
Abstract. We present an introduction to the theory of dispersive
shock waves in the framework of the approach proposed by
Gurevich and Pitaevskii (Zh. Eksp. Teor. Fiz., Vol. 65, p. 590
(1973) [Sov. Phys. JETP, Vol. 38, p. 291 (1974)]) based on
Whitham's theory of modulation of nonlinear waves. We ex-
plain how Whitham equations for a periodic solution can be
derived for the Korteweg±de Vries equation and outline some
elementary methods to solve them. We illustrate this approach
with solutions to the main problems discussed by Gurevich and
Pitaevskii. We consider a generalization of the theory to sys-
tems with weak dissipation and discuss the theory of dispersive
shock waves for the Gross±Pitaevskii equation.

Keywords: soliton, dispersive shock wave, Bose±Einstein conden-
sate, nonlinear optics, Gurevich±Pitaevskii problem, Whitham
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1. Introduction

Any physical theory grows out of particular observations and
attempts to interpret them, solving specific problems and
gradually constructing generalizations. But at the same time,
studies can be singled out in the development of each theory
that served to transform a collection of particular results and
vague ideas into a field of science, with its own physical ideas
and tools that allow posing and solving problems character-
istic of just that field. In the field of nonlinear physics, known
under its modern name, the theory of dispersive shock waves
(DSWs), this role goes to Gurevich and Pitaevskii's 1973
work [1]. They formulated a general approach to constructing
a theoretical picture of the formation and evolution of such
waves based on the theory of modulation of nonlinear waves
attributed to Whitham [2], and solved several typical
problems that yielded a quantitative description of typical
DSW structures.

The Gurevich±Pitaevskii problem can therefore be
understood both as the general approach to the DSW
theory proposed by these authors and as the particular
problems that were posed and solved in [1] and have since
then found numerous applications in explaining various
physical observations underlying the subsequent develop-
ment of the theory.

The aim of this paper is to give a sufficiently detailed
introduction to that domain of nonlinear studies concen-
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trated on a detailed presentation of Gurevich and Pitaevskii's
work [1] and related studies. But first we discuss the principal
stages in the formation of the DSW theory that eventually
resulted in the appearance of paper [1].

DSWs are not very common in the world around us. Their
first observations were apparently associated with the
formation of wave-like structures near the tidal wave front
when a wave was advancing sufficiently fast into riverbeds or
narrow straits. This effect was called the undular bore and for
an extended period of time was apparently studied by a
dedicated community of researchers and engineers dealing
with river hydrodynamics. Still, some fundamental facts
about such bores have been revealed. In particular, the
leading swell of water at the bore front was identified with a
solitary wave that had first been observed by Russel [3] and
then explained by Boussinesq [4], Lord Rayleigh [5], and
Korteweg and de Vries [6].

Benjamin and Lighthill [7] attempted to clarify the
conditions under which the undular bore can be described as
a modulated periodic solution of the Korteweg±de Vries
(KdV) equation. It was then assumed that the modulation of
a periodic solution called the `cnoidal wave' by the authors of
[6] was caused by dissipative processes in the wave-like flow of
the liquid.

It nevertheless transpired from those early works that
explaining the formation of an undular bore requires taking
the interplay of dispersion and nonlinearity effects into
account for shallow-water waves, assuming an essential
role of dissipation effects in explaining the wave modula-
tion and the formation of turbulent bores at sufficiently
high amplitudes of the tidal wave. However, the problem of
a theoretical description of undular bores did not garner
much attention outside the community of experts. For
example, in classic books [8, 9], where various phenomena
related to water waves are described in detail, that problem
is not even mentioned.

A game changer was the development of modern non-
linear physics. Back the early 1960s, it became clear that
solitary waves, or `solitons' if using modern terminology, can
propagate in different physical systems, in plasmas in
particular [10, 11], and the KdV equation has a universal
character and finds applications in very diverse physical
situations with weak dispersion and small nonlinearity.

Soliton solutions of the equations of plasma dynamics, in
both their original form and in the KdV approximation
without dissipation, propagate with their shape being
unchanged. If there is dissipation in the system, then
propagation of shock waves becomes possible, such that the
transition layer width is proportional to the dissipation level.
Therefore, the width of such a layer can reach a magnitude of
the order of the characteristic width of the soliton. Competi-
tion then occurs between dispersive and dissipative effects,
and the transition layer is also formed due to the occurrence
of a domain of soliton-type nonlinear oscillations.

As a result, we arrive at the notion of a shock wave in
which the transition from one state of the plasma to another
occurs via a stationary wave structure of strong nonlinear
oscillations. The wavelength in this structure is determined by
the balance of dispersion and nonlinearity, and the general
width of the shock wave, i.e., the characteristic length at
which oscillations are modulated, is inversely proportional to
the magnitude of dissipation effects. Such a picture of shock
waves was proposed by Sagdeev [12], and it was observed in
the evolution of ion-sound pulses in plasmas [13, 14].

Gurevich and Pitaevskii took a different path to approach
the problem. In the second half of the 1960s and early 1970s,
they published (in part jointly with Pariiskaya) a series of
papers [15±18] on the dynamics of rarefied plasmas in the
framework of kinetic theory. In this theory, the plasma state is
described by a distribution function of ions over positions and
velocities, and hot electrons are in thermal equilibrium and
are distributed over space in accordance with the Boltzmann
distribution, with the potential determined by the Poisson
equation, with the charge density equal to the difference
between ion and electron charge distributions. Particle
collisions are disregarded in this theory, and hence dissipa-
tive effects are absent, but it is nevertheless obvious that
nonlinear and dispersive effects are entirely present. A
characteristic feature of this problem setting compared with
that considered above is that the focus is shifted to the
nonstationary dynamics, different from the stationary pro-
pagation of periodic waves, solitons, or stationary DSWs, in
which modulation of an oscillating structure was caused by
dissipation.

In their consecutive treatment of problems starting with a
simple self-similar expansion of plasma into a vacuum [15, 16]
and further on tomore complicated dynamics of simple waves
[17], where the formation of an infinitely steep front of the
distribution function had already been observed, Gurevich
and Pitaevskii concluded in [18] that, in the kinetics of
rarefied plasmas, the breaking of an analogue of a simple
hydrodynamic wave leads to the formation of an evolving
oscillation domain with the wavelength of the order of the
Debye radius; moreover, if the wave amplitude is small (but
not infinitesimally small), then the dynamics of that domain
are described by the KdV equation, which, ignoring the
dispersion, also leads to breaking solutions.

A natural conclusionwas that when taking dispersion into
account the domain of multivaluedness is to be superseded by
an oscillatory domain, with a series of solitons forming on its
front in accordance with the balance between nonlinear and
dispersive effects, whereas, farther away from the front, the
oscillation amplitude decreases, and the solution approaches
the dispersionless one. The list of references on the theory of
the KdV equation given in [18] contains a reference to
Whitham's paper [2].

Such were the preparations to create the DSW theory in
[1]: on the one hand, the problemwas reduced to the theory of
waves satisfying the KdV equation, which made that paper
part of the theory of nonlinear waves that was vigorously
being developed at the time, and on the other hand, a new
problem setup was focused on the question of nonstationary
evolution of the wave after its breaking without taking
dissipative processes into account. Just that problem was
solved in [1] for waves whose evolution is governed by the
KdV equation. Subsequently, this theory was extended to
numerous other equations and has found diverse applica-
tions, ranging from the physics of water waves to nonlinear
optics and the dynamics of the Bose±Einstein condensate.

In addition, the Gurevich±Pitaevskii problem has under-
gone an important development in mathematical physics,
which currently continues with new, progressively deeper
results being uncovered. This is why paper [1] has many
times been cited in both the physical and mathematical
literature. In this paper, we present the basic ideas of
Gurevich and Pitaevskii's approach to the DSW theory,
while staying within methods that are standard for theoret-
ical physics.
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2. Korteweg±de Vries equation

As noted in the Introduction, the KdV equation is a universal
equation for nonlinear waves, which often arises in the
leading approximation in small nonlinearity and weak
dispersion. Because Gurevich and Pitaevskii's work that
resulted in creating the DSW theory is written in the context
of plasma wave physics, we here give a simple derivation of
the KdV equation for ion-sound waves in a two-temperature
plasma, with the electron temperature Te being much higher
than the ion temperature. The thermal motion of ions can
then be disregarded and their dynamics can be described by
standard hydrodynamic equations, with the separation of ion
and electron charges taken into account.

We let r denote the number of ions per unit volume andM
denote their mass, and assume for simplicity that they have a
unit charge e and the plasma moves along the x axis with a
speed u. As is known (see, e.g., [19]), such a plasma has an
intrinsic parameter with the dimension of length, the Debye
radius

rD �
����������������

Te

4pe 2r0

s
; �1�

whose ratio to the characteristic wavelength determines the
magnitude of dispersive effects (r0 is the equilibrium density
in the absence of a wave). For convenience, we discuss the
nonlinear and dispersive effects separately.

Small deviations from equilibrium are described by linear
harmonic waves with rÿ r0; u / exp �i�kxÿ ot��, and we
easily find their dispersion law as [19]

o � �
������
Te

M

r
k�������������������

1� r 2Dk
2

q ; �2�

where the choice of sign is determined by the wave propaga-
tion direction. Hence, it follows that dispersive effects are
small when the wavelength 2p=k is much greater than the
Debye radius rD. The first terms of the expansion in the small
parameter krD give

o � �c0k
�
1ÿ 1

2
r 2Dk

2

�
; krD 5 1 ; �3�

where c0 �
�������������
Te=M

p
is the speed of ion-sound waves in the

long-wavelength limit. Each harmonic with dispersion law (3)
satisfies the equation

ut �
�
c0ux � 1

2
c0r

2
Duxxx

�
� 0 ; �4�

where we still understand u as the speed of the plasma flow. In
the linear approximation, any pulse can be represented as a
sum of harmonics, and therefore the evolution of any wave
propagating in a certain direction is governed by Eqn (4) in
the leading approximation in the dispersive effects. Plasma
density perturbations r 0 are then related to the flow speed u as

r 0

r0
� � u

c0
; �5�

with the same choice of sign as in (3).
If the wavelength is much greater than the Debye radius,

then charge separation can be ignored, the electron and ion

densities coincide, and their deviation from the equilibrium
density r0 is related to the electric potential by Boltzmann's
formula r � r0 exp �ef=Te�. Using it to eliminate the poten-
tial f from the dynamic equations leads to a system of
hydrodynamic equations [19],

rt � �ru�x � 0 ;
�6�

ut � uux � Te

M

rx
r
� 0 ;

which describe the dynamics of an isothermal gas when the
pressure p depends on the density r as p � �Te=M�r. The
local speed of sound, determined by the formula c 2 �
dp=dr � Te=M � c 20 , coincides with the above speed of long
linear waves and is independent of the local density.

If we now consider some suitably arbitrary initial
localized pulse, then, as is known from basic gas dynamics,
it splits after some time into two pulses running in opposite
directions. In each such wave, the local change in density dr
on the background of r is related to the local change in the
flow speed du as dr � ��r=c0�du, which follows from (5),
whence rx � ��r=c0�ux; because the speed of sound is
constant, we do not have to take its dependence on density
into account in this case. Substituting this expression into (6)
gives a nonlinear equation for smooth pulses with the
dispersion disregarded:

ut � �c0 � u�ux � 0 : �7�

We have thus found two equations, (4) and (7), which
separately describe the evolution of ion-sound waves in the
case of either low dispersion or small nonlinearity. In both
cases, the dispersive or nonlinear correction amounts to the
addition of a small term, in the corresponding approxima-
tion, to the simplest equation ut � c0ux � 0 for one-dimen-
sional wave propagation. In the leading approximation,
therefore, simultaneously taking both corrections into
account amounts to combining them into a single equation.
Assuming for definiteness that the wave propagates in the
positive direction of the x axis, we obtain the KdV equation
for ion-sound waves in plasma:

ut � �c0 � u� ux � 1

2
c0r

2
D uxxx � 0 : �8�

To simplify the notation, it is convenient to transform this
equation by introducing the dimensionless variables
x 0 � �xÿ c0t�=rD, t 0 � c0t=�2rD�, and u � 3c0u

0. Substitut-
ing them into (8) and omitting the primes on the new
variables, we obtain the currently most popular dimension-
less form of the KdV equation:

ut � 6uux � uxxx � 0 : �9�

The coefficient 6 in front of the nonlinear term is chosen here
so as to simplify the formulas in what follows.

With dispersion ignored, Eqn (9) becomes the Hopf
equation

ut � 6uux � 0 ; �10�

which is a dimensionless form of Eqn (7). It readily follows
that u is constant along the characteristics xÿ 6ut � const,
which are solutions of the equation dx=dt � 6u. Therefore, if
the distribution u is described by a function u � u0�x� at t � 0
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and x � x�u� is the inverse function, then the implicit solution
of the Hopf equation is given by

xÿ 6ut � x�u� ; �11�
which describes the distribution u�x; t� at subsequent times.

The most significant feature of these solutions is that the
transfer speed of u values increases as u increases and, for
typical initial distributions u0�x�, the solution becomes
multivalued after a certain instant t � tb, as is shown in
Fig. 1. Evidently, we have gone outside the applicability
domain of the dispersionless approximation: at the instant
of breaking t � tb, the derivative of the distribution with
respect to x becomes infinitely large at the point xb, and the
dispersion term with the third-order derivative in KdV
equation (9) is by no means small in the vicinity of xb.

As noted in the Introduction, taking dispersion into
account suppresses this nonphysical behavior, and in the
solution of the full KdV equation the multivaluedness
domain is superseded with an oscillatory domain evolving
with time, i.e., a dispersive shock wave. Gurevich and
Pitaevskii assumed that this oscillatory domain can be
approximately represented as a modulated periodic solution
of the KdV equation, which means that the next step in
constructing the DSW theory must consist of deriving such
periodic solutionsÐwhich was done by Korteweg and
de Vries themselves in [6]. Here, we give the necessary
background.

As usual, we seek a solution of Eqn (9) as a traveling
wave u � u�x�, x � xÿ Vt, where V is the wave propagation
speed; we then find that u�x� satisfies the ordinary differential
equation uxxx � Vux ÿ 6uux, which, after two elementary
integrations, takes the form of the equation

1

2
u 2
x � ÿA� Bu� 1

2
Vu 2 ÿ u 3

� ÿR�u� � ÿ�uÿ n1��uÿ n2��uÿ n3� ; �12�

whereA andB are constants of integration. This equation has
real solutions if the polynomial R�u� has three real zeros: n1,
n2, and n3 with n1 4n2 4n3. Evidently, the oscillating
solution corresponds to the motion of u between two zeros
in the interval

n2 4 u4n3 ; �13�

whereR�u�4 0. The constants A, B, and V can be expressed
in terms of n1, n2, and n3 as

A � ÿn1n2n3 ; B � ÿ�n1n2 � n2n3 � n3n1� ; �14�
V � 2�n1 � n2 � n3� :

It now follows from Eqn (12) that the periodic solution of the
KdV equation can be expressed as���

2
p

x �
� n3

u

du 0�������������������������������������������������������u 0 ÿ n1��u 0 ÿ n2��n3 ÿ u 0�p ; �15�

where the integration constant that is additive with respect to
x is chosen such that u�x� takes the maximum value n3 at
x � 0. Integral (15) can be standardly expressed in terms of
elliptic integrals, and their inversion gives the dependence
u � u�x� in terms of elliptic functions. Omitting the calcula-
tions that are routine for nonlinear physics, we get the result

u � n3 ÿ �n3 ÿ n2� sn2
� ���������������

n3 ÿ n1
2

r
�xÿ Vt�;m

�
; �16�

where sn is the elliptic sine, and the parameter m is defined as

m � n3 ÿ n2
n3 ÿ n1

; �17�

in accordance with the notation in handbook [20]. Using the
identity sn2 z� cn2 z � 1 allows expressing this solution in
terms of the elliptic cosine cn, which is why Korteweg and de
Vries called their solution the `cnoidal wave,' similarly to the
cosine wave in the linear theory. The properties of such a
cnoidal wave are determined by the three zeros, n1, n2, and n3,
of the polynomialR�u�. In particular, the speed of the waveV
and the parameterm are expressed by formulas (14) and (17).
The wavelength L can be defined as the distance between two
neighboring maxima of u�x�, and it is then expressed through
the full elliptic integral of the first kind K�m� as

L �
�

du�����������������ÿ2R�u�p � 2K�m���������������
n3 ÿ n1
p : �18�

The cnoidal wave amplitude can be defined by the relation

a � umax ÿ umin

2
� n3 ÿ n2

2
: �19�

Solution (16) passes into a harmonic linear-approxima-
tion wave

u ' n2 � 1

2
�n3 ÿ n2� cos

� ���������������������
2�n2 ÿ n1�

p
�xÿ Vt�� �20�

for a small wave amplitude a5 n2 ÿ n1, when m5 1. The
wave number k � 2p=L � ���������������������

2�n2 ÿ n1�
p

and the phase velocity
V � 2n1 � 4n2 � 6n2 ÿ k 2 of the wave are then related as
V � o=k, which follows from the dispersion law o �
6n2kÿ k 3 that corresponds to the linearized KdV equation
u 0t � 6n2u 0x � u 0xxx � 0 for a wave propagating along the
uniform state with u � n2.

In the opposite limit n2 ! n1 and m! 1, the wavelength
tends to infinity and sn �z; 1� � tanh z, and hence solution
(16) becomes

u � n1 � n3 ÿ n1
cosh2

� ������������������������n3 ÿ n1�=2
p �xÿ Vt�� : �21�

u�x�

t � 0

t � tb t4 tb

xb xÿ x� x

Figure 1. Evolution of a typical pulse in accordance with Hopf equation

(10). After the instant of breaking, t > tb, the distribution u�x; t� formally

becomes a three-valued function of the coordinate x in the domain

xÿ < x < x�.
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In this case, the profile u � u�xÿ Vt� has the shape of a
solitary wave propagating along the uniform state u � n1.
Thus, in the limit m! 1, the periodic wave transforms into
solitary pulses, or solitons (21), separated by an infinitely long
distance.

The fundamental assumption of Gurevich and Pitaev-
skii's approach to the DSW theory was that at sufficiently
large times after the instant of breaking, when the length of
the emerging oscillatory domain becomes much greater than
the local wavelengths L, the DSW evolution can be repre-
sented as a slow variation of the parameters n1, n2, and n3 in a
modulated cnoidal wave (16). The `slowness' condition here
means that the relative change in the modulation parameters
n1, n2, and n3 or the equivalent variables is small either at
distances of the order of the wavelengthL or over a time of the
order of one oscillation period.

Thus, the problem of constructing the theory of DSWs
reduces to deriving equations for the evolution of modulation
parameters and to obtaining their solutions in specific
physical situations. Fortunately, by that time, equations for
the modulation of a cnoidal KdV wave had already been
derived by Whitham [2]. Unfortunately, in both [2] and his
later book [21], Whitham only gave the final result of the
calculations, having omitted all the details. Because these
calculations are highly nontrivial, we briefly describe them in
Section 4 for completeness, but first, with methodological
purposes in mind, we discuss a linear-approximation analo-
gue of Whitham's modulation theory.

3. Modulation of linear waves

A well-known result in the theory of modulation of linear
waves is that the envelope of a modulated wave packet
propagates with the group velocity of the carrier wave.
Methods for deriving asymptotic solutions of linear equa-
tions have also been developed inmuch detail to describe such
behavior of waves. But we look at problems of this sort from
another standpoint, which is very transparent physically and
allows an extension to the dynamics of nonlinear waves.

