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Abstract. Under conditions of total internal reflection of a TM-
(TE-) type of plane volume electromagnetic wave from the
surface of a semi-infinite transparent anisotropic dielectric
medium, a special type of fast improper surface wave can be
formed (an exceptional surface wave). For these types of waves,
the instantaneous flow of energy through the interface is zero. In
this case, the reflection of a quasi-plane (or quasi-monochro-
matic) wave of the corresponding polarization leads to the
excitation of the leaky surface wave and to the maximum of
the resonant amplification of the Goos — Hiinchen effect (or the
Wigner delay effect).
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1. Introduction

Despite unabating active studies of the wave dynamics of
layered media over several decades, the physics of leaky
surface waves remains an actively investigated field [1-6].
This is not least due to the ever-expanding range of practical
applications of waves of this type (primarily in antenna
technology [7]), as well as due to the possibility of explaining
a variety of physical phenomena [8].

According to the classification proposed in Ref. [2],
among the possible wave field types (surface, proper com-
plex, leaky) corresponding to the Fresnel pole of the reflection
coefficient for a plane electromagnetic wave incident on the
plane surface of a dissipation-free layered structure, only the
improper complex (leaky) wave attenuates in its propagation
along the layered structure due to the radiation of a volume
electromagnetic wave into the medium adjacent to the layered
structure (radiative decay).

In acoustics [4], in the case of a single media interface, it
was suggested to class leaky surface waves into two types. For
type-I waves, the generation of the volume wave responsible
for radiative decay occurs in the medium adjacent to the
medium in which the propagating leaky surface wave is
localized. In the case of type-II leaky surface waves, the
volume wave generation occurs in the same medium in
which the initial propagating surface wave is localized. In
both cases, the leaky wave in its propagation along the media
interface is localized in some domain near the radiation
source due to radiative decay. As a consequence, at a given
frequency, this wave is characterized by complex values of the
longitudinal (along the direction of propagation) wavenum-
ber h=h'+ih”. When |h'| > |h”|, the localization domain
near the source turns out to be rather large (a slowly leaking
wave). In the same wave configuration, the inverse effect is
not only of academic but also of purely practical interest: the
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resonance enhancement of the amplitude of a slowly leaking
wave (surface wave resonance). This is possible when the
interface is irradiated by a volume wave with the same
frequency and polarization as the volume wave responsible
for the radiative decay of the propagating leaky surface wave
(of type I or type II) and the projection of the wave vector of
the wave incident on the media interface is equal to the
longitudinal wavenumber of the excited leaky wave (see, for
instance, Refs [9-11]).

As is well known, under the conditions of total internal
reflection (TIR) of an incident plane volume wave from a
single media interface, an evanescent wave (EW) may exist in
the adjacent medium even in the absence of absorption (in
particular, in an optically transparent medium)[12, 13]. In the
Russian scientific literature, an analogue of the term
‘evanescent’ (‘vanishing’) wave is the term ‘inhomogeneous’
wave [12]. Recent years have seen a surge of interest in the
formation conditions and properties of electromagnetic (EM)
excitations of this type. This is not least due to the rapid
development of the physics of metamaterials and nanooptics
(in particular, of photon scanning tunnel microscopy), since
the use of EWs makes it possible to go beyond the diffraction
limit [13]. In this connection, one of the central issues is to
analyze the optimum conditions for maximizing the intensity
of these propagating EWs.

To resonantly excite and enhance the amplitude of an EW
on spatially uniform surfaces, traditionally investigated and
used are multilayer configurations (in particular, Otto and
Kretschmann configurations [13, 14]). As for the single
interface of optically transparent dielectrics, in monographic
Ref. [13] it is noted that, for optically isotropic nonabsorbing
media, the greatest (four-fold) intensity enhancement of
TM-type evanescent waves relative to the volume outside a
p-wave is achieved when the incidence angle ¥, is equal to the
limiting TIR angle Y.

2. Single interface of two media.
Reflection of a plane wave

2.1 Fast improper exceptional volume wave

Consider the interface { =0 of two half-spaces with the
normal q and assume, for definiteness, that the upper half-
space ({ > 0) is occupied by a nonmagnetic, optically
isotropic medium with material relations of the form [12, 13]

I}i:I’:Iia Di:‘Z:EM I=x,),z, (1)

where ]~3~and l? are the magnetic and electric induction
vectors, H and E are the magnetic and electric fields,  is the
permittivity of the medium, the tilde marks the quantities
relating to this medium, and { is the current coordinate along
the q direction. We also assume that the selected sagittal plane
(characterized by the normal vector a (a L q)) is such that
independent propagation of EM waves with given values of
frequency w, longitudinal wavenumber %, and polarization
o = p,s is possible in both contacting media (x = p corre-
sponds to a transverse magnetic (TM) wave (H||a, E La) and
o = s to a transverse electric (TE) wave (E || a, H La)). In this
case, using Maxwellian electromagnetic boundary conditions
[12, 15]

Eb=Eb, Ha=Ha, Hb=Hb, Ea=Ea, )
a= [bq] ) (= 0,

it is possible, following Ref. [16], to determine the Fresnel
transmission coefficients for a plane EM TM (T},) wave as the
ratio of magnetic field components and for a plane TE (75)
wave as the ratio of electric field components of the waves
transmitted through and incident on the interface. As a result,
under TIR conditions, for the case of a single interface
between two optically transparent isotropic dielectrics
observed in [13], we obtain
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ko = w/c, and cis the speed of light. To characterize the wave
properties of contacting media with the relations [16]
Eb=Z,Ha, Hb=-ZEa, Eb=ZHa, @
Hb=-ZEa, (=0,
we introduced the surface wave impedance Z, (for the case of
a TM wave) and the surface wave conductance Z; (for a TE
wave). Vector b lies along the intersection line of the plane of
the medium interface and the sagittal plane (a = [bq]) [17]. In
this case, in the TIR domain in the dissipationless approxima-
tion, in Eqns (3),

ImZ,=0, ReZ,#0, a=p,s. (5)

The conclusion of Ref. [13] is that the maximum (four-
fold) TM EW intensity enhancement at the single interface of
optically isotropic nonabsorbing and nonmagnetic media
relative to the plane volume p wave incident from the outside
(|Tp|2 = 4) is reached for the incidence angle ¥, equal to the
limiting TIR angle ¥,(w). This conclusion relies on the fact
that

Zy(w,h) =0 (6)

in Eqn (3) for ¥ = 9,.. In this case, due to Eqn (6), the
instantaneous energy flux [12, 13, 17] across the medium
interface,

Cc
Sq=0, S=_C[EH], 0

is zero at any point in time. However, in view of Eqn (3), the
fulfillment of equality Z,(w, h) = 0 for ¥ = ¥, corresponds
to the most intense excitation not of the evanescent wave but
of a plane volume homogeneous monochromatic single-
partial TM wave in the optically less dense isotropic
medium. Earlier, in Ref. [18], by analogy with homogeneous
plane elastic waves, which have been actively studied in
crystal acoustics for several decades [19], a homogeneous
volume plane monochromatic single-partial TM EM wave
propagating along the interface between a semi-infinite
isotropic dielectric and an ideal metal has received the name
exceptional bulk wave (EBW). It is noteworthy that, accord-
ing to the classification of possible types of waves propagating
along open uniform waveguides proposed in Ref. [20], the
EBW under discussion may be termed a fast improper EBW,
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because it exists for h? < kgé and is not localized in the
optically denser medium near the single interface with the
optically less dense medium. At the same time, in accordance
with its definition, this EBW is not localized near the medium
interface in the optically less dense medium, either.

As a result, until recently, under TIR conditions it was
considered impossible to achieve the maximum EW ampli-
tude enhancement due to the formation of a leaky surface
type-I1 EM wave with o = p as well as with « = s at the single
interface of optically transparent dielectrics (see, for instance,
Ref. [6]).

At the same time, in the acoustic TIR domain in crystal
acoustics, the formation conditions have been adequately
studied not only for exceptional bulk waves but also for type-I
leaky surface elastic waves, both including and disregarding
dissipation, for the case of a single acoustically continuous
interface between dielectrics [9-11]. We use a specific example
to study the conditions required for the formation of a type-I
leaky surface EM wave at the single interface between
optically transparent dielectric media. To this end, in the
dissipation-free approximation, we consider the reflection of
a shear plane bulk wave incident, under acoustic TIR
conditions, on a plane interface with rigid gluing [21]
between a semi-infinite elastic isotropic dielectric and a
piezo-crystalline medium [22].

