
Abstract. Quantum cryptography or, more precisely, quantum
key distribution (QKD), is one of the advanced areas in the field
of quantum technologies. The confidentiality of keys distributed
with the use ofQKDprotocols is guaranteed by the fundamental
laws of quantum mechanics. This paper is devoted to the decoy
state method, a countermeasure against vulnerabilities caused
by the use of coherent states of light for QKD protocols whose
security is proved under the assumption of single-photon states.
We give a formal security proof of the decoy state method
against all possible attacks. We compare two widely known
attacks on multiphoton pulses: photon-number splitting and
beam splitting. Finally, we discuss the equivalence of polariza-
tion and phase coding.

Keywords: quantum cryptography, quantum key distribution,
BB84, decoy states

1. Introduction

Information protection is one of the key demands of modern
society. In most cases, information security is ensured by
using cryptographic techniques, such as encryption. Encryp-
tion is commonly understood as the transformation of
information that is needed to be secured (plaintext) into an
encrypted message (ciphertext) with the use of a certain
algorithm [1]. At the same time, to realize encryption, the
legitimate parties of the communication need a so-called
cryptographic key, which is a secret parameter (usually a
binary string of a certain length), which determines the choice
of a specific transformation of information when performing
encryption. The key distribution problem is one of the most
important in cryptography [1, 2]. For example, Ref. [2]
emphasizes: ``Keys are as valuable as all the messages they
encrypt, since knowledge of the key gives knowledge of all the
messages. For encryption systems that span theworld, the key
distribution problem can be a daunting task.''

Several approaches to the distribution of cryptographic
keys can be used. First, the keys can be delivered using trusted
couriers. The main disadvantage of this method is the
presence of the human factor. Furthermore, with the increas-
ing amount of transmitted data keys every year, physical
transfer is becoming more difficult. An alternative approach
is public-key cryptography. It is based on the use of so-called
one-way functions, i.e., functions that are easy to compute
but for which it is difficult to find an argument for a given
function value. Examples include the Diffie±Hellman and
RSA (abbreviation from the surnames Rivest, Shamir, and
Adleman) algorithms (which were developed for encrypting
messages, but are also used for key distribution), which use
the complexity of solving discrete logarithm and integer
factorization problems, respectively. The majority of data
transmitted on the Internet is protected with the use of public-
key algorithms, which are included in theHTTPS (HyperText
Transfer Protocol Secure) protocol.
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Today, efficient (of polynomial complexity) classical
algorithms for solving factorization and discrete logarithm
problems are unknown, but there is the efficient quantum
Shor algorithm [3]. Therefore, when a quantum computer
becomes available for an adversary, the widely used algo-
rithms for key distribution would no longer provide informa-
tion security. Besides, the impossibility of the existence of
efficient classical algorithms for solving these problems has
also not been proven, and it is only a conjecture. There are
currently no quantum computers capable of implementing
Shor's quantum algorithm for fairly large numbers, but
such devices may appear in the near future. Also, alternative
approaches to solving the factorization problem are being
developed, for example, using variational quantum algo-
rithms [4]. Thus, ensuring the confidentiality of data requires
an early transition to cryptographic methods that would be
resistant to attacks using a quantum computer [5].

One possible solution for key distribution in the `post-
quantum era' is to use quantum key distribution (QKD),
which was proposed by C Bennett and G Brassard in 1984 [6],
and also independently by A Ekert in 1991 [7]. Quantum key
distribution is based on the idea of encoding information into
the quantum states of individual quantum systems. For
example, the most common QKD protocol BB84 [6] uses
photon states (for example, polarization) in two mutually
unbiased bases [8]. The idea of using mutually unbiased bases
was introduced by S Wiesner in the 1970s (his paper [9] was
published later, in 1983) within the concept of `quantum
money'. Fundamental limitations of quantum mechanics,
such as the no-cloning theorem for a quantum state and the
Heisenberg uncertainty principle, restrict the ability to read
quantum information without changing it.

The first complete mathematical proof of the security of
the BB84 protocol was obtained in 1996 byDMayers [10, 11].
Further proofs have followed, for example, Refs [12, 13]. The
general mathematical theory of quantum key distribution,
which is based on information theory and entropy character-
istics, was developed by R Renner [14] and then improved in
subsequent papers, among which we highlight Refs [15, 16].
One recent result in this area is the development of the
`entropy accumulation' technique [17], which allows one to
map the security proof for the case of so-called collective
attacks (easier to analyze) to the case of general attacks
(coherent attacks) that are difficult to analyze directly [18,
19]. For the case of BB84, it simplifies the security proof and
also allows one to prove resistance against general attacks
more generally, for example, in the case of detection-
efficiency mismatch [20]. For the operational meaning of the
security parameter used in quantum key distribution, see
Refs [21, 22].

However, in practical implementations of QKD proto-
cols, differences from ideal abstract protocols naturally
arise [19, 23]. These differences have a significant impact on
the cryptographic security of implementation. For example,
the BB84 protocol assumes the encoding of information into
states of single photons. However, the generation of single
photons `on demand' and at a high rate is a technically
difficult task; therefore, instead of single photons, QKD
uses weak coherent pulses [24]. This makes it possible to
realize a photon-number splitting attack [25]: the adversary
can measure the number of photons in a pulse in a
nondisturbing way, take one photon from all multiphoton
states, and block all single-photon (i.e., secure) states, or at
least some of them. This allows the adversary to extract the

entire key or a significant part of it without introducing
errors, which violates the basic property of the protocol
about the relationship between the error level and the
amount of intercepted information and, thus, makes the
protocol implementation unreliable.

The vulnerability of quantum key distribution to such an
attack can be eliminated by using the decoy state method,
which was proposed in Refs [26±29]. The method is based on
the fact that the sender does not use one fixed value for the
intensity of coherent states, but each time randomly selects
the intensity from a known finite set (also known to the
adversary). One of these intensities (the largest) is the signal
one, and it is used to generate a key; the rest are decoys, and
they are used to estimate the level of the adversary's
intervention in the multiphoton pulses.

Being just a parameter in the probability distribution
(namely, the Poisson distribution), the intensity is a non-
observable quantity, so that only the photon number that is
the realization of this random variable is observed. Therefore,
the adversary does not know what intensity was used in a
given position and carries out their actions based only on the
observed number of photons.

After finishing the transmission of quantum states,
the sender announces the intensity of each position. The
legitimate parties then collect registration statistics for each
intensity separately. The states with lower intensities can be
called decoy states in the sense that, for an adversary, who
does not know the intensity parameter at the time of the
attack, they are indistinguishable from the signal states, but
after the intensities are announced, they become a sort of `tag'
which can be used to make separate statistics.

From a mathematical point of view, the statistics of
detecting states with different intensities gives the legiti-
mate parties additional equations for a better estimation of
unknown parameters, such as the number of positions in the
sifted key obtained from single-photon pulses (i.e., those that
cannot be intercepted without introducing errors) and the
fraction of errors in them. In particular, blocking all single-
photon states by the adversary would lead to the blocking of
almost all low-intensity decoy states.

Today, the decoy-state BB84 QKD protocol has been
theoretically studied in detail [20, 26±33], demonstrated in
experiments [23, 34], including Russian domestic systems [35],
and it is considered to be a candidate for the international
standard [36]. Nevertheless, doubts about its security against
all possible attacks, not just photon-number splitting attacks,
have been expressed [37, 38]. For this reason, in this article, we
not only describe the decoy state method but also provide the
formal security proof of the decoy state method against all
possible attacks. This fact is usually not explained in the
literature, since it is regarded as obvious. The proof would
not refer to a photon-number splitting attack. However, as
demonstrated, the photon-number splitting attack is optimal
for the adversary, which explains the fact that counter-
measures only against this attack are considered in the litera-
ture.

Separately, we compare the photon-number splitting
attack with another common attack, namely, the beam
splitting attack, and clearly demonstrate the lower efficiency
of the latter. At the same time, at realistic levels of losses, as
has been shown, these attacks give similar results.

The text is organized as follows. In Section 2, the BB84
protocol is described. In Section 3, the problem in this
protocol, which is related to the encoding information using
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coherent instead of single-photon states, is discussed, and
the photon-number splitting attack is considered. In order
to formulate further results concerning the security of the
protocol, in Section 4, the concepts of achievable and
maximally achievable secret key rates are introduced, and the
well-known Devetak±Winter formula [39] for the maximal
secret key rate is presented. Section 5 is devoted to reducing
the multiphoton case to the single-photon case if the
transmitted states are statistical mixtures of Fock states
(states with a certain number of photons). The theorem in
this section formally justifies the decoy state method and its
security against all possible collective attacks. Here, the
optimality of the photon-number splitting attack is justified.
Section 6 completes this analysis: an equivalent formulation
of the protocol in terms of an entangled state allows using the
entropy accumulation technique and justifies the security of
the protocol to all possible (not just collective) attacks.
Section 7 is devoted to describing the decoy state method. In
Section 8, another attack, namely the beam splitting attack,
is considered, which, unlike the photon-number splitting
attack, has been implemented experimentally. In Section 9,
we compare the photon-number splitting and beam splitting
attacks and explain why the latter is less efficient. Finally, in
Section 10, we respond to the doubts expressed in Ref. [40]
about the applicability of the decoy state method in the case
of phase encoding rather than polarization encoding, and
demonstrate the complete equivalence of these encodings.