As an example, we consider the evolution of a wave
described by the linearized KdV equation u 0t � 6n2u 0x�
u 0xxx � 0 and having the initial shape of a `step.' Because the
term 6n2u 0x can easily be eliminated by passing to the reference
frame x 0 � xÿ 6n2t, t 0 � t, we write the linear KdV equation
as

ut � uxxx � 0 ; �22�

and take the initial condition in the form

u0�x� � 1 ; x4 0 ;
0 ; x > 0 :

�
�23�

This problem can easily be solved exactly by the Fourier
method, and the result can be brought to the form

u�x; t� �
�1
x=�3t�1=3

Ai �z� dz ; �24�

where Ai �z� is the standard notation for the Airy function
[20]. As we can see, the wave profile depends only on the self-
similar variable z � x=�3t�1=3 (Fig. 2). At large x, when z4 1,
the wave amplitude decreases exponentially into the `shadow'
domain, and in the opposite limit of large negative x, we can

use the known asymptotic form of the Airy function to obtain
�ÿz4 1�

u�z� � 1ÿ 1���
p
p �ÿz�ÿ3=4 cos

�
2

3
�ÿz�3=2 � p

4

�
: �25�

The obtained results confirm the general idea that dispersive
effects manifest themselves in oscillatory wave structures
originating from pulses with sufficiently sharp fronts. But
the shape of the resultant wave structure suggests another
approach to its description.

Both Fig. 2 and formula (25) suggest that, as x! ÿ1,
this wave can be interpreted as a modulated harmonic wave
with a variable wave number and variable frequency and
amplitude of oscillations. We represent such a wave as

u�x; t� � 1� a�x; t� cos �y�x; t� � y0
�
; �26�

where we introduce the wave phase

y�x; t� � 2

3

� ÿx
�3t�1=3

�3=2

; �27�

having for simplicity dropped the constant term y0 � p=4
from its definition. For such amodulated wave, it is natural to
define the wave number k�x; t� and the frequency o�x; t� as

k�x; t� � yx�x; t� � ÿ
�ÿx
3t

�1=2

;
�28�

o�x; t� � ÿyt�x; t� �
�ÿx
3t

�3=2

;

which are locally related by the dispersion law o � ÿk 3 that
follows from linear KdV equation (22). In other words, wave
(26) is locally a harmonic wave that is an exact solution of this
equation if modulation is ignored. If we consider a piece of the
structure with a fixed wave number k�x; t�, it immediately
follows from the first formula in (28) that this piece moves
along the x axis with the group velocity

vg � ÿ3k 2 � do
dk

; �29�

in accordance with the known property of the group velocity.
It is clear that this way of introducing the group velocity into
the theory of modulation of linear waves has a general
character.

0 zÿ12.5 ÿ10.0 ÿ7.5 ÿ5.0 ÿ2.5

1.2

u�z�

1.0

0.8

0.6

0.4

0.2

Figure 2. Profile of wave (24) plotted as a function of the self-similarity

variable z � x=�3t�1=3.
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We assume that the modulated linear wave is represented
as

u�x; t� � a�x; t� cos �y�x; t�� ; �30�
and that this wave is locally harmonic with good accuracy,
with local values of the wave number and frequency defined
as

k�x; t� � yx�x; t� ; o�x; t� � ÿyt�x; t� ; �31�
and related by the dispersion law for harmonic waves

o � o�k� : �32�
In view of (31), the consistency condition for cross derivatives
of the phase �yx�t � �yt�x leads to the equation

kt � ox � 0 or kt � �kV�x � 0 ; �33�
where V � V�k� is the phase velocity of the wave. Because a
unit-length interval along the x axis contains 1=L � k=�2p�
waves, Eqn (33) can be interpreted as the conservation law for
the number of waves, with k playing the role of the density of
waves and o � kV the flux. Substituting dispersion law (32)
into (33), we arrive at the equation

kt � vg�k�kx � 0 ; �34�

which again states that the wave number k propagates at the
speed vg�k� � o 0�k� and preserves its value along the
characteristic xÿ vg�k�t � const. Therefore, if changes in
the shape of the wave packet are disregarded, a wave packet
made of harmonics with the wave numbers close to k � k0
propagates with the group velocity vg�k0� � o 0�k0�.

We can now return to the problem of the decay of a step-
like profile with initial distribution (23) and use Eqn (34)
instead of the exact solution expressed in terms of the Airy
function. The key role here is played by the observation that
the initial distribution does not contain parameters with the
dimension of length, but the original problem has some
characteristic value of speed c0. Therefore, a solution of
Eqn (34) can depend only on the self-similar variable
x � x=t �in dimensional units, on x � x=�c0t��. Substituting
k � k�x� into (34), we find �dk=dx��vg�k� ÿ x� � 0. Because
dk=dx 6� 0 along the modulated wave, the dependence
k � k�x� is defined implicitly by the equation

vg�k� � x � x

t
: �35�

Having used this to find k � k�x=t�, we can express the
phase y�x; t� from the equation yx � k if we recall that the
frequency o � ÿyt, which is a function of k, can also
depend only on the self-similar variable. For the linear
KdV equation, the obtained results immediately reproduce
the known relations ÿ3k 2 � x=t, k � yx � ÿ�ÿx=�3t��1=2,
and y � �2=3��ÿx=�3t�1=3�3=2. Thus, modulation equation
(34) has allowed us to easily find some characteristics of the
emergent wave structure.

To derive the modulation equation for the amplitude
a�x; t� of wave (30), it is natural to use the energy conserva-
tion law, because expansion of the wave structure with time
leads to a redistribution of energy over a progressively larger
volume, and in linear systems the energy density is propor-
tional to the amplitude squared. After averaging over the
wavelength, the local energy density a 2�x; t� is transported
with the group velocity vg corresponding to the local value of
the wave number k, and we can therefore write the energy

conservation law as

q�a 2�
qt
� q�vga 2�

qx
� 0 : �36�

In the case of a linear KdV equation and asymptotic regime
(35) of the wave packet evolution, Eqn (36) becomes
tat � xax � ÿa=2. This can readily be solved using the
standard method of characteristics, with the result a�x; t� �
�1= ��

t
p � f �x=t�, where f is an arbitrary function. Assuming

that in the problem of the evolution of a step-like shape the
amplitude also depends only on the same self-similar variable
z � ÿx=�3t�1=3 as the wave number k does, it is easy to find
that f �x=t� � const �ÿx=t�ÿ3=4, which defines the modulated
wave shape up to a constant factor:

u�x; t� � const��
t
p

�ÿx
t

�ÿ3=4
cos

�
2

3

�ÿx�3=2
�3t�1=2

�
:

Thus, we have reproduced the main features of solution (25)
without relying on any information on the properties of the
Airy function, but rather by just solving modulation equa-
tions (34) and (36) of the linear theory. Evidently, the idea of
this approach involving the wave number conservation law
and other conservation laws with averaged densities and
fluxes allows a generalization to nonlinear waves. Exactly
that was done by Whitham for modulated cnoidal waves of
the KdV equation, and we discuss his theory in Section 4.

4. Whitham's theory

We restrict ourselves to describing the general idea of
Whitham [2] on averaging conservation laws in the simple
case where the evolution of a wave is described by a nonlinear
equation for a single variable u,

F�u; ut; ux; utt; utx; uxx; . . .� � 0 : �37�

We assume that Eqn (37) has traveling-wave solutions when
u�x; t� depends on x and t only through the combination
x � xÿ Vt, u � u�x�, and for such solutions, Eqn (37) can be
reduced to the form

u 2
x � F�u;V;Ai� ; �38�

where Ai is a collection of parameters occurring in deriving
(38) from (37). In a periodic traveling wave, the variable u
oscillates between two zeros of F�u�. We let u1�V;Ai� and
u2�V;Ai�, with u1 < u2, denote these zeros, assuming that F is
positive in the interval u1 < u < u2. Obviously, the wave-
length is

L � L�V;Ai� � 2

� u2

u1

du����������������������
F�u;V;Ai�

p ; �39�

and the wave number k and the frequency o are

k � k�V;Ai� � 1

L�V;Ai� ; �40�
o � o�V;Ai� � Vk�V;Ai� ;

where we dropped the factor 2p in the definition of the wave
number because it is only needed in the nonlinear theory for
maintaining correspondence with the low-amplitude limit,
and this factor can easily be restoredwhenever necessary. As a
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result, the wave number k becomes exactly equal to the
density of the number of waves. In a modulated wave
u�x;V;Ai�, the parameters V and Ai are slowly varying
functions of x and t, changing little over distances of the
order of the wavelengthL and over a time of the order of 1=o.
This implies that there is an interval D, much longer than the
wavelength L but much shorter than a certain size l
characterizing the wave structure overall: L5D5 l. It is
clear that, up to small quantities of the order of e � D=l,
averaging over the interval D is equivalent to averaging over
the wavelength L. Therefore, we average physical quantities
over fast oscillations in the wave in accordance with the rule

hFi � 1

L

� L

0

F�x 0; t� dx 0 : �41�

If a conservation law Pt �Qx � 0 is known, then, after the
averaging, it takes the form

q
qt
hPi � q

qx
hQi � 0 ; �42�

where the dependence on x and t is only present in slowly
varying modulation parameters V and Ai that enter the
averaged quantities. We can regard Eqns (42) as differential
equations for these parameters, similarly to how we viewed
modulation equations in the linear theory.

We can now turn to the derivation of the modulation
equations for the cnoidal KdV wave. In a weakly modulated
wave, the parameters A, B, V or n1, n2, n3 become slowly
varying functions of x and t, andwewish to find the equations
governing the evolution of these parameters. Calculations can
be simplified by recalling that one of the modulation
equations is already known. Replacing the elliptic function
argument in periodic solution (16) with the phase y that can be
defined up to an appropriate numerical factor, we introduce
local values of the wave number and frequency via formulas
(31), just as in the linear case; they must then satisfy the
conservation law for the number of waves in Eqn (33). In a
weakly modulated wave, the values of k and o are given by
Eqns (40) with variable parameters V and Ai, and hence
variations of these parameters under the evolution of the
wave must satisfy the equation

kt � �kV�x � 0 ; k � 1

L
: �43�

As two missing modulation equations, we use the averaged
conservation laws:

ut � �3u 2 � uxx�x � 0 ; �44��
1

2
u 2

�
t

�
�
2u 3 � uuxx ÿ 1

2
u 2
x

�
x

� 0 ;

which can be straightforwardly verified by substituting ut
from the KdV equation.

We first derive the modulation equations for the para-
meters A, B, and V. Following Whitham, we express the
averaged quantities in terms of the function

W � ÿ
���
2
p � ������������������������������������������������

ÿA� Bu� 1

2
Vu 2 ÿ u 3

r
du

� ÿ
���
2
p � ��������������

ÿR�u�
p

du ; �45�

where the integral is taken over a closed contour encompass-
ing the interval n2 4 u4n3. The wavelength L � 1=k is then
expressed throughW as

L � 1���
2
p

�
du��������������ÿR�u�p � qW

qA
� WA : �46�

We readily calculate the averaged quantities:

hui � k

� L

0

u dx � k���
2
p

�
u du��������������ÿR�u�p � ÿkWB ;�

1

2
u 2

�
� k

� L

0

�1=2�u 2 du

ux
� ÿkWV ; �47�

hu 2
x i � k

�
u 2
x du

ux
� ÿkW :

The second derivatives uxx can be eliminated from the
conservation laws with the help of the formula uxx �
B� Vuÿ 3u 2. After simple calculations using the relation
kWA � 1 and the averaged values found above, we obtain the
averaged conservation laws:

�kWB�t � �kVWB ÿ B�x � 0 ; �48�
�kWV�t � �kVWV ÿ A�x � 0 :

Having substituted k � 1=WA and introduced the `long'
derivative D=Dt � q=qt� V q=qx, we obtain the modulation
equations

DWA

Dt
� WA

qV
qx

;
DWB

Dt
� WA

qB
qx

;
�49�

DWV

Dt
� WA

qA
qx

;

the first of which is the conservation law (43) with the wave
number expressed as k � 1=WA.

Despite the apparent simplicity of the obtained equations,
they are not extremely useful in practice. We therefore
reexpress them in terms of n1, n2, and n3. From (14), we find
the relations between differentials:

dV � 2�dn1 � dn2 � dn3� ;
dB � ÿ��n2 � n3� dn1 � �n1 � n3� dn2 � �n1 � n2� dn3

�
;

dA � ÿ�n2n3 dn1 � n1n3 dn2 � n1n2 dn3� :

Hence, Eqns (49) expressed in the variables n1, n2, and n3 take
the form

WA; n1
Dn1
Dt
�WA; n2

Dn2
Dt
�WA; n3

Dn3
Dt

� 2WA�n1; x � n2; x � n3; x� ;

WB; n1
Dn1
Dt
�WB; n2

Dn2
Dt
�WB; n3

Dn3
Dt

� ÿWA

��n2 � n3�n1; x � �n1 � n3�n2; x � �n1 � n2�n3; x
�
;

WV; n1
Dn1
Dt
�WV; n2

Dn2
Dt
�WV; n3

Dn3
Dt

� ÿWA

�
n2n3n1;x � n1n3n2; x � n1n2n3; x

�
; �50�

where all the derivatives of W are represented by integrals
similar to (45) and (47).
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As a clue to further transformations, we note that the
right-hand sides of Eqns (50) contain the same factor WA.
Therefore, their linear combinations can be found such that
the coefficient in front of one of the derivatives vanishes and
the other two coefficients become equal. Indeed, we multiply
the first equation in (50) by p, the second by q, and the third by
r, add them, and choose the parameters p, q, and r such that
the coefficient in front of n1; x vanishes and the coefficients in
front of n2;x and n3; x become equal:

2pÿ q�n2 � n3� ÿ rn2n3 � 0 ;

2pÿ q�n1 � n3� ÿ rn1n3 � 2pÿ q�n1 � n2� ÿ rn1n2 :

It immediately follows from these conditions that

q � ÿrn1 ; p � ÿ 1

2
r�n1n2 � n1n3 ÿ n2n3� ;

andwe can hence set r � ÿ2, to obtain p � n1n2 � n1n3 ÿ n2n3,
q � 2n1, and r � ÿ2. The right-hand side of this linear
combination of Eqns (50) then takes the form

ÿ2�n2 ÿ n1��n3 ÿ n1�WA
q�n2 � n3�

qx
: �51�

Hence, it follows that, if in a similar linear combination of the
left-hand sides of Eqns (50) the coefficient in front ofDn1=Dt
vanishes and the coefficient in front of Dn2=Dt and Dn3=Dt
are equal to each other, then the modulation equations take a
very simple `diagonal' form.

With the help of the identity

d

du

 
2

���������������������������������
�uÿ n2��uÿ n3�
ÿ�uÿ n1�

s !

� ÿ u 2 ÿ 2n1u� n1n2 � n1n3 ÿ n2n3
�uÿ n1�

��������������ÿR�u�p ;

which is easy to verify, we obtain

pWA; n1 � qWB; n1 � rWV; n1

� ÿ 1���
8
p

�
d

du

 
2

���������������������������������
�uÿ n2��uÿ n3�
ÿ�uÿ n1�

s !
du � 0 ;

because the integrand is a total derivative of a periodic
function, and the first condition is thus satisfied.

The coefficients in front of Dn2=Dt and Dn3=Dt have the
respective forms

K2 � pWA; n2 � qWB; n2 � rWV; n2

� 1���
8
p

�
u 2 ÿ 2n1u� n1n2 � n1n3 ÿ n2n3

�uÿ n2�
��������������ÿR�u�p du ;

K3 � pWA; n3 � qWB; n3 � rWV; n3

� 1���
8
p

�
u 2 ÿ 2n1u� n1n2 � n1n3 ÿ n2n3

�uÿ n3�
��������������ÿR�u�p du ;

and their difference, being an integral of the derivative of a
periodic function over the period, vanishes:

K2 ÿ K3 � n2 ÿ n3���
8
p

�
d

du

 
2

���������������������������������
ÿ�uÿ n1�

�uÿ n2��uÿ n3�

s !
du � 0 :

Hence, K2 � K3, and the combination n2 � n3 is a convenient
modulation variable for which the modulation equations are
dramatically simplified. The emerging coefficient K2 � K3 in
front of D�n2 � n3�=Dt can also be expressed in terms ofWA.
Indeed, K2 and K3 can be represented as

K2 � n2 ÿ n1���
2
p

� �uÿ n3� du
�uÿ n2�

��������������ÿR�u�p
� 1���

8
p

�
u 2 ÿ 2n2u� n1n2 � n2n3 ÿ n1n3

�uÿ n2�
��������������ÿR�u�p du ;

K3 � n3 ÿ n1���
2
p

� �uÿ n2� du
�uÿ n3�

��������������ÿR�u�p
� 1���

8
p

�
u 2 ÿ 2n3u� n1n3 � n2n3 ÿ n1n2

�uÿ n3�
��������������ÿR�u�p du :

But the second terms on the right-hand sides vanish due to
identities quite similar to those used above, and the remaining
nonvanishing terms can be easily brought to the form

K2 � �n2 ÿ n1�WA ÿ 2�n2 ÿ n1��n3 ÿ n2�WA; n2 ; �52�
K3 � �n3 ÿ n1�WA � 2�n3 ÿ n1��n3 ÿ n2�WA; n3 :

The equality K2 � K3 then leads to the identity

WA � ÿ2
��n2 ÿ n1�WA; n2 � �n3 ÿ n1�WA; n3

�
;

substituting which in any of the equations in (52) gives

K2 � K3 � ÿ2�n2 ÿ n1��n3 ÿ n1��WA; n2 �WA; n3�
� 2�n2 ÿ n1��n3 ÿ n1�WA; n1 ;

because

WA; n1 �WA; n2 �WA; n3 �
1���
8
p

� ÿR 0�u� du
�ÿR�3=2�u�

� 0 :

We now equate the left-hand side of our linear combination

2�n1 ÿ n2��n1 ÿ n3�WA; n1
D�n2 � n3�

Dt

to its right-hand side in (51) to obtain the equation

D�n2 � n3�
Dt

� WA

WA; n1

q�n2 � n3�
qx

� 0 : �53�

Cyclic permutations of n1, n2, and n3 give two other
Whitham's modulation equations:

D�n3 � n1�
Dt

� WA

WA; n2

q�n3 � n1�
qx

� 0 ;

�54�
D�n1 � n2�

Dt
� WA

WA; n3

q�n1 � n2�
qx

� 0 :

Each of the equations obtained by Whitham involve
derivatives of only one of the quantities n2 � n3, n3 � n1, and
n1 � n2, which means that the equations have acquired a
diagonal form. Therefore, the above transformation is
similar to the transition from the standard form of gas-
dynamic equations to their diagonal form in terms of
different variables, called Riemann invariants (see, e.g., [22]).
We therefore define the new modulation variables, the
Riemann invariants r1 4 r2 4 r3 of Whitham's modulation
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equations, as

r1 � 1

2
�n1 � n2� ; r2 � 1

2
�n1 � n3� ; r3 � 1

2
�n2 � n3� ; �55�

n1 � r1 � r2 ÿ r3 ; n2 � r1 � r3 ÿ r2 ; n3 � r2 � r3 ÿ r1 ;

and express the other variables through them. In particular,
we findWA; r1� WA; n1�WA; n2ÿWA; n3 � ÿ2WA; n3 ,WA; r2 �
ÿ 2WA; n2 , andWA; r3 � ÿ2WA; n1 . WithWA � L, we obtain

WA

WA; n1
� ÿ 2WA

WA; r3

� ÿ 2L

qL=qr3

and similar formulas forWA=WA; n2 andWA=WA; n3 . Finally,
because

V � 2�n1 � n2 � n3� � 2�r1 � r2 � r3� ; �56�

we can represent Whitham's equations as

qri
qt
� vi�r1; r2; r3� qriqx

� 0 ; i � 1; 2; 3 ; �57�

with the characteristic velocities

vi � 2�r1 � r2 � r3� ÿ 2L

qL=qri

�
�
1ÿ L

qiL
qi

�
V ; i � 1; 2; 3 ; �58�

where qi � q=qri. Because formula (18) for the wavelength
becomes

L � 2K�m���������������
r3 ÿ r1
p ; m � r2 ÿ r1

r3 ÿ r1
; �59�

substitution of (59) into (58) using the known expression for
the derivative of the elliptic integral K�m� (see, e.g., [20])
allows expressing the velocities vi as

v1 � 2�r1 � r2 � r3� � 4�r2 ÿ r1�K�m�
E�m� ÿ K�m� ;

v2 � 2�r1 � r2 � r3� ÿ 4�r2 ÿ r1��1ÿm�K�m�
E�m� ÿ �1ÿm�K�m� ; �60�

v3 � 2�r1 � r2 � r3� � 4�r3 ÿ r1��1ÿm�K�m�
E�m� ;

where E�m� is the full elliptic integral of the second kind. This
is just the form of modulation equations for cnoidal KdV
waves arrived at by Whitham in [2].

