
Abstract. The reasons behind the possibility of using the Gibbs
distribution in condensed matter are considered. While the
basics of statistical mechanics in gases are covered in great
detail in many textbooks and reviews, the reasons for using the
Gibbs distribution in crystals, glasses, and liquids are rarely
considered. Most textbooks still only speak of a qualitative
replacement of the mechanical description with a statistical
one when considering a very large number of particles. At the
same time, it turns out that the Gibbs distribution is not for-
mally applicable to a harmonic crystal of a large number of
particles. However, a system of even a small number of coupled
anharmonic oscillators can demonstrate all the basic features of
thermodynamically equilibrium crystals and liquids. It is the
nonlinearity (anharmonism) of vibrations that leads to the
mixing of phase trajectories and ergodicity of condensed mat-
ter. When the system goes into a state of thermodynamic
equilibrium, there are 3 characteristic time scales: the time of
thermalization of the system (in fact, the time of establishment
of the local Gibbs distribution in momentum space and estab-
lishment of the local temperature); the time of establishment of
a uniform temperature in the system after contact with the
thermostat; and, finally, the time of establishment of ergodicity
in the system (in fact, the time of `sweeping' the entire phase
space, including its coordinate part). The genesis of defect
formation and diffusion in crystals and glasses, as well as their
ergodicity, is discussed.

Keywords: Gibbs distribution, ergodicity, local instability,
nonlinear oscillations, thermalization, diffusion

1. Introduction

The focus of statistical physics is the study of laws that govern
the behavior and properties of objects consisting of a large
number of particles. True, it is a priori unclear what `large'
means and how, apart from the scale of fluctuations, a system
of 1023 particles differs from a system of 10 or 100 particles
and how the laws of thermodynamics can be applied to the
latter. The main substantive idea of statistical physics is the
possibility of using the Gibbs distribution in many-particle
systems, which determines the statistical distribution of the
characteristics of a relatively small part of any large closed
system. The `fulfillment' of the Gibbs distribution is equiva-
lent to the statement that the system is in a state of
thermodynamic equilibrium. At first glance, the question
presented in the title of this article seems to be of little
meaning. It would seem that the huge number of atoms or
molecules that make up a condensed medium should
automatically allow using all the laws of statistical physics.
However, this is not as obvious as it seems at first glance.

Gibbs considered two systems: one completely isolated
from the environment, whose energy is constant, and a system
in contact with a thermostat, for which the number of
particles is fixed, and the energy is constant only on average
[1]. For systems of the first type, the microcanonical Gibbs
distribution is valid, while for systems of the second type, it is
the canonical distribution [1, 2]. Below, we will speak exactly
of the canonical distribution. The canonical Gibbs distribu-
tion establishes an exponential dependence of the probabil-
ities of the states of amany-particle system on the state energy
and the inverse temperature �on � A exp �ÿEn=T �� [1, 2].
Moreover, the fact that the Gibbs distribution `works' in a
system, means, in fact, the possibility of introducing the
temperature itself, i.e., the system is `thermalized'. In this
case, the temperature is defined as a quantity, inverse to the
energy derivative of the logarithm of the number of states
(entropy).

In an ideal gas, the Boltzmann andMaxwell distributions
automatically follow from the Gibbs distribution. If a quasi-
closed many-particle system is initially in a nonequilibrium
state, then, according to the second law of thermodynamics,
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its entropy will increase in time, and the system will return to
the state of thermodynamic equilibrium, in which the Gibbs
distribution is valid. The `derivation' of the Gibbs distribu-
tion can be found in most classical monographs [2] and
generally follows the original presentation by J Gibbs himself
[1]. From a mathematical point of view, this distribution is
due to the fact that the probabilities of independent events are
multiplied, and the probability of the simultaneous occur-
rence of several events is an exponential function of their
number.

The problem of a transition from time-reversible physical
equations of classical and quantum mechanics to the
statistical description of the system can be divided into
several steps. The first global level is largely of a historical
and philosophical character. Time-reversible equations are
fundamentally unable to yield irreversible solutions and,
therefore, an increase in entropy, system thermalization, etc.
The problem of irreversibility and ergodicity and the
substantiation of statistical mechanics were closely dealt
with by W Thomson, J Maxwell, R Clausius, H Helmholtz,
L Boltzmann, M Planck, H Poincar�e, J Gibbs, A Einstein,
P Ehrenfest, J von Neumann, M Born, W Pauli, L Onsager,
EHopf, G Birkhoff, NNBogolyubov, RKubo, L VanHove,
N S Krylov, Ya G Sinai, L D Landau, I Prigogine, and many
other distinguished scientists (see [3±8] and references
therein).

Many researchers, starting with Boltzmann and Einstein,
believed that the irreversibility of the behavior of many-
particle systems is merely an illusion. A popular point of
view implies considering the entire Universe for precise
analysis, and it is impossible to state unambiguously whether
the Universe is an open system or a closed one. This approach
was shared by N N Bogolyubov and L D Landau. The
incompleteness of knowledge, namely, the fundamental
inaccuracy of coordinates and momenta due to various
processes, including the interaction with vacuum fluctua-
tions of the field, was also considered (starting with H Lewis
and Born) an important factor related to this problem.