It should be noted that the field of quantum information
processing has already become the subject of several reviews
in Physics±Uspekhi. In particular, a number of problems in
quantum computing were considered in Refs [41, 42], and
several aspects of quantum key distribution were considered
in Ref. [43]. The progress of recent decades on the develop-
ment of industrial devices for quantum key distribution has
taken research in this area to the next level, where a number of
important practical aspects of the implementation of such
systems have come to the fore. In particular, one of the central
problems of this area is to analyze the resistance to attacks of
quantum key distribution protocols, which is the subject of
this review. The main result is a rigorous justification of the
security of the decoy state method in quantum cryptography.

2. BB84 protocol

In this section, we describe the BB84 protocol [6] under the
assumption of a single photon source on the sender side. Each
QKD protocol can be divided into two main stages:
transmission of quantum states and post-processing of the
measurement results. Following Ref. [1], the communication
participants that desire to obtain a shared key we call the
sender and the receiver, while the eavesdropper side is the
adversary. Sender and receiver together are also referred to as
legitimate parties.

In the first `quantum' stage of the BB84 protocol, four
quantum states are used, which form two orthogonal bases
z � fj0iz; j1izg and x � fj0ix; j1ixg in the two-dimensional
Hilbert space CC2. The quantum system that corresponds to
this space is called the `quantumbit' or `qubit'. The values 0 or
1 indicate which classic bit is encoded by the corresponding
basis vector. Elements of the bases are expressed in terms of
elements of another basis according to the relations

j0ix �
j0iz � j1iz���

2
p ; j1ix �

j0iz ÿ j1iz���
2
p : �1�

If the information is encoded into photon polarization,
then the vectors j0iz and j1iz can correspond, for example, to
horizontal and vertical polarizations. In this case, j0ix and
j1ix correspond to two diagonal polarizations that are rotated
by 45� and 135�, respectively, relative to the horizontal
direction. We assume polarization coding for convenience of
the presentation, but, in fact, no restriction is imposed on the
method of information encoding: Formally, j0iz, j1iz, j0ix,
and j1ix are vectors in the Hilbert space and one can use any
encoding which fulfills relation (1). In particular, we explain
the equivalence of the polarization and phase encodings
below in Section 10.

As is seen from (1), when measuring a qubit in a basis
different from the preparation basis, the result is a random
value. In the case of coincidence of the preparation and
measurement bases, the result perfectly correlates with the
prepared state of the qubit (in the ideal case, i.e., in the
absence of errors in the channel and measuring devices).

Let us now describe the BB84 protocol.
(1) The sender randomly chooses a basis from the set

fz; xg and the value of the transmitted bit of information: 1 or
0. Bits are selected with equal probabilities of 1/2.

(2) Then, the photons prepared in the corresponding
states are transmitted through the quantum channel.

(3) The receiver randomly chooses ameasurement basis, z
or x, for each qubit and measures the state of the qubit in the
selected basis. If the preparation and measurement bases
coincide, the received bit value coincides (ideally) with the
sent one. If the bases do not coincide, the bits of the sender
and the receiver do not correlate (that is, they may or may not
coincide with equal probabilities) due to the fact that the
bases are mutually unbiased (1). Usually, the communication
channel contains large losses; therefore, not all positions are
registered by the receiver.

(4) The above steps are repeated many times, i.e., a large
number of quantum states are transmitted. As a result,
legitimate parties receive two sequences of bits k raw

A and
k raw
B , which are called raw quantum keys.
Since a perfect copy of a quantum state cannot be created

and the adversary does not know the basis in which the bit is
encoded in a given position, the adversary needs to employ
imperfect copying techniques that induce distortions.

In the original version of the protocol, the bases are
chosen with equal probabilities. Later, an improved variant
of the protocol was suggested, in which one of the bases (for
example, the z basis) is chosen more frequently than the other
one [44]. This reduces the number of basis mismatches and,
therefore, the portion of sifted positions, i.e., it increases the
key rate. Let us denote the probabilities of choices of the bases
as pz and px � 1ÿ pz. In the limit of an infinite number of
pulses N, one can put pz ! 1, px ! 0. For example, one can
take px � O�1= ����

N
p �: this is enough for the statistical estima-

tion of the parameters related to observations in the x basis,
since the statistical fluctuations have an order of O�1= ����

N
p �.

Then, the following modification of the protocol can be
adopted: only positions in which both parties used the
z basis are used for key generation. The bits encoded in the x
basis do not participate in the formation of the secret key;
they are only needed to estimate the level of eavesdropping.
Note that a version of the protocol in which the bases are
chosen pseudo-randomly using a pre-distributed random
sequence is considered in Ref. [45].

At the second stage, the legitimate parties carry out the
classical post-processing of raw keys using communication
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over a public authenticated channel [18, 46, 47]. It consists of
the following steps:

1. Announcements. The receiver announces the position
numbers in which the signal was registered. The sender and
receiver declare the bases used in all positions.When using the
decoy state method, the sender also announces the type of
each pulse (signal or decoy). The sender and the receiver can
also announce bits in positions that do not participate in the
formation of the secret key: in positions in which the parties
used the x basis and in the decoy pulses.

2. Key sifting. Positions in which decoy intensity were
used, registration did not occur, or at least one of the
legitimate parties used the x basis are sifted out. The resulting
keys, k sift

A and k sift
B , are called sifted keys. Ideally, they

should match, but as a result of natural noise in the channel
or adversary actions, they do not match. Moreover, the
adversary may have partial information about them.

3. Error correction. One of the sifted keys (for example,
belonging to the sender) is considered to be a reference.
Differences between it and the sifted key of the other side
are considered to be errors. One can use error correction
codes or interactive error correction procedures to correct
errors. Low-density parity-check (LDPC) codes are quite
common. Often, this procedure ends with veriécation: the
identity of the sifted keys is checked using hash functions (see
Ref. [48]). As a result of this stage, the legitimate parties
receive identical veriéed keys k ver

A � k ver
B with a high prob-

ability. An efécient method for error correction in the BB84
protocol error correction based on LDPC codes is described
in Ref. [49]; see also Ref. [50].

4. Estimation of the level of eavesdropping and making a
decision about creating the key or renouncing it (aborting
the protocol) based on the observed data. Quantum crypto-
graphy is based on the fact that information encoded in
nonorthogonal quantum states cannot be read by a third
party (which does not know the basis in which the key bit in a
given position was encoded) without `spoiling' these states.
Therefore, interception by the adversary would lead to an
increase in the number of errors (i.e., mismatched positions in
sifted keys) between the legitimate parties. In this version of
the protocol, where only the bits encoded in the z basis are
involved in the formation of the key, only the fraction of
errors in the x basis is needed to assess the level of
eavesdropping. If the error rate exceeds a certain critical
threshold, the protocol is aborted. Otherwise, the parties
proceed to the last step. Thus, in quantum cryptography, it
is impossible to eavesdrop without being detected.

5. Privacy ampliécation. The sender randomly chooses a
so-called hash function from a family of 2-universal hash
functions and sends it to the receiver via a public channel.
Both then compute the hash value of their (identical) sifted
keys. As a result, they get a common shorter key (final key)
k fin
A � k fin

B , but the information of the adversary about which
is negligible. With an inénitely large length of the sifted key, it
can be made arbitrarily small. The more information the
adversary has about the sifted key (as a result of eaves-
dropping and as a result of disclosure by legitimate users of
some of the information during error correction), the more
compression of the key in the privacy ampliécation procedure
is required, i.e., the shorter the énal key and the lower the key
rate.

As can be noted, the post-processing procedure requires
the parties to communicate via the classical channel. It is
assumed that the adversary is freely able to listen to this

channel but cannot change the messages transmitted over
it or send their own. This is provided by message authentica-
tion codes. In quantum cryptography, information-theoreti-
cally secure Wegman±Carter codes [51] are often used (i.e.,
provably secure without assumptions about the adversary's
computing power). They require legitimate parties to have an
initial short secret key. It is sufficient to have an initially
shared secret for the first key distribution session. Further, in
each session, part of the generated key is kept for use in a
message authentication code in the next session and is not
used for other purposes. (See Ref. [52] for the latest
developments in the reduction of the portion of the key that
is consumed during authentication.)

Here, we assumed that the sender is sending single-photon
states. This corresponds to the fact that their Hilbert space is
CC2. At the end of the Introduction, there are references
regarding the history of the security proof for the single-
photon BB84 protocol.

3. Information encoding in weak coherent pulses.
Photon-number splitting attack

Let us now take into account that, in practice, information is
most often encoded not into true single-photon states but into
weak coherent pulses. Thismeans that theHilbert space of the
sender is not CC2, butf�CC2� (the boson Fock space over CC2).
The orthonormal basis in this space is formed by the vectors
jvaci and j j0; j1iz, where jvaci is the vacuum state, and

j j0; j1iz �
�a yz0� j0�a yz1� j1�����������

j0! j1!
p jvaci ; �2�

j0; j1 5 0 (j0; 0iz � jvaci), a
y
z0, a

y
z1, az0, az1 are creation

and annihilation operators of a photon in the states
j0iz; j1iz 2 CC2, respectively. Another orthonormal basis is
formed by vectors jvaci and j j0; j1ix, j0; j1 5 0, where

j j0; j1ix �
�a yx0� j0�a yx1� j1����������

j0! j1!
p jvaci ; �3�

a
y
x0 �

a
y
z0 � a

y
z1���

2
p ; a

y
x1 �

a
y
z0 ÿ a

y
z1���

2
p �4�

are creation and annihilation operators of photons in
states j0ix; j1ix 2 CC2, respectively. In particular, vectors
j0ib; j1ib 2 CC2 can be identified with vectors j1; 0ib; j0; 1ib 2
f�CC2�, respectively, b 2 fz; xg.