2.2 Fast improper surface acoustic wave
We assume that the boundary conditions [22, 23]

q=0oq, i=u, Dg=Dq, [Eq =[Eq], (=0, (8)

Qul

which are standard for the physics of piezo crystals, are
fulfilled at the acoustically continuous interface between an
elastic isotropic medium, { > 0, and the piezo-crystalline one,
{ < 0. Here, u is the elastic displacement vector and G is the
elastic stress tensor; the quantities relating to the non-piezo-
active dielectric are marked with a tilde. The equations of
elastic dynamics and the material relations for the non-piezo-
active and piezo-active media may, according to Ref. [24], be
respectively represented as

2

ou =T = == - o~
ﬁa—tl;:divé , 6=¢o(@), D=D(E),
21] =T
pm:dlvﬁ ) leD:O7 rOtEZO, (9)
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where p(p) and @(u) are the density and the elastic
deformation tensor of the non-piezo-active (piezo-active)
dielectric and the superscript T corresponds to transposi-
tion. In accordance with Refs [22, 23], we define the amplitude
reflection coefficient Vsy of a plane shear bulk wave (an
SH-type wave, ulla|ja) as the ratio of the amplitudes of
reflected and incident waves for the component of elastic
displacements orthogonal to the plane of incidence. For a
plane bulk wave with frequency @ and longitudinal wave-
number / incident on a medium interface (8) from the
acoustically less dense medium (9) under acoustic TIR
conditions, in the Coulomb limit (kg — 0), Vsg has the
following structure [22, 23]:

Zsy — iZsu
VsoH = =——-—,
Zsy +1Zsu

ZSH ((1)7 h) = ai(iiqu ) ZSH((’U7h) = BTk )

ua Ua - Ipgray=0

Im Zsy(w,h) =0, ReZsu(w,h) #0, E=—Vi,

(10)

where Zsy = p52\/@? /5 — h? is the surface wave impedance
for a shear wave in the acoustically less dense medium ({ > 0),
St is the phase velocity of an SH wave for an infinite medium,
Zsu(w, h) is the surface wave impedance for a shear wave with
frequency w and longitudinal wavenumber /% in the acousti-
cally denser piezoelectric medium [22, 23], and ¥ is the
electrostatic potential. According to Ref. [23], under acoustic
TIR conditions (w/st < h < w/§), the amplitude transmis-
sion coefficient of a shear bulk SH wave incident from the
acoustically less dense medium on the medium interface in the
sagittal plane with the normal aligned with a, Tsy = 1 + Vg,
in view of expressions (10) takes on the form

27
TSH - _ SH

— =0 ImZgy =ImZgy = 0.
Zsy +1Zsy

(11)

When the lower medium is also non-piezo-active, elastic,
and isotropic, in Eqns (10) and (11), Zsy = psZ\/h? — w?/s?
[23], where s; is the velocity of a shear elastic wave in an
isotropic dielectric. As a result, at the boundary of the
acoustic TIR domain, i.e., for 0?/52 > h?=w?/s?, the
fulfillment of Zgy(w,h = w/s;) =0 in Eqns (10) and (11)
corresponds to the excitation of a plane shear homogeneous
bulk wave, which slides along the mechanically free surface of
an elastic half-space (a single-partial elastic EBW) [19, 23].
For it, in Eqn (11), Tsg(w,h = w/s;) =2, and hence the
amplitude of the shear SH-type EBW, as in the case of its
electromagnetic analogue in Ref. [13], is two times higher
than the amplitude of the plane bulk SH outside wave
incident at the limiting TIR angle [23]. When Zsy =0 in
expression (8) (Tsy = 2 in Eqn (11)), the surface is referred to
as acoustically soft, and when Zgy = oo in expression (8)
(Tsy = 01in Eqn (11)), it is termed acoustically hard.

Interest in studying the conditions for the formation and
propagation of shear EBWs in acoustics is largely due to the
extremely high sensitivity of localization conditions of the
wave excitations of this class to the character of the boundary
conditions (see, for instance, Ref. [4]). We assume that the
lower half-space in the acoustically continuous structure
under consideration is occupied by a class-6 piezoelectric.
Calculations for this piezoelectric medium show that material
relations for a shear wave with u||z and the incidence plane
k € xy may be represented as [22]

Ou Ou.
O = C4g — — e1sEy, Dy =¢E, +4me;s —

" o (12
Ozy = C44 a—); — elsEy, Dy = SEy + 4TC€15 6—; 5

where e is the piezoelectric modulus.

When q||y, for the acoustically continuous interface
between a semi-infinite isotropic dielectric (9) and a semi-
infinite piezoelectric medium (12), the boundary conditions
(8) in the electrostatic approximation are expressed as
follows:

Ozxy = &zxa uz(y - _OO) - 07

(13)
D.‘z:*/’llﬁ, y:0> ‘p(yg)ioo)g)o
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According to calculations, in view of expressions (12) and
(13), under conditions of acoustic TIR, the amplitude
transmission coefficient Tsy for an SH wave incident in the
sagittal plane with the normal along a from an acoustically
less dense medium (9) on the surface of a piezoelectric
medium (12) also coincides structurally in this case with
expressions (10) and (11). However, the elastic surface wave
impedance for a shear wave with frequency w and long-
itudinal wavenumber /% in the piezoelectric now is of the form

Zsu(o,h) = ¢} iz SI°
sH(®, h) = cynsy — 4n —2—
e+ ¢ (14)
w? 4me?
Nsu = hQ*pilv 0445"44<1+715)7
Cyq C44€

where ¢, is the effective elastic modulus. As a result, under
the conditions of acoustic TIR (n3;; > 0), for the acoustically
continuous interface between the isotropic dielectric (9) and
the piezo crystal (12), the fulfillment of relation

ZSH((U,/’I) ZO (15)
corresponds to the maximum intensity of excitation of the
elastic evanescent (n3; > 0) SH (u|/a) wave in the piezo-
crystalline medium (12) by an outside plane shear bulk wave:
Tsu(w,h) = 2. In this case, relations (14) and (15) define the
spectrum of the Gulyaev—Blustein shear surface acoustic
wave (SAW), which propagates along the mechanically free
and electrically open (2) surface of the medium (1) and elastic
semi-infinite piezo space (12) [22]:

2 52z\27-!
h2 = k2 h2 =Py (g GiS° . (16
saw (@), hgaw (o) i TCH_E (16)

We note that the fulfillment of Eqns (14) and (15) under
TIR conditions signifies that instantaneous elastic (but not
electric!) energy flux across the interface between media (9)
and (12) is strictly zero at any point in time for the
corresponding plane evanescent wave with ulla. As a
result, in this case, in piezoelectric medium (12) a SAW
characterized by the vanishing of the surface wave
impedance, Zsy(w,h = hsaw(w)) = 0, forms for boundary
problem (13). If in this case, too, we resort to the ‘acoustic’
analogue of the classification of Ref. [20], the Gulyaev—
Blustein SAW (16) formed in the layered structure (8), (9),
(12), and (13) under consideration may be termed a fast
improper SAW when pw?/chy < h? < 0?52

However, a remark is in order. The hybridization of two
partial evanescent waves (elastic and electromagnetic) is
not the necessary condition for the formation of a fast
improper SAW and fulfillment of Eqns (14) and (15). By
way of example, mention can made of the case when the
lower half-space ({ <0) in the acoustically continuous
structure under consideration, which comprises a semi-
infinite ({ > 0) elastic isotropic dielectric (9), is occupied
by a ferromagnet (FM). Ignoring the finiteness of the EM
wave propagation velocity, the magnetoelastic dynamics of
the acoustically less dense FM medium is described by the
closed system of equations consisting of the Landau-
Lifshitz equations for the unit-volume magnetization
vector M, the main equation of continuum mechanics,
and the equations of magnetostatics [25].

By way of example, we consider the single-sublattice easy-
axis (EA) FM, whose magnetoelastic and elastic properties

will hereinafter be assumed to be isotropic for simplicity and
ease of calculations (u is the shear modulus of the FM
medium). We restrict ourselves to the case when the z axis is
the light FM axis and M| Hy ||z is in the equilibrium state.
For a shear wave with u||z and k € xy, the material relations
for the FM model under consideration with the inclusion
of magnetoelastic and magnetostriction interactions in the
exchangeless approximation may be represented as [26]

Ou, . Ou. .
Oz = CLg- +1¢4 m + pisHe —1p.H,,

Ou, . Ou, .
Oz =C1L o ™ + BisHy +if.Hy,

z

Ou, ou
B.=upu H,—iu H, —4 — +4mif, —
x = My Ay — 10, M, nhis ox +4mif 3y

. Ou . Ou.
By =y Hy +ip, Hy — 4nfys By 4mifs, o

where H = —V¢ and ¢ is the magnetostatic potential.

Let q ||y as before, but, instead of boundary conditions
(13), the following system of boundary conditions applies to
the surface of the semi-infinite EA-FM of the magnetoacous-
tic configuration under consideration:

O =0z, U =1, y=0, uZ(y_’_OO)_)(L

(18)
By=—hg, y=0, ¢(y——o0)—0,

which corresponds to the acoustically continuous interface
between nonmagnetic (9) and magnetic (17) media. In this
case, in accordance with the general propositions of the
theory of wave processes in layered media [5, 22], in view of
Eqns (9), (17), and (18), it may be shown that the amplitude
transmission coefficient of a bulk shear wave with u||Hp ||z
incident from the depth of an elastically isotropic nonmag-
netic medium (9) coincides structurally with expression (11).
Now, however, it is not expression (14), but

_An(Bis + p.o)’ 1
ptpo+1 |’
(19)

4
Zsu(w,h) = cyynsy — c.0 + m Bis
1

—_

2

,o_c 4Anpis

Cgg =T,
By

o =signh.

In this case, the effect of a two-fold increase in the amplitude
of the excited elastic evanescent SH wave in comparison with
the amplitude of a plane shear wave, which is incident from a
nonmagnetic medium (9), persists, provided expressions (15)
and (19) are fulfilled, even when ignoring the quasistatic
electromagnetic field (which is formally in line with the
passage to the limit 4t — 0 in relations (17)—(19)).

Here, a note is in order. In view of relations (19), for a
plane shear bulk SH wave incident on an acoustically
continuous (18) single interface between media (9) and (17)
from an acoustically less dense medium, the reflection for
Zsu(w,h = o/5) =0, as in the case (13), (15), is completely
analogous to the reflection from a mechanically free surface
(an analogue of the incidence at the Rayleigh angle [9]).

We emphasize, in the case of acoustically continuous
interface (8) between elastic isotropic dielectric (9) and
piezo-crystalline medium (12) (or ferromagnetic medium
(17)), that the instantaneous elastic energy flux across the
interface is not strictly zero at any point in time when a bulk
shear plane wave is incident from dielectric (9) on the surface
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of semi-infinite piezoelectric (12) (or ferromagnet (17)) under
the limiting acoustic TIR angle.

Considering the above acoustic examples (8)—(19) and the
structure of the Poynting vector for a plane EM wave [12, 13]
propagating along the normal to the medium interface, it can
be assumed that the condition for the maximum intensity
enhancement of TM- or TE-type evanescent EM waves
(T, =2, o =p,s) at the single interface between optically
transparent dielectrics within the TIR domain is the vanishing
of the surface wave impedance Z;, (for the TM wave) or of the
surface wave resistance Z; (for the TE wave), i.e.,

(::07
(=0.