The possibility of transforming a system of three first-
order equations to diagonal form is a highly nontrivial fact.
Fortunately, Whitham was unaware of a theorem stating that
such a transformation is in general impossible in systems of
more than two equations (see, e.g., [23]). In [21], Whitham
himself refers to the possibility of such a transformation as
miraculous. It turned out later that, in this case, such a
transformation is made possible by the remarkable mathe-
matical property of `complete integrability' of the KdV
equation, discovered two years later [24].

If a solution ri � ri�x; t�, i � 1; 2; 3, of Whitham's equa-
tions for some specific problem is found, then the DSW
profile can be determined by substituting this solution into
the periodic solution, which in the new variables (Riemann
invariants for the system of Whitham's modulation equa-

tions) takes the form

u � r2 � r3 ÿ r1 ÿ 2�r2 ÿ r1� sn2
ÿ ��������������

r3 ÿ r1
p �xÿ Vt�;m� �61�

with wavelength (59). As r2 ! r3, with L!1, we obtain the
soliton limit:

u�x; t���
r2�r3� r1 � 2�r3 ÿ r1�

cosh2
� ��������������

r3 ÿ r1
p �xÿ Vst�

� ; �62�
Vs � 2�r1 � 2r3� ;

and in the small-amplitude limit r2 ÿ r1 5 r2, the cnoidal
wave becomes harmonic:

u�x; t� � r3 � �r2 ÿ r1� cos
�
2
��������������
r3 ÿ r1
p �xÿ Vt�� ; �63�

V � 2�2r1 � r3� ;

with the wavelength p=
��������������
r3 ÿ r1
p

, which coincides with the
m! 0 limit of (59), as it should.

Whitham's equations, even if used alone, allow substan-
tial progress in the description of the DSW formation in
specific problems, and investigations of this kind were
initiated in Gurevich and Pitaevskii's work [1]. But, before
discussing these problems, in Section 5we describe the general
method for solving Whitham's equations, developed later
largely by Gurevich and his collaborators [25±29] (also see
[30±35]).

5. Generalized hodograph method

It was Riemann who made the following observation
regarding the equations of gas dynamics. For arbitrary one-
dimensional flows with the gas density r � r�x; t� and the
flow velocity u � u�x; t� being functions of the coordinate x
and time t, the so-called hodograph transformation making x
and t functions of Riemann invariants expressed through r
and u linearizes the equations for x and t; they then allow
solutions in a form quite convenient in applications.

Whitham's modulation equations (57) are similar in form
to the equations of gas dynamics after the transformation to
the diagonal form, and it is therefore natural to try to apply a
similar method to solve Whitham's equations. Such a
`generalized hodograph method' was proposed in a very
general form by Tsarev [36] as a strategy to solve hydro-
dynamic-type equations with more than two dependent
variables. We give some elementary prolegomena to this
method, which were used by Gurevich and collaborators to
solve Whitham's equations (57) in the Gurevich±Pitaevskii
problem.

In the simplest case of Hopf equation (10), which is the
dispersionless limit of the KdV equation, it is easy to express
solution (11) through the initial distribution of u. We now
have three equations (57) of a similar form, and we can seek
their solution in a similar form:

xÿ vi�r�t � wi�r� ; i � 1; 2; 3 ; �64�
where the wi�r� are the functions to be determined. Differ-
entiating these relations with respect to rj, we obtain
ÿ�qvi=qrj�t � qwi=qrj; i 6� j, where we can eliminate t using
(64), t � ÿ�wi ÿ wj�=�vi ÿ vj�. As a result, we see that the
functions wi must satisfy the Tsarev equations

1

wi ÿ wj

qwi

qrj
� 1

vi ÿ vj
qvi
qrj

; i 6� j : �65�
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Therefore, if we find the general solution wi�r� of these
equations for the given vi�r�, we obtain the general solution
(64) ofWhitham's equations (57), which can then be specified
for any particular problem.

We can find a way to solve Eqns (65) if we note that these
equation can be represented as compatibility conditions for
Whitham's equations (57) and some auxiliary equations,

qri
qt
� wi�rj� qriqx

� 0 ; i; j � 1; 2; 3 ; �66�

for the evolution of Riemann invariants depending on a
fictitious `time' t with formal `velocities' wi�rj�. After simple
transformations, the condition q2ri=qt qt � q2ri=qt qt
then gives the equation wjqvi=qrj � viqwi=qrj � vjqwi=qrj�
wiqvi=qrj, which is equivalent to (65). Regarding wi�r� as an
analogue of the Whitham velocities, it is natural to seek the
solution wi of Tsarev equations in a form similar to (58) [26],

wi �
ÿ
1ÿ �qi lnL�ÿ1qi

�
W ; qi � q

qri
: �67�

Using the expressions vi � 2s1 ÿ 2�qi lnL�ÿ1, s1 � r1�
r2 � r3, we represent Eqn (67) as

wi �W�
�
1

2
vi ÿ s1

�
qiW ; �68�

and after a simple calculation arrive at

wi ÿ wj �
�
1

2
vj ÿ s1

�
�qiWÿ qjW� � 1

2
�vi ÿ vj�qiW ;

qjwi � qjWÿ qiW�
�
1

2
vi ÿ s1

�
qi jW� 1

2
qjvi qiW ;

where qi j � q2=qri qrj. Substituting these expressions into
Eqns (65) yields equations forW:

qjWÿ qiW�
�
1

2
vi ÿ s1

�
qi jW

�
�
1

2
vj ÿ s1

�
�qiWÿ qjW� qjvi

vi ÿ vj : �69�

To simplify, we define the polynomial

Q�r� � �rÿ r1��rÿ r2��rÿ r3�
� r 3 ÿ s1r 2 � s2rÿ s3 ; �70�

s1 �
X
i

ri ; s2 �
X
i<j

ri rj ; s3 � r1r2r3 ;

where r is an arbitrary parameter, and use the easily verified
identity

qi j
1����������
Q�r�p � 1

2�ri ÿ rj�
�
qi

1����������
Q�r�p ÿ qj

1����������
Q�r�p �

: �71�

It follows from (18) that, up to an inessential factor, the
wavelength is L � � dr=

����������
Q�r�p

, where the integral is taken
along a closed contour encircling the interval between two
zeros r1 and r2 of Q�r�. Therefore, integrating Eqn (71) along
the same contour, we obtain the relation

qi jL
qiLÿ qjL

� 1

2�ri ÿ rj� : �72�

Substituting (58) on the right-hand side of (65), after simple
transformations using the established identities, we obtain a
system of equations for the potentialW:

q2W
qri qrj

ÿ 1

2�ri ÿ rj�
�
qW
qri
ÿ qW

qrj

�
� 0 ; i 6� j : �73�

These equations are called the Euler±Poisson equations, and
they are the subject of a vast mathematical literature. We here
restrict ourselves to the simplest facts that allow us to solve
several interesting problems from the Gurevich±Pitaevskii
theory for the DSW dynamics.

We first note that comparing Eqn (73) with identity (71)
implies that

W�r; r1; r2; r3� � r 3=2����������
Q�r�p �

X1
k�0

W �k��r1; r2; r3�
r k

�74�

is a solution of Eqns (73) dependent on an arbitrary
parameter r. We hence immediately conclude that (74) can
be considered the generating function of particular solutions
W �k��r1; r2; r3� given by the coefficients of the expansion ofW
in inverse powers of r. When these are substituted into (68),
we obtain particular solutions (64) ofWhitham's equations in
implicit form. These simplest solutions now allow describing
the behavior of DSWs in several characteristic instances of
the Gurevich±Pitaevskii problem, to which we restrict
ourselves in this paper.

6. Gurevich±Pitaevskii problem setup

To present the general physical ideas regarding the problem
setup within the Gurevich±Pitaevskii approach to the DSW
theory, we consider results of a numerical solution of theKdV
equation with the initial distribution given by a `tabletop'
with somewhat rounded edges:

u0�x� � 1 ; jxj4 l0 ;

0 ; jxj > l0 :

�
�75�

In our dimensionless variables, the dispersive size is equal to
unity, and we have therefore chosen the initial tabletop of
a sufficiently large width 2l0, such that the width of the
forming DSW could also grow large, and the applicability
condition of Whitham's averaging method would safely
hold for t4 1. As can be seen from Fig. 3, as a result of the
evolution of an initial distribution close to the one in (75),
two structures form on its edges. At the trailing edge, a
rarefaction wave forms, which, ignoring the dispersion,
would be described by the hydrodynamic solution u�x; t� �
�x� l0�=�6t� for ÿl0 4 x4ÿ l0 � 6t. The leading edge of

2.0
u
1.5

1.0

0.5

ÿ100 ÿ50 0 50 100 x

Figure 3. Evolution of a pulse with initial distribution (75) (dashed curve)

over the time t � 5 in accordance with KdV equation (9).
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distribution (75) forms the domain of oscillations, i.e., the
DSW, and we must find a suitable way to describe it in the
hydrodynamic limit of vanishing dispersion.

It is useful to briefly discuss here how a similar problem is
solved in the theory of viscous shock waves (see, e.g., [22]). As
is known, in media with weak dissipation, the wave breaking
shown in Fig. 1 is eliminated due to the formation of a very
thin transition domain between two states of the medium
flow. Inside this domain, strong irreversible processes occur
that are determined, for example, by the viscosity and heat
conductance of the gas, but, farther away from this transition
domain, the flow rapidly becomes an ideal gas flow, where
any irreversible processes can be disregarded. In the limit of
vanishing viscosity, heat conductance, and other character-
istics of dissipative processes, the thickness of the transition
domain in our macroscopic description tends to zero and we
can replace it with a discontinuity surface of the hydro-
dynamic variables, with the flow considered dissipation-free
on both sides of the surface. The characteristics of the flow
and of the thermodynamic state of the gas must satisfy the
conditions of mass, momentum, and energy conservation in
the transition across the discontinuity, which determine the
law of motion of the discontinuity.

In our case of interest, DSWs, we must make a similar
transition to the hydrodynamic limit of vanishing dispersion.
Instead of a discontinuity surface, we now have a domain of
oscillations with a vanishing wavelength inside it, and the
dynamics of this domain are described by Whitham's
modulation equations, which on `macroscopic' scales also
have the form of hydrodynamic first-order partial differential
equations. Similarly to the case of a usual shock wave, we
must incorporate a solution of these equations into the
solution of the dispersionless Hopf equation, such that the
smooth dispersionless solution continuously matches the
averaged characteristics of the modulated oscillating solu-
tion.

It is obvious that, on the soliton edge of a DSW, this
implies that the leading soliton must propagate over the
background described by a smooth solution at the matching
point. The situation is more delicate at the low-amplitude
edge, where we should apparently expect matching with the
solution of linear modulation equations (33) and (36). But in
the limit of vanishing dispersion, the wave amplitude tends to
zero at the matching point and Eqn (36) is satisfied in that
limit automatically. Still, the conservation law for the number
of waves in Eqn (43), which we used in deriving Whitham's
equations, turns into its linear limit (33) at the matching
point. Therefore, the low-amplitude edge of the DSW moves
over a smooth background with some group velocity, which
in Whitham's modulation theory becomes a hydrodynamic
variable characterizing the DSW.

Indeed, taking the limit of vanishing dispersion can be
formally regarded as a rescaling, i.e., a transition to `slow'
variables X � ex and T � et, such that the KdV equation
becomes uT � 6uuX � e 2uXXX � 0, the wavelength acquires
the order of magnitude L � e, and in the limit e! 0 the last
equation passes into the Hopf equation. In that same limit,
the parameter e drops from the expression for the group
velocity vg � ÿ3e 2k 2 � �e=L�2 � 1, and hence the velocity of
the low-amplitudeDSWedge is determined only by the values
of modulation parameters characterizing the DSW envelope.

We emphasize that the DSW picture described here,
as proposed by Gurevich and Pitaevskii, is substantially
different from the earlier proposals by Benjamin±Lighthill

and Sagdeev, according to which the DSW had a stationary
character and its overall characteristics were determined by
themandatory existence of weak dissipation, which competed
with dispersion. We return to that picture of the transition to
the stationary DSW with dissipation taken into account in
Section 12.

We thus assume that the breaking nonlinear solution of
the dispersionless Hopf equation, Eqn (11), is modified by
dispersion effects, such that, instead of a multivaluedness
domain, the domain xL< x < xR of wave oscillations occurs
in the distribution u�x; t�, with its evolution governed by
Whitham's modulation equations. Outside the domain
xL < x < xR, the wave can be described by the smooth
solution of the Hopf equation in Eqn (11), and inside it, the
DSW is described by expression (61) with good accuracy, with
the parameters r1, r2, and r3 being a solution of Whitham's
equations (57). This solution must satisfy boundary condi-
tions that ensure matching with the smooth solution. To
clarify the matching conditions, we note that, at these limit
points, the average of u�x; t� over wavelengths,

hui � 2�r3 ÿ r1� E�m�
K�m� � r1 � r2 ÿ r3 ; �76�

can be expressed as

huir1�r2 � r3 ; huir2�r3 � r1 : �77�

In other words, on the right edge, the value r1 of the
background over which soliton (62) is moving is equal to the
value of the dispersionless solution u�xR; t� at that point; on
the left edge, the background value r3 of low-amplitude limit
(63) equals the u�xL; t� value of the same dispersionless
solution. In accordance with the foregoing assumptions, on
the right edge xR�t�, the DSW turns into a sequence of
solitons, and we have r2 � r3 �m � 1� in that case. On the
left edge xL�t�, with low amplitude of oscillations, we set
r2 � r1 �m � 0�.

The coincidence of two Riemann invariants leads to the
equality of the corresponding Whitham velocities (60) at the
DSW edges. We obtain

v1
��
r2�r1� v2

��
r2�r1 � 12r1 ÿ 6r3 ; v3

��
r2�r1 � 6r3 ; �78�

v1
��
r2�r3� 6r1 ; v2

��
r2�r3 � v3

��
r2�r3� 2r1 � 4r3 : �79�

It then follows that, on the trailing edge x � xL�t�, where the
wave u�x; t� and its averaged value coincide with the Riemann
invariant r3, its evolution is determined by the limit of
Whitham's equation

qr3
qt
� 6r3

qr3
qx
� 0 ; r2 � r1 ; x � xL�t� ; �80�

which coincides with Hopf equation (10) for u�x; t� in the
dispersionless limit. Similarly, on the leading front x � xR�t�,
where the averaged value hu�x; t�i coincides with theRiemann
invariant r1, its evolution is determined by the same Hopf
equation:

qr1
qt
� 6r1

qr1
qx
� 0 ; r2 � r3 ; x � xR�t� : �81�

We can thus conclude that the boundary condition

v1
��
r1�r2 � v2

��
r1�r2 ; v3

��
r1�r2 � 6rL �82�
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is satisfied at the trailing edge of the DSW, and the condition

v1
��
r2�r3 � 6rR ; v2

��
r2�r3 � v3

��
r2�r3 �83�

is satisfied at the leading edge. Here, rL and rR are the values
that solution (11) of the Hopf equation, which corresponds to
the initial profile r � u0�x�, takes at the DSW matching
points. For the solution of form (64), the DSW endpoints
mustmatch solution (11) of theHopf equation, and boundary
conditions (82) and (83) can be represented as

w1

��
r1�r2 � w2

��
r1�r2 ; w3

��
r1�r2 � �x�r3� ; �84�

w1

��
r2�r3 � �x�r1� ; w2

��
r2�r3 � w3

��
r2�r3 : �85�

If we manage to find a solution of Whitham's equations (57)
satisfying the stated conditions, then we obtain the functions
r1, r2, and r3 in the entire domain xL�t� < x < xR�t� and
therefore describe the oscillating wave envelope for the entire
DSW.

Before proceeding to solutions of specific problems, we
note that Whitham's equations, as follows from their homo-
geneity, have self-similar solutions of the form

ri�x; t� � t gRi�xtÿ1ÿg� ; �86�

where g is an arbitrary self-similarity exponent and Ri�z� is a
solution of the system of ordinary differential equations��1� g�zÿ vi�R�

�
R 0i � gRi ; i � 1; 2; 3 ; �87�

where z � xtÿ1ÿg, R 0i � dRi=dz, and vi�R� � tÿgvi�r�, i.e.,
vi�R� is expressed through Ri by the same formulas that
express vi�r� through ri. This remark allows finding useful
classes of solutions describing DSWs for some especially
chosen initial conditions.

7. Evolution of the initial discontinuity
in the Korteweg±de Vries theory

Webeginwith the simplest example [1], similar to the problem
of the evolution of step-like profile (23) in the theory of the
linear KdV equation. To simplify formulas, we use the fact
that the KdV equation is invariant under the Galilei
transformations x! x� 6At, t! t, u! u� A and the
scale transformations x! x=B1=2, t! t=B 3=2, u! Bu,
where A and B are constant parameters. Using these
transformations, the initial step-like profile of an arbitrary
amplitude can be represented as

u0�x� � u�x; 0� � 1 ; x < 0 ;
0 ; x > 0 :

�
�88�

In the dispersionless approximation, we obtain the formal
solution of the Hopf equation,

u�x; t� �
1 ; x < 6t ;
x

6t
; 04 x4 6t ;

0 ; x > 6t ;

8>><>>:
which is multivalued in the domain 0 < x < 6t. According to
Gurevich and Pitaevskii, a DSW emerges instead of this
domain when taking dispersion into account, with the DSW
evolution governed by Whitham's equations.

In Whitham's hydrodynamic approximation, initial con-
ditions contain no parameters of the dimension of length, and
hence the solution of modulation equations must be self-
similar (see (86) with g � 0), i.e., ri � ri�z�, z � x=t, where
ri�z� satisfy the differential equations �viÿ z� dri=dz� 0
(see (87)). On the trailing edge z � zL, where the oscillation
amplitude tends to zero, we have r1 � r2, and the averaged
value hui coincides with u � 1 (see (77)), the boundary
condition r1�zL� � r2�zL�, r3�zL� � 1 must hold. On the
leading soliton front z � zR, where r2 � r3 and the averaged
value hui � r1 vanishes, we have another boundary condition:
r2�zR� � r3�zR� and r1�zR� � 0. It is easy to see that we obtain
a solution satisfying both boundary conditions if we set

r1 � 0 ; r3 � 1 ; v2 � z : �89�

Then, m � �r2 ÿ r1�=�r3 ÿ r1� � r2 and the last equation in
(89) determines the dependence of the self-similar variable
z � x=t on r2,

z � x

t
� 2�1� r2� ÿ 4r2�1ÿ r2�K�r2�

E�r2� ÿ �1ÿ r2�K�r2� : �90�

Taking the limit r2 ! 0, we find the value of the self-similar
variable on the trailing edge:

zL � ÿ6 or xL � ÿ6t ; �91�
which means that the oscillation domain expands into the
unperturbed domain of the pulse with the speed sL � vg � ÿ6
equal to the group velocity of linear waves on the constant
background u � 1 with the dispersion law o � 6kÿ k 3.
Indeed, the group velocity do=dk � 6ÿ 3k 2 is vg � ÿ6 for
the wavelength equal to L�0� � p in accordance with (59),
and hence k � 2p=L � 2.