Then, the transmitted coherent state has the form

ja; uib � exp

�
ÿ m
2

�
jvaci � exp

�
ÿ m
2

�X1
j�1

a j����
j !
p jc b

jui ; �5�

where u 2 f0; 1g, b 2 fz; xg,
jc b

j 0i � j j; 0ib ; jc b
j1i � j0; j ib ;

b 2 fz; xg. Here, a 2 CC is the parameter of the coherent state,
m � jaj2 is the pulse intensity, a � ���

m
p

exp �iy�. The protocol
demands a random change in the phase y of the coherent
state from pulse to pulse. This is provided either by a laser
operatingmode (passive randomization) or by introducing an
additional element, which is connected to a random number
generator and randomizes the phase, into the optical system
of the sender (active randomization) (see also Remark 1 in
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Section 5). Then, the adversary and the receiver do not
`observe' a pure coherent state but a mixed one with the
density operator

r b
mu �

1

2p

� 2p

0

dy
�� ���mp exp �iy�; u�

b


 ���
m
p

exp �iy�; u��
� exp �ÿm�jvacihvacj � exp �ÿm�

X1
j�1

m j

j !
jc b

juihc b
juj : �6�

Here, for simplicity, we assume that the basis b and the bit u
are fixed; otherwise, it is necessary to average over them. This
mixed state can be interpreted as follows. The vacuum state is
sent with the probability exp �ÿm�, whereas the state with the
j photon in the corresponding polarization is sent with the
probability exp �ÿm�m j=j !. Thus, the number of photons in
the pulse is distributed according to the Poisson distribution
with the parameter (average number of photons) m. Usually,
m < 1 is chosen; therefore, such impulses are referred to as
weak coherent.

The presence of more than one photon in some pulses
allows the adversary to carry out a so-called photon-number
splitting attack [25]. Sometimes this is understood as an attack
of a special type, but we mean a whole class of attacks, which
we describe now. Each attack of this class begins with the
adversary measuring the number of photons, i.e., applying an
observable which corresponds to the probability projection-
valued measure fPjg1j�0, where

Pj �
X

j0�j1�j
j j0; j1iz h j0; j1j �

X
j0�j1�j

j j0; j1ix h j0; j1j : �7�

For an outcome j, state (6) transforms into Pjr b
muPj=

Tr �r b
muPj�. This measurement is also called nondemolition,

because the photons are not destroyed, and their polarization
is not changed. In practice, such a nondemolition measure-
ment has not yet been implemented, but it is possible in
theory, since the corresponding probability projector-valued
measure exists. If the adversary observes that there are two or
more photons in the transmission ( j5 2), then they take one
photon into their quantum memory and send the rest to the
receiver. After the bases are announced via the public
channel, the adversary would find out which basis in a given
position the key bit is encoded. They measure with this basis
and recognize this bit. In this case, the state of those photons
that were sent to the receiver does not change. This violates
the basic principle of quantum cryptography that the
observation leads to changes in the state and occurrence of
(or increase in) errors. If the pulse contains one photon, the
adversary can still find out the information encoded in it only
at the cost of changing the state and, accordingly, introducing
errors. Therefore, the adversary can block all or part of one-
photon states, i.e., stop their transmission to the receiver,
simulating natural losses in the communication channel. They
can attack unblocked single-photon states in the usual way (at
the cost of introducing errors).

The blocking of some pulses by the adversary leads to an
increase in the level of losses, which can be detected by the
legitimate parties. Therefore, it is assumed that the adversary
can replace the communication line and even detectors with
ideal ones and then block as many single-photon pulses as
possible to reproduce the natural level of loss. The higher the
level of natural losses (which depends primarily on the length
of the communication line (see Section 7)), the more single-
photon states the adversary can block. If the natural losses in

the channel are so large that the adversary can block all single-
photon states, then the adversary would have full information
about the key without introducing noise, since all the signals
that reach the receiver would be multiphoton. Thus, the
quantum key distribution protocol is completely compro-
mised.

4. Secret key rate

The énal (secret) key rate is understood as the limit of the
ratio of the length of the énal key to the length of the sifted
key, as the number of pulses tends to inénity. The achievable
secret key rate means the secret key rate at which it is possible
to ensure the requirement of an inénitesimal amount of
information of the adversary about the énal key (in the
mentioned limit). As mentioned above, this requires a certain
level of compression in the privacy ampliécation procedure.
Of course, if a certain rate is achievable, then lower rates are
also achievable. The maximally achievable (or simply max-
imal) secret key rate is called the exact upper bound of the set
of achievable rates. (For formal deénitions, see Ref. [39].)

Note that sometimes the key rate is defined as the limit of
the length of the final key to the number of pulses. Since the
length of the sifted key is proportional to the number of
pulses, these definitions coincide up to a constant factor.

The formula for the maximum secret key rate can be
written using the Devetak±Winter theorem [39] (see also
Section 6). Its formulation involves a three-particle state of
the sender, the receiver, and the adversary, which emerges
after the sifting procedure. Our immediate goal is to write the
formula for this state.

Let us introduce a register (formally, a quantum system)
A of dimension 2, which stores the bit value of the sender. We
denote a subsystem that contains the transmitted quantum
state (6) as A. Then, the joint state A and A when using the
z basis has the form

r z
AA
� 1

2

X1
u�0
jui

A
huj 
 r z

mu ; �8�

where r z
mu is given by Eqn (6).

Due to the action of natural noise, natural losses in the
channel, and/or actions by the adversary, the state r z

mu
undergoes the action of some quantum channel, i.e., linear
completely positive trace-preserving map U0:T�hA� !
T�hB 
hE�, where hA �hB �f�CC2� are Hilbert spaces
of the sender and the receiver.hE is some (unknown) Hilbert
space of the adversary, andT is the space of nuclear operators
in the corresponding Hilbert space.

The quantum efficiencies of the detectors (which are
different in general) and the probabilities of dark counts
(also, in general, different) can also be included in the channel
U0: in the first case, the state with photons turns, with some
probability, into the state without photons, and the other way
around in the second case. It should be noted that enabling
these effects makes U0 basis-dependent. The transformation
of the state in the communication line does not depend on the
basis, since the adversary does not know the basis at the time
of the attack, and the natural noise and losses do not depend
on the basis. But the further transformation of the state
associated with the measurement is already dependent on
the measurement basis. We are now interested in positions in
which both sides use the z basis, since only such positions
participate in the key formation. The measurement in the
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x basis would correspond to another transformation, but we
will not need it.

After this, an `ideal' measurement (we have already taken
into account imperfect detector efficiencies and dark counts
in U0) corresponds to the probability projector-valued meas-
ure f �P1; �P0; �P1; �P01g, where �P1 � jvacihvacj corresponds to
the no click event in both detectors, �P0 �

P1
j�1 j j; 0iz h j; 0j

and �P1 �
P1

j�1 j0; j iz h0; j j correspond to the click of exactly
one detector, and �P01 �

P1
j; k�1 j j; kizh j; kj corresponds to the

click of both detectors.
So, the vacuum component of the receiver state is not

registered. Therefore, the corresponding positions are sifted
out and do not participate in the key formation. Recall that
our immediate goal is to write a formula for the three-particle
state of the sender, the receiver, and the adversary, which
emerges after the sifting procedure. We denote

U�rA� �
��IB ÿ jvacihvacj� 
 IE

�
� U0�rA�

��IB ÿ jvacihvacj� 
 IE
�

for any rA 2 T�hA�. Here, IB and IE are the identity
operations in the spaces hB and hE, respectively.
Obviously, the map U does not preserve the trace, it only
does not increase it: TrU �rA�4 TrrA. The reason for the
nonconservation of the trace is that U includes sifting, which
reduces the trace.

Then, the desired formula for the three-particle state of
the sender, receiver, and adversary after sifting has the form

r
ABE
� �Q sz�ÿ1�Id

A

 U ��r z

AA
� � 1

2Q sz

X1
u�0
jui

A
huj 
 U�r z

mu� ;

�9�

where

Q sz � Tr �Id
A

 U ��r z

AA
�

is the probability of the registration of a signal pulse (as
indicated by the superscript s, later we would need the
probabilities of registration of decoy pulses), and Id

A
is the

identity quantum map of density operators in the space of
register A, i.e., CC2.

According to the Devetak±Winter theorem [39], the
maximal secret key rate is as follows:

R � H�AjE� ÿH�AjB� ; �10�

where

H�AjB� � H�r
AB
� ÿH�rB� ; �11�

H�AjE� � H�r
AE
� ÿH�rE�

are quantum conditional entropies.
Here, we have used the following convention regarding

the denotations of the states of subsystems of a composite
system: if the state of the composite system is r

ABE
, then

r
AB
� TrE rABE

, rB � Tr
AE

r
ABE

, rE � Tr
AB

r
ABE

, etc. In
turn, H�r�� ÿTr �r log r� is the von Neumann entropy,
log � log2. Since the state r

ABE
is classical-quantum (it is

classical on A and quantum on BE), both terms on the right-
hand side of Eqn (10) are nonnegative.

