
Abstract. We discuss the nature of additional (redundant from
the point of view of selection rules) optical phonons observed in
most crystals with ion±covalent bonds between atoms, including
in their solid solutions. These `redundant' phonons are located in
the frequency range of the longitudinal±transverse splitting of
fundamental phonons, where the real part of the crystal permit-
tivity is negative. They are also split by the crystal field into
transverse and longitudinal phonons such that the frequencies of
redundant longitudinal phonons are lower than those of redun-
dant transverse phonons and the oscillator strength of these
phonons is negative.
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oscillator strength, inverted oscillator, effective ion charge,
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1. Introduction

The dynamics of the crystal lattice of binary crystals with ion±
covalent bonds betweenA2B6 atoms are described well by the
simplest model of rigid ions [1, 2]. For a diatomic isotropic
crystal with ZnS-type cubic symmetry, the frequencies of
transverse, oTO, and longitudinal, oLO, phonons are given
by [1±3]

o 2
TO � o 2

0 ÿ
4p
3

e 2B
sm

; �1�

o 2
LO � o 2

0 �
8p
3

e 2B
sm

; �2�

whereo 2
0 � ÿ�1=m�

P
l F

N
ÿ
l
�ÿ
�
,o0 is the frequency of triple-

degenerate atomic vibrations with long-range Coulomb
forces ignored, FN

ÿ
l
�ÿ
�
are short-range force constants

independent of the position of ions with respect to the crystal
surface, m � m1m2=�m1 �m2� is the reduced dipole mass, m1

andm2 are the respective masses of positive and negative ions,
l is the cell number, and s is the unite cell volume. The long-
range Coulomb field of ions in single crystals partially lifts the
degeneracy from triple-degenerate vibrations with the fre-
quency o0, splitting it into the double-degenerate transverse
vibrations oTO and nondegenerate longitudinal vibrations
oLO, but not changing the symmetry of atomic vibrations.

As follows from (1) and (2), the frequencies of long-
itudinal optical phonons must always be higher than the
frequencies of transverse phonons:
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where e1 is the crystal permittivity at frequencies greatly
exceeding phonon frequencies, and e �S is the Czigeti
charge [4]Ð the positive and negative macroscopic ion
charge used to describe the crystal lattice dynamics in the
rigid lattice model [1±3].We note that when the frequencies of
optical phonons aremeasured, expression (3) gives the Czigeti
charge determining the degree of ionicity of an ion±covalent
crystal.

Optical phonon frequencies are typically obtained from a
standard expression for the complex permittivity e�o� of a
crystal with two atoms in the unit cell in the quasiharmonic
approximation [2, 3]:

e�o� � e1 � �e0 ÿ e1�o 2
TO
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The frequencies oTO of transverse optical phonons (the TO
mode) correspond to themaximum of the functiono Im e�o�,
while the function o Im �ÿeÿ1�o�� has a maximum at the
frequency oLO of longitudinal optical phonons (the LO
mode):
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The half-width of the function o Im e�o� gives the constant g
determining the decay of phonons. The crystal permittivity
e�o� is usually obtained from an experimental reflection
spectrum after the Kramers±Kronig integral transforma-
tion. The oscillator strength of TO phonons STO � e0 ÿ e1
can be determined by several methods:
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where R0 and R1 are reflection coefficients at respective
frequencies o5oTO and o4oLO, which cannot always be
measured with high photometric accuracy. The value of
STO � e0 ÿ e1 can be determined more accurately from the
imaginary part Im e�o� � e2�o� of the permittivity for
o � oTO:

e0 ÿ e1 � gTO
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or from the Kramers±Kronig relation
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This clear and orderly picture for ideal crystals without
crystal lattice defects is distorted by the existence of features
in the IR reflection spectra of real crystals with ion and ion±
covalent bonds between atoms. The A2B 6 semiconductor
crystals always contain impurity atoms of the same groups
of the Periodic system, which are often considered isotopic
impurities, and also atomic vacancies. This gives rise to
additional local slot or resonance (quasiresonance) vibra-
tional excitations and to the defect-induced density of phonon
states [5]. At high concentrations of impurity atoms, solid
crystalline solutions can be formed. The compositional
disorder of a solid solution modifies structural, vibrational,
and optical properties of crystals. These changes lead to the
appearance of features in the lattice dynamics of triple
substitution solutions: the one- and two-mode or intermedi-
ate behavior of vibrational frequencies oTO and oLO in the
system [6±8]. In most of these crystals, and especially in their
triple A1ÿxBxC solid solutions, where atoms A and B belong
to the same group of the Periodic table, additional (to the
selection rules) optical phonons are observed at the center of
the Brillouin zone. These redundant optical phonons have
inverted longitudinal, o add

LO , and transverse, o add
TO , frequen-

cies. The most interesting cases are those where o add
LO < o add

TO .
In solid solutions of polar compounds of theA1ÿxBxC type, in
contrast to the limit components AC and BC, the elementary
cell contains not only the A±C and B±C dipoles but also the
A±B dipole, which is an order of magnitude weaker than the
main ones [7±10].