Eb=0,
Hb =0,

Ha:l:la,
Ea:Ea,

(20)
21

%*=DP,

o=s,

As follows from Refs [27-29], for a dielectric—ideal metal
interface, a constant external electric Ey or magnetic H field
(or their combination) may give rise to a single-partial plane
surface electromagnetic TM wave propagating in the dielec-
tric. However, the possibility of maximizing, with the use of a
constant external magnetic or electric field (or their combina-
tion), the enhancement of a TM or TE evanescent wave as
well as of attendant dynamic effects under TIR conditions has
never been considered for a single interface between two
transparent dielectric media (the formation of a type I
surface leaky EM wave).

We determine the conditions whereby the incidence of a
plane bulk TM or TE EM wave on the single interface
between optically transparent, spatially uniform dielectric
media maximizes, under TIR conditions, the excitation
intensity of the electromagnetic EW with the corresponding
polarization [30].

2.3 Fast improper exceptional surface wave

By way of example, we consider the plane interface between
two transparent semi-infinite dielectric media with the inter-
face normal q and assume, as in (1)—(3), that the upper half-
space ({ > 0) is occupied by the denser nonmagnetic medium,
which is isotropic in electromagnetic properties (1). As for the
lower half-space, we assume that it is occupied by a
bianisotropic (BA) medium, whose material relations,
according to Ref. [17], may be represented in the form

B=jH+AE, D=FE+1 H, (22)
where 71 and g are the magnetic permeability and permittivity
tensors, A is the magnetoelectric tensor, and superscript *
corresponds to complex conjugation.

When discussing in what follows only the case of
independent TM or TE wave propagation in the selected
sagittal plane with the normal along a, as relating to the tensor
coefficients in Eqns (22), we assume that, disregarding
dissipation, in the dyad representation [17] they have the
following structure (b = [qa]):

=eb®b+eq®q+eabq+eiqb+aawa,
=ub®b+q®q+bRq+puqeb+paa,
Aba+ AqR®a+ A3axb+ Asa®q.

™Il

(23)

=
Il

Furthermore, in the subsequent discussion, we restrict
ourselves to the case when, ignoring dissipation, the diagonal
tensor components appearing in Eqns (22) and (23) are real
and the off-diagonal ones are complex. Tretyakov et al. [31]

proposed a classification of BA media (22) based on the
structure analysis of magnetoelectric interaction tensor A.
According to this classification, tensor 4, which appears in
Eqns (23), corresponds to a pseudo-Tellegen medium for
Re A = Re Ay; and to a moving medium for Re Ay =
—Re Ay;. When Im Ay = Im 4;; in Eqns (23), tensor A,
which appears in Eqns (22), according to Ref. [31], corres-
ponds to a pseudo-chiral medium and for Im A, = —Im Ay;,
to an omega medium.

In accordance with Eqns (22) and (23), independent
propagation of a plane TM wave (Ha o exp (ikpr — iwt)) or
a TE wave (Ea o exp (iksr — iw?)) is possible in the plane with
the normal along a, with r 1L a. When the wave vector k may
be represented as k = &b + k,q (o = p, s), depending on the
TM or TE wave polarization, the dispersion equation for the
spectrum of TM or TE normal polaritons propagating in
unlimited medium (22), (23) corresponds to the roots of the
following equation:

kHZx —+ NlockHa + Ny, = 07 (24)

2
Nlp = g [/’l Rees + Re (82A3) — Re (A483)] s

Ae = g18) — &385
eNap = h?e; + 2h[—Re (¢144) + Re (e345)]
¥ Al + ey A A% + 61 A A — 2 Re (53 4543)

2
Nis= [hRepy —2Re (11, 41) + 2 Re (13.43)]
2

Ap = gy — paps
paNag = pyh? + 2h[p Re Ay — Re (u3A1)]
+ eaAp+ Ay A7 + Ay A5 — 2Re (34, 43)

We consider a plane EM wave with polarization o = p,s.
Calculations suggest that under TIR conditions (i.e., when
Nu < 4N2 in Eqns (24)) the required wave vector compo-
nent n,(w,h) (ki, =n2 < 0) normal to the surface of BA
medium (22) (53) which occupies the lower half-space,
according to Eqns (24) is of the form

n,=n,—in;, Imp, =Imn/ =0, a=p,s (25)
Consequently, the amplitude of the EW with polarization o
may not merely decay exponentially with distance from the
interface in the lower half-space with exponent 5, # 0, but
may also experience spatial oscillations (with a period 2nt/n,),
provided that 5, < .. It is also noteworthy that such spatial
oscillations (with a period 2n/#,) of TM (TE) wave amplitude
with distance from the interface in the BA medium (22), (23)
under consideration may also persist for 7,/ = 0 (the case of
surface irradiation by an outside TM (TE) electromagnetic
wave at the limiting TIR angle ¥ = 9., for a wave of given
polarization).

In view of expressions (4), (22)-(25), for n2 > 0, the
relations for Z,, which appear in formulas (3), may be

represented in the form

hIm s + o Im A7 — Im (g3 45)]

(26)

1
Zy(w, h) = A [won! —

1
Zy(w,h) = A [821’]{,’ — hImes — & Im A3 + Im (e344)] .
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Therefore, the maximum (four-fold) increase in an
evanescent EM wave of the corresponding polarization
o =p,s (|T,* = 4) is possible at the single interface between
optically transparent dielectrics inside the TIR domain. This
is so provided the condition

Zy(w,h) =0, a=p,s (27)
is the result of the fulfillment of relation (20) or (21) in the
w—h external parameter plane for the given EM wave
polarization, « = p or « = s, in view of expressions (24)—(26)
inside the TIR domain (for (11;’)2 > 0) (see also Ref. [31]). A
combined analysis of expressions (3)—(5) and (22)—(26) in the
BA medium case suggests that the possibility of the
simultaneous formation also of a single-partial electromag-
netic EBW of the corresponding polarization (i.e., for
1, (w, h) = 0) corresponds to the fulfillment of

Z,(0=0)=0, |T,J =4, a=p,s, (28)
depending on the polarization of the outside plane bulk EM
wave. As follows from expressions (22)—(27), for o =p,
relation (27), in combination with expressions (24) and (25),
defines, in the w— & external parameter plane, the spectrum of
a TM surface wave propagating in the selected sagittal plane
along the interface between nonmagnetic dielectric (23) and a
perfect electric conductor. When o = s in expressions (24)—
(27), we are dealing with those w—/ combinations which
correspond to the dispersion law of the surface TE polariton
with k € xy, which propagates along the interface between
nonmagnetic dielectric (23) and a perfect magnetic conductor
(formally, Z, =0) in the optical configuration under
consideration. On the strength of expression (27), for this
class of traveling plane EW localized near the interface
inside the TIR domain the group velocity is strictly parallel
to the media interface at any point in time (the instanta-
neous energy flux across the interface between the media is
zero at any point in time, S,q = 0). Therefore, following
the analogy to exceptional bulk TM waves [18], the surface
polariton excitations with o = p or o« = s, which are formed
under TIR conditions and are defined by expressions (26)
and (27), may be termed TM or TE exceptional surface
waves (ESWs), respectively.

Depending on the polarization of an ESW, the domain of
its possible existence in the w—#h external parameter domain,
in view of expression (26), is defined by the following
relations:

o [—hImpy + py Im A7 — Im (u345)] <0, a=s, 29)

&[—hImes — e Im A3 + Im (e344)] <0, o =p.

When the classifications of gyrotropic media [17] and BA
media [31] are simultaneously taken into account, proceeding
from the combined analysis of expressions (23), (26), (27), and
(29), it is possible to point out the following independent
formation mechanisms for the ESWs under consideration:

(i) spontaneous or induced gyrotropy (the axis of gyro-
tropy is orthogonal to the plane of incidence), Ime; # 0,
Impuy #0, 4 =0;

(i) an omega medium or a pseudo-chiral medium,
ImA; #0, ImA4s #0, Ime; =0, Imp; =0, Red, =0,
Re A4 = 0;

(iii) hybridization of spontaneous or induced gyrotropy
and the asymmetric linear ME effect (a moving or pseudo-
Tellegen medium), Im4; =Im 43 =0, Ime; # 0, Im py # 0,
Re 4, # 0, Re A4 # 0.

Furthermore, as follows from an analysis of expressions
(23), (24), (26), (27), and (29), there may be several
independent mechanisms of the nonreciprocity of the spectra
of TM or TE ESWs relative to the inversion of the direction of
propagation along the media interface (w(h) # w(—h)). In
particular, the nonreciprocity of the ESW spectrum may be
due to spontaneous or induced gyrotropy (the gyrotropy axis
is orthogonal to the plane of incidence) of the BA medium
when 4 = 6, thenImez # Oforo = pand Im p; # Oforo =s.

When simultaneously

Re (e144 — e343) #0 and Ime3Im A3 =0 for o =p,

the ESW spectrum nonreciprocity mechanism is induced by

the asymmetric linear ME effect (a moving or pseudo-

Tellegen medium). For o =, the corresponding relations

are of the form Re (u; 47 — u3A4;) #0, Im p3 Im 4; = 0.
When simultaneously

Re (6144 —e343) #0 and Ime3ImAs #0 for a =p,

the ESW spectrum nonreciprocity mechanism is induced
by the hybridization of spontaneous or induced gyro-
tropy and the pseudo-chiral interaction in the BA
medium. For a =s, the corresponding relations are of
the form Re (u; A2 — pu3A1) # 0, Im 3 Im A # 0.