The first term on the right-hand side of Eqn (10)
characterizes the ignorance or the lack of information of the

adversary about the sender's key bit. The second term
(without the minus sign before it) characterizes the ignorance
(the lack of information) of the receiver about the same bit.
Denote m as the minimal amount of information that the
sender has to disclose about their sifted key, so that the
receiver would be able to correct all errors and get a key that
matches the sender's key. If error-correcting codes are used
for this purpose, then m is the length of the syndrome.
However, iterative error correction procedures can also be
used. The second term on the right-hand side of (10) is the
ratio m=n as n!1. We assume that an optimal error
correction code (in the Shannon sense) is used. Otherwise,
the factor f > 1 has to be added before the second term. So,
for example, the value of the factor f � 1:22 is achievable for
modern error-correcting codes [49].

According to the Fano inequality, the quantity H�AjB�
can be upper bounded by h�E sz�, where

h�x� � ÿx log xÿ �1ÿ x� log �1ÿ x�

is the binary entropy, and E sz is the fraction of errors in the
sifted keys. The superscripts s and z indicate that we are
talking about signal states and positions, in which both sides
used the basis z. Recall that only these positions are involved
in the secret key formation. This value becomes known to the
legitimate parties after error correction and key verification:
After verification, the keys are likely to coincide; therefore, by
the number of positions in which corrections have taken
place, the legitimate parties know the error rates in the sifted
keys. Then, to obtain a formula for the achievable secret key
rate, the legitimate parties have to evaluate the first term on
the right-hand side of Eqn (10), i.e., the adversary's
ignorance. Estimation of the first term is crucial in proving
the security of any QKD protocol.

5. Reducing the multiphoton case
to a single-photon one

Let us reduce the problem of upper bounding H�AjE� for
the state r

ABE
, which includes multiphoton pulses, to an

estimation of the quantum conditional entropy for a state
that includes only single-photon pulses. We write

~r �0�
AA
� 1

2

X1
u�0
jui

A
huj 
 P0 r z

muP0

� exp �ÿm�
2

X1
u�0
jui

A
huj 
 jvacihvacj ;

~r �1�
AA
� 1

2

X1
u�0
jui

A
huj 
 P1 r z

muP1

� m exp �ÿm�
2

X1
u�0
jui

A
huj 
 juizhuj ;

r �5 2�
ABE

� �Q sz
�5 2��ÿ1�IdA


 U ��~r �5 2�
AA
� ;

Q sz
j � Tr �Id

A

 U ��~r � j �

AA
� ; j � 0; 1 ;

where Pj is the projection onto the j-photon subspace in
f�CC2� (see Eqn (7)), and Q sz

j is the joint probability that the
sender's signal pulse contains exactly j photons and is
registered by the receiver. Then, the ratio of the j-photon
pulses to the pulses registered by the receiver and participat-
ing in the formation of the sifted key is Q sz

j =Q
sz.
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Theorem. For any linear completely positive trace-non-
increasing map U, the following inequality holds:

H�AjE�5 Q sz
0

Q sz
�Q sz

1

Q sz
H�AjE��1� ; �12�

where H�AjE� is calculated for state r
ABE

and H�AjE��1� is
calculated for state r �1�

ABE
.

Quantum conditional entropy can be expressed in terms
of the quantum relative entropy:

H�AjE� � ÿD�r
AE
kI

A

 rE� :

Recall that the quantum relative entropy is defined as

D�rks� � Tr �r log r� ÿ Tr �r log s� ;

and it is jointly convex with respect to its arguments [53, 54]

D
ÿ
pr1 � �1ÿ p�r2

 ps1 � �1ÿ p�s2
�

4 pD�r1ks1� � �1ÿ p�D�r2ks2�

for any states r1; 2, s1; 2 and 04 p4 1.
Then, the statement of this theorem is a simple conse-

quence of the fact that the state r z
mu is amixture of states with a

certain number of photons (6), linearity of U, and joint
convexity of the quantum relative entropy. Indeed,

r z
mu � P0 r z

muP0 � P1 r z
muP1 � P5 2 r z

muP5 2 ;

where P5 2 �
P1

j�2 Pj. Therefore, in view of the linearity of
U,

r
ABE
� �Q sz�ÿ1�Id

A

 U ��r

AA
�

� Q sz
0

Q sz
r �0�
ABE
�Q sz

1

Q sz
r �1�
ABE
�Q sz

5 2

Q sz
r �5 2�
ABE

;

where

r �5 2�
ABE

� �Q sz
5 2�ÿ1 Tr �IdA


 U ��~r �5 2�
AA
� ;

Q sz
5 2 � Tr �Id

A

 U ��~r �5 2�

AA
� ;

~r �5 2�
AA

� 1

2

X1
u�0
jui

A
huj 
 P5 2 r z

muP5 2 :

Then, due to the joint convexity of the quantum relative
entropy,

H�AjE�5 Q sz
0

Q sz
H�AjE��0� �

Q sz
1

Q sz
H�AjE��1�

�Q sz
5 2

Q sz
H�AjE��5 2�5

Q sz
0

Q sz
�Q sz

1

Q sz
H�AjE��1� ;

Q.E.D. Here, conditional entropies H�AjE��0� and

H�AjE��5 2� are calculated for the states r �0�
ABE

and r �5 2�
ABE

,

respectively. They are nonnegative, because these states are

classical-quantum. We have also used here the fact that

H�AjE��0� � H�A� � 1, which follows from the form of the

states ~r �0�
AA

and ~r �0�
ABE

. Informally, the vacuum contains no

information about the sent bit.
The theorem proves that the decoy state method is

universal, i.e., secure against arbitrary attacks (for arbitrary

maps U), and not only against the photon-number splitting
attack. More precisely, the theorem claims the universality
of the lower bound (12), whereas the decoy state method
provides lower bounds forQ sz

0 andQ sz
1 , as well as bounds for

quantities participating in the estimation ofH�AjE��1�.
Estimate (12) becomes exact in the case of the photon-

number splitting attack, since this attack is optimal. Indeed,
this attack provides knowledge of all the bits that are encoded
in multiphoton pulses to the adversary, which is the basic
assumption of this estimate.

Is it always possible to perform a photon-splitting attack?
The removal of a photon from a multiphoton signal by the
adversary reduces the registration probability of this signal,
that is, increases the level of losses. As mentioned above, the
adversary can compensate for this by reducing the level of
natural losses in the communication channel or even in the
optical scheme of the receiving side. However, if the natural
losses are so small that even their reduction to zero does not
compensate for the losses introduced due to the removal of
photons frommultiphoton signals, then the adversary cannot
perform a full photon-number splitting attack. Therefore,
estimate (12) ceases to be precise (but, of course, remains
true): H�AjE��5 2� > 0. Nevertheless, at realistic losses, the
adversary can perform a photon-number splitting attack, and
estimate (12) is precise.

Let us now pay attention to the first term of the right-hand
side of Eqn (12). It is related to the registration of a vacuum
pulse. The registration of a vacuum pulse can occur due to
the actions of the adversary, who can send their signal to
the receiver. It can also happen due to a dark count in the
receiver's detectors. However, if key distribution is possible,
the fraction of dark counts in the total number of counts (i.e.,
the ratio Q sz

0 =Q
sz) is small. Key distribution is only possible

with a relatively low error rate. The well-known theoretical
maximal tolerable error rate for the BB84 protocol is 11%
(under the assumption that the error rate is the same for both
bases (see Remark 2 below)) [11, 12, 18]. In practice, the
maximal tolerable error rate is even lower due to the presence
of multiphoton pulses and due to statistical fluctuations.
Since a dark count is erroneous with a probability of 1=2,
thismeans that the fraction of dark counts in the total number
of counts on the receiver side does not exceed 6%. For this
reason, instead of an accurate estimate (12), a rougher
estimate is often used:

H�AjE�5 Q sz
1

Q sz
H�AjE��1� : �13�

We emphasize that the fraction of dark counts affects the
closeness of estimate (13) to the exact estimate (12), but not on
the validity of Eqn (13), which follows directly from Eqn (12)
and the positivity of values Q sz

0 and Q sz. This means that
Eqn (13) allows secret key generation at any dark count rate,
but at a slightly lower speed than is allowed by formula (12).

In what follows, in the decoy state method, dark counts
are strictly taken into account in the value Y0 (see Eqns (22)±
(24) in Section 7). At realistic communication channel lengths
and without eavesdropping, i.e., during the `normal' opera-
tion of the system, the dark counts (rather than, for example,
errors due to inaccurate alignment of the optical scheme)
make the main contribution to the error rate.

Remark 1. Here, the requirement of phase randomization
(6) is crucial. As mentioned above, it can be achieved in two
ways: at the hardware level, when a laser emits a pulse with a
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random phase, independent of the phases of previous
impulses, or using active randomization, i.e., with the use of
a device connected to a random number generator for the
random choice of the phases of outgoing pulses. In the latter
case, randomization according to a uniform or another
continuous distribution is not possible: only a discrete
approximation is possible; therefore, it is necessary to take
into account the corresponding correction [55].

The Devetak±Winter formula (10) for the maximal secret
key rate was initially obtained for the case of a so-called
collective attack. Keep in mind that attacks on quantum
cryptography protocols are divided (by increasing degree of
generality) into individual, collective, and coherent [18]. In a
collective attack, it is assumed that the adversary attacks all
the transmitted states in the same way, so that, after sending
n pulses, the state r
 n

ABE
is formed (see Eqn (9)). Then, the

adversary performs a collective (i.e., of the general form)
measurement over their own parts.