Recently, the inclusion of an observer in the measurement
or investigation process has become a popular trend in this
area. This approach is most vividly presented in the work of
L Macone [9], according to which the second law of
thermodynamics is a trivial consequence of the fact that
processes with decreasing entropy cannot leave a trace in the
minds of researchers. In this regard, it is also necessary to
recall the activities of M B Menskii, concerned with the
quantum theory of consciousness, and his partly provocative
but very interesting note in the journal Physics±Uspekhi [10].
In a sense, this trend was anticipated by R E Peierls, who
viewed the entireUniverse as a gigantic experiment conducted
by a god experimenter. According to Peierls, in this case, the
irreversibility arises only in the experimenter's mind. A
separate marginal direction that does not involve an observer
in consideration is the modification of the original equations
of quantum and classical mechanics to make them initially
irreversible in time (see, e.g., [11]). Work on the study of the
partial loss of information in black holes and other exotic
objects in our Universe also stands apart.

Physics±Uspekhi has already published a number of
reviews on nonequilibrium statistical mechanics. For exam-
ple, G A Martynov [12] reminds us that the reasons for the
irreversibility of kinetic processes are: (a) the impossibility of
absolute accuracy in measuring coordinates and momenta
when specifying the initial data; and (b) the instability of the

dynamics of systems. In fact, the importance of the incom-
pleteness of knowledge about coordinates and momenta for
the problem under consideration was noted by G Lewis in
1930. The same point of view in a pragmatic perspective is
presented in the course of theoretical physics by L D Landau
[2], where the quasi-closed part of a large system (thermostat)
is initially considered, and the thermostat can weakly affect
the subsystem, leading to small uncertainties in the momenta
and particle coordinates, which rapidly increase with time.
Following this tradition, wewill not consider the root cause of
small uncertainties or fluctuations either, but will discuss the
features of the system dynamics, more precisely, the reasons
for dynamic instability.

Note that most of the points that will be discussed here
are, of course, fairly well known. Moreover, in a number of
modern textbooks on statistical physics (see, e.g., [13]),
considerable attention is paid to the issues of ergodicity and
the mixing of phase trajectories. There are also modern
monographs, in which problems of nonequilibrium statisti-
cal mechanics are considered in some detail and at a higher
level of mathematical rigor [8]. Several reviews in Physics±
Uspekhi (e.g., [14]) and monographs [15, 16] are devoted to
the relationship between nonlinear dynamics and statistical
mechanics.

At the same time, most of the monographs mentioned
have been released, unfortunately, in a small print run. Many
scientists (as well as students) still have the idea that a
necessary condition for the fulfillment of the laws of
statistical mechanics is the `thermodynamic limit'Ðamacro-
scopically large (1023) number of particles. However, a large
number of particles by itself does not lead to the possibility of
a statistical description (see, e.g., the so-called Toda chain
[17]). Moreover, ergodicity and `correct' statistical behavior
of a system can be observed for systems with a very small
number of particles and degrees of freedom �N > 2) [13, 15].
In a number of monographs and reviews, including those in
Physics±Uspekhi (see, e.g., [14, 15]), the relation between the
theory of nonlinear oscillations and the foundations of
statistical mechanics has already been noted, but no empha-
sis was placed on these issues. The purpose of this paper is to
remind readers of the reasons for the applicability of the laws
of statistical mechanics for condensed matter. In statistical
physics and equilibrium thermodynamics of macroscopic
systems, the time dependence is absent. However, when
considering system thermalization and the appearance of
ergodicity, we have to introduce the dynamics of particles
and the corresponding times into consideration. In this
article, we analyze the corresponding equilibration times. It
is interesting that considering the dynamics of particles on the
most general grounds allows drawing nontrivial conclusions
about diffusion in solids.

2. Ergodicity, mixing properties,
and Gibbs distribution

The issues raised in this section relate first and foremost to the
field of mathematics or mathematical physics, so I apologize
to the readers that the consideration is not always appro-
priately rigorous.

The ergodicity of particle motion is one of the best-known
and most important properties of a statistical system. The
ergodicity means that, in the limit of long-term observation,
the time during which the system is in an element of the phase
space is proportional to the phase volume of this element. For
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an ergodic system, the time average of any function of state
equals the statistical average over the microcanonical dis-
tribution and depends only on energy. It is the ergodicity that
allows introducing the notion of probability for an individual
dynamic trajectory.

For a long time, ergodicity was considered a necessary and
sufficient condition for the applicability of the Gibbs
distribution. However, it was later found that a condition
stronger than ergodicity, namely, the mixability of motion or
mixing of phase trajectories (or simplymixing), is required for
a statistical description [6, 13, 15]. The notion of mixing (or
mixability) was introduced by Gibbs, and a serious basis for
this notion was provided by E E Hopf and N S Krylov;
however, its importance was fully understood only in the
second half of the 20th century. It was also known for a long
time that themotion of a systemmay be quasiperiodic, even in
the presence of ergodicity [15]. The motion in the phase space
in this case is reminiscent of the winding of a thread on a spool
or the scanning of a beam over an oscilloscope screen, which,
of course, does not correspond to the intuitive view of random
processes (Fig. 1). A physically clear analogy is that the flow
of trajectories in this case is laminar. A fundamentally
different picture is observed in the case of mixing. With
time, an initially small spherical region of the phase space
rapidly spreads over the entire phase space, preserving its
volume due to the Liouville theorem. The shape of the
region's boundary becomes more and more complex, and its
penetration into distant parts of the phase space occurs due to
the appearance of multiple long and thin sprouts from the
initially compact domain (Fig. 2). Formally, the mixing
condition has long been known in physics as a condition for
decoupling temporal correlations (precisely because of the
huge number of intertwined `sprouts'). Note that the mixing
condition automatically implies the ergodicity of the system,
while the reverse is not true [6, 15].