In what follows, we consider the appearance of these
additional dipoles and related optical phonons and also
attempt to explain their nature using the example of single
crystals of Zn1ÿxCdxS, Zn1ÿxCdxSe, Zn1ÿxCdxTe, and
ZnSexS1ÿx solid solutions.

2. Experiment

The main parameters of the crystal lattice dynamics (optical
phonon frequenciesoTO andoLO in the center of the Brillouin
zone (k � 0), the phonon lifetime, oscillator strengths, etc.)
are obtained from experimental IR reflection spectra and

Raman spectra. The reflection spectrum gives the permittivity
of the crystal containing most of the required parameters:
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where oTO; j, STO; j, and gTO; j are the respective frequency,
oscillator strength, and decay constant of the jth transverse
mode, and e1 is the high-frequency permittivity caused by
interband electron transitions. In the quasiharmonic approx-
imation, when gTO; j 5oTO; j, the expression
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can be obtained [11], where oLO; j, SLO; j, and gLO; j are the
respective frequencies, oscillator strengths, and decay con-
stants of longitudinal optical vibrations (phonons).

Spectral dependences Im e�o� and Im �ÿeÿ1�o�� with
e�o� in form (8) and (9) contain j maxima each at the
respective frequencies oTO; j and oLO; j. The width of each
such peak is equal to the corresponding decay constant gTO; j
or gLO; j. The oscillator strengths of weakly decaying (when
gTO; j; gLO; j 5oTO; j ) transverse and longitudinal vibrational
modes are described by the expressions [2, 3, 9±15]
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The crystal permittivity e�o� can be calculated from the
experimental reflection spectrum R�o� using Kramers±
Kronig integral relations. The parameters e1, oTO; j, STO; j,
and gTO; j in (8) can also be determined from the measured
reflection spectrum of a sample by finding the best fit of the
calculated spectrum R�o� to the measured reflection spec-
trum [16].

Figure 1 shows IR reflection spectra for three
ZnxCd1ÿxTe single crystals at room temperature for nor-
mally incident nonpolarized radiation andx � 0 (spectrum 1),
x � 0:05 (spectrum 2), and x � 0:1 (spectrum 3) [12±15].
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Figure 1. IR reflection spectra of CdTe (curve 1), Zn0:05Cd0:95Te (curve 2),

and Zn0:1Cd0:9Te (curve 3) single crystals [14].
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Figure 2 shows the functions Im e�o� and Im �ÿeÿ1�o��
for two single crystals Zn0:05Cd0:95Te (curves 1 and 2) and
Zn0:1Cd0:9Te (curves 3 and 4), reconstructed from spectra
presented in Fig. 2. The maximum of curve 1 corresponds to
the optical phonon oTO; 1 � 139 cmÿ1, the first maximum of
curve 3 corresponds to the phonon oTO; 1 � 141 cmÿ1, and
the second, weak maximum corresponds to the phonon
oTO; 2 � 167 cmÿ1. The maximum of curve 2 corresponds to
the optical phonon oLO; 1 � 170 cmÿ1, while the maxima of
curve 4 correspond to two longitudinal phonons at
oLO; 1 � 176 cmÿ1 and oLO; 2 � 162 cmÿ1. We can clearly
see from the figure that oLO; 2<oTO; 2.

It follows from the Lyddane±Sachs±Teller relation
o2

LO=o
2
TO� e0=e1, which is valid in the strictly harmonic

approximation (g � 0) for single-oscillator crystals [2], that
oLOÿoTO��e0ÿe1�oTO=2e1. ForoLO; 2<oTO; 2, the quantity
oLO; 2 ÿ oTO; 2 � �e loc0 ÿ e loc1 �oTO; 2=2e loc1 is negative, which
means that the oscillator strength of this phonon,
STO; 2��e loc0 ÿe loc1 � � �gTO; 2=oTO; 2�Im e�oTO; 2�, is also nega-
tive. Here, e loc1 and e loc0 are the effective permittivities at
respective frequencies o > oTO; 2 and o < oLO; 2 [9, 10]. We
note that both these additional phonons,oTO; 2 andoLO; 2, are
located in the frequency range between oTO; 1 and oLO; 1. It is
in this frequency region that the real part of the permittivity of
crystals is negative [12±15].

Figure 3 presents the reflection spectra of Cd1ÿxZnxS
single crystals of solid solutions at room temperature for
normally incident linearly polarized IR radiation with E ? c
(c is the optical axis of the crystal) for x � 0 (curve 1),
x � 0:40 (curve 2), x � 0:65 (curve 3), and x � 0:80
(curve 4) [17].