In the most general case, the adversary performs an
arbitrary quantum transformation over n pulses, which is
not necessarily a tensor power of the transformation over one
pulse. These attacks are called coherent attacks. In the
asymptotic case n!1, which we restrict ourselves to in
this paper, the consideration of coherent attacks is reduced to
the consideration of collective attacks using the de Finetti
quantum representation [14]. Therefore, formally, the use of
theDevetak±Winter formula is not a limitation. However, the
corrections associated with the finiteness of n, when using the
de Finetti representation, turn out to be large enough for
realistic n; therefore, in practice, the de Finetti representation
is usually not used. Let us explain why the consideration of
the photon-number splitting attack does not limit the general-
ity in this case either.

For n pulses, instead of state (8), we now have the state

r z
AA
� 1

2 n

X
u2 f0; 1gn

jui
A
huj 
 r z

mu ; �14�

where u � u1; . . . ; un is a binary string, jui� ju1i 
 . . .
 juni,
r z
mu � r z

mu1 
 . . .
 r z
mun ;

and bold marking of the registers �A;A� means that registers
are `vectors'.

Since

r z
mu �

X1
j�0

Pj r z
muPj ;

it can be stated that

r z
mu �

X1
j1�0

. . .
X1
jn�0
�Pj1r

z
mu1Pj1� 
 . . .
 �Pjn r

z
munPjn� : �15�

Each term on the right-hand side of Eqn (15) represents a
state (up to normalization) with a certain number of photons
in each position. Since transformations of quantum states are
linear (or affine) maps, any state transformation (15) is a
convex sum of the results of state transformations with a
certain number of photons in each pulse. Therefore, the
consideration of only such states does not limit the general-
ity.Measurements of the number of photons in each pulse in a
photon-number splitting attack do not change the state (15)
(since it already has a diagonal form with respect to the

operators Pj1 
 . . .
 Pjn ), but simply allow the adversary to
find out the number of photons in each pulse. In this sense, the
photon-number splitting attack is optimal: if each pulse has a
certain number of photons and one can find out this number
without introducing noise, then it is optimal to do this, that is,
to measure the number of photons in each pulse.

A rigorous estimate of the entropy characterizing the
ignorance of the adversary for a state of form (15) for a finite
n was performed in Ref. [56]. The purpose of this considera-
tionwas to justify the fact that the consideration of states with
a certain number of photons in each pulse does not limit the
generality.

6. Formulation in terms of entangled states

For the generalization of the Devetak±Winter results for the
case of coherent attacks, one can use the entropy accumula-
tion technique [17]. It consists of estimating the smoothed
Renyi min-entropy for a state in �hA 
hB 
hE�
 n (which
is necessary to estimate the ignorance of the adversary during
a coherent attack) through the von Neumann entropy, which
is the first term on the right-hand side of the Devetak±Winter
formula (10). Therefore, if it is possible to apply this
technique, the Devetak±Winter formula gives the maximally
achievable secret key rate in the case of coherent (i.e., general)
attacks. Also, the entropy accumulation technique makes it
possible to take into account the effects associated with the
finite size of the statistical sample (finite number n), which is
outside the scope of this work: recall that we are working in
the limit of infinitely large n.

InRef. [17], this techniquewas used to prove theDevetak±
Winter formula for the BB84 protocol with a single-photon
source in the case of general attacks. However, it uses
an equivalent entangled state representation of the BB84
protocol. Therefore, the purpose of this section is to
formulate the BB84 protocol with phase-randomized coher-
ent states in terms of an entangled state.

Recall that hA denotes the Hilbert space, corresponding
to a quantum information carrier: CC2 in the single-photon
case and f�CC2� in the general case. A denotes a binary
register which stores the sender's bit value. Let us introduce
yet another Hilbert space HeA, which is related to the sender.
In the BB84 protocol, the sender transmits the states
r b
mu2 T�hA�, b 2 fz; xg, u 2 f0; 1g of the form (6) with the

probabilities pb=2. To define the protocol in terms of
entangled states, let us assume that an entangled state r 2
T�heA 
hA� of the composite systemheA 
hA is generated
on the sender side. The sender measures subsystem eA,
whereas subsystem A, as previously, is sent to the receiver
via the communication channel. Let the sender's observation
of subsystem eA be given by the probability projector-valued
measureP � fPubgu2f0;1g; b2fz;xg in the spaceheA.We require
the fulfilment of the following conditions,

TreA �Pub rPub� � pb
2

r b
mu ; �16�

for all u and b, where TreA is the partial trace in the spaceheA.
Then, the sender can prepare the states r b

mu with the
corresponding probabilities by measuring the observable P
of the subsystem eA, so that we obtain a mathematically
equivalent scheme of the protocol. For its security, the state
r must be entangled; the title of this scheme of the protocol
comes from this fact. If, in reality, an entangled state is not
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generated and the sender does not measure one of the
subsystems of an entangled state, then the system heA and
the measurement in it are `fictitious', so they are used only for
a mathematically equivalent formulation.

In the single-photon case (when hA � CC2 and the states
r b
mu contain the single-photon component only), one can take

heA � CC2, r � jFihFj, where

jFi � 1���
2
p ÿj1; 0iz 
 j1; 0iz � j0; 1iz 
 j0; 1iz�

� 1���
2
p ÿj1; 0ix 
 j1; 0ix � j0; 1ix 
 j0; 1ix� 2 CC2 
 CC2 �17�

and Pub � pbjuibhuj. The security of this protocol, which is
based on the entangled state jFi, is proved in Ref. [17] using
the entropy accumulation technique. In this case, in the result
of the measurement of the observableP, eA stores the sender's
bit value. So, register eA can be identified with A. However,
generally speaking, they are not identical.

In order to extend the results of Ref. [17] for the multi-
photon case, one needs to present the protocol scheme in
terms of an entangled state in such a way that the projection
onto the single-photon subspace followed by the normaliza-
tion again gives state (17) and observable fpbjuibhujg. State
(17) cannot be directly generalized to the multiphoton case,
since

1���
2
p ÿj j; 0iz 
 j j; 0iz � j0; j iz 
 j0; j iz�
6� 1���

2
p ÿj j; 0ix 
 j j; 0ix � j0; j ix 
 j0; j ix�

if j5 2.
Let us extend the space heA: let heA � CC2� CC4. We will

still use fj0iz; j1izg and fj0ix; j1ixg as the bases for the space
CC2: each element of the basis marks the sender's bit. Take
new vectors fj0zi; j1zi; j0xi; j1xig as the basis for the space
CC4. Each vector marks the bit and the basis (in CC2), which
is used by the sender. An equivalent entanglement-based
representation of the protocol can be constructed using the
states

r � m exp �ÿm�jFihFj �
X

u2f0; 1g

X
b2fz; xg

pb exp �ÿm�jubihubj



�
jvacihvacj �

X1
j�2

m j

j !
jc b

juihc b
juj
�

�18�

and the observable P, where Pub � pbjuibhuj � jubihubj. The
projection onto the single-photon component (see (7))
followed by the normalization to unity turns the state r into
the projector on jFi. Then, only the second term in expression
Pub remains relevant, so this reproduces the previous
observable. In state (18), entanglement takes place only in
the single-photon component. There is no need to build a
state in which entanglement is also contained in multiphoton
pulses, since multiphoton pulses are considered insecure in
any case, and there is no need to make them secure.

Thus, a combination of theorem, which reduces the
estimation of adversary's ignorance in terms of the von
Neumann entropy to the estimation of the corresponding
entropy for states with single-photon pulses, and the estimate
of the latter in Ref. [17] allows using the entropy accumula-

tion technique for the BB84 protocol with the source of
coherent states concluding that the Devetak±Winter formula
gives the maximally achievable key rate without assumptions
about the class of adversary attacks.

7. Decoy state method

As follows from Eqn (13), the problem of obtaining
achievable key rates (10) in the case of arbitrary collective
attacks in the space f�CC2� splits into two subproblems: the
estimation of the factor Q sz

1 =Q
sz, i.e., the fraction of the

position in the sifted key obtained from the single-photon
pulses, and the estimation of the adversary's ignorance
H�AjE��1� about a single bit of this part of the key.

The expression for H�AjE��1� is well known [12, 13, 17]
and has the form

H�AjE��1� � 1ÿ h�ex1 � ; �19�

where ex1 is the probability of bit error in the single-photon
states conditioned on the use of the x basis by both parties.
Therefore, the expression for the maximally achievable key
rate takes the form

R � Q sz
1

Q sz

�
1ÿ h�ex1 �

�ÿ h�E sz� : �20�

Remark 2. Keep in mind that, in the described variant of
the BB84 protocol, the basis x is rarely used. But the
probability ex1 is estimated only for those few positions in
which both sides have chosen the x basis. Using Eqn (20), let
us comment on the threshold error rate at which key
distribution is possible, i.e., R > 0. For simplicity, we assume
that all the states are single photon, i.e., Q sz

1 � Q sz. If the
error rate does not depend on the basis, i.e., ex1 � E sz � e,
then the key distribution is possible if 1ÿ 2h�e� > 0, i.e., if
e < ecrit � 0:11. However, in a theoretically possible situation
of various ex1 and E sz, the statement on the critical error
rate of 11%, generally speaking, is not true anymore. For
example, ifE sz � 0, then the critical error rate for ex1 increases
to 50%. By analogy, if ex1 � 0, then the critical error rate for
E sz increases to 50% as well.