On the leading front, we have r2 ! 1 and Eqn (90) implies
that

zR � 4 or xR � 4t ; �92�
and hence this DSW edge moves with the soliton speed
sR � Vs � 4r3 � 4. The amplitude of the leading soliton is
twice the amplitude of the step-like profile. The dependence of
r2 � m on the variable z 00 � 4ÿ z, jz 00j5 1 near the leading
front is determined by the equation z 00 ' 2�1ÿm��
ln �16=�1ÿm��, which gives 1ÿm ' z 00=2 ln �1=z 00� with
logarithmic accuracy. Therefore, the distance between soli-
tons near the leading front (where 4tÿ x � 1 or 4ÿ z �
z 00 � 1=t) increases with time as

L � 2K�m���������������
r3 ÿ r1
p ' p ln

1

z 00
� p ln t : �93�

Overall, the dependence of r2 � m on z is shown in Fig. 4a.
Substituting the values of Riemann invariants into formula
(61) gives an expression for u�x; t� in a DSW:

u�x; t� � 1� r2 ÿ 2r2 sn
2
ÿ
x�r2� ÿ 2�1� r2�t; r2

�
; �94�

with the dependence x�r2� at a fixed instant t determined by
Eqn (90). Therefore, the envelope of the maxima is given by
the function umax � 1� r2, and the envelope of the minima,
by the function umin � 1ÿ r2. In Fig. 4b, they are shown with
dashed lines. Aswe can see,Whitham's theory is quite good at
describing the DSW at a moderate value t � 15, and it can be
verified that the accuracy increases as t increases. Whitham's
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theory correctly predicts the wave number value correspond-
ing to the low-amplitude edge of a DSW.

8. Breaking of the wave with a parabolic profile

In Section 7, we considered the simplest Gurevich±Pitaevskii
problem of the formation of a DSW from a very particular
initial profile, a jump-like discontinuity. Although some
interesting problems can be reduced to this idealized case,
including the problem of DSW generation in a flow past an
obstacle [37, 38], it is rather remote from the typical wave
breaking patterns. As is known (see, e.g., [22, æ 101]), there are
two main breaking scenarios for a simple wave. In the first
scenario, the wave propagates into a quiescent medium and at
the instant of breaking the distribution of the wave perturba-
tion acquires a vertical tangent on the interface with the
quiescent medium. In the most typical case, the wave
amplitude then vanishes in accordance with a square-root
law. In the second, more common, scenario, the breaking
occurs as a result of the evolution of the distribution with an
inflection point: at the instant of breaking, in the dispersionless
approximation, this profile also acquires a vertical tangent at
the inflection point, and in typical situations can be repre-
sented by a cubic parabola. In this section, we consider the first
wave breaking scenario, and in Section 9 turn to the second.

We thus assume that at the instant of breaking t � 0, the
pulse amplitude vanishes in accordance with a square-root
law,

u0�x� � u�x; 0� �
�������ÿxp

; x < 0 ;
0 ; x > 0 :

�
�95�

Using Galilei and scaling transformations, we can bring
xjt�0 / ÿu 2 to this simple dimensionless form. The solution
of the Hopf equation with initial condition (95) is (see (11))

xÿ 6ut � ÿu 2 ; �96�
showing that this solution has a domain of multivaluedness
for 0 < x < 9t 2 after the instant of breaking t > 0. According
to theGurevich±Pitaevskii theory, when dispersion effects are
taken into account, this multivaluedness domain is super-
seded by a DSW that occupies the domain xL 4 x4 xR. On
its low-amplitude trailing edge xL, the DSWmatches solution
(96) (see (84)):

w3

��
r1�r2 � ÿu

2 ; u � rL3 : �97�
It hence follows that we must seek solution (64) with the
functions wi that are quadratic in the Riemann invariants in
the limit m! 0. Velocities of this type with power-law
dependences on the Riemann invariants as m! 0 occur in
studying generating function (74), and the required quadratic
dependence corresponds to the coefficient W �2��r1; r2; r3� at
rÿ2. Thus, we take wi�r� in form (68) with W �W �2�, which,
in view of the linearity of the Euler±Poisson equations, can be
multiplied by an arbitrary constant factor C:

wi � C

�
1ÿ L

qiL
qi

�
W �2��r1; r2; r3� ;

W �2��r1; r2; r3� � 2s2 ÿ 3

2
s 2
1 ; �98�

s2 � r1r2 � r2r3 � r3r1 ; s1 � r1 � r2 � r3 :

A specific value of C is determined by the condition of
matching with a smooth solution on the low-amplitude
DSW edge, where r3 � uL. On the leading soliton edge xR,
the averaged amplitude then vanishes, and this condition
yields r1 � 0 and r2 � r3. Hence, we can satisfy the boundary
conditions by taking r1 � 0 and choosing the constantC such
that condition (97) holds. Calculating w3 atm! 0, we obtain
w3 � ÿ�15=2�Cr 23 , and it therefore follows from the matching
condition that C � 2=15. Finally, we obtain formulas for a
solution of Whitham's equations [25, 30]

xÿ v2t � 2

15

�
W�

�
1

2
v2 ÿ s1

�
qW
qr2

�
;

�99�
xÿ v3t � 2

15

�
W�

�
1

2
v3 ÿ s1

�
qW
qr3

�
;

whereW � 2r2r3 ÿ �3=2��r2 � r3�2 and s1 � r2 � r3.
On the low-amplitude edge, these equations reduce to

xL � 6rL3 t �
1

3
�rL3 �2 ; xL ÿ 6rL3 t � ÿ�rL3 �2 ;

which immediately implies the parametric representation
xL � ÿ�1=3��rL�2, t � �1=9�rL of the law of motion of this
edge, and hence eliminating rL leads to

xL � ÿ27t 2 : �100�
On the soliton edge at r2 � r3, both equations (99) tend to

the same limit xR ÿ 4r3t � ÿ�8=15�r 23 , and the value of rR3 is

2

u
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b

t � 15
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Âr3
ri

r2

r1

Figure 4. (a) Riemann invariants in the problem of a step-like profile. The

dependence of r2 on z is defined by Eqn (90). (b) Evolution of a pulse with a

step-like initial distribution in Eqn (88) driven by the KdV equation (solid

line). Envelopes of the DSW amplitude are shown with dashed lines.
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determined by the maximum value of x in the DSW domain,
whence rR3 � 15t=4 and

xR � 15

2
t 2 : �101�

This is the law of motion of the leading soliton edge.
It follows from the obtained formulas that we have

arrived at a self-similar solution of Whitham's equations
(see (86)) with g � 1, where the Riemann invariants are

r1 � R1 � 0 ; r2 � tR2�z� ; r3 � tR3�z� �102�

with the self-similarity variable z � x=t 2. The dependence of
the Riemann invariants Ri on z is shown in Fig. 5a. It is clear
that R3 matches the solution of the Hopf equation shown in
the figure with a dashed line. Substituting the found values of
r2 and r3, together with r1 � 0, into Eqn (61), we obtain a
parametric form of u�x; t� as a function of the coordinate and
time in the DSW domain. An example of such a dependence
u�x; t� at a fixed instant t is shown in Fig. 5b.

9. Breaking of a cubic profile

As we have noted, typical wave breaking occurs when the
initial wave profile has an inflection point and in the
dispersionless limit of the solution of the Hopf equation
acquires a vertical tangent at some instant. Because this
breaking point remains an inflection point, the second
derivative of the profile also vanishes at that point. Assuming
that the third derivative of the profile does not vanish at that
point, and also choosing the origin at the breaking point and
the instant of breaking as zero time, we can approximate the
profile near the inflection point with a cubic parabola. As a
result, we obtain a solution of the dispersionless Hopf
equation corresponding to the initial condition �x�u� � ÿu 3

at t � 0 in the form

xÿ 6ut � ÿu 3 : �103�

It is obvious from the foregoing that this is the most typical
distribution at the instant of breaking, andwe here discuss the
evolution of the corresponding DSW. The main features of
the solution were investigated in [1], and an exact analytic
solution was obtained in [39].

To solve the problem, we note that the velocities wi�r� in
(68) that correspond to the third term W �W �3� in the
expansion of generating function (74) have a cubic depen-
dence on ri at the endpoints withm � 0 andm � 1. Using the
formula (see (67))

wi �
�
1ÿ L

qiL
qi

�
W �3��r1; r2; r3� ; �104�

where

W �3��r1; r2; r3� � ÿ 5

4
s 3
1 � 3s1s2 ÿ 2s3 �105�

and si are coefficients of polynomial (70), it is easy to evaluate

w3 � ÿ 35

4
r 33 as m! 0 ;

�106�
w1 � ÿ 35

4
r 31 as m! 1 :

Multiplying wi byÿ4=35, we satisfy the boundary conditions
of DSW matching on the edges with a smooth dispersionless
solution in Eqn (103), and we find a solution of Whitham's
equations (57) in the form

xÿ 6vi�r1; r2; r3� t � 4

35
wi�r1; r2; r3� ; i � 1; 2; 3 ; �107�

where the functions wi, i � 1; 2; 3, are defined by Eqns (104)
and (105). The expressions for vi and wi, even if somewhat
bulky, can be given in terms of elliptic integrals as functions of
the Riemann invariants (explicit formulas are presented
below in a self-similar form; see Eqns (134)±(136)). There-
fore, system (107) allows finding ri as functions of x and t.
Before passing to the self-similar form, we consider char-
acteristic properties of the obtained solution.

On the low-amplitude edge, we have r1 � r2 �m � 0�, and
Eqn (107) with i � 3 becomes

xÿ 6r3t � ÿr 33 with r1 � r2 : �108�
Similarly, on the soliton edge, we have r2 � r3, and Eqn (107)
with i � 1 becomes

xÿ 6r1t � ÿr 31 with r2 � r3 : �109�
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Figure 5. (a) Riemann invariants in the problem of breaking of a parabolic-

profile pulse. The dashed line shows the corresponding solution

zÿ 6R � ÿR 2 of the Hopf equation. (b) Evolution of the pulse with

initial profile (95) in accordance with the Gurevich±Pitaevskii theory for

the KdV equation.
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Therefore, these Riemann invariants match the smooth
solution on the DSW edges, as they should:

r3 � u with r1 � r2 ; �110�
r1 � u with r2 � r3 ;

where u is the solution of the Hopf equation in (103). In the
neighborhood of the trailing low-amplitude edge, we intro-
duce a local coordinate x 0,

x � xL � x 0 ; �111�

and small deviations r 0i of the Riemann invariants from their
limit values,

r1 � rL1 � r 01 ; r2 � rL1 � r 02 ; r3 � rL3 � r 03 : �112�

Expanding Eqns (107) in powers of r 0i at a fixed instant t, we
obtain

xL � x 0 ÿ �12r1 ÿ 6r3�tÿ �9r 01 � 3r 02 ÿ 6r 03�t

� 1

5
�ÿ16r 31 � 8r 21 r3 � 2r1r

2
3 � r 33 �

ÿ 3

10
�24r 21 ÿ 8r1r3 ÿ r 23 �r 01 ÿ

1

10
�24r 21 ÿ 8r1r3 ÿ r 23 �r 02

� 1

5
�8r 21 � 4r1r3 � 3r 23 �r 03 ;

xL � x 0 ÿ �12r1 ÿ 6r3�tÿ �3r 01 � 9r 02 ÿ 6r 03�t

� 1

5
�ÿ16r 31 � 8r 21 r3 � 2r1r

2
3 � r 33 �

ÿ 1

10
�24r 21 ÿ 8r1r3 ÿ r 23 �r 01 ÿ

3

10
�24r 21 ÿ 8r1r3 ÿ r 23 �r 02

� 1

5
�8r 21 � 4r1r3 � 3r 23 �r 03 ;

xL � x 0 ÿ 6r3tÿ 6r 03t � ÿr 33 ÿ 3r 23 r
0
3 ; �113�

where we introduce the temporary notation r1 � rL1 and
r3 � rL3 . Subtracting the second equation from the first, we
obtain the relation

t � 1

30
�24r 21 ÿ 8r1r3 ÿ r 23 � : �114�

It hence follows that the coefficients in front of r 01 and r 02 in
the first two equations in (113) vanish, and therefore x 0 is a
quadratic function of r 01 and r 02:

x 0 / r 0 21 ; r
0 2
2 ; r

0
3 :

At the point xL, these two equations give

xL ÿ �12r1 ÿ 6r3�t � 1

5
�ÿ16r 31 � 8r 21 r3 � 2r1r

2
3 � r 33 � ; �115�

and the third equation in (113), as we have already noted,
reduces to the solution xL ÿ 6r3t � ÿr 33 of the Hopf equa-
tion.We can hence find the law of motion of the trailing edge.
Subtracting Eqn (108) with x � xL from (115) and dividing
the result by �r1 ÿ r3�, we obtain the relation

t � 1

30
�8r 21 � 4r1r3 � 3r 23 � :

Comparing this with (114), we find the relation between
values of Riemann invariants on the trailing edge:

rL1 � rL2 � ÿ
1

4
rL3 : �116�

It then follows from Eqns (114) and (108) that

t � 1

12
�rL3 �2 ; xL � ÿ 1

2
�rL3 �3 ; �117�

and hence the low-amplitude edgemoves according to the law

xL � ÿ12
���
3
p

t 3=2 : �118�

The amplitude of oscillations here tends to zero as

a � r2 ÿ r1 ' 2r 02 /
�����
x 0
p

: �119�

Near the leading soliton front, we introduce small
variables:

x � xR ÿ x 00 ; x 00 > 0 ; �120�
r1 � rR1 � r 001 ; r2 � rR3 � r 002 ; r3 � rR3 � r 003 : �121�

The expansions of Eqns (73) with only the leading corrections
retained have the form

xR ÿ x 00 ÿ 6r1t� 8�r3 ÿ r1�
ln
�
16=�1ÿm�� t

� ÿr 31 �
4

35
�15r 21 � 12r1r3 � 8r 23 �

r3 ÿ r1

ln
�
16=�1ÿm�� ;

xR ÿ x 00 ÿ �2r1 � 4r3�t� 2 ln

�
16

1ÿm

�
�r 003 ÿ r 002 �t

� ÿ 1

35
�5r 31 � 6r 21 r3 � 8r1r

2
3 � 16r 23 �

� 1

35
�3r 21 � 8r1r3 � 24r 23 � ln

�
16

1ÿm

�
�r 003 ÿ r 002 � ;

xR ÿ x 00 ÿ �2r1 � 4r3�tÿ 2 ln

�
16

1ÿm

�
�r 003 ÿ r 002 �t

� ÿ 1

35
�5r 31 � 6r 21 r3 � 8r1r

2
3 � 16r 23 �

ÿ 1

35
�3r 21 � 8r1r3 � 24r 23 � ln

�
16

1ÿm

�
�r 003 ÿ r 002 � ; �122�

where 1ÿm � �r 003 ÿ r 002 �=�r3 ÿ r1� and we revert to the
temporary notation r1 � rR1 and r3 � rR3 . Subtracting the
third equation in (122) from the second, we obtain the relation

t � 1

70
�3r 21 � 8r1r3 � 24r 23 � ; �123�

which together with the leading approximation in Eqns (122),

xR ÿ 6r1t � ÿr 31 ; �124�
xR ÿ �2r1 � 4r3�t � ÿ 1

35
�5r 31 � 6r 21 r3 � 8r1r

2
3 � 16r 33 � ;

defines the law of motion of the leading edge. Indeed, the
difference between Eqns (124) gives another relation,

t � 1

70
�15r 21 � 12r1r3 � 8r 23 � ; �125�
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which, when compared with (123), yields

rR3 � ÿ
3

4
rR1 ; rR1 < 0 ; �126�

whence

t � 3

20
�rR1 �2 ; xR � 1

10
jrR1 j3 ; �127�

and therefore the soliton edge moves in accordance with the
law

xR � 4

9

�����
15
p

t 3=2 : �128�

The distance between solitons on the leading edge depends on
x 00 as

L / ln
1

jx 00j : �129�

The obtained solution, which can be written in the self-
similar form

ri � t 1=2Ri

�
x

t 3=2

�
; �130�

is a solution of Eqns (87) with g � 1=2:
dRi

dz
� Ri

3zÿ vi�R� ; z � x

t 3=2
: �131�

The above relations allow easily finding boundary values of
Ri. On the trailing low-amplitude edge of the DSW, we have
zL � xL=t 3=2 � ÿ12 ���

3
p

and

RL
1 � RL

2 � ÿ
1

2

���
3
p

; RL
3 � 2

���
3
p

; �132�

and on the leading soliton edge, zR � 4
�����
15
p

=9 and

RR
1 � ÿ

2

3

�����
15
p

; RR
2 � RR

3 �
1

2

�����
15
p

: �133�

The global dependence of Ri on z is defined implicitly by
the expressions

z � 6v1 ÿ w1 ; z � 6v2 ÿ w2 ; z � 6v3 ÿ w3 ; �134�
where

v1 � 2�R1 � R2 � R3� � 4�R2 ÿ R1�K�m�
E�m� ÿ K�m� ;

v2 � 2�R1 � R2 � R3� ÿ 4�R2 ÿ R1��1ÿm�K�m�
E�m� ÿ �1ÿm�K�m� ; �135�

v3 � 2�R1 � R2 � R3� � 4�R3 ÿ R1��1ÿm�K�m�
E�m� ;

with m � �R2 ÿ R1�=�R3 ÿ R1�; the functions wi�R1;R2;R3�
have the form

wi �W�
�
1

2
vi ÿ R1 ÿ R2 ÿ R3

�
qW
qRi

; �136�

with

W � 4

35

�
ÿ 5

4
�R1 � R2 � R3�3 � 3�R1 � R2 � R3�

� �R1R2 � R2R3 � R3R1� ÿ 2R1R2R3

�
:

Thus, system of algebraic equations (134) allows finding the
dependence of the invariants Ri on z [39]. This dependence is
shown in Fig. 6a, where the dashed line shows the cubic curve
z � 6Rÿ R 3 matching the Riemann invariants R3 and R1 at
the respective points zL and zR. With the dependences of
the invariants ri � t 1=2Ri�x=t 3=2� on the self-similar variable
found, their substitution in (61) gives a description of the
DSW forming in the neighborhood of the breaking point due
to dispersion effects. This DSW is plotted in Fig. 6b. The self-
similar solution considered here is valid for as long as the
smooth part of the solution is described by cubic curve (103)
with sufficient accuracy.

