong magnetic
field.

A schematic of the MK-1 cascade generator and some
research results are presented in Figs 12 and 13.
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Figure 23. Results of two-dimensional MHD simulations of the accelera-

tion of a cylindrical Al liner, which were borne out by joint VNIIEF-

LANL experiments ALT-1, 2. The liner had an almost synchronous

collision with a cylindrical target 1 2 cm in diameter. The liner was

accelerated by a current from a 10-module DEMG 1 0:4 meters in

diameter with a foil opening switch (FOS), Imax � 31ÿ32 MA, had a

velocity vmax � 11ÿ12 km/s with initial parameters:R�4 cm,D � 2 mm,

H � 4 cm. IDÐ inductive sensor; TLÐtransmission line; PUÐponder-

omotive unit; CMUÐcentral measuring unit.
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Figure 24. (Color online.) Diagram of an explosive magnetic liner device in

the ALT-1 experiment. Main units: spiral EMG (HEMG, current

preamplifier), 10-module DEMG with a diameter of 1 0:4 m (DEMG,

main current amplifier), FOS, liner PU with a diameter of 1 8 cm with a

central measuring unit 1 2 cm in diameter, explosive closing keys in

HEMG±DEMG and FOS±PU circuits.
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Figure 25. (Color online.) Two-dimensional MHD simulation of the

growth of perturbations of a current-carrying liner in the PU for the

RUS-1 experiment on the Pegasus-2 (LANL) capacitor bank; current of

6.5 MA. The liner is made of chemically pure aluminum (A995). Liner

radius R � 24 mm and average thickness D � 0:5 mm; l � 2 mm and

A0 � 25 mm are wavelength and initial peak-to-valley amplitude of axially

symmetric perturbations of outer liner surface.
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Figure 26. (Color online.) Typical conditions for deformation simulations

for the materials under study: deformation e � 100%, deformation rate
_e � 105ÿ106 sÿ1.
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3. Computational and theoretical
research methods

Calculations using powerful computing systems have
become, especially in recent years, an indispensable tool for
researchers to gain new knowledge about the operation of
complex hydrodynamic devices. We consider how computa-

tional methods are used in the problem of spherical target
compression under the action of laser radiation.

VNIIEF conducts experiments to investigate the compres-
sion of spherical targets of various designs. Figure 14 shows
some experimental data obtained at the ISKRA-5 facility.
ISKRA-5: 12 channels, energy of 10 kJ, pulse duration of 0.3 ns.

Data obtained in the experiments: shell velocityÐ
3� 107 cm/s; DT gas temperatureÐ1.5±4 keV; densityÐ
1±2 g/cm3; neutron outputÐ2� 1010 n/s.

To correctly calculate the target compression on amodern
laser facility with a large number of beams (such as NIF or
ISKRA-6), it is necessary to use a supercomputer with a speed
of >100 Tflops (Fig. 15 and Table).

Statics

Time = 8.0 ms

Time = 8.6 ms

6.5 ms
Exponential
growth mode

8.0 ms
Nonlinear growth
of bubbles and jets

9.5 ms
Magnetic êux
breakthrough

Figure 27. (Color online.) Results of LANL studies of technically pure

aluminum (A1-1100). X-ray images were obtained at the stages of

exponential growth of single-mode initial perturbations (l � 2 mm,

l � 0:75 mm, App � 50 mm), their nonlinear growth, and after magnetic

flux breakthrough at a current of 6.2 MA.

Statics

7.26 ms

7.71 ms

8.02 ms

Figure 28.Copies of X-ray images of the liner in theRUS-1 experiment at a

current of 6.5 MA. The liner was made of chemically pure aluminum

(A995, lower half of liner) and AMg-6 (upper half of liner). Liner radius

R � 24 mm and average thickness D � 0:5 mm; l � 2 mm and

A0 � 25 mm are wavelength and initial peak-to-valley amplitude of

axially symmetric perturbations of the outer liner surface. Measured

amplitudes of these disturbances: A1 � 0:9 mm (t1 � 7:26 ms) and

A2 � 1:7 mm (t2 � 7:71 ms) for A995; A1 � 1:7 mm (t � 7:26 ms) for

AMg-6.

a

b

c

Figure 29. (Color online.) Cylindrical liner PU forRUS-6, 7 experiments at

the ATLAS facility for studying the dynamic strength of copper. (a) Outer

(current-carrying) Al liner of radiusR � 31 mm and thickness D � 2 mm.

On the left is an intermediate polyethylene layer of a three-layer liner

system. (b) PU assembly process. On the right (in the hands) is a part of a

PU with a Cu liner, on which axisymmetric initial perturbations are

applied. (c) PU assembly with a reverse current line.
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We therefore restrict ourselves to the simplest one-dimen-
sional and two-dimensional simulations with the initial data
shown inFigs 16±18.Presented are the results of two simulations.

In both simulations, use was made of a spherical
geometry, and the radiation temperature in one of them was
assumed to be spherically symmetric. Assumed in the other
simulation was the angular dependence of the temperature in
the form of the second harmonic with DT=Tÿ2:7% (Fig. 18).

The simulation data suggest that a target with a
spherically symmetric temperature value is ignited, and a
target with an asymmetric temperature provides low fuel
compressions, has strong shape distortions during compres-
sion, and does not provide a thermonuclear flash. This means
that the � 2:7% level of symmetry in temperature is
unsatisfactory.

The dynamics of compression of laser thermonuclear
targets are depicted in Fig. 19.

4. Investigation of substance properties using
liner systems in powerful pulsed electrophysical
facilities (VNIIEF disk EMGs, Pegasus
and ATLAS capacitor banks in the USA)

Simulations of liner interaction with end walls of different
shapes (Figs 20±23).

Development of explosion-magnetic facilities for studying
the equation of state of substances in large volumes at
pressures up to 30 Mbar (Figs 22±24).

Studies of the dynamic strength of materials based on the
growth of initial liner perturbations (Figs 25±31).

In the similar RUS-2 and RUS-5 experiments, an
investigation was made of the dynamic strength of aluminum
alloy V95 and technically pure aluminum ADO. The initial
and measured amplitudes of perturbations in these experi-
ments were as follows:

A0 � 9 mm; A1 � 0:3 mm �t1 � 7:24 ms� ;
A2 � 0:7 mm �t2 � 7:63 ms� for V95 ;
A0 � 40 mm; A1 � 0:3 mm �t1 � 6:0 ms� ;
A2 � 0:7 mm �t2 � 6:7 ms� for ADO :

Some of the experimental data were predicted by pre-
experimental simulations (for AMg-6 alloy, ADO); other
results are used to improve the shear strength models of
materials.

It turns out, in particular, that the four materials under
study exhibit similar dynamic strength in experiments,
although their quasi-static yield strengths differ by up to
40 times.
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