The decoy state method allows estimating the factor
Q sz

1 =Q
sz, as well as the value of ex1 , in an efficient manner.

The general idea is that, in some positions randomly selected
and not known in advance, the sender transmits not the
signal pulses (i.e., used to form a key) with an intensity m
(see Eqn (5)), but decoy pulses with lower intensities. The
positions in which the decoy pulses are used do not
participate in the key formation. After the end of the
transfer of quantum states, at the stage of announcements,
the sender announces the intensities used in each message.
Based on this information, the legitimate parties calculate
the statistics for each intensity and then compare the results
for states of different intensities. Informally speaking, the
idea of the method is that the adversary measuring the
number of photons does not know the intensity of a given
pulse. Therefore, the adversary does not have the ability to
deal differently with the signal and decoy states with the
same number of photons (which, on the contrary, the
adversary is supposed to know). If the adversary blocks all
single-photon components, they block almost all low-
intensity decoy states that would be noticeable on the
receiver side. Formally, this leads to a zero key rate, which
corresponds to the detection of eavesdropping.
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The most common decoy state method, which we will
describe, is based on one signal and two decoy states. We use
notations that are similar to the ones from Refs [29, 32]. We
also assume that the efficiencies and dark count probabilities
of the detectors are the same. In the opposite case, Eqn (19)
should be corrected (see Ref. [20], in which an adaptation of
the decoy state method for the case of detection-efficiency
mismatch is discussed in detail). If the efficiencies and dark
count probabilities are identical, index z of the valuesQ sz

1 and
Q sz can be removed: detection probabilities do not depend on
the basis.

Let Yi be the probability that one of the detectors on the
receiving side clicks provided that, on the sender's side, the
transmitted state contained i photons. This probability does
not depend on the intensity of the pulse (it depends only on
the number of photons in it, i.e., i), but it can depend both on
the attenuation in the channel and on the actions of the
adversary, which can block some of the states or, on the
contrary, send them to the receiving side without attenuation.
Note that Y0 is nonzero and is equal to the probability of the
dark count in at least one of the detectors.

Q v
i is the probability that the transmitted state contains

i photons, and one of the detectors on the receiving side
clicks provided that the sender used a type v 2 fs; d1; d2g state
(signal or one of two decoys). Let us denote the intensity of
the signal pulse ms � m. The intensities of decoy pulses are
md1 � n1, md2 � n2, and we require that

04n2 < n1 ; n1 � n2 < m : �21�

Since the probability that the pulse contains exactly i
photons (under the condition of pulse intensity m), equal to
exp �ÿm� m i=i !, then

Q v
i � exp �ÿmv�

m i
v

i !
Yi : �22�

The probability of a click in at least one of the detectors on the
receiving side provided that the pulse is a v type is

Q v �
X1
i�0

Q v
i �

X1
i�0

exp �ÿmv�
m i
v

i !
Yi : �23�

Quantities Q v become known to the legitimate parties at
the stage of announcements (more precisely, their estimates,
but in the limit of an infinite number of messages, they
coincide with the true values). They can be used to estimate
the unknown quantityY1 and, consequently, quantityQ

s
1 that

appears in Eqn (13).
First, from the chain of inequalities

n1Q d2 exp n2 ÿ n2Q d1 exp n1

� �n1 ÿ n2�Y0 ÿ n1n2
X1
i�2
�n iÿ11 ÿ n iÿ12 �

Yi

i !
4 �n1 ÿ n2�Y0

we obtain the lower bound for Y0:

Y0 5YL
0 � max

�
n1Qd2 exp n2 ÿ n2Qd1 exp n1

n1 ÿ n2
; 0

�
: �24�

This inequality gives an estimate of the probability of dark
counts in at least one of the detectors of the receiving side,
which is supposed to be unknown to legitimate users in
advance and may be controlled by the adversary.

The estimate for Y1 comes from the chain of inequalities

Q d1 exp n1ÿQd2 exp n2 � �n1ÿ n2�Y1 �
X1
i�2
�n i1ÿ n i2�

Yi

i !

4 �n1 ÿ n2�Y1 � n 21 ÿ n 22
m 2

X1
i�2

m i

i !
Yi

� �n1 ÿ n2�Y1 � n 21 ÿ n 22
m 2

ÿ
Q s exp mÿ Y0 ÿ Y1m

�
4 �n1 ÿ n2�Y1 � n 21 ÿ n 22

m 2
�Q s expmÿ YL

0 ÿ Y1m� : �25�

The first inequality of this chain uses conditions (21) as well as
the inequality a i ÿ b i 4 a 2 ÿ b 2 for 0 < a� b < 1 and i > 2.
Hence,

Y1 5YL
1 �

m
m�n1 ÿ n2� ÿ �n 21 ÿ n 22 �

�
�
Q d1 exp n1ÿQ d2 exp n2 ÿ n 21ÿn 22

m 2
�Q s exp mÿ YL

0 �
�
;

�26�
Q s

1 5Q sL
1 � m exp �ÿm�YL

1 : �27�

Then, we denote by exi the probability of bit error in the
i-photon state provided that both parties used the x basis. Let
us estimate the probability of ex1 participating in Eqn (19).
This probability can include both imperfections of the devices
and eavesdropping. The error probability E vx, provided that
the pulse is a v type and the x basis is used by both parties, is

E vxQ v �
X1
i�0

exi Yi
m i
v

i !
exp �ÿm� :

Then, from the inequality

E d1xQ d1 exp n1 ÿ E d2xQd2 exp n2 � ex1 �n1 ÿ n2�Y1

�
X1
i�2

exi �n i1 ÿ n i2�
Yi

i !
5 ex1 �n1 ÿ n2�Y1 5 ex1 �n1 ÿ n2�YL

1

we obtain an upper bound on ex1 :

ex1 4 exU1 � Ed1xQ d1 exp n1 ÿ E d2xQ d2 exp n2
�n1 ÿ n2�YL

1

: �28�

The substitution of the obtained estimates into Eqns (13)
and (19) yields the formula for the achievable secret key rate:

R � Q sL
1

Q s

�
1ÿ h�exU1 �

�ÿ h�E sz� : �29�

In the absence of eavesdropping, the exact values of all
quantities that participate in the definition of the key rate take
the form (see Eqn (5)±(11) in Ref. [29])

Q s � pd � 1ÿ exp
�ÿZmT�L�� ; �30�

Y1 � pd � ZT�L� ; �31�
Q s

1 �
�
pd � ZT�L��m exp �ÿm� ; �32�

E sz � pd
2
; �33�

ex1 �
pd
2Y1

; �34�
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where pd is the probability of a dark count of at least one of
the detectors, T�L� � 10ÿdL=10 is the transmission coefficient
in a channel of length L, d is the specific loss factor, and Z is
the quantum efficiency of each single-photon detector. We
assume that errors occur only due to dark counts, and the
optical part is perfectly tuned.

It is possible to consider the dependence of the key length
on the length of the communication line with realistic
parameters on the receiving side: the intensity of the signal
and decoy states m � 0:5, n1 � 0:01, n2 � 0:001, pd � 10ÿ6,
Z � 0:1, d � 0:2 dB kmÿ1. In the figure, the plot ofR, which is
calculated using Eqns (20) and (29), as a function of the
communication channel length is presented. In both cases,
the observed statistics of Qm, Q n1 , Q n2 , Em, E n1 , and E n2 are
calculated using Eqns (30) and (33), i.e., for the case of the
absence of eavesdropping.

In Ref. [29] it is shown that at n1; n2 ! 0, and without
eavesdropping (or when the eavesdropping does not change
the registration statistics), the estimates Q m;L

1 and eU1 become
exact, i.e., they tend to the values of Q m

1 and e1, which are
defined by formulas (32) and (34). Then, in the asymptotic
case, the key rate is defined by Eqn (20), whereQ m,Q m

1 , and e1
are defined by formulae (30)±(34).

Remark 3. It is important to note that estimates (26)±
(28) do not rely on knowledge of the transmission coefficient
of the channel T�L�, dark count probability pd, detector
efficiencies Z, or other parameters of the optical and detec-
tion system of the receiving side. In the derivation of these
estimates, it is not assumed that these coefficients are the same
for all pulses. Thus, in fact, the decoy state method provides
security even when the adversary can change these para-
meters. This is explained in detail, for example, in Ref. [20].
Thus, we assume that the adversary can reduce natural
losses and natural errors in the communication channel and

even in the detectors up to creating a communication line
and detectors without losses and errors. This gives the
adversary certain freedom in creating the desired statistics
of registration of states with different intensities on the
receiving side.

8. Beam splitting attack

As was noted in Section 5, at the practical level of losses in the
channel, estimates (12) and, therefore, (20) become exact
when the adversary performs a photon-number splitting
attack. However, this attack has not yet been implemented
in practice. Let us compare this attack with the simpler beam
splitting attack, which is also often considered in quantum
cryptography [18, 57±59].

A simple version of the attack consists of the fact that the
adversary, with the use of a beam splitter, takes away the part
of the signal (a coherent state) that is absorbed in the channel
as a result of natural losses. The adversary transmits the rest
of the signal to the receiver via an ideal channel, i.e., a lossless
channel. As a result, this attack does not change the statistics
of the receiver state registrations in comparison with the
natural conditions (in the absence of an adversary).