10. Motion of edges of dispersive shock waves

The solutions found in Sections 8 and 9 give an idea of the
nature of the DSW evolution at a stage not too distant in time
from the wave breaking instant, when the smooth part of the
solution remains a monotonic function of the coordinate and
is sufficiently close to a parabola or a cubic parabola. But in
practice the pulses typically have a finite duration, which
raises a question about the DSW shape at the stage when its

3

Ri

R3

R2

R1

R2 � R3

1

ÿ2

ÿ3

R2 � R1

Â

ÿ30 ÿ25 ÿ15 ÿ10 ÿ5 5 zzR

zL

6

u�x�

4

2

ÿ2

b

ÿ30 ÿ25 ÿ20 ÿ15 ÿ10 ÿ5 5 x

t � 1

Figure 6. (a) Riemann invariants in the problem of breaking of a cubic-

profile pulse. The dependence of Ri � ri=t
1=2 on z � x=t 3=2 is determined

by Eqns (134). The dashed line shows the corresponding solution

zÿ 6R � ÿR 3 of the Hopf equation. (b) Evolution of the pulse with the

initial cubic profile in accordance with Whitham's approximation for the

KdV equation. The dashed line shows the dependence of Riemann

invariants on the coordinate x. The evolution time is t � 1.
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full length is comparable to or much greater than the initial
length of the pulse. The hodograph method outlined in
Section 5 allows obtaining a solution to such a problem in
the form of a solution to the system of Euler±Poisson
equations (73) [25±29, 32, 34, 35]. However, this form of the
solution is rather complicated, and even a very detailed
quantitative description of the process does not give an
intuitively clear picture of the effect. We therefore do not go
into the details of that theory and discuss a simpler approach
[25, 40], which readily yields simple formulas for the principal
parameters of the DSW and, in addition, allows a general-
ization to a rather broad class of other nonlinear wave
equations.

We first note that `positive' and `negative' pulses with the
respective initial distributions u0�x� > 0 and u0�x� < 0 must
be distinguished: they exhibit qualitatively different behav-
iors and must be considered separately. An idea of how they
evolve can be gleaned from Fig. 7, where we show the results
of a numerical solution of theKdV equation with appropriate
initial data.

For a positive pulse, breaking occurs on the leading front,
and the leading part of the DSW consists of a sequence of
solitons (62), moving over the zero background, whereas the
trailing low-amplitude edge matches the smooth solution and
propagates over an inhomogeneous background. It must be
recalled here that, in the case of a localized initial pulse u0�x�
with a single maximum um of the distribution at x � xm
(Fig. 8a), the inverse function consists of two branches,
�x1�u� and �x2�u� (Fig. 8b), and hence the dispersionless
solution is given by two formulas (11), one for each branch.

At the initial stage of the DSW evolution, its low-
amplitude edge matches the solution corresponding to the
branch �x1�u�, and at the matching point xL we have

xL ÿ 6ut � �x1�u� : �137�

On the other hand, at that point the Riemann invariants r1; r2
are equal to zero and r3 � u (Fig. 9a), wavelength (59)
becomes L � p=

���
u
p

, with the corresponding wave number
k � 2

���
u
p

, and the velocity of motion of this point, determined
by the group velocity of the linear wave on the background u,

u�x�

x

Â

u�x�

x

b

Figure 7. (a) Evolution of a `positive' initial pulse. (b) Evolution of a

`negative' initial pulse.
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Figure 8. (a) Initial profile of a `positive' pulse. (b) The inverse function

�x�u� consisting of two branches, �x1�u� and �x2�u�.
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Figure 9. (a) Diagram of Riemann invariants for a `positive' pulse.

(b) Diagram of Riemann invariants for a `negative' pulse.
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is equal to vg � 6uÿ 3k 2 � ÿ6u. Hence, dxL � 6u dt � 0
along the path of the low-amplitude edge, and the compat-
ibility condition between Eqn (137) and the equation

dxL
du
� 6u

dt

du
� 0 �138�

leads to the differential equation

2u
dt

du
� t � ÿ 1

6

d�x1
du

; �139�

which can be easily solved with the initial condition t�0� � 0,
assuming that the breaking occurs at the zero instant on the
interface with the medium `at rest', where u � 0. We hence
obtain

t�u� � 1

12
���
u
p
� 0

�x1�u�

dx�����������
u0�x�

p ; �140�

and substituting this into (137) gives the law of motion of the
low-amplitude edge in parametric form:

xL�u� � �x1�u� �
���
u
p
2

� 0

�x1�u�

dx�����������
u0�x�

p : �141�

It is easy to verify that these formulas reproduce law (100) for
the parabolic initial profile u0�x� �

�������ÿxp
with a single branch

of the inverse function �x1�u� � ÿu 2.
For a localized initial pulse, the obtained solution is valid

until the instant

tm � 1

12
������
um
p

� 0

xm

dx�����������
u0�x�

p ; �142�

when the low-amplitude edge reaches the point correspond-
ing to the maximum amplitude um. After that, we must solve
Eqn (139) with the replacement �x1�u� ! �x2�u� and with the
initial condition t�um� � tm. As a result, we obtain the law of
motion of the low-amplitude edge in parametric form:

t�u� � 1

12
���
u
p
� 0

�x2�u�

dx�����������
u0�x�

p ;
�143�

xL�u� � �x2�u� �
���
u
p
2

� 0

�x2�u�

dx�����������
u0�x�

p ;

where u0�x� is understood as the full initial profile of the
pulse, vanishing as x � 0 and tending to zero as x! ÿ1.
If the initial pulse vanishes on the trailing edge at
x � ÿl � �x2�0�, then, as t!1, it is obvious that
t � A=�12 ���

u
p �, where A � � 0ÿl dx= �����������

u0�x�
p

, and the law of
motion of the trailing edge takes the asymptotic form

xL � ÿl� A
2

24t
; t!1 : �144�

The asymptotic form of the law of motion can also be easily
found for the leading soliton edge of the DSW. We see from
Fig. 9a for Riemann invariants that, as t!1, the plots of
r2�x� and r3�x� elongate into an extended `tongue', with
r1 � 0 and r2 � r3 � um near the leading edge. Therefore,
the leading edgemoves with the soliton velocityVs � 4um and

xR � 4umt : �145�

Turning now to the question of the evolution of a negative
initial pulse, we see from Fig. 7b that the smooth dispersion-
less solution is adjacent to the soliton edge of the DSW, which
therefore propagates over an inhomogeneous background.
On that boundary, the Riemann invariants are r1 � u and
r2 � r3 � 0 (Fig. 9b), and hence the soliton edge velocity is
Vs � 2u or dxR � 2u dt, in accordance with (79). Therefore,
along the path of the soliton edge, the equation

dxR
du
ÿ 2u

dt

du
� 0 �146�

must again be made compatible with the dispersionless
solution

xR ÿ 6ut � �xi�u� ; i � 1; 2 �147�
if the edge borders the ith branch of that solution. Eliminating
xR, we obtain a differential equation for t � t�u�:

2u
dt

du
� 3t � ÿ 1

2
�x 0i �u� ; �148�

where �xi�u� is the corresponding branch of the inverse
function of the initial distribution (Fig. 10). For the branch
i � 1, a solution is sought with the initial condition t�0� � 0,
which defines a parametric form of the law of motion of the
soliton edge:

t�u� � 1

4�ÿu�3=2
� u

0

�������ÿup
�x 01�u� du ; �149�

xR � ÿ 3

2
�������ÿup
� u

0

�������ÿup
�x 01�u� du� �x1�u� :
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Figure 10. (a) Initial profile of a `negative' pulse. (b) The inverse function

�x�u� consisting of two branches, �x1�u� and �x2�u�.
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For example, for a parabolic initial pulse u0�x� � ÿ
���
x
p

,
�x1�u� � u 2, x > 0, we hence find the law of motion
xR � ÿ5t 2.

Solving Eqn (148) with the initial condition

t�um� � 1

4�ÿum�3=2
� um

0

�������ÿup
�x 01�u� du

for a localized initial pulse with a minimum u � um at x � xm,
we obtain the law of motion

t�u� � 1

4�ÿu�3=2
� x2�u�

0

���������������
ÿu0�x�

p
dx ;

�150�
xR � x2�u� ÿ 3

2
�������ÿup
� x2�u�

0

���������������
ÿu0�x�

p
dx :

Negative solitons are nonexistent for the KdV equation,
and therefore a negative pulse cannot decay into a sequence of
solitons at asymptotically large times. Instead, it transforms
into a nonlinear wave packet whose soliton edge moves at
t!1 in accordance with the law

xR � ÿ 3A2=3

21=3
t 1=3 ; A �

�1
0

���������������
ÿu0�x�

p
dx ; �151�

matching a virtually rectilinear asymptotic dispersionless
solution u � x=�6t� for xR < x < 0. Accordingly, the leading
soliton amplitude in the DSW decreases with time as

a � 2jr1j � A
2=3

2 4=3
tÿ2=3 : �152�

Near this edge, solutions of Whitham's equations are self-
similar and depend on the variable z � x=t 1=3. Although this
solution can be obtained in analytic form [41, 42], the self-
similarity domain is relatively small, and we do not discuss
this theory here. The solution of Whitham's equations in the
entire DSW domain was obtained in [29, 42]. In approaching
the low-amplitude edge, the DSW evolution again becomes
self-similar, with the modulation parameters depending on
z � x=t. We can obtain the asymptotic law of motion of the
low-amplitude edge by noting that, according to Fig. 9b,
r1 � r2 � um and r3 � 0 on that edge, and hence from (59) we
can find the wave number k � 2p=L � 2

����������ÿump
. Therefore, at

the matching point, the group velocity of the linear wave is
vg � ÿ3k 2 � 12um and

xL � 12umt : �153�

11. Theorem on the number of oscillations
in dispersive shock waves

An important theorem given in [43] states that, due to the
difference between the velocity of the low-amplitude edge vg
and the phase velocity of the wave V, the DSW length
increases on that edge by �vg ÿ V� dt in a time dt, and
therefore the number of wave periods in the domain of
oscillations increases with the rate

dN

dt
� 1

2p
k�vg ÿ V� ; �154�

where all the variables are evaluated at the DSW wave
number on the low-amplitude edge. The right-hand side of
(154) can also be interpreted as the flux of the wave number

o � kV into the DSW domain with a Doppler shift due to the
motion of the boundary, with the speed vg taken into account.
Therefore, the total number of oscillations entering the DSW
over all of its evolution time is up to a sign given by

N � 1

2p

�1
ÿ1

k�vg ÿ V� dt � 1

2p

�1
ÿ1

�
k
do
dk
ÿ o

�
dt : �155�

The integrand can be interpreted as a Lagrangian of a
classical particle with the momentum k and the Hamiltonian
o, which is associated with the wave packet comoving with
the low-amplitude edge of the DSW. The integral is then
equal to the classical action S of such a particle and the
number of oscillations is

N � S

2p
: �156�

It is clear that these formulas are of a general nature and their
validity is not limited to the KdV equation.

For actual calculations, we must know the main char-
acteristics of the DSW at least on its low-amplitude edge. For
example, in the case of theKdV equation, it is easy to find that
jk�vg ÿ V�j � 2k 3; for the evolution of a unit-height step, as
shown in Section 7, the wave number on the low-amplitude
edge is k � 2. We hence find the number of oscillations
formed in the DSW over time t: N � �8=p�t. For the time
t � 15, this formula predicts N � 38, whereas counting the
oscillations in Fig. 4b, which shows the results of a numerical
solution of theKdV equation, gives approximatelyN � 39, in
good agreement with the theory. However, the agreement
with this asymptotic calculation worsens at smaller times. For
example, in the case of breaking of a cubic profile, the values
of Riemann invariants on the low-amplitude edge, according
to formula (116), are r3 � u and r1 � r2 � ÿu=4, where u is
the wave amplitude at the matching point, depending on time
as u � �������

12t
p

(see (116)). Substitution into (59) gives the
wavelength L � 2p=

�����
5u
p

and the wave number k � �����
5u
p ������

10
p � 31=4t 1=4. Hence, for the number of oscillations formed
by the instant t, we obtain

N � 40
�����
10
p � 33=4

7p
t 7=4 � 13:1� t 7=4 :

For t � 1, the number of oscillations N � 13 is somewhat
different from the number of oscillations N � 15ÿ16 dis-
cernible in Fig. 6b, but can still be considered satisfactory for
such a short evolution time.

As regards a positive pulse of finite duration, it eventually
evolves mainly into a sequence of solitons propagating over
the zero background u � r1 � 0. The group velocity of the
low-amplitude edge, which is a hydrodynamic variable in
Whitham's theory, then has the meaning of the velocity of the
interface between the oscillations that turn into solitons as
t!1 and the linear wave packet. The number of solitons
formed from a localized pulse is determined by the initial
profile u0�x� and can be evaluated as follows.

On the low-amplitude edge, k � 2
���
u
p

and k�vg ÿ V� �
ÿ2k 3 � ÿ16u 3=2. Integration over t from 0 to tm can be
replaced using (139) and (140) with integration over u from 0
to um, and similarly integration from tm to �1 transforms
with the help of (143) into integration over the same interval
of u. As a result, we obtain

N � 4

p

� um

0

�
t2 ÿ t1 � 1

6
��x 02 ÿ �x 01�

�
du ; �157�
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where

t2 ÿ t1 � 1

12
���
u
p

� um

u

�x 02 ÿ �x 01�����
u1
p du1: �158�

The double integral that occurs in substituting (158) into
(157) can easily be made single-fold by integration by parts,
which leads to the formula

N � 1

p

� um

0

���
u
p ��x 02 ÿ �x 01� du �

1

p

� 0

ÿ1

�����������
u0�x�

p
dx ; �159�

where, as usual, u0�x� is the initial profile of the wave. This
formula was first derived in [44] using profoundmathematical
properties of the KdV equation associated with its complete
integrability [24]. In our presentation, it is a simple corollary
of the Gurevich±Pitaevskii approach to the DSW theory.

12. Theory of dispersive shock waves for
the Korteweg±de Vries equation with dissipation

In the Introduction, we discussed the development of the
DSW concept, starting with Sagdeev's idea that dispersion
effects transform the transition layer of a viscous shock wave
into a stationary wave-like structure, and on to Gurevich and
Pitaevskii's idea of the formation of nonstationaryDSWs as a
result of wave breaking, with the evolution of the DSW
modulation parameters governed by Whitham's equations.
It must be clear, however, that the existence of small
dissipation or other perturbing terms in the KdV equation
also leads to the evolution of modulation parameters, which
means that Whitham's modulation equations must then be
modified accordingly. The picture proposed by Sagdeev must
then be described by stationary solutions of modified
Whitham's equations that take small dissipation effects into
account, in addition to dispersion. In this section, we discuss
such a modified Whitham's theory and the simplest corol-
laries.

We assume that the perturbedKdV equation has the form

ut � 6uux � uxxx � R�u� ; �160�

where the perturbing term is small, R � e5 1, and depends
on both the field u and its spatial derivatives. Generally
speaking, two types of perturbation must be distinguished.
For one type, Whitham's equations acquire right-hand sides
with the old form of Riemann invariants, and perturbations
of the other type lead to a nondiagonal form of the averaged
equations

qri
qt
�
X
j

vi j
qrj
qx
� 0 ;

diagonalizing which, as noted in Section 4, is typically
impossible. We discuss only the first case, which includes
physically important problems with small dissipation. We
again derive perturbedWhitham's equations by averaging the
conservation laws. We then take into account that the
conservation law for the number of waves, Eqn (43), pre-
serves its form, while conservation laws (44) acquire right-
hand sides:

ut � �3u 2 � uxx�x � R ;
�161��

1

2
u 2

�
t

�
�
2u 3 � uuxx ÿ 1

2
u 2
x

�
x

� uR :

The averaged equations

huit � h3u 2 � uxxix � hRi ; �162��
1

2
u 2

�
t

�
�
2u 3 � uuxx ÿ 1

2
u 2
x

�
x

� huRi

can be transformed just as we did previously, and instead of
(49) we now obtain the equations

DWA

Dt
� WA

qV
qx

;
DWB

Dt
� WA

qB
qx
ÿWAhRi ;

�163�
DWV

Dt
� WA

qA
qx
ÿWAhuRi ;

which differ from the preceding equations only by additional
terms depending on the perturbation.Moving to the variables
n1, n2, and n3 and introducing Riemann invariants (55) for
unperturbed Whitham's equations as the modulation para-
meters, we find the desired Whitham's equations accounting
for the perturbation:

qri
qt
� vi qriqx

� L

qL=qri


�s1 ÿ 2ri ÿ u�R�
4
Q

j 6�i�ri ÿ rj� ; i � 1; 2; 3 ; �164�

where vi are Whitham's velocities (60) of the unperturbed
equations and s1 � r1 � r2 � r3. In the particular case of
Burgers viscosity, the perturbed Whitham equations were
derived in [43, 45], and for nonlocal viscosity, in [46]. In the
general case, they are derived in form (164) in [47±49].

To obtain an insight into the role of small dissipation, we
turn to the Gurevich±Pitaevskii problem of the decay of an
initial discontinuity. We recall from Section 7 that, at the
initial stage of the evolution, dissipation is inessential and the
DSW expands in a self-similar fashion. But when its length
reaches a size � eÿ1, all terms in Whitham's equations (164)
become equally significant, and the transition to the sta-
tionary regime of propagation is to be expected, with the full
size of the DSW determined by the balance of terms with
derivatives with respect to coordinates and dissipative
corrections. We therefore seek the solution of Whitham's
equations (164) with the invariants ri depending only on the
variable x � xÿ Vt. It is a simple observation that this system
reduces to

dri
dx
� ÿ


�s1 ÿ 2ri ÿ u�R�
8
Q

j6�i�ri ÿ rj� ; i � 1; 2; 3 ; �165�

if we take V to be the wave velocity V � 2s1. Because the
profile is stationary, this system must have the integral

s1 � const : �166�
It is easy to verify that s1 is indeed an integral, and the
other two symmetric functions s2 � r1r2 � r1r3 � r2r3 and
s3 � r1r2r3 satisfy the equations

ds2
dx
� 1

4
hRi ; ds3

dx
� 1

8

ÿ
s1hRi ÿ huRi

�
: �167�

We have thus reduced the problem to solving a system of two
ordinary differential equations for s2 and s3, with ri being the
functions of s2 and s3 to be found from the cubic equation

Q�r� � r 3 ÿ s1r 2 � s2rÿ s3 � 0 : �168�
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The problem can be simplified even more if hRi � 0, in which
case we have another integral s2 � const, and it remains to
solve a single differential equation,

ds3
dx
� ÿ 1

8
huRi : �169�

It is now convenient to return from the symmetric functions
to the variables ri and, for example, regard r1 and r2 as
functions of r3, where r3 � r3�x�. From (165), we then find

dr1
dr3
� r3 ÿ r2

r2 ÿ r1
;

dr2
dr3
� ÿ r3 ÿ r1

r2 ÿ r1
: �170�

This system has two integrals: s1 � const and s2 � const.
Therefore, r1 and r2 as functions of r3 are the roots of the
quadratic equation

r 2 ÿ �s1 ÿ r3�r� s2 ÿ �s1 ÿ r3�r3 � 0 : �171�

Its roots must be ordered as r1 4 r2; the constants s1 and s2
are determined by the boundary conditions.