It was quite quickly discovered that the mixing property
must be associated with the dynamic instability of the system
[6]. Asmentioned above, an initially small compact domain in
the phase space spreads over the entire space, which means a
rapid propagation of phase trajectories, as well as their
entanglement (since the phase space is bounded). In fact, the
mixing leads to a loss of information. The flow of trajectories
in this case is turbulent. This type of motion is called a local
instability. It is the local instability that gives rise to the
mixing, which, in turn, provides a sufficient condition for the
possibility of using the Gibbs distribution and system
thermalization.

The mixing makes it possible to introduce the notion of
`statistically independent events', such as the appearance of a
phase trajectory in various parts of the phase space. It is

important that the mixing is also possible in systems with a
very small number of particles (N > 2) [15, 16]. If a system is
not initially in the equilibrium state, then, in the case of
ergodicity, the equilibrium values of macroscopic quantities
are achieved only on average in time [8], while in the case of
mixing they asymptotically tend to their equilibrium values in
the limit of large times.

Note that the time independence of entropy in systems
whose dynamics are described by equations reversible in time
was already known to Gibbs [18], and 100 years later this fact
was multiply `rediscovered'. A way out of this predicament
was also proposed byGibbs. According to his proposal, `fine-
grained mathematical' entropy should be replaced with
`coarse-grained physical' entropy, when the phase space is
coarsely divided into regions of finite phase volume. The
coarsening is accompanied by the loss of information about
individual trajectories in the phase space exactly because of
the mixing mechanism. Surely, the reversibility is also lost in
this case, and the coarse-grained physical entropy can
increase. In this sense, the definition of entropy as a measure
of information loss is quite convenient and constructive.

Note that in computer modeling (e.g., within the method
of molecular dynamics) the ergodicity and mixability of
many-particle systems are also ensured by similar coarsening
procedures, namely, rounding the numbers to a finite number
of digits (although the `computer' and `natural' coarsening
are, of course, not equivalent).

At a certain stage of scientific progress, it seemed that the
situation would become clearer with the transition from a
classical to a quantum mechanical description. In quantum
mechanics, there is a natural mechanism for coarsening,
namely, the minimal volume of a cell in the phase space
cannot be less than �2p�h�3N, where �h is the Planck constant,
and N is the number of particles. At the same time, the
reversibility of quantum mechanical equations also leaves no
chance of losing information without an additional coarsen-
ing procedure of measurement or observation in the quantum
system. In addition, as correctly mentioned in modern
monographs [13], the magnitude of physical entropy varia-
tion cannot depend on the coarsening scale, in particular,
cannot be determined by the value of the Planck constant.

From the above considerations, it follows that the
generally accepted idea of phase space `sweeping' as a
condition for the Gibbs distribution applicability is not
quite true. In the quantum mechanical description, such
sweeping can occur without loss of information about the
wave functions of the particles. Generally, the procedure of
phase space coarsening, although useful for understanding
the physics of the processes, cannot be introduced unambigu-
ously. Moreover, it was recently shown that the `coarse-

a b

Figure 1. Illustration of difference between ergodic quasiperiodic motion

(a) and motion with mixing (b).

a b

Figure 2. Illustration of `spreading' of a `phase liquid' drop in the phase

space.
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grained' entropy might not be approximating the `fine-
grained' one, even if the scale of graining tends to zero [8].

Within the framework of the present brief paper, we will
not discuss new terms or concepts that continually appear in
this field, such as `K-entropy' and `weak mixing', which are
more mathematical than physical. Readers can familiarize
themselves with both of them from classical [15] and more
modern [8] reviews and monographs.

To summarize, it is possible to say that for the `correct
Gibbs' behavior of a system, amechanism of information loss
is necessary, and local instability during the mixing process is
exactly what provides such a mechanism in the presence of
arbitrarily small external perturbations or small uncertainty
in the initial coordinates and momenta of the particles.

3. Statistical mechanics in gases

The two simplest and best-studied types of particle motion
dynamics, rectilinear uniform motion and harmonic vibra-
tion, arise as solutions of simple linear equations. These are
exactly the types of dynamics which are commonly used in
simplified descriptions of many-particle systems. The first
type corresponds to an ideal gas, and the second, to a
harmonic crystal. The liquid state is the most complex from
the point of view of particle motion dynamics, because, even
in a maximally simplified approach, the dynamics of a liquid
do not reduce to these two simplest cases.

An ideal gas, i.e., one in which the interaction of particles
can be ignored, is the simplest model system ofmany particles.
It is the gas that is considered the basic model system for
statistical mechanics in most papers andmonographs, starting
with the classical work by Boltzmann [6, 8, 12]. In classical
textbooks on statistical physics [2], the concrete reason for
local instability leading to ergodicity and mixing in a gas is not
considered. It is only assumed that even an arbitrarily small
interaction between subsystems in some time will lead to the
possibility of a statistical description. In this regard, as before,
it is stated that a very large number of particles is necessary for
the occurrence of thermalization. At the same time, in the case
of an ideal gas, the smallest subsystem that can be considered
in the limit is one particle, and the Gibbs distribution can be
applied directly to it. This is how the Boltzmann andMaxwell
distributions for an ideal gas are derived [2].

Note that the absence of interaction between particles in
an ideal gas means only the possibility of ignoring this
interaction most of the time, when the molecules or atoms of
the gas move rectilinearly and uniformly. At the same time,
collisions between particles or with the subsystem boundary
are of key importance, although the time of these collisions is
negligibly small. These are exactly collisions that lead to the
`thermalization' of the gas. In an ideal gas without collisions,
the `Gibbs' distribution does not work at all, i.e., in this
system no thermodynamic equilibrium is reached.