Considering the magnitude and sign of the coeffi-
cients appearing in the constraint equations (22), (23) of
the BA medium under discussion, the TM or TE ESW
defined by Eqns (24)-(27), (29) may be either a direct
wave (h0w/0h > 0) or a backward one (10w /0h < 0). Under
TIR conditions, this corresponds to the direction of the
energy flux carried by this ESW in the BA medium relative
to the direction of its propagation along the surface (2). As
a result, for the formation of the TM or TE backward ESW
(24)—(27), (29), it is necessary, in view of expression (24),
that

Zy
Im (n;’ aah> <0, a=p,s

(30)

under TIR conditions (see also Ref. [32]). The opposite sign in
inequality (30) corresponds to the TM or TE direct ESW (26),
(27), (29). The vanishing of the left side of inequality (30)
defines those w—h combinations for which a maximum or a
minimum forms in the ESW dispersion curve (24)—(27), (29)
in the w—#h plane.

3. Reflection of a plane wave from the single
interface between media in the resonance
excitation of an exceptional surface wave

So far, we have discussed only the conditions whereby inside
the TIR domain the amplitude of a TM or TE EW near the
surface of an optically less dense semi-infinite transparent
medium attains its maximum.

Let us now consider how a plane bulk wave in an optically
denser medium (1) reflected from a single interface of
transparent dielectrics changes when the wave frequency
and incidence angle simultaneously obey the dispersion law
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of the above ESW (24)—(27), (29) (EM is an analogue of the
Rayleigh angle [9]).

Let ¢, be the phase shift of a bulk wave with polarization «
reflected under TIR conditions from the surface of the BA
dielectric medium (23) under consideration into the optically
denser upper medium (1). Then, in view of the notation
assumed above,

Z
tan&:f%"7 a=s,p.

1
=5 G1)
Therefore, in the case (24)—(27), (29), for a wave with a
given polarization o« =p (x=s) in the TIR domain
((11;’)2 > 0), also fulfilled at the interface between media (1)
and (22), (23) are the following conditions:

Ra:17 (Pa:()v Z“ZO, stxq:Ov C:()? oa=Ss,p.

(32)

This signifies that, in the excitation in a BA medium (22), (23)
of a fast improper TM ESW propagating in an optically
denser adjacent medium (1), the total magnetic field ampli-
tude near the medium interface is twice the amplitude of the
magnetic field in the TM wave incident on the interface. This
effect is typical for the reflection of a plane TM EM wave
from the surface of an ideal metal [33] (a perfect electric
conductor [34]). In the framework of the model under
discussion, for a plane bulk monochromatic single-partial
TM wave, which is incident from the outside on the surface of
an optically transparent dielectric and whose frequency and
incidence angle correspond to the TM ESW spectrum (24)—
(27), (29), (32), the reflection will therefore be the same as
from a perfect electric conductor.

Similarly, from expressions (1), (31), and (32), it follows
that an outside plane bulk monochromatic single-partial TE
wave which is incident on the surface of an optically
transparent dielectric within the TIR domain and whose
frequency and incidence angle simultaneously correspond to
the spectrum of a TE ESW (24)—(27), (29) will be reflected, in
the context of the model under consideration, in the same way
as from the surface of a perfect magnetic conductor [34].

Here, a remark is in order. The above effect of reflection of
an outside plane bulk TM EM wave which is incident on the
surface of an optically transparent dielectric, like that from an
ideal metal, is, in a sense, the reverse effect relative to the
effect, known in optics, of the reflection of a plane bulk EM
wave from a metal, like that from a dielectric. The latter is
possible for the Drude model when the frequency of the
outside plane bulk TM wave incident on the metal surface is
greater than the plasma frequency of the metal (see, for
instance, Ref. [35]).

The appearance of frequency—longitudinal wavenumber
combinations in the frequency—longitudinal wavenumber
plane corresponding to expressions (24)—(27), (29) may be
treated, following Ref. [20], as the formation, under TIR
conditions, of a TM-type (for R, = 1) or TE-type (for R, = 1)
fast improper ESW at the interface between an isotropic
dielectric (1) and an optically less dense BA medium (22)-
(24).

It is significant that the instantaneous energy flux across
the single media interface is zero at any point in time for all of
the above fast improper ESWs. This signifies that the TM or
TE ESW (24)—(27), (29) under consideration is not a leaky
wave and exists in the optically less dense medium (22), (23)
only in the presence of a plane bulk monochromatic TM (for
R, = 1) or TE (for Ry = 1) wave standing along the normal to

the media interface in the adjacent optically denser medium
(1) with the same w and & values (see also Ref. [16]). Thisis a
consequence of the circumstance pointed out in Ref. [3] thata
leaky wave cannot be excited by an outside plane bulk wave.

We recall the case studied in Refs [36, 37]: in the reflection
of an elliptically polarized plane bulk EM wave from the
single interface between optically transparent dielectric media
under TIR conditions, the instantaneous energy flux across
the interface is also strictly zero at any point in time.
However, the necessary condition for the realization of this
effect was, according to Ref. [36], the formation of a circularly
polarized evanescent EM wave traveling along the media
interface in the optically less dense medium.

Under TIR conditions, at a single media interface the
formation of a TM or TE exceptional surface wave in the
optically denser adjacent medium (prism) is attended by a
simple [10] (pure [38]) reflection of a plane bulk wave of the
corresponding polarization (both the incident and reflected
waves belong to the same surface of refraction). However,
although the instantaneous energy flux across the medium
interface is strictly zero in this case, the ESW under discussion
cannot be treated as the locus of ‘pure’ spectrum points (as a
dissipationless localized state against the continuum back-
ground [10, 39]), since the amplitudes of the ESW and plane
waves participating in the simple reflection due to boundary
conditions are not independent, unlike those in Refs [10, 39].
This also applies to the formation of a circularly polarized
exceptional two-partial evanescent wave at the interface of
isotropic optically transparent media under TIR conditions,
which was considered in Ref. [36].

So far, everywhere above we have considered under TIR
conditions only the possibility of the enhancement of TM or
TE EWs at the single interface of optically transparent media
due to the incidence of a plane bulk wave of the corresponding
polarization. At the same time, as is well known (see, for
instance, Ref. [40]), a plane wave is no more than a physical
idealization, just because the finiteness of the real source of
excitation is ignored. Correct inclusion of this circumstance in
the framework of a more realistic model may qualitatively
alter the character of wave reflection in layered media (see, for
instance, Refs [3, 5, 9-11, 41-43]). In particular, when a bulk
EM wave incident on the media interface at the limiting TIR
angle is not plane, the fast improper EBW formed in the
optically less dense medium becomes the source of a side
wave. Note that the side wave in seismic physics is more often
referred to as a refracted or head wave [5].

4. Single interface between two media.
Resonance reflection of a quasi-plane
or quasi-monochromatic wave

As is well known, in view of the relations for surface wave
impedance (for « = p) and surface wave conductance (for
o =s) (4) introduced in Section 2, for all magnetooptical
configurations discussed above the expression for the Fresnel
reflection coefficient of a plane bulk monochromatic TM or
TE wave under TIR conditions may be represented as [12, 13]

P, = [exp (—ik,0) + Ry exp (iky0)] exp (—iwt +iht), (>0,

(33)
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(7 is the current coordinate along the b direction). Therefore,
in the immediate vicinity of the point corresponding, for a
given frequency in the frequency—longitudinal wavenumber
external parameter plane, to the spectrum of a fast ESW (24)—
(27), (29), (32), the surface wave impedance (for a TM wave)
(or the surface wave conductance for a TE wave) may be
expressed as a power series in small deviations of the long-
itudinal wavenumber around h,(w) (Z,(w,h = h,(®)) = 0).
As a result, in the immediate vicinity of (24)—(27), (29), (32),
the structure of the Fresnel reflection coefficient of the TM or
TE wave with a fixed frequency w may be represented in the
form [2, 3, 5]

h—hl(w)+ih) (o)
h—hl(w)—ih!(w)’

z
Zy(w, h! = " 2 ,
(CL), lzx(w)) 07 h¢ aZa/ah .y

Ry(w) =~
(34)

o=D,Ss.

If it is assumed that the monochromatic field source of
frequency o is infinitely far from the impedance surface and
possesses an angular spectrum F,(w, /1) in the case of a TM or
TE wave, the field structure of the reflected non-plane TM or
TE wave in the optically denser medium may be represented,
instead of by expressions (33), as

'jjtx(Cy T) = 'i]ia(Ca T) + li’m((j, T) )

Po(l7) = %f exp [—ikyu (o, )+ iht] Fu(, k) dh,  (35)
¥, 1) = % Jjo R, (w, h) exp [iky, (o, h)(+ iht] F,(w, h) dh.

As a result, in accordance with the general propositions
of the wave theory in layered media [3, 5, 9-11, 41-43], the
following conclusions are drawn from expressions (34), (35).
The fast improper ESW, which is formed in the TIR domain
in the incidence of an outside quasi-plane bulk TM or TE
wave, propagates along the interface (24)—(27), (29), (32) and
transforms into a leaky ESW with the same polarization. Asis
well known [43], in the incidence of a plane wave, its angular
spectrum is defined by the delta function. However, consider-
ing the finite angular width of an incident beam, the following
versions become possible, which permit making approximate
analytical calculations, in view of expressions (34), of the
integral on the right side of expressions (35):

|h — h;(w)‘ < |h;’(w)| ,
(o] > )

(36)
(37)

When the finite curvature of the front of a real quasi-plane
bulk wave (the finiteness of the size of the wave source) is
taken into account, at the interface the condition S,q =0,
according to calculations, is no longer fulfilled for the
majority of plane waves forming a highly directional wave
beam for o = p as well as for & = s. However, for the axial
vector of a quasi-plane TM or TE wave with a given
frequency w, the relation Re Z,(w, /) = 0 may be realized,
as before, under TIR conditions, provided expressions (24)—
(26), (28), (29), (32) hold true.

When inequality (36) holds, it is possible to expand in a
series the phase of the reflection coefficient. Taking into
account only the zero and first orders of the expansion in
small deviations of /1 from the axial beam direction under TIR

conditions gives only a shift of the reflected beam as a whole
relative to the beam trajectory determined proceeding from
geometrical optics (i.e., the reflection of a perfectly plane
wave) [3, 5, 9-11, 41-43].