From the formal point of view, the attack is described by
the isometry VBS: f�CC2� !f�CC2� 
f�CC2�, for the deter-
mination of which it is enough to specify its action on all
possible coherent states (5):

VBSja; uib �
�� ��tp a; u

�
b

 �� ����������1ÿ t
p

a; u
�
b
; �35�

where t and 1ÿ t are transmittance and refractive indices,
respectively. The first space in the tensor product of VBS

output is interpreted as the receiver's space, while the second
is the adversary's space. The composition of the map

r z
mu 7! VBS r z

muV
y
BS ; �36�

describing the eavesdropping, with a map describing the
measurement on the receiver side gives channel U0 (see
Section 5), which corresponds to this attack. In any case,
since, after map (36), the state of the adversary does not
undergo changes anymore, map (36) is enough to determine
the state r

AE
and, therefore, define entropy H�AjE� in

Eqn (10):

r
AE
� 1

2

X1
u�0
jui

A
huj 
 TrB �VBS r z

muV
y
BS�

� exp �ÿmE�
2

X1
u�0
jui

A
huj



�
jvacihvacj �

X1
j�1

m j
E

j !
jc z

jmE
iEhc z

jmE
j
�

� exp �ÿmE�
2

I
A

 jvacihvacj � exp �ÿmE�

2

X1
u�0
jui

A
huj



X1
j�1

m j
E

j !
jc z

jmE
iEhc z

jmE
j ;

where mE � �1ÿ t�m, u 2 f0; 1g.We see that the adversary has
zero information about the key bit (accordingly, the ignor-
ance is equal to one) if the vacuum component is actualized
�with probability exp �ÿmE��. Otherwise, the adversary has
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Figure. (Color online.) Secret key rate depending on the communication

channel length. Solid blue line: calculation for a photon-number splitting

attack with a coherent attack on one-photon states by Eqn (20). Dashed

purple line: calculation for the same attack using Eqn (29). In this formula,

instead of, generally speaking, unknown values of Qm
1 and e1, their lower

and upper estimations are used, respectively (formulas (27) and (28) with

formulas (30) and (33) for values of the observed statistics of registrations).

Dashed green line: calculation for a beam splitting attack �Eqn �37� with
t � ZT�L��. Dashed orange line: calculation for a beam splitting attack in

which the adversary does not change the efficiency of detectors on the

receiver side �Eqn �37� with t � T�L��. Parameters: intensities of signal

and decoy states are m � 0:5, n1 � 0:01, n2 � 0:001, dark count probability
is pd � 10ÿ6, quantum efficiency of each single-photon detector is Z � 0:1,
specific loss factor in the communication channel is d � 0:2 dB kmÿ1.
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complete information about the key bit. Since state (35) has
the form of a tensor product, the realization of the adversary's
vacuum component does not depend on the photon registra-
tion event on the receiver's side. Therefore, the probability of
the vacuum component being conditioned on a click of a
receiver's detector is equal to the unconditional probability of
this event. Therefore, H�AjE� � exp �ÿ�1ÿ t�m� and

RBS � exp
�ÿ�1ÿ t�m�ÿ h�E sz� : �37�

In the absence of eavesdropping, the actual transmission
coefficient of the entire optical system (communication line
and detectors) is ZT�L�. If we assume that the portion of the
signal absorbed in the channel and on the detectors goes
entirely to the adversary, then t � ZT�L� should be set. This is
usually explained as follows: we assume that the adversary
can replace the communication line and detectors with ideal
ones (i.e., without losses) and, due to this, take away a share of
the signal 1ÿ ZT�L� reproducing the natural level of losses. If
we assume that the adversary can replace the communication
line with an ideal one, but has no power over the efficiency of
the detectors Z, then we can put t � T�L�, which reduces
the adversary's information about the key and allows the
legitimate parties to generate the key at a higher rate, under
this assumption about the adversary.

In review [18], the feasibility of the assumption about the
ability of the adversary to replace the channel with a noiseless
one is discussed. It is noted that all existing solutions have
fundamental limitations on the minimal loss factor. There are
hypothetical solutions that are theoretically capable of
providing a lossless channel, but this review concludes that
they are unrealistic in any foreseeable future. However,
quantum cryptography often assumes unrealistically large
adversary capabilities in order to fundamentally resolve the
issue of secure key distribution. So, for example, even if the
adversary cannot create a lossless communication line, they
can create a communication line with a lower level of losses. It
can also affect the efficiency of detectors within certain limits.
In order not to discuss the issues of what these limits may be,
one can make the weakest assumption about the complete
control of the adversary over the transmission coefficient of
the line and the effectiveness of the detectors. But, let us recall,
here we are considering the case of identical detector
efficiencies, i.e., we are assuming that the adversary can only
change the efficiency of all detectors by the same amount.

Plots of RBS for t � ZT�L� and t � T�L� are presented in
the figure. By comparing them with the calculated achievable
rates (20) and (29), one can conclude thatRBS is higher for the
calculated achievable rates. This was expected, since a beam
splitting attack is a particular type of attack, while formulas
(20) and (29) are derived for the general case. In view of the
importance of the beam splitting attack, in the next section,
we consider why the beam splitting attack is less effective than
the photon-number splitting attack.

By comparing plots RBS for t � ZT�L� and t � T�L�, we
see that, if the length is small, so that the main contribution to
the losses comes from the detectors, then the possibility of the
adversary diverting a larger portion of the signal by increasing
the efficiency of the detectors greatly reduces the achievable
key rate and brings it closer to the achievable key rate for
the photon-number splitting attack. At communication line
lengths from 50 km, the main contribution to the losses is
no longer from the detectors but from the communication
channel; therefore, the curves for these two cases approach
each other and practically coincide at lengths from 120 km.

Note that, in recent studies [60±63], generalizations of
the beam splitting attack for the B92, COW (Coherent One
Way), and DPS (Differential Phase Shift) protocols are
considered. In these generalizations, the adversary can
change the intensity of states, and their further actions
depend onwhether they havemanaged to extract information
from the part of the state diverted by the beam splitter.

9. Comparison of photon-number splitting
and beam splitting attacks

Beam splitting and photon-number splitting attacks are very
important in quantum cryptography, so, in this section, we
explain why the first attack is less effective than the second
one. To do this, we first prove the inequality

R < RBS ; �38�
whereR is calculated using formula (20) andRBS is calculated
using formula (37) for t � ZT�L� (i.e., with the weakest
assumption about the adversary). If we replace inequality
(38) with the nonstrict one, then it follows directly from
formula (20), because formula (20) is derived for a general
attack. Let us prove a strict inequality, i.e., that the beam
splitting attack is always suboptimal. We also recall that the
photon-number splitting attack is optimal, i.e., key rate (20) is
maximally achievable.

Let us prove (38) for the case m4 1. The case m > 1 can
also be considered, but in practice, m4 1, so, for simplicity,
we restrict ourselves to considering only this case. We also
assume that the quantity ZT�L� is strictly positive (otherwise,
not only the key distribution, but also any communication is
impossible). Recall also that ZT�L�4 1.

Since the term h�E sz� in both formulas (20) and (29) is the
same, the proof of (38) is reduced to the proof of the
inequality

Q m
1

Q m

�
1ÿ h�ex1 �

�
< exp

�ÿ�1ÿ t�m� : �39�

Let us prove a stricter inequality,

Q m
1

Q m < exp
�ÿ�1ÿ t�m� : �40�

Using (30)±(32), for the left-hand side, we have

Q m
1

Q m �
m exp �ÿm��pd � t�
pd � 1ÿ exp �ÿmt� : �41�

Let us consider the fraction

pd � t

pd � 1ÿ exp �ÿmt� : �42�

In view of the inequality 1ÿ exp �ÿx� < x for x > 0 and,
therefore, 1ÿ exp �ÿmt� < mt4 t, one can conclude that the
fraction decreases with increasing pd, so that

m exp �ÿm��pd � t�
pd � 1ÿ exp �ÿmt� 4

mt exp �ÿm�
1ÿ exp �ÿmt� : �43�

Thus, it is necessary to prove the inequality

mt exp �ÿm�
1ÿ exp �ÿmt� < exp

�ÿm�1ÿ t�� ; �44�
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or

mt
exp �mt� ÿ 1

< 1 : �45�

This inequality obviously follows from expxÿ 1 > x for
x > 0. Inequality (40) and, therefore, inequality (38) have
been proved.

Let us analyze the reasons why inequality (38) is strict, so
that the beam splitting attack is not optimal. First, in the
proof of (38), we have used the inequality h�ex1 � > 0 for
ex1 > 0. This means that the beam splitting attack does not
attack single-photon transmissions at the cost of introducing
noise, in contrast to the photon-number splitting attack. This
is the first reasonwhy the beam splitting attack is nonoptimal.

Second, inequality (40) arises from the following effect.
Since the sent state is a mixture of Fock states, we can think
about a certain number of photons in a pulse, even if this
observable is not actually measured by anyone. One can
imagine another participant who, before the actions of the
adversary, measures the number of photons in the pulse
(without changing the state) and then observes the adver-
sary's actions with the knowledge of the number of photons.
They then observe that, in the case of the photon-number
splitting attack, the adversary recognizes the information
encoded in multiphoton pulses with certainty, while in the
case of the beam splitting attack, with a certain probability,
they can transmit all photons to the receiver without leaving a
single photon for themselves or, conversely, they take all the
photons for themselves without passing a single one to the
receiver. The last alternative leads to the no registration event
(unless a dark count occurs) on the receiver's side, so this
position is not included in the sifted key. In this case, the
fraction of multiphoton (insecure) states in the sifted key
decreases. In contrast, in the photon-number splitting attack,
only the single-photon transmissions are blocked. Probabil-
istic processing of multiphoton pulses in the beam splitting
attack, instead of optimal deterministic processing in the
photon-number splitting attack, is the reason for inequality
(40). Moreover, if, after measuring the number of photons,
the adversary performs a probabilistic processing of the
multiphoton pulses, then they can reproduce (simulate) the
beam splitting attack.