Numerous present-day monographs and reviews direct
attention to the issue of collisions of particles [8, 12]. Exactly a
system with exchange by impacts possesses the property of
phase trajectory mixing. As a hypothesis, this statement was
made already by Boltzmann, while in a more distinct form it
was formulated by N S Krylov [6]. The first rigorous result
was obtained in 1963 by YaG Sinai [19]: a system of two balls
in a rectangle possesses the mixing property (the Sinai
scattering billiard). The reason for local instability in the
Sinai billiard is the convex shape of the balls, or walls in the
case of the motion of a single ball. Due to collisions, the

uncertainty in themomentum direction of a particle exponen-
tially grows with an increase in the number of collision events,
which leads to `sweeping' the entire phase space in the
presence of an arbitrarily small perturbation from other
subsystems (Fig. 3). Note that several models, including
Hadamard's billiard, describing the motion of a point
particle on surfaces with negative curvature preceded the
Sinai billiard. Hadamard's billiard is probably the earliest
(1898) example of studying deterministic chaos. Later, Sinai's
results were generalized to a larger number of balls and
parallelepipeds of different dimensions [20]. Note that, with
certain assumptions related to the initial conditions, even a
collisionless gas in a polyhedron with plane walls will be an
ergodic system.

We would like to note that the real problem of scattering
of atoms or molecules in collisions is, of course, not quite
equivalent to the scattering of balls [12]. However, the
conclusion about the exponential increase with time (or with
the increasing number of collision events) of the uncertainty
in the particle momentumdirection remains valid. The idea of
the exponential growth of small perturbations of particle
coordinates and momenta during collisions became generally
accepted only in the last decade and found no reflection in
classical textbooks on statistical physics [2].

Thus, the reason for the mixing of phase trajectories in
gases and the applicability of the Gibbs distribution is the
scattering of particles during collision processes, since, in the
course of multiple collisions, the uncertainties of coordinates
and momenta accumulate exponentially (with time or with
increasing number of collisions) and a loss of information
occurs.

4. Gibbs distribution in solids

A rarified gas is considered a model system in an over-
whelming majority of papers and monographs devoted to
the problems of ergodicity and mixing in statistical mechan-
ics. At the same time, the genesis of the Gibbs distribution in
condensedmedia (solids, liquids) is rarely considered. Inmost
classical textbooks (e.g., [2]), a crystal at low temperatures is
considered an ensemble of independent harmonic oscillators.
Then, all expressions related to a single vibrational degree of
freedom in a diatomicmolecule of a gas are used [2]. However,

Figure 3. Illustration of growing uncertainty of the momentum vector

upon scattering from a convex surface (billiards).
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it is obvious that the possibility of applying the Gibbs
distribution in crystals does not follow directly from the
ergodicity and mixability of diatomic molecules in a gas.

The issue of ergodicity of crystals is, generally speaking,
ambiguous. In contrast to particles in gases and liquids, the
particles in a crystal at low temperatures vibrate with small
amplitudes and in the process of these vibrations sweep only a
small part of the phase space rather than cover the entire phase
space. Moreover, a crystal state with a definite structure
corresponds to a deep energy minimum in the configuration
phase space, separated by high energy barriers from other
configurations of particles (for example, other crystalline
phases dynamically stable under the given conditions). As a
result, during the time of the experiment, no changes in the
configuration of the average position of particles occurs, and
the system turns out to be `locked' in the state of a stable or
metastable crystal (see [21] on the applicability of statistical
physics and thermodynamics to metastable states of crystals
and glasses). N N Bogolyubov proposed using the term
`conditionally ergodic systems' in application to crystals [5].

The behavior of a harmonic crystal is rigorously described
by a combination of normal vibrational modes. If only one
mode is excited, there is no mechanism to excite other modes,
and such a system formally has zero entropy. Moreover, even
if we assume a small uncertainty of the initial coordinates and
momenta in the system of harmonic oscillators, these
uncertainties will remain small with time, since, in a
harmonic system, local instabilities are absent, and there is
nomechanism for uncertainty accumulation and information
loss. Therefore, a set of coupled harmonic oscillators is not a
thermodynamically equilibrium system.

Much less attention is paid in the literature to the
thermalization of a system of oscillators than to the thermali-
zation of gases. Worth mentioning is the rigorous result
obtained by N N Bogolyubov on the thermalization of a
single oscillator brought into contact with a thermalized
thermostat of a large number of oscillators [5]. In recent
years, a number of rigorous results in this field were obtained
by V V Kozlov [8]. Various cases of sympathetic pendula
(a system of identical harmonic oscillators connected by
springs) were considered. Such systems are, of course, not
ergodic; moreover, they are integrable [8]. At the same time,
the energies of coupled oscillators equalize with time on
average, which can be interpreted as the equalization of
`temperatures' of the subsystems.

The next obvious step in explaining thermalization in a
system of oscillators is the introduction of nonlinearity
(anharmonicity) for coupling. Indeed, the integrability and
the possibility of a complete description of the dynamics in
time are rather an exclusion for nonlinear systems. We recall
that a system withN degrees of freedom is called integrable if
it hasN independent integrals of motion. There are only a few
classes of exactly solvable systems of nonlinear equations,
including the abovementioned Toda chain of an infinite
number of particles. An overwhelming majority of nonlinear
systems are nonintegrable. However, nonlinearity in a system
does not automatically lead to stochastization and thermali-
zation.