When inequality (37) holds, according to Refs [3, 5, 9, 41],
a qualitative change in the shape and trajectory of the
reflected beam relative to the shape and trajectory defined
by approximation (36) becomes possible.

The above effect of excitation of a fast improper TM(TE)
ESW (like that of a TM(TE) EBW or a shear SAW), which
does nor radiate in its propagation, by an outside quasi-plane
bulk wave under TIR conditions is consistent with the
assertion of Refs [3, 5, 42] that a leaky wave (like the side
one) may be excited by a wave with a finite angular spectrum.
When expressions (24)—(27), (29) hold, this gives grounds to
expect in the TIR domain (R, = exp (ip,)) a local enhance-
ment of the Goos—Hénchen effect 4, = —0¢,/0h (see, for
instance, Ref. [5]) in the incidence of a quasi-plane TM(TE)
wave, provided its incidence angle and frequency correspond
to inequalities (36) or (37).

Although over 70 years have passed since the discovery of
the Goos—Hénchen effect [44], interest in the analysis of the
spatial evolution of the beam of bulk electromagnetic waves
incident on the interface of optically transparent media under
TIR conditions has not weakened [45, 46].

As is well known, the Goos—Hénchen effect consists of a
beam of bulk waves incident under TIR conditions on the
interface from an optically denser medium undergoing on
reflection a longitudinal shift along the line of intersection of
the sagittal plane and the media interface. The magnitude of
the Goos—Haénchen effect increases significantly when leaky
surface polaritons participate in energy transfer. This was
experimentally demonstrated with different optical config-
urations, which permitted exciting surface polaritons in the
framework of the frustrated TIR technique (cases in point, in
particular, are the Otto and Kretschmann configurations [12—
14]). However, in all of these studies, the Goos—Hanchen shift
enhancement did not result from the excitation of a surface
EM wave directly at the interface with the optically denser
medium. The necessary element of these optical configura-
tions was the inevitable presence of an intermediate layer
(structure) on the surface of the optically lower-density
medium. This is due to the fact that the formation of a
surface polariton at the interface between two media requires
that (i) one of the media be surface-active for the given values
of w and /; (i1) the same w and / values simultaneously satisfy
the TIR domain for both contacting media.

We will show that the enhancement of the Goos—Hanchen
effect for a quasi-plane TM(TE) wave under TIR conditions
may be realized even for a single interface between transpar-
ent media (1)—(6), (22), (23) when there is resonance excitation
of a leaky electromagnetic ESW with the same polarization as
the incident wave. When the relation for the Fresnel reflection
coefficient R, in expression (35) under TIR conditions is
represented as R, = exp (ip,), in view of expression (31) we
find [5, 41, 44] that the longitudinal shift of the beam of bulk
TM(TE)-polarized waves away from the limiting TIR angle
¥ = 9., assumes the form

2signh 0 (Z,c>
) a:p7s'

== | = 38
1 +(2./2,)" Oh \Z, %)

Since the Artmann relation [47] is valid, as is well known [5,
41, 43], only for incidence angles distant from grazing
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incidence, in the subsequent discussion we restrict ourselves
to the condition Z,0Z,/0h > Z,0Z,/0h to obtain from
expression (38)

2sign h 0Z, _signh
1+ (Z,/Z,)* Z,0h 22,

2 aZx
oh’

Ay = |T,| o=7p,s. (39)

Calculations show that 0Z, /0h defines the ratio of the cycle-
averaged energy flux carried by a TM(TE) evanescent wave
along the surface of an optically lower-density medium and
the reciprocal of the penetration depth of this nonuniform
wave into the optically lower-density medium.

Although relation (39) is inapplicable in the immediate
vicinity of the limiting TIR angle for an incident wave of this
type (J¢y), it shows the possibility of an increase in the Goos—
Hénchen shift for ¥ — 9, both when 0Z,/0h increases and
when Z, tends to zero.

Since evanescent wave formation inside the TIR domain
will limit the increase in 0Z,/0h, one might expect that the
realization of condition (27) will result in enhancement of the
Goos—Hainchen effect even in the case of a single interface
between transparent media possessing optical contrast (i.e.,
without introducing ‘additional interfaces’ employed in
traditional optical configurations [12—14]).

In particular, for a high-directivity beam of plane bulk
TM(TE) waves in the existence domain of a leaky TM(TE)
ESW (24)-(27), (29), the magnitude of the shift, according to
expressions (38) and (39), in view of expression (34) is of the
form [2, 5, 41, 48]

oR, 2h!

=R ™ (h—h})* + (b))

, a=p,s. (40)

As a result, in the resonance excitation of a slowly leaking
(i.e., for |h)| < |h,|) TM(TE) ESW (24)—(27), (29) at the single
interface between optically transparent dielectrics, in expres-
sion (40), h,A,(h =h]) > 1.

As a consequence, in the ray representation, much as it
takes place in the case of a side wave [5], in this case of ESW
excitation at a single interface under TIR conditions, the ray
which connects in the optically denser medium the radiation
source point and the observation point characterizes, in view
of expression (40), the nonlocal interaction of the incident
bulk EM wave with the interface. In particular, correct
inclusion of this circumstance, according to Ref. [5], has the
following consequence. When a beam of plane bulk TM(TE)
waves is incident on the interface at an angle close to the angle
corresponding to the electromagnetic ESW of the corre-
sponding polarization (4 =h, determined by expression
(27)), for h>h} the effect of focusing of the highly
directional reflected wave beam becomes basically possible,
the envelope of these rays corresponding to a caustic.
Calculations in this case do not basically differ from those
outlined in Ref. [5]. The only difference is that the straight
line, from which the distance to the caustic is found in Ref. [5],
is now determined not by the limiting TIR angle (as in the case
of side wave excitation considered in Ref. [5]) but by the angle
calculated for the given frequency o from the ESW spectrum
(27).

When it is not a quasi-plane but a quasi-monochromatic
outside TM(TE) wave that is incident on the surface of the BA
medium (22), (23) under consideration, in the vicinity of the
existence domain of the leaky ESW (24)—(27), (29) under
discussion, similarly to expression (36), for a fixed incidence

angle [49, 50]

—w'(h) —iw"(h
Ry(h) =& “’3(7) i, (h) Zy(wl(h),h) =0,
Z,
"(h) = z
wa( ) azx/aw w:u),’(h)7
where, according to expressions (24)—(27), (29),

Z,(w=w}(h),h) =0. Here, 2n/w, characterizes the life-
time of the quasistationary surface electromagnetic TM(TE)
state with w = w(h), whose finite value is due to the emission
of a bulk wave (reflected quasi-monochromatic wave packet)
propagating from the medium interface into the upper
medium. As is well known [12], the term surface electro-
magnetic state (SES) is used in reference to a surface
electromagnetic wave (SEW) whose dispersion law satisfies
boundary conditions and the energy flux in the plane of the
media interface is strictly zero.

According to calculations similar to those made in
Ref. [49], for a reflected quasi-monochromatic wave with
o = p,sand a narrow frequency spectrum, o = w, (1) + Aw,,
|Aw, /w,| < 1, under TIR conditions and ignoring signal
shape deformation,

0, (w, h)

Aty(h,w) = ”

, 4=Dp,s (42)

w=0,(h)

defines the group delay of the arrival of the envelope of the
reflected wave packet at a given point of observation
relative to the incident one (an analogue of the Wigner
formula for particle delay in the interaction region in elastic
scattering [51]). As a result, we take into account expression
(41) to find that the group delay of the pulse of a bulk
TM(TE)-polarized wave reflected from the medium inter-
face for Z, 0Z,/0w > Z, az}/aw assumes the form

2w,
Aty (w) = 5 3
(@ —0))" + (o))

o =Dp,s. (43)

Therefore, the condition w]At, > 1 may be fulfilled
for the reflected pulse only when there is a long-lived
(lw) /o)) < 1) quasistationary SES (or SEW) whose fre-
quency is equal to the carrier frequency of the wave packet
with o = w, incident from the outside. The maximum group
delay of a reflected pulse for a TM(TE) wave is determined by
the lifetime of the resonantly excited quasistationary SES of
the corresponding polarization (|At,| =2 2/w/). By analogy
with the surface electronic resonance considered in Ref. [52],
it is valid to say that relations (24)-(27), (29), (41)-(43)
correspond to the resonance scattering from a quasistation-
ary (Jo)/ow}| < 1) non-Tamm SES (or SEW) for a plane
quasi-monochromatic bulk TM(TE) wave incident on a
single medium interface (surface polariton resonance) [48].

Although the first investigations involving SESs and
SEWs were performed about 40 years ago, interest in
localized excitations of this type and attending dynamic
effects in the electrodynamics of layered media (in particu-
lar, in surface polariton resonance) is constantly growing. As
this takes place, the overwhelming majority of work in this
area is traditionally related to studies of surface polariton
excitations (electromagnetic analogues of Tamm states). For
their existence, it is necessary that at least one of the
contacting media possess additional translation symmetry
along the normal to the interface plane [53, 54].
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5. Exceptional surface waves and interference
mechanisms of evanescent wave intensity
enhancement in layered structures

As shown in Sections 2—4, in the domain of TIR at the single
interface between transparent dielectric media, the necessary
condition for the maximal intensity enhancement of electro-
magnetic TM(TE) EWs in an optically lower-density medium
in the incidence of an outside plane bulk wave with the
corresponding polarization is the strict equality to zero of
the instantaneous energy flux across the interface at any point
in time (24)—(27). We consider how, under TIR conditions,
the fulfillment of these relations on the outer surface of a
reflecting multilayer dielectric structure affects the intensity
enhancement of electromagnetic TM(TE) EWs at the inner
interlayer interfaces.