In Ref. [37], it is noted that, in the beam splitting attack,
the adversary takes away almost all quantum states. How-
ever, only those positions in which the receiver also registers a
photon participate in the key generation. Therefore, the
withdrawal of the adversary of almost all quantum states
leads to losses but does not necessarily lead to a large amount
of knowledge of the adversary about the sifted key.

From the figure (see Section 7), we see that, at the
considered parameters and the length of the communication
line up to approximately 140 km, the possibilities of these two
attacks practically coincide: the achievable secret key rate for
the case of the beam splitting attack is only slightly higher
than the achievable secret key rate for the case of the
photon-number splitting attack. At communication chan-
nel lengths over 140 km, the advantages of the photon
number splitting attack become significant, and the curves
diverge. Over a length of approximately 200 km, the
achievable rate in the case of the photon-number splitting
attack drops to zero, while the secret key can still be generated
in the case of the beam splitting attack.

From the above reasoning, it is possible once again (see
the end of Section 5) to easily deduce the optimality of the

photon-number splitting attack. If it is possible to measure
the number of photons without spoiling the state, it is optimal
to do this. Next, one should take actions that are optimal for a
given known number of photons. Obviously, if the state is
multiphoton, then it is optimal to remove one photon from
it (more is possible, but one photon also gives complete
information about the key bit). If the transmission is single
photon, it is optimal to carry out the optimal attack for the
single-photon pulses at the cost of introducing noise. Since
the transmitted state is a mixture of Fock states and any
quantum transformation is linear, any possible attack can be
simulated by measuring the number of photons and applying
one probabilistic treatment of a pulse or another, depending
on the number of photons in it. In fact, the theorem (see
Section 5) is a formalization of these discussions.

In concluding this section, let us mention the unambig-
uous state discrimination attack (USD attack). For the BB84
protocol, it is discussed in Ref. [58]. It is emphasized that, in
the case of coherent states, with a randomized phase, the
photon-number splitting attack (without attacking the single-
photon pulses) is an optimal discrimination of states with an
unambiguous outcome.

10. Polarization and phase encoding

Some researchers cast doubts on the applicability of the decoy
state method in the case of the widely used phase encoding
instead of polarization encoding [40]. To eliminate these
doubts, in this section, we show that these two encoding
methods are completely equivalent; therefore, the decoy state
method is applicable to phase encoding in the same way as to
the polarization one.

Note that the previous discussion did not rely on what
kind of encoding is used, although we have referred to the
polarization encoding, for example.

In the polarization encoding, creation operators a
y
z0, a

y
z1,

a
y
x0, and a

y
x1 in Eqns (2)±(4) can be, for example, photon

creation operators with horizontal, vertical, diagonal, and
antidiagonal polarizations: a

y
H, a

y
V, a

y
D, and a

y
A, respectively.

The transmitted states can then be rewritten in the form

ja; 0iz � jaiz0j0iz1 � jaiHj0iV ;
ja; 1iz � j0iz0jaiz1 � j0iHjaiV ; �46�
ja; 0ix � jaix0j0ix1 � jaiDj0iA �

���� a���
2
p
�

H

���� a���
2
p
�

V

;

ja; 1ix � j0ix0jaix1 � j0iDjaiA �
���� a���

2
p
�

H

����ÿ a���
2
p
�

V

;

where jai� exp �ÿm=2�P1
j�1�a j=

����
j !
p �j j i and j j i, j � 0; 1; . . .

are a coherent state and a state with a definite number of
photons in the corresponding mode, respectively, a 2 CC,
m � jaj2.

However, in the phase encoding, the employed states have
the following form [18, 40]:�����ÿ1�u exp �ijb�a���

2
p

�
1

���� a���
2
p
�

2

; �47�

where u 2 f0; 1g is the coding bit, b 2 fz; xg is the basis,
jz � 0, jx � p=2, and modes 1 and 2 correspond to two time
windows. That is, each signal consists of two phase-matched
pulses. The phase in each pair of pulses is randomly selected,
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i.e., the adversary and the receiver `observe' a state of the form

1

2p

� 2p

0

dy
������ÿ1�u exp �i�jb � y�� ����

m
2

r �
1

����exp �iy� ����
m
2

r �
2

�
�
�

2

�
exp �iy�

����
m
2

r ����
1

�
�ÿ1�u exp �i�jb � y�� ����

m
2

r ����� : �48�
The interference scheme on the receiver side is designed in
such a way that only the phase difference in the two windows
matters.

Let us show that the states of polarization encoding can be
represented in a form equivalent to expression (47). Consider
creation operators of photons with right and left circular
polarizations:

a
y
R �

a
y
H ÿ ia

y
V���

2
p ;

�49�

a
y
L �

a
y
H � ia

y
V���

2
p :

Then, states (46) can be written in the from

ja; 0iz �
���� a���

2
p
�

R

���� a���
2
p
�

L

;

ja; 1iz �
���� ia���

2
p
�

R

����ÿ ia���
2
p
�

L

;
�50�

ja; 0ix �
���� �1� i�a

2

�
R

���� �1ÿ i�a
2

�
L

;

ja; 1ix �
���� �1ÿ i�a

2

�
R

���� �1� i�a
2

�
L

:

The first state coincides with state (47) for u � 0 and b � z,
the second state coincides with the corresponding state (47)
when both phases are shifted by p=2 �i.e., with a replaced by
exp �ip=2�a��, the third state is when phases are shifted by p=4,
and, finally, the fourth state is when phases are shifted by
ÿp=4. In view of the phase randomization (6) and (48), these
phase shifts play no role. Application of the inverse phase
shifts in expressions (47) and the inverse transformation with
respect to transformation (49) (with a different label for the
modes, since they now do not correspond to the polariza-
tions) gives states (6).

Thus, polarization and phase encoding are completely
mathematically equivalent: they correspond to different mode
expansions of the same states. That is why we can conclude
that the theorem (see Section 5) and estimates (27) and (28) do
not depend on the type of encoding: states of both polariza-
tion and phase encoding can be expressed in form (6).

This is confirmed by the results from Ref. [40], where
for the case of phase coding, the same decoy state method
estimates are obtained as for the polarization coding. But it
should be noted that an equivalence takes place when the total
pulse intensity in two windows in Eqn (47) coincides with the
pulse intensity for polarization coding (46) m � jaj2. The pulse
intensity in each window should be, respectively, two times
less. Taking into account this remark, the estimates derived in
Ref. [40] completely coincide with the well-known estimates
derived in Ref. [29].

It is important that transformation (49) preserve the
photon number:

a
y
HaH � a

y
VaV � a

y
DaD � a

y
AaA � a

y
RaR � a

y
LaL :

This means that estimates related to the number of single-
photon pulses and the corresponding errors obtained for one
mode expansion are also valid for the other expansion of the
same state.

Using the described transformations, it is possible, for
example, to reformulate the photon-number splitting attack,
which was originally formulated for polarization encoding,
for phase encoding. Of course, the mathematical equivalence
of the two coding methods does not imply the same technol-
ogical complexity of the photon-number splitting attack in
these two cases. However, when calculating the key length, we
are not interested in the technological complexity of certain
adversary operations, since we assume that the adversary can
carry out any transformations allowed by the mathematical
apparatus.

11. Conclusion

In this paper, we have presented the decoy state method in
quantum cryptography, focusing on issues that are usually
not covered in the literature. The first one is a formal proof
that the security of the protocol with a phase-randomized
coherent state source is reduced to the security of the
corresponding single-photon source protocol. This proof
strongly justifies the security of the decoy state protocol
against all kinds of attacks, not just the photon-number
splitting attack.

The emphasis on the photon-number splitting attack in
the literature is related to the fact that this attack is optimal.
However, the security proof of the decoy state method does
not rely on this fact. Notably, we have compared the photon-
number splitting attack with the beam splitting attack and
both analytically and numerically demonstrated the lower
efficiency of the latter.

Another issue considered in the paper is the equivalence
of polarization and phase encoding from the viewpoint of the
security of quantum cryptography with decoy states. Despite
the fact that, technologically, these two methods of state
encoding and, therefore, attacks on the corresponding
implementations are significantly different, they are comple-
tely equivalent mathematically. In the security analysis, we
assume that the adversary can realize any transformations
that are allowed by the mathematical apparatus; therefore,
the argument of mathematical equivalence is sufficient to
justify the equal theoretical security of protocols using these
two types of encoding.

Thus, in numerous theoretical papers dealing with the
decoy state BB84 protocol, as well as in experimental
implementations of this protocol, including the implementa-
tion described inRef. [35], the estimate of the secret key length
is justified and rigorously proven.

We also note that, in Ref. [33], a method of calculating
estimates for the decoy state method taking into account
statistical fluctuations is proposed. Also, in Ref. [20], a
generalization of the decoy state method estimates in the
case of detection-efficiency mismatch is presented.
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