One of the first attempts to study thermalization was the
modeling of a chain of 64 particles connected with springs
with small nonlinearity (the famous work by Fermi, Pasta,
and Ulam (FPU)) [22]. The problem was established by
E Fermi, who was interested exactly in the relation between
the nonlinearity of interparticle interaction and the con-

densed medium ergodicity. One mode or a few modes were
excited in the simulation. In spite of the expectations, the
energy in the FPU chain did not distribute uniformly over the
vibration modes (only a few spectrally adjacent modes were
excited), and the system itself regularly `almost' returned to its
initial state. Formally, there is nothing surprising in such a
conditionally periodic character of system motion, because,
according to the Poincar�e recurrence theorem, the energies of
individual particles oscillate and, of course, do not tend to
definite values when time unlimitedly increases.

The paper by Fermi, Pasta, and Ulam strongly influenced
the physics of integrable nonlinear systems and solitons.
Analyses of excitations in a chain of particles with nonlinear
interaction has shown the formation of vibrational reso-
nances in the spectrum. Later, it was found that a criterion
of thermalization of such a system is the overlap of all
neighboring resonances (the Chirikov criterion [15]). The
Fermi±Pasta±Ulam paradox is removed when exciting high-
energy modes or increasing the nonlinearity of interaction. In
this case, the conditionally periodic character of the motion
vanishes and the chain is thermalized [15].

In the general case, a nonlinear dynamic system with
several degrees of freedom is nonintegrable. The dynamics of
such a system have a complex and frequently chaotic
character. Nevertheless, as we saw with the example of the
FPU chain [22], in some cases, a certain regularity is preserved
in the motion of particles. Such systems are described by the
Kolmogorov±Arnold±Moser (KAM) theory (the theory is
presented in a series of papers; a simplified interpretation `for
physicists' is presented in monographs [15, 16]). The KAM
theory considers systems close to integrable and provides a
description of quasiperiodic solutions at small nonlinearity.
Thus, the KAM theory shows that quasiperiodic solutions
constitute the majority of all dynamic solutions (the role of
chaotic solutions is minor).

TheKAM theory and the FPU paradox are rare examples
of the existence of conditionally periodic solutions in non-
linear systems. In the general case, as mentioned above,
nonlinear systems are nonintegrable. The anharmonicity of
the oscillators leads to the nonlinearity of the corresponding
equations, and the nonlinear problem can be solved only for
some kinds of anharmonicity and only for a small number
(2±4) of coupled oscillators [16]. However, even in such a
small number of oscillators, the basic features of the behavior
of any system of nonlinear oscillators manifest themselves.
Let us enumerate these features [15, 16].

(1) In an anharmonic oscillator, the frequency of oscilla-
tions depends on the amplitude. Systems with `soft' non-
linearity, in which the frequency decreases with an increase in
the amplitude, and those with `hard' nonlinearity, in which
the frequency grows, are distinguished.

(2) For a few coupled anharmonic oscillators, the motion
becomes quasiperiodic, i.e., there is a distribution of oscilla-
tion periods instead of establishing a definite frequency in a
harmonic system. Moreover, the mean period of oscillations
in a system of nonlinear oscillators depends on the oscillation
amplitude. The oscillations cannot be separated into inde-
pendent normal modes.

(3) In a system of coupled harmonic oscillators, an
alternating transfer of energy from one oscillator to another
(beats) occurs. On average, the uniform energy distribution is
preserved in time. For coupled anharmonic oscillators, beats
also occur, but, besides that, the energy aperiodically localizes
at certain oscillators (uniform energy distribution is absent).
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(4) Starting with a certain energy (oscillation amplitude),
for a few coupled anharmonic oscillators, bifurcations occur,
i.e., the instability of quasiperiodic oscillations and the
appearance of new solutions (new types of particle motion).
If the particles involved in a bifurcation are in an external field
of interaction with other particles, the bifurcation leads to a
change in the mean equilibrium position of the oscillating
particles.

(5) Upon a further increase in energy, the motion of
particles in the system of nonlinear oscillators becomes
completely stochastic and the features of quasiperiodic
motion disappear.

Thus, for the appearance of statistical properties in a
system, it is not at all necessary to have a large number of
degrees of freedom. These properties can arise in a system of
three particles only [15]. The hopping of particles that occurs
in solids (glasses and crystals) with an increase in temperature
can be associated with bifurcations of solutions for a system
of nonlinear coupled oscillators. To summarize, we can
ascertain that a system of even a small number (2±4) of
coupled nonlinear oscillators demonstrates all the basic
types of the motion dynamics of matter particles [14±16]. Of
course, the small number of particles immediately requires
considering high-power fluctuations, which are absent in the
thermodynamic limit. All thermodynamic quantities will
experience fluctuations, inversely proportional to the square
root of the number of particles. The role of fluctuations and
mesoscopic effects in small systems are considered in many
modern monographs (see, e.g., [23]).

Quite a few papers and reviews, including those published
in Physics±Uspekhi, are devoted to stochastic instability in
various nonlinear and oscillatory systems [14, 24, 25].
However, in application to the basic issues of condensed
media ergodicity, these aspects of nonlinear dynamics are not
really considered. In the presence of anharmonicity of
interaction, in the process of vibration, the particles in a
solid do not return to the same points of the phase space. Like
Peano curves, the centers of gravity of the particles in the
process of motion densely cover quasispherical regions.
Arbitrarily small uncertainties of the initial coordinates and
momenta make the system of nonlinear oscillators `sweep' a
certain volume in the phase space and have a nonzero
entropy.