Consider a vacuum-transparent dielectric layered struc-
ture, and let the optically lower-density BA medium (22), (23)
occupy not the entire lower half-space ({ < 0) but only the
layer 0 < { < dc, whose lower surface ({ = 0) is coated with a
perfect metal (for a TM incident outside wave) or a perfect
magnetic conductor (for a TE incident wave), i.e., an
analogue of the Gires—Tournois etalon [55]. We assume that
the magnetooptical configuration, which allows the existence
of conditions (24)—(27), (29) on the surface of the BA medium
(22), (23), has remained invariable relative to that studied in
Section 4. As before, the system of Maxwell boundary
conditions (2) applies to the upper layer surface (for { = d¢)
adjacent to medium (1), while on the lower surface of the
layer, depending on the polarization of the plane EM wave
incident from the vacuum,

Eb=0, Ea=0, (=0, a=p, (44)

Hb=0, Ha=0, (=0, a=s.

As a result, for a TM(TE) wave, the transition matrix for a

layer of thickness dc of the BA medium (22), (23) under TIR
conditions takes on the following form:

() (5 Dx)

Eb cyo ¢y )\ Eb )’
1333 _ (¢ Ch)\(Ea
Hb cs, ¢, )\Hb )’

2217
C3 = “Zr—z- X Z“ sinh (n)d),
" + . n
Chy = cosh (y,/d) + =2——=% sinh (y,/d ),
t Zi 7
o 2 "
CIZ = ﬁ sinh (7[ d)
zZr+z,;
_ " "
C22 = cosh (7’] d) ﬁ sinh (V[ d)
1 X *
ZE (0, h) = A [£uon) — hIm py + py Im A} — Im (u343)]
Ap = ppy — papy
(46)
1
Z (w,h) = A [ean) —hImey — ey Im A3 + Im (e344)]

_ *
Ae =180 — £585 .

Therefore, for o = p (or o = s), the ratio of the amplitude of
the transmitted plane wave to the amplitude of the outside
incident wave on the lower surface W, ({ = 0) of the layer of a
BA medium (22), (23) is expressed, in view of expressions
(44)—(46), as

L g—d =S
Clal Z~7 +iZinz ’ m“ Clyl .

W.((=0) = (47)

As a result, when the frequency and incidence angle of the
plane bulk TM(TE) wave are simultaneously such that
Ziny({ = dc) = 0 in expressions (22), (23), and (47), then in
the excitation, in the layer of the BA medium, of a TM(TE)
ESW corresponding to Z, (w,h) =0 in expressions (45)-
(47), W,({=0) =exp(n)dc), while for Z, (w,h) =0 in
expressions (46), (47), W,({ =0) =exp(—n, dc). At the
same time, both for Zf(w,h) =0 and for Z (w,h) =
W,({=dc) =2. Therefore in the incidence of an out31de
plane bulk wave, the instantaneous energy flux is simulta-
neously zero at any point in time at both interfaces of the
structure under consideration.

Now consider the bilayer Kretschmann configuration
with a layer of BA medium (45), (46) (medium C) [14]. To
this end, we assume that there is an optically transparent one-
dimensional reflective layered structure, which comprises two
optically isotropic semi-infinite media not equivalent to each
other: A ({ > dg+dc) and D ({ <0). Their surfaces are
connected by a bilayer sandwich structure consisting of a
layer of optically isotropic medium B of thickness dg with the
transition matrix

(HBa) (Blpl BFz)(HBa)
Egb {=dy Bj B} Egb =0
(EBa> (Bf1 sz)(EBa)
Hgb ) =~ \ B3 B3 )\Hsb)

B2xl = ZOCB sinh (nzBdB) ) Blml = cosh (nszdB) )

1 .
By, = 7 sinh (n,dp) , By, = cosh (n,3ds) ,
\/ —SBkz \/hZ—SBkz
; =y 2, (48)
SBko k()

and a layer of BA medium (22), (23) of thickness dc with
transition matrix (45), (46). Let Maxwellian boundary
conditions (2) be applicable to all layer interfaces of the
structure under consideration. For a plane bulk TM(TE)
wave incident from medium A, Fresnel reflection
V,({ = dp + dc) and transmission W, ({) coefficients for one
of the inner layer boundaries (i.e., for { = dg + dc, { = dc, or
{ = 0) of the reflective layered structure under discussion are
related by the following relations:

1+ Va = Wy
(iZ@A(—l + V“))C—dlﬁdc_ 0@ (Zin(x(C) Wx)g’
{=dg+dc,dc,0 (49)
Q*({=dg+dc)=1, Q*=dc)=B*dg),

0% =0) = B*(dy)C*(dc).

where 7 is the identity matrix.
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Hereinafter, our analysis is restricted to the case when,
simultaneously,

k2 = eakl —h>>0,

i = 2 — epk2 > 0,

n%:hz—sBka>0,

(50)

2 _ 2
h epk;
ZSD -5 b

Zp="t—
D SDko ' kO

o= p7 S )
which corresponds to a plane bulk TM(TE) wave incident
from medium A on the upper surface { = dp + dc of reflective
structure (49). Calculations suggest that, under TIR condi-
tions on the outer surface of reflective structure (49), (50), i.e.,
for { = dg + dc, the maximal enhancement of the amplitude
of the excited evanescent wave with the corresponding
polarization o = p,s

Wi(CIdB-f—dc):Z, (51)

when

_ 95+ 9% 7Zps _

Zintx(c - dB +dC) - Q‘z T Q(XZD -
11 12 o

0, a=p,s. (52)

Consequently, in this case, on the surface { = dg + dc of
reflective structure (49), S,q = 0 (« = p, s). This signifies that
condition (52), in combination with expressions (50) for
o = p, defines the dispersion law of an interference excep-
tional surface TM EM wave propagating along the interface
between a perfect electric conductor and a multilayer struc-
ture (49), (50). Accordingly, for o = s, the fulfillment of rela-
tion (52) under conditions (50) corresponds to the dispersion
law of an interference exceptional surface TE EM wave
propagating along the interface between the perfect magnetic
conductor and the multilayer structure (49), (50).

Therefore, in the case of a multilayer reflective structure,
too, in the incidence of an outside plane bulk TM(TE) wave
on its surface, the greatest enhancement of the excitation
intensity of an evanescent wave with the corresponding
TM(TE) polarization stems from the realization of the ESW
mode with « =p or a =s on the outer surface of the
multilayer structure. However, equal to zero at any point in
time is the instantaneous energy flux only across the interface
between the reflective layered structure (49) and the semi-
infinite medium, from which a plane bulk wave with
polarization o = p,s falls, i.e., for { =dg + dc. Simulta-
neously, equal to zero at the remaining interfaces (for { = dc
and { = 0) is only the cycle-averaged energy flux across the
interface.

According to calculations, when Eqn (52) holds, simulta-
neously,

W,({ = dc) = 2B},
(53)
_ G+ G2,

Znlt =4O = e,

*=Dp,s,
Wx(CZO):2Q2y2a Zinzx(CZO):ZDam o=Dp,S (54)

(see also Refs [56, 57]).

In this case, for reflective structure (49), (50) under
consideration, relation (53) under the fulfillment of Eqn (52)
defines in the dissipative-free limit the greatest amplitude
enhancement of the TM(TE) evanescent wave excited in the

Otto configuration [13, 14]. In this case, medium A plays the
role of a prism, the intermediate surface-inactive layer is the
layer of thickness dg of medium B, and the surface-active
medium is the layer of thickness dc of medium C, which is
related to semi-infinite medium D by electrodynamic bound-
ary conditions (2).

As for relation (54), for reflective structure (49), (50)
under consideration, it defines, under the fulfillment of
Eqn (52) and disregarding dissipation, the greatest amplitude
enhancement of a TM(TE) evanescent wave excited in the
Kretschmann configuration [13, 14]. In this case, medium A
plays the role of a prism, the surface-active layer is the bilayer
structure of thickness dg + dc formed by the layers of media B
and C, respectively, and the surface-inactive medium is
medium D.

When the one-dimensional reflective multilayer structure
is a two-component semi-infinite photonic crystal ({ < 0)

with elementary period D = dg + dc and transition matrix
5 = ﬁ(dg)ﬁ(dc) (49) for TM(TE) waves, under TIR
conditions (Qf + Q% > 2), the greatest intensity enhance-
ment (|W,({ = 0)]> = 4) of a TM(TE) evanescent wave on its
outer surface is realized when [5§]

Zinoc(C = 0) =0,

0%5,({=-D)
exp (—=¢.D) — 0} ({=~-D)’

1
cosh (¢.D) =5 (0f; + 0%). 42 > 0.

Zina({=0) = a=p,s, (55

Relation (55) defines, for this layered structure, the law of
dispersion of Tamm-type ESWs with o = p,s (see also
Ref. [59]). When relation (55) is fulfilled, the maxima of
TM(TE) evanescent wave intensity enhancement are also
realized in the depth of the one-dimensional superlattice
under consideration, when { = —vD,v =1,2,.... Asaresult,

2
01U, 1 (x) = Upa(x)’

| | (56)
x =arcosh | = [ OF + >], o=Dp,s,
{2<Q“ 07 b

where U, (x) is the Chebyshev polynomial of the second kind
of degree vand for { =0, —vD,v = 1,2,... the instantaneous
energy flux across such an interlayer interface is zero
(S,q =0) at any point in time. Simultaneously, when
relation (55) is fulfilled, (S,q) = 0 for the interlayer interface
inside each of the elementary periods of the semi-infinite one-
dimensional photonic crystal under discussion (i.e., for
{=—-dg—vD,v=0,1,2,...), while S,q # 0.

We emphasize that, in the case of relation (53), as well as in
the case of relation (54), the greatest intensity enhancement of
the TM(TE) evanescent wave excitation by an outside plane
bulk wave of the corresponding polarization in the Otto
configuration (53) and in the Kretschmann configuration
(54) is defined by expression (52) rather than by the transverse
resonance condition [2] at the interface between the surface-
active and surface-inactive transparent semi-infinite media.
Therefore, in both specified configurations, the maximum
enhancement of TM(TE) evanescent wave excitation corre-
sponds to the formation of an ESW of the corresponding
polarization o =p,s in this interference-type reflective
structure.