We let uL denote the limit value of the wave amplitude as
x! ÿ1 and assume that the wave propagates in a medium
with u � 0 at x! �1. On the small-amplitude edge, where
m! 0, r2 ! r1, we have uL � r3 � rL3 and

s1 � 2rL1 � uL ; s2 � �rL1 �2 � 2rL1 uL : �172�

On the soliton edge, rR1 � 0 and rR2 � rR3 , and substituting
these into the definition of s1 and s2 yields the relation

s 2
1 ÿ 4s2 � 0 �173�

between the integrals. Substituting formulas (172) into (173),
we obtain an equation for rL1 , whose solution gives r

L
1 � uL=4,

and hence

s1 � 3

2
uL ; s2 � 9

16
u 2
L �174�

on the small-amplitude edge. The integrals take the same
values as on the soliton edge, where r1 � 0 and s3 � 0, and
hence Eqn (168) has a double root rR2 � rR3 � �3=4�uL. As a
result, the amplitude as � 2rR3 of the leading soliton and its
velocity Vs � 4rR3 , coincident with the shock wave velocity,
are

as � 3

2
uL ; V � 3uL : �175�

Thus, the speed of a stationary DSW is determined only by
the magnitude of the discontinuity, in accordance with the
general theory of viscous small-amplitude shock waves [22].
Interestingly, not only the speed but also the amplitude of the
leading soliton is expressed by universal formulas (175) in
terms of the initial discontinuity and is independent of the
form of the dissipative term. In the particular case of Burgers-
type dissipation, formulas (175) were derived in [50] directly
from the perturbation theory without using Whitham's
theory.

To find a global solution along all of the DSW, we note
that, after substituting integrals (174) into (171) and solving
this quadratic equation, we obtain r1 and r2 as functions of
r3. Their substitution into expression (59) for m gives
an equation whose solution for r3 allows expressing this
Riemann invariant in terms of m, and then r1 and r2 can also
be represented as functions of m. As a result of these

elementary calculations, we obtain

r1 � uL
2

�
1ÿ 1�m

2
������������������������
1ÿm�m 2
p

�
;

r2 � uL
2

�
1ÿ 1ÿ 2m

2
������������������������
1ÿm�m 2
p

�
; �176�

r3 � uL
2

�
1� 1ÿm=2������������������������

1ÿm�m 2
p

�
:

The problem is solved when we obtain the dependence of the
parameter m on the coordinate x. Evaluating the derivative
dm=dr3 with the help of formulas (170) and multiplying the
result by dr3=dx in (165), we obtain the desirable equation,

dm

dx
� ÿ 1ÿm�m 2

4�r2 ÿ r1��r3 ÿ r1��r3 ÿ r2� huRi ; �177�

where the right-hand side can be expressed in terms ofm for a
perturbation R of a given form.

We specify this theory by choosing the perturbation as
Burgers friction [43, 45]:

R � euxx : �178�

To actually take the averages, it is convenient to pass to
the variable v � �s1 ÿ u�=2 that satisfies the equation
v 2x � 4Q�v�, Q�v� �Q3

i�1�vÿ ri�, whence uxx � ÿ2vxx �
ÿ 4 dQ=dv. As a result, we find

ÿhuRi � 8e
L

� ����������
Q�v�

p
dv :

This elliptic integral is readily reduced to tabulated ones, and
we hence obtain the equation

dm

dx
� F�m� � 8e

15

1ÿm�m 2

m�1ÿm�

�
�
�1ÿm�m 2� E�m�

K�m� ÿ �1ÿm�
�
1ÿm

2

��
: �179�

The problem solution has thus been reduced to the quad-
rature

x � ÿ
� 1

m

dm

F�m� : �180�

This formula, together with (176), parametrically defines the
dependence of the modulation parameters, i.e., the Riemann
invariants ri of the system of Whitham's equations, on the
coordinate x, referenced to the DSW front. An example of
such a dependence is shown in Fig. 11a, and the correspond-
ing DSW profile is shown in Fig. 11b.

13. Gross±Pitaevskii equation

Besides the KdV equation, which has a universal character,
another very important equation, also occurring in very
diverse circumstances, is the Gross±Pitaevskii equation,
which in particular describes the dynamics of a weakly
nonideal Bose gas at zero temperature [51, 52] in the mean
field approximation, when the coherent state of the macro-
scopic Bose gas is described by a classical wave function,
similar to theMaxwell field in classical electrodynamics. This
theory came to the forefront after the experimental realiza-
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tion of Bose±Einstein condensation of atoms, and the main
ideas underlying the theory are available in reviews [53, 54].
Here, we restrict ourselves to writing the Gross±Pitaevskii
equation for the wave function c�r� in the standard notation:

i�h
qc
qt
� ÿ �h 2

2m
Dc�U�r�c� gjcj2c ; �181�

where m is the atom mass, D is the Laplace operator, U�r� is
the potential of an external field acting on the atoms, and the
parameter g, expressed in terms of the atom±atom scattering
length a,

g � 4p�h 2a

m
;

characterizes the strength of interatomic interaction; it
is repulsive for g > 0 and attracting for g < 0. We are
interested in the first case, where the homogeneous state of
the condensate is stable and waves can propagate over it.

We note that the mathematically equivalent equation
occurred in describing self-focusing of light beams in non-
linear media [55, 56], where the role of time is played by the
coordinate along the beam and diffraction replaces disper-
sion, but the papers just cited discussed only the focusing
nonlinearity, for which the state with a homogeneous
distribution of light intensity is unstable. Another interpreta-
tion of Eqn (181) occurs when describing the evolution of the
envelope of a wave packet propagating in a medium with low
dispersion and weak nonlinearity [57]. In that case, the first
term on the right-hand side corresponds to second-order
dispersive effects, which, besides the packet motion with the

group velocity, take its slow spreading into account, and the
last term corresponds to the dependence of the medium
response on the wave intensity. This situation occurs rather
frequently in physics, from the description of deep-water
waves to the theory of propagation of light pulses in non-
linear optical fibers. In this context, the resultant equation is
often called the nonlinear Schr�odinger (NLS) equation, but
we here use the physical interpretation due to Gross±
Pitaevskii, which allows addressing more transparent repre-
sentations and notions of gas dynamics. In particular, the
condensate density is r � jcj2, and its flow speed is expressed
in terms of the gradient of the wave function phase [53, 54]. If
we represent the wave function as

c � ���
r
p

exp �if� ; u � �h

m
Hf ; �182�

then, substituting this into (181), after simple transforma-
tions, leads to the system of equations (with U�r� � 0)

rt � H�ru� � 0 ; �183�

ut � �uH�u� g

m
Hr� �h 2

2m
H
� �Hr�2

4r2
ÿ Dr

2r

�
� 0 :

The first equation is the standard continuity equation
corresponding to the conservation of the number of particles
in the condensate, and the second equation has the form of a
modified Euler equation for the flow of gas with the equation
of state p � gr2=�2m� and with the last term containing
higher-order spatial derivatives. It is clear that this term
corresponds to dispersive properties of the gas caused by
quantum dispersion of atoms. If we consider extremely long
waves and ignore this term, we arrive at an expression for the
speed of sound in the condensate,

cs �
�������
dp

dr

s
�

������
gr
m

r
; �184�

which depends on the local density r. If we turn to linear
waves in a homogeneous condensate with a constant density
r, then a standard calculation gives Bogoliubov's dispersion
law [58]

o�k� � k

��������������������������
c 2s �

�
�hk

2m

�2
s

; �185�

where, as the wave number k increases, the sound dispersion
law o � csk passes into the standard dispersion law of
quantum particles e � �ho � ��hk�2=�2m� when the de Broglie
wavelength becomes less than the coherence length

xc �
�h���
2
p

mcs
� �h������������

2mgr
p : �186�

We introduce parameters characterizing the state of the
condensate: the length xc and the speed cs at the character-
istic density r0, which allows us to define convenient
dimensionless variables r! r=� ���2p xc�, t! cst=�

���
2
p

xc�, and
c! c=

�����
r0
p

. In addition, we restrict ourselves in what follows
to only one-dimensional motions of the condensate, and
therefore, in the new variables, the Gross±Pitaevskii equa-
tion takes the form

ict �
1

2
cxx ÿ jcj2c � 0 ; �187�
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Figure 11. (a) Plots of Riemann invariants for the stationary solution of

Whitham's equations corresponding to a DSW with Burgers viscosity

(178) at e � 0:1 and uL � 1:0. (b) Profile of a stationary shock wave u�x�
with Burgers viscosity at the same parameter values.

January 2021 GurevichëPitaevskii problem and its development 69



and its `hydrodynamic' representation (183) becomes

rt � �ru�x � 0 ; �188�
ut � uux � rx �

�
r2x
8r2
ÿ rxx

4r

�
x

� 0 :

Accordingly, for linear waves, the dispersion law in Eqn (185)
becomes

o�k� � k

��������������
1� k 2

4

r
: �189�

It is clear that waves can propagate in both directions of
the x axis, and therefore any initial perturbation evolves with
time into two wave pulses propagating in opposite directions.
For example, if the initial pulse has a shape describing a hump
in the condensate density above a homogeneous background,
then the numerical solution of Gross±Pitaevskii equation
(187) or the equivalent system (188) exhibits the wave
evolution shown in Fig. 12. As we can see, the pulse splits
into two with time, and each of them experiences breaking
with the formation of a DSW. We therefore have the task to
describe the evolution of shock waves satisfying the Gross±
Pitaevskii equation. In accordance with the Gurevich±
Pitaevskii approach, each DSW borders a smooth solution
of the dispersionless equations, and we therefore first discuss
this last approximation.

In the dispersionless limit, the last term in Euler equation
(188) can be dropped, and the system takes the simple
hydrodynamic form

rt � �ru�x � 0 ; ut � uux � rx � 0 : �190�

As is standard in the theory of linear waves, local changes in
the density dr and velocity du of the flow are related as
dr=r � �du=c, where the choice of sign corresponds to the
wave propagation direction. Therefore, for example, in a
wave propagating to the right, the differential relation
du � c dr=r � dr=

���
r
p

is satisfied, integrating which shows
that, in such a simplewave, the flow velocity u and the density
r are related as u=2ÿ ���

r
p � const, and a similar relation with

the other sign in front of the square root holds for a wave
propagating to the left. This argument shows that the so-

called Riemann invariants, related to the density and velocity
of the flow as

r� � u

2
� ���

r
p

; rÿ � u

2
ÿ ���

r
p

; �191�

are natural variables in the physics of waves. Equations (190),
when written in these variables, take a simple diagonal form,

qr�
qt
� v��r�; rÿ� qr�qx � 0 ;

�192�
qrÿ
qt
� vÿ�r�; rÿ� qrÿqx � 0 ;

where the velocities v� � u� c have a clear physical meaning
of the signal propagation speed, equal to the sum of and the
difference between the flow velocity and the speed of sound
propagating downstream or upstream. In our case of the
Bose±Einstein condensate, they are especially simply
expressed in terms of the Riemann invariants:

v� � 3

2
r� � 1

2
rÿ ; vÿ � 1

2
r� � 3

2
rÿ : �193�

Simple waves are characterized by the constancy of one of the
Riemann invariants. For example, for a wave propagating to
the right, the invariant rÿ � r �0�ÿ � const is constant, the
second equation in (192) is then satisfied automatically, and
the first equation becomes the Hopf equation, which we
already discussed in the case of ion-sound waves in plasma.
Obviously, because of the relation between r and u, this Hopf
equation can also be written for only one of these variables,
which would then give a dispersionless approximation for
unidirectional propagation of waves in the condensate.
Additionally taking dispersion (189) into account in the
leading approximation, o � k� k 3=8, leads to the KdV
equation for nonlinear waves in the limit of a large
wavelength and a small amplitude. It is easy to see that the
nonlinear and dispersion terms have opposite signs in this
equation, and therefore soliton solutions correspond to
troughs in the density distribution, and the KdV equation
describes `shallow' solitons on a homogeneous background.
Naturally, the DSW theory for KdV is entirely applicable to
the description of shock waves in a condensate under the
condition of their small amplitude and unidirectional propa-
gation. But for deep solitons and large-amplitude DSWs,
development of the Gurevich±Pitaevskii theory is required.

With the dispersionless approximation equations conven-
iently written in form (192), we can now turn to the theory of
periodic solutions of the Gross±Pitaevskii equation, whose
modulations describe the DSWs. If we seek a solution to
system (188) in the form of a traveling wave r � r�x�,
u � u�x�, x � xÿ Vt, then the first equation is readily
integrated, and the second, after eliminating the variable u
and some transformations, reduces to the equation

rx � 2
�����������
R�r�

p
; R�r� �

Y3
i�1
�rÿ ni� : �194�

Evidently, the density r oscillates in the range n1 4r4n2
where the polynomial R�r� is positive, and a standard
calculation similar to the derivation of the cnoidal wave
solution of the KdV equation leads to a periodic solution of
the Gross±Pitaevskii equation in the form

r � n1 � �n2 ÿ n1� sn2
ÿ ��������������

n3 ÿ n1
p �xÿ Vt�;m� ; �195�
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Figure 12. Evolution of an initially localized density pulse in a Bose±

Einstein condensate. After the wave breaking at tb � 20, DSWs emerge on

the pulse edges.
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where m � �n2 ÿ n1�=�n3 ÿ n1� and the velocity V, unlike the
one in theKdV theory, is now an independent parameter. The
condensate flow velocity is

u � V�
�������������
n1n2n3
p

r
: �196�

In the soliton limit, as n3 ! n2 and m! 0, we obtain the
solution [59]

r � r0

�
1ÿ 1ÿ V 2=r0

cosh2
ÿ �����������������

r0 ÿ V 2
p �xÿ Vt��

�
;

�197�
u � V

�
1ÿ r0

r

�

for a soliton moving over a condensate that has the density
n2 � r0 and is at rest at infinity. As the depth of the soliton
tends to zero, its velocity tends to the speed of sound
c0 � �����

r0
p

, never exceeding it. If the soliton velocity is zero,
the density r at its center also vanishes; such a soliton is called
`black.' In view of the relation u � fx, the wave function
phase jumps by

Df � f�1� ÿ f�ÿ1� � ÿ2 arccos V�����
r0
p ; V > 0 ; �198�

when crossing the domain occupied by the soliton. For the
black soliton, with V! �0, this jump is Df � ÿp. Because
the phase is defined up to 2p, this state of the condensate is not
different from the state having the velocity V! ÿ0 and the
jump Df � p. Due to this property, a dark soliton moving in
an inhomogeneous condensate confined by a trap can change
the direction of motion at the points where the density in its
center vanishes. Formulas (197) can be combined into the
expression

c �
� ����������������

r0ÿ V 2

q
tanh

h �����������������
r0 ÿ V 2

q
�xÿ Vt�

i
� iV

�
exp �ÿir0t�

�199�

for the soliton solution of Gross±Pitaevskii equation (187). In
the low-amplitude limit n2 ÿ n1 5 n3 ÿ n1, m5 1, wave (195)
degenerates into a trigonometric one,

r � n1 � a

2
cos
�
2
��������������
n3 ÿ n1
p �xÿ Vt�� ; �200�

with the wave number k � 2
��������������
n3 ÿ n1
p

and the phase velocity
V � � �����

n3
p

related with each other as V 2 � n3 � n1 � k 2=4 �
r0 � k 2=4, in accordance with dispersion law (189).

The obtained periodic solution depends on four para-
meters V, n1, n2, and n3, and describing the DSWs requires
deriving the corresponding modulation equations. Evidently,
the conservation law for the number of waves, Eqn (33),
extends to nonlinear waves (195) with the corresponding
expression for the wave number in terms of the modulation
parameters, and it is easy to find three more conservation
laws for Gross±Pitaevskii equation (187), whose averages in
principle give a full set of modulation equations. But their
transformation into the diagonal form by Whitham's direct
method turns out to be technically complicated, and these
equations were first derived in diagonal form in [60, 61] only
after the complete integrability of the Gross±Pitaevskii
equation was discovered in [62] and relations between the

complete integrability and diagonalization of Whitham's
equations were revealed in [63]. We do not go into the details
of this theory and give Whitham's equations for the Gross±
Pitaevskii equation in the final form, especially because they
are quite similar to the already familiar Whitham's equations
for modulation of periodic KdV waves and can be investi-
gated by similar methods.

In the KdV case, the transition from the parameters ni to
the Riemann invariants ri of Whitham's system is effected by
very simple formulas (55), but in the case of the Gross±
Pitaevskii equation, the parametersV and ni are related to the
Riemann invariants ri, r1 4 r2 4 r3 4 r4, by the more
complicated expressions

n1 � 1

4
�r1 ÿ r2 ÿ r3 � r4�2 ;

n2 � 1

4
�r1 ÿ r2 � r3 ÿ r4�2 ;

�201�
n3 � 1

4
�r1 � r2 ÿ r3 ÿ r4�2 ;

V � 1

2
�r1 � r2 � r3 � r4� :

It is worth noting that the polynomial R�n�� Q3
i�1�nÿ ni� is

Ferrari's resolvent for the polynomial Q�r� � Q 4
i�1�rÿ ri�,

allowing the roots of the equationQ�r� � 0 to be expressed in
radicals in terms of its coefficients. The polynomial Q�r� and
symmetric functions of its roots play an important role in the
theory of periodic solutions and their modulation for a wide
class of integrable equations. The periodic solution of the
Gross±Pitaevskii equation can be expressed in terms of the
Riemann invariant as

r � 1

4
�r4 ÿ r3 ÿ r2 � r1�2 � �r4 ÿ r3�

� �r2 ÿ r1� sn2
� �����������������������������������
�r4 ÿ r2��r3 ÿ r1�

p
x;m

�
; �202�

where

m � �r2 ÿ r1��r4 ÿ r3�
�r4 ÿ r2��r3 ÿ r1� : �203�

Whitham's modulation equations have the diagonal form

qri
qt
� vi�r� qriqx

� 0 ; i � 1; 2; 3; 4 ; �204�

where the characteristic velocities are expressed through the
wavelength

L � 2K�m�������������������������������������r4 ÿ r2��r3 ÿ r1�
p �205�

by the formula

vi�r� �
�
1ÿ L

qiL
qi

�
V ; i � 1; 2; 3; 4 ; �206�

which is similar to (58). Substituting (205) into (206), we
obtain

v1 � 1

2

X
ri ÿ �r4 ÿ r1��r2 ÿ r1�K
�r4 ÿ r1�Kÿ �r4 ÿ r2�E ;
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v2 � 1

2

X
ri � �r3 ÿ r2��r2 ÿ r1�K
�r3 ÿ r2�Kÿ �r3 ÿ r1�E ;

v3 � 1

2

X
ri ÿ �r4 ÿ r3��r3 ÿ r2�K
�r3 ÿ r2�Kÿ �r4 ÿ r2�E ;

v4 � 1

2

X
ri � �r4 ÿ r3��r4 ÿ r1�K
�r4 ÿ r1�Kÿ �r3 ÿ r1�E : �207�

On the soliton edge of a DSW with r2 � r3 �m � 1�, these
expressions become

v1 � 3

2
r1 � 1

2
r4 ; v4 � 3

2
r4 � 1

2
r1 ;

�208�
v2 � v3 � 1

2
�r1 � 2r2 � r4� ;

and on the low-amplitude edge with r3 � r4 and m � 0, we
have

v1 � 3

2
r1 � 1

2
r2 ; v2 � 3

2
r2 � 1

2
r1 ;

�209�

v3 � v4 � 2r4 � �r2 ÿ r1�2
2�r1 � r2 ÿ 2r4� :

Similar formulas can be derived in the limit r1 � r2 �m � 0�.
On the DSW edges, as we can see, one pair of velocities

merges into a single expression and the other pair takes the
form of expressions (193) for dispersionless velocities if
Whitham's Riemann invariants are properly identified with
the dispersionless Riemann invariants r� (see (191)). This
allows incorporating the solution of Whitham's equations
describing the DSW into a smooth solution of dispersionless
equations (192). These dispersionless equations, as well as
Whitham's equations, can be solved by the hodograph
method. For Whitham's system, the solution has the form

xÿ vi�rj�t � wi�rj� ; i; j � 1; 2; 3; 4 ; �210�

where

wi�rj� �
�
1ÿ L

qiL
qi

�
W�rj� ; i; j � 1; 2; 3; 4 ; �211�

and the functionW�r1; r2; r3; r4� is a solution to the system of
Euler±Poisson equations (73). In particular, as in the case of
the KdV equation, an important class of self-similar solutions
is represented by the generating function

W � r 2����������
Q�r�p �

X1
k�0

W �k��rj�
r k

; �212�

which depends on an arbitrary parameter r and satisfies
Euler±Poisson equation (73). The coefficients of its expan-
sion in inverse powers of r give particular solutions of the
Euler±Poisson equation, for which the functions wi�rj� take
the particular form

w
�k�
i �rj� �W �k��rj� � 2�vi ÿ V� qiW �k��rj� : �213�

In view of the linearity of the Euler±Poisson equations, any
linear combination wi �

P
k Akw

�k�
i of functions (213) also

gives a solution (210). Here, the W �k� are expressed in terms
of si, symmetric functions of the roots of the polynomial
Q�r� �Q 4

i�1�rÿ ri� (the coefficients of the polynomial). In

particular,

W �1� � 1

2
s1 ; W �2� � 3

16
s 2
1 ÿ

1

4
s2 ;

�214�
W �3� � 5

32
s 3
1 ÿ

3

8
s1s2 � 1

4
s3 :

This elementary treatment suffices for solving the Gurevich±
Pitaevskii problem in several characteristic cases.