We recall that a system of any number of harmonic
oscillators without a nonlinearity cannot be thermalized and
formally has zero entropy at any amplitude of oscillations (if
only some vibrationmodes are excited, there is nomechanism
for energy transfer to other modes). TheGibbs distribution in
the system of oscillators arises because of anharmonicity and
weak interaction with a thermostat. The local instability
leading to the mixing of phase trajectories in condensed
media is related to the overlap of neighboring resonances in
the spectra of nonlinear oscillations (and the formation of the
so-called stochastic layer as a seed for instability [15]) and to
bifurcations [16]. Considering nonlinear oscillations in a
quantum mechanical system leads to a number of additional
complications, but it does not change the general picture [15].

As a rule, excitations in condensed media are described by
introducing quanta of normal vibrationsÐphonons. The
anharmonicity of vibrations corresponds to the interaction
(`collision') of phonons with their scattering (multiphonon
processes). Thus, the statistical description of a gas becomes
possible due to the collisions of the particles, while the
statistical description of condensed media is due to the

`collisions' of quasiparticlesÐphonons. In contrast to the
number of particles, the number of phonons can change in the
process of collisions (the creation of a few phonons from one
phonon, merging of several phonons into one, etc.). In
liquids, the reasons for mixing are both these mechanisms,
the collisions of particles and multiphonon processes.

Note that, in a system of harmonic oscillators, the
coordinate and momentum distributions of particles are
calculated exactly. The momentum of any particle is limited
and unambiguously related to the energy of the correspond-
ing mode. At the same time, in a thermalized vibrational
system, the momentum distribution follows from the Gibbs
distribution. The probabilities of the values of coordinates
and momenta of oscillators are given by the Bloch formula
[2], and in the classical limit are reduced to the Maxwell
distribution. As already mentioned above, the description of
a thermalized crystal in classical monographs on statistical
physics relies on the already solved problem of vibrations of a
diatomic molecule in a thermalized gas of such molecules [2].
In fact, the crystal thermalization in this approach is
`hardwired' in the collisions of diatomic molecules of the
gas. As we have seen, actually, the thermalization of solids is
provided by the nonlinear interaction of oscillators, i.e.,
`collisions' and scattering of phonons.

Anharmonic condensed media with short-range interpar-
ticle coupling, such as a crystal or liquid of nearly hard
spheres, demonstrate the possibility of a continuous transi-
tion from the `collision' of phonons to the collision of
particles. For most usual condensed media, this change in
the description (from the scattering of phonons to the
collision of particles) occurs in the supercritical fluid state
near the so-called Frenkel line [26].

5. Hierarchy of times
in establishing the Gibbs distribution

When a macroscopic system is brought into contact with a
thermostat, or it is suppliedwith energy in any other way (e.g.,
by internal heating due to the absorption of radiation), a
hierarchy of times of equilibrium state establishment arises.
Both for collisions of particles and for multiphonon pro-
cesses, the uncertainty of coordinates and momenta increases
exponentially with the growing number of events. Such a
strong dependence leads to complete mixing after a few ten
events. Indeed, it is possible to estimate the necessary number
of particle collisions of phonon scattering processes based on
the initial uncertainty of the coordinates and momenta of the
particles or on the weak impact on the environment. The
relative accuracy of determining the coordinates and
momenta in the measurements, as a rule, does not exceed
10ÿ10. An uncertainty of the same scale is induced by the
interaction with a thermostat. In the process of exponential
growth of uncertainties of coordinates and momenta, the loss
of information will occur during 20±25 collisions.

It is curious that a `strong' estimate can be made based on
the `granularity' of space-time. The coordinate cannot be
measured with an error less than the Planck length
� 10ÿ35 m. This granularity, of course, cannot be considered
the original cause of nondeterminism. At the same time, note
that the ratio of the Planck length to the characteristic
interparticle distance (10ÿ9 m) amounts to 10ÿ26. Even such
a small uncertainty will lead to the complete loss of
information in the case of exponential error growth during
about 60 scattering events. Similarly, in computer modeling,
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the error due to rounding to 8 decimal places leads to a loss of
information about the initial coordinates and momenta
during 20 collisions of each particle. Therefore, for an
estimate, it is possible to assume that in any case the local
thermalization is achieved during a few ten particle collisions
or phonon scattering events.

In gases under normal pressure, the characteristic time
between collisions equals a few ten picoseconds. Therefore,
the time of local thermalization of gases amounts to a few
hundred picoseconds. Note that, when considering the
established equilibrium in gases, N N Bogolyubov distin-
guished two time scales, a fast one (collisionless `synchroni-
zation' of correlation functions) and a slow one (the time to
`sweep' the phase space, including its coordinate part) [5]. The
short time actually corresponds to one collision event, and the
long one, to a few thousand collisions.