Woc(C:()) =2, Woc(C = _VD) =
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6. Concrete example of exceptional surface wave
formation in a bianisotropic medium

As an example of a BA medium we consider the two-
sublattice (M, , are the magnetizations of the sublattices,
M| = |[M3| = Mj) model of an exchange-collinear uniaxial
(z-axis) antiferromagnet (AFM) [60, 61]. Following Ref. [62],
for a mechanism providing in the AFM the interaction
between the spin subsystem and constant external electric
field Ey, we consider quadratic magnetooptical interaction
(QMOI). In this case, in terms of ferromagnetism
(m=(M; +M,)/(2M,)) and antiferromagnetism (1=
(M} —M;)/(2My)) vectors, the thermodynamic potential
density of the AFM under consideration takes on the form

5 b b m
F:M02<5 m2—§13+7113;§—2mh—%(mp)2

2 2 2
T 2 Smono SIiono Pyt Py P
—2ap) -2 m2p2- 2 2p SESD S )
Py =g mP—s >+< TR T ’

(57)

where ¢ and b, b; are the respective constants of uniform
exchange and magnetic anisotropy, h is the renormalized
magnetic field, E and P are the electric field and polarization
vectors, respectively, x and x; are the longitudinal and
transverse dielectric susceptibilities, r,,, 7/, 5y, and s; are the
QMOI coefficients.

Itis traditionally assumed (see, for instance, Ref. [63]) that
all coefficients in expression (57) are functions of temperature
and pressure. When b < 0, which corresponds to the collinear
phase with hard magnetic axis z, for b; > 0 in a constant
magnetic field Hy || x in the ground state,

my || X, l()”y7 (58)
where my and l, are the equilibrium ferromagnetism and
antiferromagnetism vectors.

According to calculations, in the framework of the AFM
model (57) under consideration, the additional application,
orthogonally to Hy || x, of a constant external electric field Eg,
both orthogonally and parallel to the easy magnetic axis, does
not change the ground state (58) relative to that for |E¢| = 0.
As a result, for the model of a magnetic medium for Ey || y, in
the linear approximation in the amplitude of small oscilla-
tions, the constraint equations have a structure similar to that
of expressions (22), (23) and may be represented in the form
(see Ref. [61])

Loc(@) 0 0
m = 0 zylow) —ig(o) [H
0 izw) (o)
0 Pylw) —ifi(o)
+ (ﬁs(w) 0 0 E
iBy(w) 0 0 (59)
oy () 0 0
p= ( 0 typ(w) —io(w) | E
0 10(*(0\)) O(ZZ(CU)
0 B3(w) —ify(w)
+ <ﬁ4(w) o 0 |H
if(w) 0 0

where
2 2 2
(0] (0] (0]
toe =T 22 =T, -5, y.=T.-F
A,\x X AAF ) X},y y AF bl ){_z z AF k)
2
WEW (0]
Ax =/ TVTZLa O‘xx:ax0+Rx7F7
i AF AF
2
w WAFW
ty =+ Ry 22 o= RR
AF AF (60)
2
azz:“zo+Rz%7 ,81 = \/Rsz DAF®D )
AAF AAF
2 2
WFEW W (0]
fo=VRT. —— ., Bi=/RT, -, Bs=/RT 2L,
AF AF AAF

2 2
AA]:ZCUAF*CU .

Ap = w2F —w? s
Here, T; is the static susceptibility, i = x, y, z, a; + R; is the
static dielectric susceptibility with the inclusion of the effect of
the magnetic subsystem (i.e., with the inclusion of quadratic
magnetoelectric interaction [62]), and war, F are the frequen-
cies of uniform AFM resonance for quasi-antiferromagnetic
and quasi-ferromagnetic modes of the spin wave spectrum of
unlimited AFM [61, 64].

Therefore, from the viewpoint of electromagnetic proper-
ties, the uncompensated single-phase exchange-collinear
AFM dielectric possesses simultaneously gyrotropy, the
linear antisymmetric magnetoelectric effect, and pseudo-
chirality, i.e., a concrete example of a BA medium (22), (23).

We assume that the semi-infinite AFM (57)—(60) occupies
the lower semi-space (y < 0) relative to the nonmagnetic
dielectric (1) and that the standard system of boundary
electromagnetic conditions (2) applies to the interface
between the magnetic and optically isotropic nonmagnetic
media. As suggested by calculations in this case, for k € yz
under refraction conditions, in the description of an outside
TM(TE) wave incident on the surface of the uncompensated
AFM with ground state (58) under consideration, the rela-
tions for the amplitude transmission coefficient T, for the
TM(TE) wave coincide structurally with relations (3) as
before. However, expressions (26) for Z, and Z;, depending
on the polarization (¢ = p,s) of an evanescent TM(TE) wave
excited in a magnet under TIR conditions, assume the follow-
ing form (q||y, k € yz) for the magnetooptical configuration
under consideration:

Eyy Ex 8*54*&:51
AN E— Sy S T N
P ko(eyye-: —€2) ( M+ Eyy o Eyy > (6D

*

" __ Ezz 5::/?4_8*31 2
o[ oenhoet)

p
Eyy

ZZ

(8}‘}"822 -

K ) (tastzz — ) } .
0 )

Eyplzz

where f; = 4np;, j=1,2,3,4,

A R— (,7: AP e T 2) . (62)
ko(:uyy Mo, — K ) :uyy lu}w
n oo\ 2
’75// _ l::uzz <h _ kO :uzzﬁfﬁ ‘M*ﬁ2>
:uyy Uz

,kg

e Gy 522)} 2
My He:



884 Yu V Gulyaev, S V Tarasenko, V G Shavrov

Physics— Uspekhi 63 (9)

Figure 1. Domains of bulk (hatched) and evanescent (not hatched) TE
wave formation in semi-infinite AFM (59), (60) for Eq = 0, mg || x, lo || y,
k € yz: (a) qy; the dotted line—ESW spectrum (63) [61]; (b) q] z;
characteristic frequencies are determined from relations pu,,(ws,) =0,
too (052) = 0, ex(0sy) = 0, 11, (1)1, (1) — 12(Q1) = 0. Dotted line—
ESW spectrum 72 = kZey ...

o a o b
N Qi
—~ O » NN
NI
‘CSF ........ \t;UF
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Figure 2. Domains of bulk (hatched) and evanescent (not hatched)
TE wave formation in semi-infinite AFM (59), (60) for Eq||q|/1o ||y,
my || x, k € yz, for (a) Eoq >0, (b) Eoq < 0. Additional, relative to
Fig. 1, characteristic frequencies are defined as Q4 = min {Q, Q0 },
Er(0s) =0, £en(Q2)11-(Q02) — B3 (R2) =0,  Qp = max {Qq, 0}
Dotted line— spectrum of exceptional surface TE wave (64).

For Ey =0, simultaneously f; ;=0 and R, ,.=0 in
constraint equations (59), (60), i.e., both the linear magneto-
electric effect (f3,=0) and the pseudo-chiral effect
(B, , =0) are absent in the system. In this case, in the w—h
plane, the domains of evanescent TM(TE) waves with k € yz
for a given propagation geometry are determined from
expressions (59)-(62) by the condition (’I;_/)Z > 0. The pre-
sence of gyrotropy has the result that the condition Z; =0
may be met for q|| y in the TIR domain for the model of a
centrally symmetric uncompensated AFM under discussion.
In accordance with expressions (24)—(27) and (29), this
signifies the possibility of the formation of a single-partial
TE ESW (similar to that considered in Ref. [5]), which
corresponds to the interface between an uncompensated
AFM and a perfect magnet. For the w—/ combinations
defined by this condition, the instantaneous energy flux
across the magnetic-nonmagnetic medium interface will be
zero at any point in time. As a result, for the magnetooptical
configuration (k € yz, q||lp||y) under consideration, the

dispersion equation for a TE ESW assumes the form

2

hzz%sxxuw, M o uzs, (63)
vy

i.e., the spectrum of this ESW with « = s is unidirectional

(Fig. 1).

In the case of a TM wave, for Ej = 0, the above effects are
nonexistent at the boundary of the semi-infinite AFM model
under consideration.

For Ej # 0, in constraint equations (59), (60), f,_4 # 0
and R, , . # 0. As a result, resonance (four-fold) enhance-
ment of the excitation intensity of not only a TE-type but also
of a TM-type evanescent wave near the surface of a semi-
infinite AFM medium becomes possible under TIR condi-
tions. For Eg ||q||1||y and k € yz, the analytical expressions of
these curves, in view of expressions (21), (26), (27) and (59),

(60), are of the form
(h - kOB.’))z = k()zgxx ,u'yy )

(64)
L Sl L N S
My Hyy
(h+ koPa)” = kit oty (65)
Ex

S pgy Bl

&y &y

Therefore, the spectra of the ESW (both TE and TM)
under consideration not only are characterized by unidirec-
tionality relative to inversion of the propagation direction
(h — —h) but may correspond, depending on the magnitude
of h, to forward (h0w/0h > 0) or backward (h0w/0h < 0)
waves, and may have extremum points for / £ 0. As follows
from expressions (64), (65), the frequency range of the
existence of ESWs (64), (65) and therefore the condition of
attaining the maximum of evanescent TM(TE) wave intensity
(T, = 2)in Eqns (1) depend on whether Eg, By, and hmake up
a right-hand or left-hand triple of vectors as well as on their
relative magnitude. Some possible versions of the spectrum of
exceptional surface TE waves are shown in Fig. 2. In
particular, as is clear from Fig. 2, there are frequency ranges
in which the ESW can change the sign of the group velocity
under variations of the magnitude of # without changing the
sign of the phase velocity.