14. Evolution of the initial discontinuity
in the Gross±Pitaevskii theory

Just as in case of the KdV theory discussed in Section 7, we
begin with the simplest problem of the evolution of the initial
discontinuity, with the condensate state having different
densities and different flow velocities, rL, uL and rR, uR, on
the respective half-lines x < 0 and x > 0. The values of
Riemann invariants are to be matched in the emerging wave
structure, and we therefore specify the condensate state by
their values on both sides of the discontinuity:

r��x; t� �
rL� �

uL
2
� ������

rL
p

; x < 0 ;

rR� �
uR
2
� ������

rR
p

; x > 0 :

8><>: �215�

As an example, we consider the evolution of an initial
discontinuity in the density distribution with the initial state
uL � uR � 0, and assume for definiteness that rL > rR,
whence rL� � ÿrLÿ > rR� � ÿrRÿ .

The numerical solution of the Gross±Pitaevskii equation
for this initial condition gives the wave structure shownwith a
solid line in Fig 13a. As we see, this structure consists of two
waves joined by the domain of homogeneous flow (`plateau').
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Figure 13. (a) Wave structure formed in the evolution of an initial dis-

continuity in the density distribution of a Bose condensate with rL � 3 and

rR � 1, the evolution time being t � 10. Solid line shows the numerical

solution and the dashed line shows the analytic solution to the Gurevich±

Pitaevskii problem. Theoretical values �r � 1:87, xL
ÿ=t � ÿ1:73, xL

�=t �
ÿ0:63, xR

ÿ =t � 1:37, and xR
� =t � 2:89 agree well with the numerical

solution. (b) Diagram of Riemann invariants corresponding to the wave

structure formed in the evolution of the initial density discontinuity.
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Because parameters with the dimension of length are absent
in the initial distribution, solutions of both dispersionless
equations (192) and Whitham's equations (204) must be self-
similar and depend only on the variable z � x=t. Therefore, as
can be easily verified, only one of the Riemann invariants can
change along these waves. On the left, there is a rarefaction
wave, along which the Riemann invariant r� is constant, i.e.,������
rL
p � �u=2� ���

�r
p

, where the bar over a variable denotes its
value on the plateau. In the solution ofWhitham's equations,
too, only one of the Riemann invariants ri varies, and we
conclude that they can be matched continuously only if the
Riemann invariant r3 varies. The resultant wave structure can
be represented by the diagram of the Riemann invariant
shown in Fig. 13b, which schematically shows the depend-
ences of all the invariants on the self-similarity variable z.
Because the invariant r1 is constant along the DSW and
matches the invariants �rÿ and rRÿ on the DSW edges, we
obtain one more equation �u=2ÿ ���

�r
p � ÿ ������

rR
p

for the para-
meters of the flow along the plateau. The obtained equations
determine the values of flow parameters on the plateau

�r � 1

4

ÿ ������
rL
p � ������

rR
p �2

; �u � ������
rL
p ÿ ������

rR
p

; �216�

which are in excellent agreement with the numerical solution.
The above example shows that the shape of the wave

structure resulting from the evolution of the initial dis-
continuity can be determined by joining pairs of Riemann
invariant values corresponding to wave edges with lines
having a positive slope and corresponding to self-similar
solutions of the form vi � z (for the rarefaction wave, the
positivity of the slope is obvious from expression (193) for
characteristic dispersionless velocities, and for the DSW it
follows from a more detailed investigation of expressions
(207)). If there are only two Riemann invariants in the
resultant domain, this domain corresponds to the rarefaction
wave. If four invariants are defined in that domain, then it
corresponds to the DSW.

It can be easily verified [64, 65] that only six possible
diagrams exist, which we present in Fig. 14 together with the
corresponding wave structure types. In the cases shown in
Fig. 14a, b, one rarefaction wave and one DSW emerge, and
these differ only in the wave propagation directions. In the
case shown in Fig. 14c (`collision of condensates'), twoDSWs
emerge on different sides of the plateau. In the cases in
Fig. 14d, e, the condensates on different sides of the dis-
continuity have opposite velocities and, as the condensates
recede, a lower-density plateau appears between them; in
Fig. 14e, the initial velocities are so high that this density
decreases to zero. Finally, in the case shown in Fig. 14f,
conversely, the head-onmotion of the colliding condensates is
so fast that, instead of a plateau, as in Fig. 14c, a nonlinear
periodic wave appears between the DSWs, with the m
parameter determined by the boundary values:

m � m � � �r
R
� ÿ rRÿ ��rL� ÿ rLÿ�
�rL� ÿ rR� ��rLÿ ÿ rRÿ �

: �217�

So that just this combination of wave structures is realized, we
must verify that the velocities of the rarefaction wave and
DSW edges are ordered in a proper manner. This requires
exploring the corresponding solutions of hydrodynamic and
modulation equations.

A self-similar solution of Eqns (192) with the required
boundary conditions is not difficult to find. For example, for

the rarefaction wave in Figs 13 or 14a, the Riemann invariant
r� � u=2� ���

r
p � ������

rL
p

is constant, which defines the relation
between u and r in the simple wave. The first equation in (192)
is satisfied, and the self-similar solution of the second
equation has the form

vÿ � 1

2
r� � 3

2
rÿ � 3

2
uÿ ������

rL
p � z � x

t
:

It readily follows from the obtained relations that

r � 1

9

� ������
rL
p ÿ 2x

t

�2

; u � 2

3

� ������
rL
p � x

t

�
: �218�

The left edge of the rarefaction wavemoves to the left with the
speed of sound sLÿ , equal in modulus to

������
rL
p

, and the speed sL�
of the right edge can be found by equating one of the variables
in (218) to its value (216) on the plateau, whence

sLÿ � ÿ
������
rL
p

; sL� �
1

2

������
rL
p ÿ 3

2

������
rR
p

: �219�

In the DSW in Fig. 13, the values of three Riemann
invariants are known,

r1 � ÿ ������
rR
p

; r2 � ������
rR
p

; r4 � ������
rL
p

; �220�

and the dependence of r3 on z � x=t is determined by the self-
similar solution of Whitham's equations:

v3
ÿÿ ������

rR
p

;
������
rR
p

; r3;
������
rL
p � � z � x

t
: �221�

Substituting all these values and the functions r3 � r3�z� into
(202) gives the density profile in the DSW, which is shown
with a dashed line in Fig. 13a, in good agreement with the
numerical solution. The velocities of the DSW edges can be
found by substituting values (220) in the limit expressions
(208) and (209) for v3:

sRÿ �
1

2

ÿ ������
rL
p � ������

rR
p �

; sR� �
2rL ÿ rR������

rL
p : �222�
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Figure 14. Wave structures formed in the evolution of the initial

discontinuity in the theory of the Gross±Pitaevskii equation and the

corresponding diagrams of Riemann invariants.
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It is easy to verify that, for rL > rR, the velocities of the
rarefaction wave and DSW edges are ordered in accordance
with the inequalities sLÿ < sL� < sRÿ < sR� , in agreement with
the diagram in Fig. 13b.

The soliton amplitude on the border with the plateau is

as � �r4 ÿ r2��r2 ÿ r1� � 2
ÿ ������������

rL rR
p ÿ rR

�
: �223�

If we fix rL and decrease rR from its maximum value rL, we
see that at rR � rL=9 the soliton depth as becomes equal to
the background density �r defined on the plateau by expres-
sion (216). This means that this soliton becomes black, and
the condensate density distribution acquires a `vacuum point'
[64, 65]. As rR decreases further, the leading soliton
amplitude becomes less than the background density, and
the vacuummoves inside the DSW. For the vanishing density
rR, the amplitude of oscillations in the DSW tends to zero
together with soliton amplitude (223), the plateau disappears
together with the left rarefaction wave, but the entire DSW
domain becomes a rarefaction wave, Eqn (218), correspond-
ing to the expansion of the condensate into the vacuum. This
transformation of the DSW depending on the boundary
conditions is illustrated in Fig. 15.

Other configurations shown in Fig. 14 can be considered
similarly. It must only be kept in mind that, in Fig. 14f, the
modulated waves are matched not with the homogeneous
flow on the plateau but with a nonmodulated periodic
solution with a known value (217) of the m parameter.

The theory expounded here was confirmed quantitatively
in a dedicated experiment [66], in which an optical pulse had
an artificially produced discontinuity in the light intensity
distribution and the evolution of the pulse was governed by
the NLS equation, equivalent to the Gross±Pitaevskii equa-
tion. Figure 16a, which is borrowed from that paper, shows
the intensity profile of the pulse entering the optical fiber, and
Figs 16b, d show the pulse profile at the exit. Figures 16a, b

show the results of measurements, and Figs 16c, e, the results
of a numerical solution of the NLS equation. The initial pulse
has the shape of two tabletops with different heights placed
next to each other without a gap, such that a discontinuity in
intensity occurs in the center. Its evolution is the main subject
of interest here, whereas the rarefaction waves emerging on
the outer edges of the structure can be ignored. As we can see,
the wave emerging in the center corresponds to the case in
Fig. 14b, and the velocities of the rarefaction wave and DSW
edges agree well the theoretical values.

The problem of the evolution of a discontinuity, despite its
simplicity, is being used in more realistic applications, such as
DSW formation in a condensate flowing past an obstacle [67,
68], which allows explaining the result of the experiments
in [69], at least qualitatively. We also note that experiments
with a nonlinear evolution of pulses in a more complicated
geometry, both in the physics of condensates [70, 71] and in
nonlinear optics [72], also allow interpretations within that
scheme. In Section 15, we illustrate the method with the
solution to a simple problem on condensate motion under the
action of a steadily moving piston [73].

15. Piston problem

We consider the problem of the flow of a condensate under
the action of a piston [73]. We assume that the piston started
moving at the instant t � 0 with a constant velocity vp and
that, prior to the motion of the piston, the condensate with a
constant density r0 was at rest to the right of the piston. It is
clear that, as a result of that motion, a wave starts
propagating from the piston; if the piston speed is not too
high, it is natural to assume that adjacent to it is a
homogeneous flow of the condensate with the same speed vp
and with some increased density rL. Between this homo-
geneous flow and the condensate at rest far from the piston,
there is a DSW, and the values of Riemann invariants on the
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Figure 15.Transformation of aDSWas the density on the right boundary decreases. (a) Occurrence of a vacuumpoint. (b) Vacuumpoint inside theDSW.

(c) DSWwith a small amplitude on the background of a rarefaction wave. (d) Transformation of the DSW into a rarefaction wave at zero density on the

right boundary.
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left and on the right of it can be expressed as

rL� �
1

2
vp � ������

rL
p

; rR� � �
�����
r0
p

: �224�

The DSW originates instantaneously as the piston starts
moving, and hence the solution of Whitham's equations
must be self-similar, and the diagram of Riemann invariants
must have the form shown in Fig. 17a. We use the equality
rLÿ � r1 � rRÿ to find the density rL of the flow adjacent to the
piston:

rL �
�
1

2
vp � �����

r0
p �2

: �225�

This, in turn, determines the value of the Riemann invariant
r4 � rL� . Hence, the values of three invariants that are
constant along the DSW are known,

r1 � ÿ �����
r0
p

; r2 � �����
r0
p

; r4 � vp � �����
r0
p

; �226�

and the dependence of invariant r3 on the self-similarity
variable z � x=t is defined implicitly by the equation

v3
ÿÿ �����

r0
p

;
�����
r0
p

; r3; vp � �����
r0
p � � z : �227�

Using the limit expressions for v3 in (208) and (209), we find
the velocities of the DSW edges as

sL � 1

2
vp � �����

r0
p

; sR �
2v 2p � 4vp

�����
r0
p � r0

vp � �����
r0
p : �228�

At the location of the deepest soliton adjacent to the
homogeneous flow, formulas (195) and (196) give the

minimal condensate density and the flow velocity:

rmin �
� �����

r0
p ÿ 1

2
vp

�2

;
�229�

umin � ÿvp
�����
r0
p � vp=2�����
r0
p ÿ vp=2 :

For a sufficiently low piston speed, vp < 2
�����
r0
p

, the flow
velocity umin is negative, and hence the condensate flows
into the domain of increased density rL > r0, as expected.

For vp � 2
�����
r0
p

, a vacuum point is formed in the DSW,
with the velocity of the left DSW edge becoming equal to the
piston speed, and hence the homogeneous flow domain
adjacent to the piston disappears. For vp > 2

�����
r0
p

, similarly
to the case of the collision of condensates with too high
velocities (Fig. 14f), the domain of a nonmodulated periodic
solution of the Gross±Pitaevskii equation occurs instead of
the plateau, and this wave structure therefore corresponds to
the diagram of Riemann invariants shown in Fig. 17b. In the
periodic wave, the Riemann invariants r1, r2, and r4 preserve
their values (226), and the condition that the wave velocity
coincide with the piston speed V � �r3 � r4�=2 � vp gives
r3 � vp ÿ �����

r0
p

. Thus, in the periodic solution domain,

m � � 4r0
v 2
p

< 1 for vp > 2
�����
r0
p

; �230�

and the condition of matching with the DSW determines the
velocity of this DSW edge:

sL � vp �
2
�����
r0
p �vp ÿ 2

�����
r0
p �K�m ��

vpE�m �� ÿ �vp ÿ 2
�����
r0
p �K�m �� : �231�
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Figure 16. Intensity profiles measured (a) at the entrance to the optical fiber and (b) at the exit from it. (c) Initial condition and (d) the result of solving the

NLS equation numerically with that initial condition. (From [66].)
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The maximum density of the condensate in this structure is

rmax � �r4 ÿ r3��r2 ÿ r1� � 4r0 : �232�

The density profile in the DSW can be constructed without
difficulty by substituting the Riemann invariants in (202), and
the analytic results agree well with numerical computations
[73].

The Gurevich±Pitaevskii method thus allows completely
solving the problem posed in this section.

16. Uniformly accelerated piston problem

As in the case of theKdV equation, there are two scenarios for
a simple wave breaking: the profile of one of dispersionless
Riemann invariants r� acquires a vertical tangent either at
the interface with the condensate, which is at rest, or at the
inflection point. We here consider the first case and
assume for definiteness that this profile is produced by a
uniformly accelerated moving piston [74], such that, at a
time t, the coordinate of the condensate±piston boundary
is X�t� � at 2=2.

Prior to the instant of breaking, the condensate flow can
be described by dispersionless equations (192) with good
accuracy, and we now give their solution in the form that we
need. Under the action of the piston, the condensate flow is
unidirectional and hence can be described by a simple wave
with a constant Riemann invariant, rÿ � u=2ÿ ���

r
p � ÿ �����

r0
p

,
where r0 is the initial density of the condensate in the domain
that has not yet been reached by the wave produced by the
piston. The invariant r� satisfies the first equation in (192);

the general solution xÿ ��3=2�r� ÿ �����
r0
p �t � w�r�� of that

equation must satisfy the boundary condition u�X�t�; t� �
_X�t�, which states that the flow velocity on the boundary with
the piston coincides with the piston velocity. Therefore,
r� ÿ �����

r0
p � at, and using the general solution for the

condensate flow on the boundary with the piston gives w �
at 2=2ÿ ��3=2�r�ÿ �����

r0
p �t. After eliminating t ��r�ÿ �����

r0
p �=a,

we obtain the general solution for the condensate flow in the
form

xÿ
�
3

2
r� ÿ 1

2

�����
r0
p �

t � 1

a

�����
r0
p

r� ÿ 1

a
r 2� : �233�

This solution holds in the entire inhomogeneous flow
domain until the instant tb � 2

�����
r0
p

=�3a� when the r��x�
profile acquires a vertical tangent at the point xb � 2r0=�3a�
on the boundary with the condensate at rest. After that
instant of breaking, a wave structure involving a DSW
emerges, with the distribution of Riemann invariants repre-
sented by the diagram shown in Fig. 18a.

We therefore have to find a solution of Whitham's
equations with the constant Riemann invariants r1 � ÿ �����

r0
p

and r2 � �����
r0
p

, a solution satisfying the condition that r4
match the invariant r� of dispersionless solution (233) as
r3 ! r2. The right-hand side of (233) contains linear and
quadratic terms in r�. As in the KdV problems considered
above, it suffices to take a linear combination of the
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Figure 17. (a) Diagram of Riemann invariants in the problem of a piston
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expressionsw
�1�
i � vi andw �2�i that has just that dependence in

the limit as r3 ! r2. The coefficients of this linear combina-
tion are chosen from the condition ofmatching r4 with r�, and
a straightforward calculation [74] yields a solution in the form

xÿ v3�r�t � 2

5a

�
r0 �

�����
r0
p

v3�r� ÿ 8

3
w
�2�
3 �r�

�
;

�234�
xÿ v4�r�t � 2

5a

�
r0 �

�����
r0
p

v4�r� ÿ 8

3
w
�2�
4 �r�

�
:

These formulas implicitly define the dependences of r3 and r4
on x and t, and their substitution in (202) gives the DSW
density profile, whose envelope is compared in Fig. 18b with
the results of a numerical solution of the Gross±Pitaevskii
equation.

Importantly, formulas (234) allow finding the main DSW
parameters analytically. For example, in the soliton limit
r3 � r2, the difference between these formulas on the
boundary x � xL�t� gives the time dependence of r4 in the
form r4 � 5at=4� �����

r0
p

=6, substituting which in any of
formulas (234) leads to the law of motion of the soliton edge
of the DSW:

xL�t� � 5

36

r0
a
� 7

12

�����
r0
p

t� 5

16
at 2 : �235�

In the small-amplitude limit r3 � r4, Eqns (234) reduce to a
single equation on the boundary x � xR�t�:

xÿ 2r 24 ÿ r0
r4

t � 2

5a

�
3r0 � 2

�����
r0
p

r4 ÿ r3=20

r4
ÿ 4r 24

�
;

with the boundary value xR corresponding to the maximum
of this function x�r4� at a fixed value of t. This implies the
dependence of t on y � rR=

�����
r0
p

:

t � 2
�����
r0
p
5a

8y 3 ÿ 2y 2 ÿ 1

2y 2 � 1
; y5 1 ; �236�

substituting which in the limit expression for (234) gives

xR � 2r0
5a

8y 4 ÿ 6y 2 � 3

2y 2 � 1
: �237�

The obtained formulas define the law of motion of the small-
amplitude DSW edge in parametric form. At t � tb �y � 1�,
the coordinates of both edges are equal to the breaking point
coordinate xb, in accordance with the fact that in the
asymptotic Gurevich±Pitaevskii approach the DSW has a
vanishing length at the instant of formation. The derived laws
of motion for the DSW edges agree well with numerical
solutions of the Gross±Pitaevskii equation [74]. The solution
to the breaking problem for a simple wave expanding into a
medium at rest and having a power-law profile r� / �ÿx�1=n
at the instant of breaking can be found similarly for any
integer n (see [75]).