The time of the condensed matter thermalization can be
estimated from the rate of multiphonon processes by analogy
with the consideration of the `free path length' of phonons in
the analysis of heat conduction in dielectrics [27, 28]. At
temperatures of 100±1000K, the characteristic `lifetime' of
phonons in crystals is from a few picoseconds to a few
nanoseconds. The time of condensed medium thermalization
is, respectively, a few ten nanoseconds. When decreasing the
temperature, the free path length of phonons and their
lifetime increase due to both the effective reduction in the
anharmonicity effect with a decrease in amplitude and the
decrease in the number of short-wave high-energy phonons
[27, 28]. At ultralow temperatures, the thermalization time
can increase to a fewmicroseconds. In contrast to the velocity
of gas particles, the velocity of quasiparticles (phonons) is
almost unchanged with temperature (it is merely the speed of
sound). An increase in thermalization time with a decrease in
temperature for condensed media actually occurs because of
the fact that the gas of phonons becomes effectively more
rarefied (from the point of view of phonon interaction). In
liquids and dense supercritical fluids, the lifetimes of phonon-
type excitations and the time intervals between the collisions
of particles amount to a few picoseconds. Correspondingly,
the thermalization times in these media will be the smallest, a
few ten picoseconds. Thus, the thermalization of macroscopic
systems occurs at times from a few ten picoseconds (for dense
fluids) to a few microseconds (for pure crystals at low
temperatures).

What do these thermalization times mean? In fact, it is the
time of establishment of the local Gibbs distribution in the
momentum space (and, respectively, the equilibrium tem-
perature) in regions with a characteristic size of 10±100 nm. If,
for example, in a computer simulation we create a system of
particles with nearly equal energy per particle, the equilibrium
temperature will eventually be established just in a time equal
to that of thermalization. In experiments, the thermalization
time can be directly observed if an amount of energy is
imparted to a macroscopic system of particles almost
uniformly over the volume, e.g., by absorbing a pulse of
radiation.

In the absence of a uniform supply or extraction of energy
over the volume, the temperature of the system will become
established after contacting a thermostat. When the system is
brought into contact with a thermostat, the equilibrium
temperature in the system will be established through the
motion of the thermalized front. The time for the equilibrium
temperature to become established in the entire sample,
naturally, depends on its dimensions. A front itself 10±

100 nm thick (exactly the region in which particles or
phonons have interacted several dozen times) with the new
equilibrium temperature will be formed during the thermali-
zation time, and the velocity of its movement into the sample
depth is limited by the thermal diffusivity of the system. In
turn, the thermal diffusivity is determined by the phenomena
of phonon and electron transfer (in solids) or transfer of
particles (in gases and supercritical fluids). For samples with a
size of 1±10 mm, this time can vary from a few tenths of a
second for pure crystals with high heat conduction to a few
ten seconds for fluids.

Let us proceed to a discussion of the third time scale, the
time to establish complete ergodicity in the system. In fact,
this is the time of `sweeping' of the entire available phase
space. In the absence of convection, this time is determined by
the slowest diffusion processes. In gases, the time of sweeping
of the coordinate part of the phase space can be estimated
from the conditional `size' (`area') of the particles (atoms,
molecules), the volume per particle, and the mean velocity of
particles (in fact, it is the `slow' diffusion Bogolyubov time
[5]). For gases under normal conditions, the time to sweep the
entire coordinate space is a few nanoseconds, i.e., it is close to
the thermalization time. For rarefied gases, the time to
achieve complete ergodicity can substantially increase, up to
fractions of a microsecond. For nonviscous liquids and dense
supercritical fluids, the time to sweep the coordinate part of
the phase space is also close to the thermalization time and
amounts to a few ten picoseconds. Quite different is the
situation for diffusion processes and the time to achieve
`complete' ergodicity in solids.

6. Diffusion and ergodicity in solids

Asmentioned in Section 4, the issue of ergodicity in crystals is
not quite unambiguous. In addition, in crystals there are
thermodynamically equilibrium defectsÐ vacancies (for
some crystals with a body-centered cubic (bcc) latticeÐ
interstitial atoms). Vacancies are exactly what provides the
self-diffusion processes in a crystal, slightly increasing its
entropy. The vacancies themselves or vacancy±interstitial
atom pairs arise because of rare fluctuations and hops of
particles (bifurcations in the system of nonlinear oscillators).

It should be noted that the mechanism of formation of
thermodynamically equilibrium vacancies itself is rarely
discussed. As mentioned above, in a thermalized solid, the
momentum and energy distribution of particles is Maxwel-
lian. The beats and energy redistribution between anharmon-
ic oscillators are complex and irregular in time. However,
obviously, in a systemwith amacroscopically large number of
oscillators at an arbitrarily small mean energy per oscillator,
there is always a nonzero probability of accumulating the
energy in an individual oscillator, sufficient for a bifurcation
of the solutionÐa hop of a movable particle. The physical
mechanism for this is the local transfer of energy to one of the
neighboring oscillators in the process of nonlinear oscilla-
tions.

The energy of formation of a vacancy±interstitial atom
pair exceeds the value of kBTm by 30±50 times, where kB is the
Boltzmann constant, Tm is the melting temperature [27±29].
As a result, the equilibrium concentration of vacancies in
crystals at temperatures close to Tm is established during
1010ÿ1015 oscillations, i.e., in 10ÿ3ÿ102 s. In most crystals,
the vacancy mechanism of diffusion is implemented: an atom
moves to the neighboring vacancy, creating a new one. The
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corresponding energies of the process activation exceed the
value of kBTm by 20±40 times [27±29]. In most crystals, the
self-diffusion coefficients at temperatures close to that of
melting correspond (on average) to a noticeable displacement
of atoms (by a few lattice constants) at times of 10ÿ4ÿ10ÿ1 s
[27±29]. The contribution of equilibrium vacancies to the
entropy implies a dynamic picture with the possibility of
vacancy motion over the entire volume. That is, all atoms of
the crystal should have the potential to participate in the
diffusion. Therefore, the thermalization of the crystal caused
by the nonlinearity of vibrations automatically leads to the
existence of a noticeable number of particles that provide
diffusive hops of atoms in the lattice and establishment of the
equilibrium concentration of defects (mainly vacancies), as
well as the establishment of conditionally ergodic state of the
crystal.1