Furthermore, for Eq||q||1|| y and k € yz, the formation of
a TM(TE) ESW near the surface of a semi-infinite AFM
medium (57)—(62) is possible even for |Hy| = 0, i.e., when
simultaneously |my| = 0 and 1y || y in the equilibrium state. In
this case, the relations for the TM(TE) ESW spectrum take on
a form which also corresponds to expressions (24)—(27), (29):

(66)
(67)

2 2 R
h :kosxxﬂyy? ﬁ2>07 OC:S,

h? = kg,uxxsy_‘,, —B1 >0, a=p.

In this case, relations (66), (67) correspond to only waves
of the forward type without extremum points. However,
the frequency ranges of the existence of exceptional surface
TM(TE) waves depend on the sign of the quantity Eyq
(Fig. 3).

Until now, we have considered only gyrotropic or pseudo-
chiral interactions for the mechanisms allowing under TIR
conditions the formation of TM(TE) ESWs on the surface of
an optically transparent semi-infinite dielectric. However,
other mechanisms of formation of waves of this type on the
single interface of optically transparent dielectrics are also
possible under TIR conditions. In particular, they may be the
nonlinear properties of an optically lower-density semi-
infinite dielectric medium. By way of illustration, Section 7
exemplifies the realization of this mechanism when an outside
plane bulk wave with & = sisincident on the surface of a semi-
infinite optically transparent dielectric with a Kerr nonlinear-
ity from an optically transparent isotropic dielectric.
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Figure. 3. Existence domains of bulk and evanescent TE waves in an AFM
(59, (60) for jmg| = 0, Eo ||q||1o || v, k € yz. The dashed-dotted and dotted
curves are the TE ESW spectrum (66) for Eoq > 0 and Eyq < 0, respec-
tively.

7. Exceptional surface wave
in an optically transparent nonlinear dielectric

As an example, consider the case when the upper half-space is,
as before, occupied by optically isotropic dielectric (1), while
the optically lower-density semi-infinite medium is an
optically transparent nonmagnetic dielectric with a positive
Kerr nonlinearity and constraint equations of the form [65,
66]

D=E+4d[EE, B=H, a>0. (68)
In this case, under TIR conditions, the spatial structure of the
electric field of the evanescent TE wave with k € yz propagat-
ing with q||z along the surface of optically lower-density
medium (68) may be, according to Refs [65, 66], represented
in the form

2 n . .
Ec=y/o—— " exp(ihy— o),
‘ \/; cosh [n,(z — z)] exp (ihy —iwf)

113 =h? —kgso.

(69)

When standard Maxwellian boundary conditions apply
to the interface between the nonmagnetic dielectrics under
consideration, on the strength of formulas (69), the surface
wave conductance is of the form Zs = #,tanh (1,z) in this
case. Therefore, an outside plane bulk TE EM wave incident
on the surface of such a nonmagnetic dielectric will reflect in
the same way as from the surface of a perfect magnetic
conductor when zy = 0. To do this, the following condition
must be met:

h? = k(e + 2a4?) . (70)
In other words, for given values of the frequency, incidence
angle, and nonlinearity parameter, the formation of a TE
ESW is possible only for a certain amplitude 4 of a plane bulk
TE wave incident from the outside. Therefore, this ESW is a

nonlinear wave, and formula (70) defines the angle at which
the plane bulk TE wave should be incident on the surface of
the semi-infinite nonlinear dielectric from the optically
isotropic linear dielectric and which corresponds, according
to Ref. [65], to the limiting angle of nonlinear TIR. As also
suggested by calculations, not only is the cycle-averaged
energy flux across the medium interface equal to zero when
formula (70) holds (i.e., when H,(z =0) = 0) (as shown in
Ref. [65]), but also the instantaneous energy flux across the
surface of the semi-infinite nonlinear dielectric is zero at any
point in time.

It is noteworthy that there is another way to fulfill the
relation Hb = 0 (7 = 2) under TIR conditions in the same
optical configuration. This version, as suggested by calcula-
tions, corresponds to the case when an outside plane bulk TE
wave with an amplitude A, which is incident on the surface of
a semi-infinite nonlinear dielectric under consideration,
excites a bulk nonlinear TE wave with a constant amplitude
24 in the nonlinear dielectric (68). The spatial field structure
and the dispersion law of this wave are, respectively, defined
by the following relations:

E, = 2Aexp (ihy —iot), h*=ki(eo +4ad?). (71)
Unlike relations (69), (70), this version may be treated as the
excitation of a nonlinear TE EBW in optically lower-density
dielectric (68) by the outside plane bulk TE wave. Note that,
according to Ref. [65], for given values of the frequency and
amplitude A of an incident plane bulk wave, the interval of
incidence angles kg (eo + 2a4?) < h* < k@ (eo + 4aA?) corre-
sponds to the hysteresis domain in the reflection of a plane
light TE wave from the surface of an optically transparent
nonlinear medium.

8. Conclusions

So, for a plane bulk TM(TE) wave incident on the surface of
an optically transparent semi-infinite anisotropic dielectric
under TIR conditions, such combinations of frequency and
incidence angle are basically possible whereby inside the TIR
domain the instantaneous energy flux across the interface is
zero at any point in time (in an optically lower-density
dielectric they correspond to a fast improper undamped
exceptional surface wave of the TM or TE type, respec-
tively). In this case, the imaginary part of the surface wave
impedance (for the TM wave) or of the surface wave
conductance (for the TE wave) turns to zero. As a conse-
quence, the amplitude of an excited evanescent TM(TE) wave
will be twice the amplitude of the plane bulk wave with the
same values of the frequency and longitudinal wavenumber
with the corresponding polarization incident on the interface
from the optically denser medium. As a result, an outside
plane bulk TM(TE) EM wave incident on the surface of a
transparent dielectric, whose frequency and incidence angle,
under TIR conditions, simultaneously satisfy the ESW
spectrum (24)—(26), (28), (29) of the corresponding polariza-
tion, will be reflected in the same way as from a perfect
electromagnetic metasurface of the corresponding type (the
TM wave reflects as if from a perfect electric conductor and
the TE wave as if from a perfect magnetic conductor), which
corresponds to the EM analogue of the Rayleigh angle [9].
Consider the case when the finiteness of the angular
spectrum of an outside TM(TE) wave is taken into account.
According to calculations, even for a single interface between
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transparent media, under TIR conditions, a local lengthening
of the longitudinal shift of the TM(TE) wave beam along the
interface is possible due to the resonance excitation of a leaky
ESW of the corresponding polarization. This nonlocal
interaction of the outside incident EM wave with a single
interface makes basically possible the focusing of the highly
directional reflected beam and the formation of a caustic for
the envelope of reflected waves (in perfect analogy with the
well-known similar effect induced by a side wave). Accord-
ingly, in the incidence of a wave pulse with a plane front, even
in the case of normal incidence, in the reflection under TIR
conditions a sharp increase in its delay time becomes possible
when the incident wave frequency corresponds to the
dispersion law of a fast ESW with a zero longitudinal
wavenumber.

This signifies that a single interface between transparent,
optically isotropic, and bianisotropic dielectric media may,
under certain conditions, be treated as a special class of
structures capable of maintaining the mode of a leaky surface
EM wave (leaky wave structures). Traditionally, such systems
in optics were systems with more than one interface of a
platelet type or multilayer structures, which border on an
optically denser semi-infinite medium.

Therefore, an ESW may be treated, considering the non-
local nature of its interaction with a single media interface, an
additional (with respect to those mentioned in Ref. [67]) type
of diffraction wave.

When an outside plane monochromatic bulk TM(TE)
wave is incident on the surface of a multilayer transparent
reflective plane-layered structure, the condition for attaining
the highest excitation intensity of an EW of the corresponding
polarization now turns out to be related to the excitation in
this layered structure of an interference exceptional surface
wave of the corresponding polarization. However, for this
fast improper EM wave inside the TIR domain, the
instantaneous energy flux across the interface is zero at any
point in time only on the outer surface of the corresponding
layered structure (unless it is a one-dimensional photonic
crystal). As a result, at this interface, the amplitude of an
excited evanescent TM(TE) wave will be twice the amplitude
of a plane bulk wave with the corresponding polarization
incident from an optically denser medium on the surface of
the layered structure. Simultaneously, at other (inner)
interfaces of this reflective layered structure, the intensity
enhancement of an evanescent wave with the same polariza-
tion (TM or TE) is also possible, and it may far exceed the
four-fold one.

Note that this result correlates closely with the earlier
investigations of why, even in the dissipationless limit, both in
the Otto and in the Kretschmann configurations, the criterion
for maximizing the excitation intensity of a surface TM(TE)
wave is not the fulfillment of transverse resonance condition
[2] at the interface between semi-infinite surface-active and
surface-inactive media (see, for instance, Refs [68—72]).

Here, a note isin order. The definition of an ESW includes
the condition that the instantaneous energy flux across the
plane interface with an optically denser medium (prism), from
which a plane bulk wave of the same polarization is incident
under TIR conditions, be strictly zero, making the existence
of this ESW highly hypothetical. However, the frequencies,
the longitudinal wavenumber, and the polarization deter-
mined from the dispersion equation of this ESW correspond
to the maximum amplitude enhancement of the correspond-
ing EW excited in this case in the optically lower-density

layered reflective structure adjacent to the prism. This permits
pointing out a certain analogy between the notion of an ESW
considered above and the notion of a praphase [73], which
was proposed in Refs [74, 75]. A praphase is a hypothetical
high-temperature phase which establishes a symmetry rela-
tion to lower-symmetry phases symmetry-unrelated to each
other, which are realized in a real substance due to a phase
transition. In this case, the phase itself is not observable in
reality. The properties of such a praphase are determined
analytically by analyzing the properties of low-symmetry
phases realized below the point of this phase transition [73].

All the aforesaid effects have analogues not only in the
acoustics of reflective multilayer structures (for instance,
those similar studied in Refs [9-11, 76]), but also in the spin-
wave dynamics and electrodynamics [77, 78] of layered media.

This study was carried out in the framework of a state
assignment.
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