17. Motion of edges
of `quasisimple' dispersive shock waves

A characteristic feature of a wave formed in the condensate as
a result of the motion of a piston was that it expanded into the
depth of the condensate at rest, and therefore in the DSW
domain two out of the four Riemann invariants ofWhitham's
system were constant, and only the other two changed in the

course of evolution. This is similar to theKdV case considered
in Section 10, where one invariant was constant and two
others were variable. In [25], DSWs of this type were called
`quasisimple.' The law of motion of their edges can again be
found in the theory of the Gross±Pitaevskii equation
following a strategy similar to that presented in Section 10.
In view of a close analogy with Section 10, we here give only
the basic facts of the corresponding theory [40, 76].

For definiteness, we consider the breaking of a simple
wave for which the invariant rÿ � u=2ÿ c � ÿc0 is constant,
where c � ���

r
p

is the local speed of sound, which takes the
value c0 � �����

r0
p

in the unperturbed domain of the condensate.
We then have r� � u=2� c � 2cÿ c0 and v� � 3cÿ 2c0, and
the solution of dispersionless equations (192) can be written
as

xÿ �3cÿ 2c0� t � �x�cÿ c0� ; �238�

where �x�cÿ c0� is a function inverse to the initial distribution
cÿ c0 � w�x� at the instant of breaking t � 0. We first
assume that the initial pulse is `positive,' i.e., cÿ c0 > 0.
This solution borders the soliton edge of the DSW, which
moves with the soliton velocity Vs � �r4 � r2� � c, where we
used the fact that r2 � ÿr1 � c0 along the quasisimple DSW
and r4 � r� � 2cÿ c0 at the matching point. Therefore,
dxL ÿ cdt � 0 and dispersionless solution (238) on the
boundary with the DSW for x � xL must be compatible
with the equation

dxL
dc
ÿ c

dt

dc
� 0 ; �239�

where xL and t are regarded as functions of the local speed of
sound c, which varies on the soliton edge as a result of the
DSW evolution. After eliminating xL, we hence obtain the
equation

2z
dt

dc
� 3t � ÿ d�x

dc
; z � cÿ c0 ; �240�

solving which with the initial condition t�0� � 0,

t�z� � ÿ 1

2z 3=2

� z

0

���
z
p

�x 0�z� dz ; �241�

together with the equation

xL�z� � �3z� c0� t�z� � �x�z� ; �242�

defines the law of motion of the soliton DSW edge over a
monotonic dispersionless profile in parametric form.

If the profile is not monotonic and has a maximum
cm � c0 � zm, then, for t > tm � t�zm�, when the soliton
edge borders the branch �x2�cÿ c0� of the dispersionless
solution, instead of (241) and (242) we easily find the relations

t�c� � ÿ 1

2�cÿ c0�3=2
� �x2�cÿc0�

0

�����������
~c0�x�

p
dx ;

�243�
xL�c� � �3cÿ c0� t�c� � �x2�c� ;

where c0 � ~c0�x� is the initial distribution of the local speed of
sound. At asymptotically large times, we hence find

xL � c0t�
�
3A
2

�2=3

t 1=3 ; A �
� 0

ÿ1

�����������
~c0�x�

p
dx : �244�
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In this asymptotic limit, the DSW amplitude becomes much
less than the background density r0, and theGross±Pitaevskii
equation can be approximated for unidirectional wave
propagation with the KdV equation; hence, solution (244)
coincides with (151) in the corresponding variables.

On the low-amplitude edge, in the same asymptotic
regime, r3 � r4 � rm � 2cm ÿ c0 and r2 � ÿr1 � c0, and
therefore formula (205) gives the wavelength

L � p

2
������������������������
cm�cm ÿ c0�

p
and the wave number km � 4

������������������������
cm�cm ÿ c0�

p
. Hence, the group

velocity of motion of the low-amplitude edge is

dxR
dt
� do

dk

����
k�km

� 2rm ÿ c 20
rm

: �245�

In the case of a negative initial pulse with ~c0�x� �
cÿ c0 < 0, similarly, the low-amplitude edge borders the
dispersionless solution (238), with the Riemann invar-
iants of Whitham's system given by r3 � r4 � ÿr1 � c0
and r2 � 2cÿ c0, where c is the local speed of sound on
that edge. Therefore, the wavelength is here given by
L � p=�2 ��������������������

c0�c0 ÿ c�p �, which means that k � 4
��������������������
c0�c0 ÿ c�p

and this edgemoves over the backgroundwith the parameters
r � c 2, u � 2�cÿ c0� with the group velocity

dxR
dt
� do

dk
� u� c 2 � k 2=2���������������������

c 2 � k 2=4
p � 2c0 ÿ c 2

2c0 ÿ c
: �246�

The compatibility condition of Eqn (238) with the equation

dxR
dc
ÿ
�
2c0 ÿ c 2

2c0 ÿ c

�
dt

dc
� 0 �247�

leads to the differential equation

�4c0 ÿ c��c0 ÿ c�
2c0 ÿ c

dt

dc
ÿ 3

2
t � 1

2
�x 0�cÿ c0� ;

whose solution gives a parametric law of motion of the right
DSW edge

t�c� � 1

2�4c0 ÿ c� ������������c0 ÿ c
p

� c

c0

�2c0 ÿ c 0� �x 0�c 0 ÿ c0���������������
c0 ÿ c 0
p dc 0 ;

xR�c� � �3cÿ 2c0� t�c� � �x�c� :
�248�

It is easy to rewrite it, with obvious changes, for localized
pulses with a single local minimum.

In the case of a negative initial pulse, the asymptotic state
mainly consists of dark solitons, and it is easy to find the
velocity of the deepest soliton on the left DSW edge. We here
have r4 � ÿr1 � c0 and r2 � r3 � rm � 2cm ÿ c0, whence

dxL
dt
� 1

2

X
ri � rm � 2cm ÿ c0 : �249�

The number of dark solitons into which the initial negative
pulse eventually decays can be found following the same
strategy that we used to derive Karpman's formula (159) for
the KdV equation. On the low-amplitude edge, we now have
k�vg ÿ V� � k 3=�4 ���������������������

c 2 � k 2=4
p � and k � 4

��������������������
c0�c0 ÿ c�p

. Sub-

stituting these expressions into the general formula (155) and
using (248) to replace the integration over t with integration
over c, after simple transformations we obtain

N � 2

p

� ���������������������������
c0
ÿ
c0 ÿ c�x��q

dx ; �250�

where c�x� is the initial distribution of the local speed of
sound in the wave. The Gross±Pitaevskii equation, just like
the KdV equation, is completely integrable, making the
inverse scattering transform method applicable to it [62],
which allows finding [77, 78] the general expression for the
number of solitons originating from the pulse with the given
initial distributions of dispersionless Riemann invariant
r��x�:

N � 1

p

� ���������������������������������������������������ÿ
c0 ÿ rÿ�x�

�ÿ
c0 ÿ r��x�

�q
dx : �251�

In our case of the evolution of the pulse in the form of a simple
wave, rÿ�x� � ÿc0 and r��x� � 2c�x� ÿ c0, and formula (251)
reduces to (250). We must note, however, that both formula
(159) for the KdV equation and formula (250) for the Gross±
Pitaevskii equation can be represented as

N � 1

2p

�
k0�x� dx ; �252�

where k0�x� is the wave number on the low-amplitude edge
corresponding to the initial distribution of the parameters of
the simple wave. Formula (252) apparently is of a general
nature and can also be applied to equations that are not
completely integrable [79, 80], for which the dependence k0�x�
is to be found by solving equations for the conservation of the
number of waves along the trajectory of the low-amplitude
edge [81, 82].

18. Breaking of a cubic profile
in the Gross±Pitaevskii theory

In the general case, a wave governed by the Gross±Pitaevskii
equation breaks in such a way that the profile of one of the
dispersionless Riemann invariants r� acquires a vertical
tangent and can be approximately represented by a cubic
curve near the inflection point. We assume for definiteness
that the invariant r� undergoes breaking, and it hence varies
in the neighborhood of that point very rapidly, which allows
assuming the rÿ invariant to be constant. By an appropriate
change of variables, it can be ensured that the condensate flow
is described by the formulas

xÿ
�
3

2
r� � 1

2
r 0ÿ

�
t � ÿr 3� ; rÿ � r 0ÿ � const �253�

up to the instant of breaking. These formulas give a solution
of hydrodynamic equations (192). Naturally, it is assumed
here that r 0ÿ < r� in the domain of interest, including the
solution branch in (253) with r� < 0. For t > 0, solution (253)
becomes multivalued. Taking dispersion into account, i.e.,
solving the full Gross±Pitaevskii equation, eliminates this
multivaluedness by the formation of a DSW. Following the
Gurevich±Pitaevskii approach, we solve this problem [74, 78]
in Whitham's approximation by incorporating the solution
of Whitham's equations in dispersionless solution (253) such
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that the equality r1 � r 0ÿ holds and the boundary conditions

r4
ÿ
xL�t�; t

� � r�
ÿ
xL�t�; t

�
at r3 � r2 ; �254�

r2
ÿ
xR�t�; t

� � r�
ÿ
xR�t�; t

�
at r3 � r4

are satisfied. Because the right-hand side of the first equation
in (253) involves a cubic function of r3, we can satisfy all the
conditions by taking solution (210) with r1 � r 0ÿ and
wi �

P3
k�0 Akw

�k�
i , where w

�k�
i are given by formulas (213)

and (214) and the coefficients Ak are chosen such that the
matching conditions are satisfied. As a result, we obtain

xÿ vi�r�t � ÿ 32

35
w
�3�
i �r� �

16

35
w
�2�
i �r�r 0ÿ

� 2

35
vi�r��r 0ÿ�2 �

1

35
�r 0ÿ�3 ; i � 2; 3; 4 : �255�

These formulas implicitly define the dependence of the
invariants r2, r3, and r4 on x and t. In particular, investigating
the limit r3 ! r4, we can easily find the law of motion of the
soliton edge of the DSW:

xL�t� � 1

2
r 0ÿtÿ

1

6

����
5

3

r
t 3=2 : �256�

The law of motion of the small-amplitude edge

xR �
�
3

2
r2 � 1

2
r 0ÿ

�
t�r2; r4� ÿ r 32 �257�

is defined in parametric form, with the time t depending on
the parameters r2 and r4 as

t � 2
�
8�r4 ÿ 7r 0ÿ��3r 22 � 4r2r4 � 8r 24 � ÿ 15r 32

�
35�4r4 ÿ r2 ÿ 3r 0ÿ�

; �258�

and the parameters themselves related as

21�r 0ÿ�2�4r4 � r2� ÿ 10r 0ÿ�20r 24 � 2r2r4 � r 22 �
� 16r4�8r 24 ÿ r2r4 ÿ r 22 � � 9r 32 � 0 : �259�

We see that this particular Gurevich±Pitaevskii problem has
also been given a fully analytic solution.

19. Conclusions

We have presented the Gurevich±Pitaevskii theory for DSWs
in some detail following [1] and other closely related papers. It
remains to briefly mention some avenues of further develop-
ment of this theory.

We first note that, simultaneously with the appearance
and development of the theory of DSWs, other important
events were taking place in nonlinear physics associated with
the discovery of the inverse scattering transform method
for solutions of nonlinear wave equations [24, 62, 83]. A
fundamental fact of that method is the relation between the
so-called completely integrable equations, a class to which
the KdV and Gross±Pitaevskii equations belong, and the
associated linear spectral problems. For example, associated
with the KdV equation is the problem of the spectrum of a
quantum particle moving in the potential u�x; t�; the relation
is such that, in particular, the parameters of the soliton
solution are related to the discrete spectrum of that potential.

An extension of this method to periodic solutions of the
KdV equation [84, 85] has shown that the Riemann invariants

of Whitham's system coincide with the endpoints of gaps
where the motion of the quantum particle is forbidden in the
corresponding periodic potential. This allowed, on the one
hand, generalizing the Whitham method to multiphase
solutions [63] and, on the other hand, extending it to other
integrable equations. In particular, we have used Whitham's
equations for the Gross± Pitaevskii theory, which were found
in [60, 61] by methods based on the complete integrability of
that equation.

It turns out as a result that three sets of parameters
characterizing the periodic solutions arise naturally in the
theory: (1) physical parameters ni related to the wave
amplitude and other quantities that bear a clear physical
meaning; (2) the endpoints li of the periodic spectral problem;
(3) the Riemann invariants ri of Whitham's modulation
system for the considered periodic wave.

In the simplest case of the KdV equation, the relations
among all these parameters are linear, and this is why
Whitham could diagonalize the modulation equations
derived for physical parameters by choosing appropriate
linear combinations. In the case of the Gross±Pitaevskii
equation, the relation between li and ri remains linear, and
that is why we were able to not invoke li in our presentation,
but the physical parameters ni are related to ri (or li) by more
complicated formulas (201). This complication, technical at
first glance, becomes fundamentally important when the
relation between li and ri becomes multi-valued: one solu-
tion of Whitham's equations corresponds to two different
periodic waves. This situation is characteristic of the so-called
not genuinely nonlinear equations, in which nonlinear terms
can vanish for some amplitude of the wave. This was noted in
[86] for a higher KdV equation, an element of a hierarchy of
equations associated with the same spectral problem, and also
in [87] for the modified KdV equation ut � 6u 2ux � uxxx � 0,
where the coefficient in the nonlinear term has a maximum or
a minimum at u � 0, depending on the sign.

In the problem of the evolution of a step-like profile, this
led to the appearance of more complicated structures than
rarefaction waves and modulated cnoidal waves that we are
familiar with from the theory outlined in the foregoing. A
classification of such structures evolving from the initial
discontinuity in accordance with the Gardner equation
ut � 6�u� au 2�ux � uxxx � 0 that occurs in the theory of
internal water waves was given in [88]. In the theory of
the modified NLS equation ict � �1=2�cxx ÿ i�jcj2c�x � 0,
which has applications in nonlinear optics and magneto-
hydrodynamic waves, the use of all three sets of parameters
becomes necessary: periodic solutions and Whitham's equa-
tions were obtained in [89], and the evolution of the initial
discontinuity was analyzed in [90±92]. Finally, the most
complicated case of this type, a ferromagnet with `easy plane'
anisotropy and the equivalent limit for two-component
Gross±Pitaevskii equations, was studied in [93, 94].

Besides the development ofWhitham's averagingmethod,
the discovery of the complete integrability of the most
important equations in nonlinear wave physics has allowed
developing other approaches to the theory of DSWs. In
particular, it was shown in [95±100] that the solution to the
Gurevich±Pitaevskii problem in Whitham's approximation
can also be obtained as a semiclassical limit of exact multi-
soliton solutions of the KdV equation. Another aspect of a
more exact theory of DSWs is that, similarly to how the linear
problem solution (25) obtained by the averaging method is an
asymptotic form of the Airy function,Whitham's approxima-
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tion for breaking waves is a semiclassical asymptotic form of
some special functions that are `standard' solutions of the
Painlev�e nonlinear differential equations (see, e.g., [101±
103]). Solutions expressed in terms of such special functions
are also exact at the small-amplitude edge of the DSW.

Another area of investigations is to generalize the
Gurevich±Pitaevskii approach to equations that are not
completely integrable. Naturally, the Whitham theory
considered above for the perturbed KdV equation can be
generalized to a rather wide class of equations close to
completely integrable ones [48, 104]. However, a large
number of physically important equations do not fall into
that category and the modulation equations for periodic
solutions of such equations do not have Riemann invariants
in any approximation. Still, the general Gurevich±Pitaevskii
approach is also valid for them and some important
characteristic of DSWs can be calculated with no Riemann
invariants defined.

The first important statement regarding such systems,
made by Gurevich and Meshcherkin [105], was that only a
DSW is formed in the breaking of a simple wave, and the
constant Riemann invariant of the dispersionless limit
transports its value across the DSW, despite the absence of
Whitham's Riemann invariant conserved along the DSW.
This statement is already sufficient in order to calculate the
parameters of the plateau appearing between two wave
structures in the evolution of a discontinuity.

The next important step was made in [81, 82], where it
was noted that, on the border with a simple wave,
Whitham's system reduces to an ordinary differential
equation whose solution gives a relation between the DSW
parameters on that edge. Because one of the modulation
equations (the conservation law for the number of waves) is
certainly known on the small-amplitude edge, the solution
of that equation gives a relation between the wave number
and the background amplitude of the wave. On the soliton
edge, such an equation is absent in general. But it can be
verified that, in the case of KdV and Gross±Pitaevskii
equations, the equation ~kt � ~ox � 0 holds for pulse expan-
sion into a medium at rest with two constant Riemann
invariants, with ~k being the inverse half-width of the soliton
and ~o�~k� obtained from the linear dispersion lawo�k� by the
substitution ~o�~k� � ÿio�i~k�. According to an old remark by
Stokes quoted in a note to æ 252 in [8], ~o�~k� determines the
soliton velocity: the tails of the soliton propagate with the
same velocity as the soliton itself, and on the tails the
linearized equations have the same form as in the low-
amplitude harmonic limit.

Assuming the validity of the equation ~kt � ~ox � 0 in the
general case of the breaking of simple waves expanding into a
`quiescent' homogeneous medium with two constant disper-
sionless Riemann invariants, we can obtain an ordinary
differential equation for the parameters along the soliton
edge of the DSW. These two equations are entirely sufficient
for finding the parameters of the edges of theDSW forming in
the evolution of a discontinuity and satisfying a nonintegrable
equation, as was indeed done in series of studies [79, 82, 106±
112]. Requiring the compatibility of the thus obtained
ordinary differential equation with the solution of the
dispersionless equations on that boundary allows obtaining
the equation of motion for the DSW edge propagating over
the general profile of a simple wave [40, 76, 113].

A new type of DSW can occur when taking higher-order
dispersion effects into account when the soliton velocity is

equal to the phase velocity of linear waves and these are in
resonance with other. The general Gurevich±Pitaevskii
approach is also applicable in that case [114±117].

In this paper, wementioned applications of the Gurevich±
Pitaevskii problem to water waves, plasmas, Bose±Einstein
condensate, and nonlinear optics. To these, we can add the
observations and the theory of DSWs in internal waves in the
ocean [118] and the atmosphere [119], and on jets of a liquid in
viscous media [120, 121]. The Gurevich±Pitaevskii approach
to the DSW theory also extends to waves with several spatial
variables [122, 123] and finds applications in other areas in
physics, including the quantum gravity theory [101]. The
reader can find more examples of DSWs, e.g., in review
[124] and the references therein. In addition, the creation of
the DSW theory was related to the substantial progress in
modern mathematical physics, and the reader can glean some
aspects of the mathematical theory from reviews [125, 126].

To conclude, we can say that in the years that have passed
since the appearance of paper [1], the Gurevich±Pitaevskii
problem, understood as a general approach to the DSW
theory based on Whitham's modulation equations, has
become an area of vibrant research in nonlinear physics,
with a distinctive problem setting and with profound
mathematical methods for solving problems and clear
physical ideas that enrich the entire physics of nonlinear
waves.

I am grateful to L P Pitaevskii for discussions of the
problems considered in this paper and for his useful remarks.
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