At temperatures close to the melting one, the conditional
ergodicity of a crystal occurs after a rather long time (up to
102 s). In this sense, the thermalization, i.e., the establishment
of a local equilibrium temperature, is only a sufficient base for
ergodicity, but the time of sweeping the coordinate part of the
phase space can substantially exceed the thermalization time.
At low temperatures, the time of formation of the equilibrium
number of vacancies in crystals and their diffusion over
noticeable distances becomes astronomically large. How-
ever, this is not essential: in a crystal, due to rigorous
symmetry, the main part of the phase space remains
unachievable for the crystal particles. As a result, the hops
of atoms in a crystal do not lead to a substantial increase in
entropyÐonly the contribution of the entropy of vacancies is
added. At low temperatures, both the equilibrium concentra-
tion of vacancies and their contribution to the entropy are
small, and the crystal can still be considered a conditionally
ergodic system, even if at experimental times the processes of
vacancy formation and diffusion did not occur.

The issue of thermalization and ergodicity of glasses is
even more complicated. As a rule, glasses are considered
nonergodic systems. This is because, at temperatures sub-
stantially less than the vitrification temperature, no relaxa-
tion processes (hops of all particles) have time to occur in
experimental times. The time of ergodicity establishment
(sweeping the phase space) at the vitrification temperature is
10±100 s (in fact, based on this relaxation time, the
vitrification temperature itself is determined). On astronom-
ical time scales, glasses are quite ergodic systems (if no
crystallization occurs during such times). Glasses, as well as
overcooled liquids, are metastable systems, and the thermo-
dynamics can be applied to them only with reservations [21].

In the context of the present paper, it is important for us
only that, due to the anharmonicity in glasses, as in crystals,
the local thermalization of the vibrational system occurs over
a fewmicroseconds. After bringing a glass into contact with a
thermostat, it is possible to say that, in a few seconds, in the
entire sample of glass, an equilibrium temperature will be
established. As in crystals, in glasses, the diffusive hops of
particles and defects are observed.However, in contrast to the
hops in crystals, the hops ofmovable particles in glasses occur
through all possible regions of space (since a glass is a
topologically disordered system). Therefore, from the point
of view of entropy at infinite times, the glass at nonzero

temperature is a liquid (in the process of motion, the particles
sweep the entire coordinate part of the phase space). That is,
while the incomplete ergodicity of crystals at low tempera-
tures can be, in fact, ignored, for glasses this is not so. The
relaxation processes in glasses at temperatures below that of
vitrification lead to substantial changes in their entropy
(Fig. 4). As a result, glasses at low temperatures are
completely thermalized systems with `working' local Gibbs
distribution in the momentum space and equilibrium tem-
perature. However, at experimental times, the ergodicity in
glasses, as a rule, is not achieved. On the scale of astronomi-
cally large times, glasses can be considered to be merely
overcooled liquidsÐ they are both thermalized and ergodic,
including in the coordinate space.

Therefore, thermalization ofmacroscopic systems and the
establishment of the local equilibrium temperature occur on a
time scale from a few ten picoseconds to a few microseconds
as a result of multiple collisions of particles and multiphonon
processes. The Gibbs distribution provides the ergodicity of
the system; the time to reach complete ergodicity in gases and
in liquids is comparable with the time of their local
thermalization, while in solids it is substantially larger.
Crystals can always be considered conditionally ergodic
systems, since the contribution to thermodynamics from
rare hops of particles can be ignored at any values of time.
At the same time, glasses at usual experimental times are
thermalized, but nonergodic, systems. The contribution to
thermodynamic properties and ergodicity from diffusive hops
in glasses can be ignored at short times, butmust be taken into
account at astronomically large times, when glasses become
ergodic systems, substantially increasing their entropy.

7. Conclusion

Although the importance of the Gibbs distribution for
describing different systems was understood more than a
century ago, the physics of the processes underlying it remain
interesting and largely not properly understood. At a small
uncertainty of momenta and coordinates of particles (taken
`from heaven'), the mixing of phase trajectories is a necessary
and sufficient condition for the existence of the Gibbs

Liquid

Crystal

S

TK Tg Tm T

Figure 4. Temperature dependence of entropy S. Tm is the melting

temperature, TK is the Kauzmann virtual temperature, Tg is the vitrifica-

tion temperature, corresponding to the kink in the temperature depen-

dence of the entropy at small experimental times. At astronomically large

times, the overcooled liquid at T < Tg is ergodic with the appropriate

increment of entropy (indicated by the arrow).

1 According to the Bloch formula, taking into account the quantum

nature of vibrations becomes substantial at temperatures much lower

than the Debye temperature, when the number of vacancies and self-

diffusion coefficient are negligibly small.
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distribution and system thermalization. For gases, the reason
of such mixing is the collisions of the particles, for solids, the
scattering of quasiparticles (phonons), and for liquids, both
types of processes.

Multiphonon processes lead not only to thermalization of
solids but also to the creation of equilibrium defects and the
possibility of diffusive hops of particles, related to the
bifurcational solutions for nonlinear oscillations. In glasses,
these diffusion processes under an increase in temperature
lead to a transition to a liquid state. In crystals, the self-
diffusion of particles leads to conditional ergodicity, and in
glasses at superlong times, to complete ergodicity.
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