The functions Im e�o� and Im �ÿeÿ1�o�� were obtained
from these spectra, and the frequencies of optical phonons
and their oscillator strengths were calculated using these
functions. Figure 4 shows the dependence of optical phonon
frequencies for Cd1ÿxZnxS single crystals of solid solutions
on the solid solution composition. Along with the funda-
mental band of residual rays, the spectra of solid solutions
exhibit a weak band absent in the spectra of pure components
(ZnS and CdS).

The vibrational frequencies of impurity atoms (in the
mass defect approximation) are well described by the

Vinogradov theory [18] at concentrations x < 0:3 and
1ÿ x < 0:3 if the density of optical phonons and vibration
amplitudes of atoms in crystals without impurities are
known. It was shown in [19] that theoretical calculations of
the Zn1ÿxCdxS solid solutions [18] using the phonon density
in ZnS from [20] described the experimental results in [17]
unexpectedly well in the whole concentration range, includ-
ing the frequencies of additional (inverted) phonons, without
fitting parameters. Additional phonons in Zn1ÿxCdxS were
assigned to quasilocal vibrations of Cd and ZnS atoms.
These quasilocal vibrations fall into the quasigap in the
optical phonon density in ZnS [9, 10, 19].
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Figure 2. Functions Im e�o� and Im
ÿÿ eÿ1�o�� for Zn0:05Cd0:95Te

(curves 1 and 2) and Zn0:1Cd0:9Te (curves 3 and 4) single crystals [14].
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Figure 3. IR reflection spectra of single crystals of solid solutions: CdS

(curve 1), Cd0:6Zn0:4S (curve 2), Cd0:35Zn0:65S (curve 3), and Cd0:2Zn0:8S

(curve 4) [17].

350

o
,c
m
ÿ1

o
,c
m
ÿ1

300

250

350

300

250

LO1

TO1

TO2

LO2

0.5 1.00

x ZnSCdS

Figure 4.Dependences of optical phonon frequencies in Cd1ÿxZnxS single

crystals on the solid solution composition [17, 19].

August 2020 Optical phonons with a negative oscillator strength 777



Figure 5 shows the results of the solution of the
Vinogradov equation for several impurity atoms substituting
sulfur atoms in ZnS with m � � 0 (sulfur atom vacancy),
m � � 16 (oxygen), m � � 79 (selenium), m � � 127:6 (tell-
urium), and m � � 112:4 (cadmium substituting Zn atoms).

The dispersion of optical phonons in the Brillouin zone is
small for almost all the A2B 6 compounds and is comparable
to the LO±TO splitting in a crystal field at the center of the
Brillouin zone. As a result, the density of optical phonons
splits, as it were, into the density of transverse optical
phonons and the density of longitudinal phonons, and a
quasigap with a small density of states appears between
them. The quasilocal (or quasiresonance) vibrations of

many impurity atoms substituting S and (or) Zn in ZnS fall
just into this quasigap. As mentioned, the real part of the
permittivity is negative in the frequency range between the TO
and LO phonons of pure ZnS, which causes the frequency
inversion of longitudinal and transverse vibrations of
impurity atoms, thereby making the oscillator strength of
these vibrations negative.

The reflection spectra of the family of ZnSexS1ÿx crystals
also exhibit additional inverted optical phonons in the high-
frequency band of residual rays (in ZnS-like modes) in the
form of a small dip [21±23]. The frequency range between the
ZnS-like TO and LO modes contains two additional modes.
One of them (at � 300 cmÿ1), clearly observed in Raman
spectra and enhanced due to the Fermi resonance, is assigned
to a second-order line, while the other (near 320 cmÿ1) is
assigned to the quasiresonancemode of impurity Se atoms for
small x [21±23]. Figure 6 presents the frequencies of optical
phonons obtained from IR reflection spectra [21±23]. The
concentration dependence of the ZnS- and ZnSe-like TO and
LO modes is unambiguously interpreted as the two-mode
behavior of optical phonons in solid solutions and agrees well
with the results of all the known studies of optical phonons in
ZnSexS1ÿx.

The additional 320 cmÿ1 mode has an inverted TO±LO
doublet, which is well confirmed by calculations for vibrations
of the Se impurity in a ZnS crystal in themicroscopic theory of
the crystal lattice dynamics at low impurity concentrations
[9, 21] (see Fig. 5). The additional � 300 cmÿ1 mode also
demonstrates the inverted TO±LO doublet. This mode is also
observed in Raman spectra and is assigned to a second-order
line [21±23].

It was previously assumed in [7, 8] that in solid A1ÿxBxC
solutions, in addition to usual normal dipole oscillatorsAÿC
and BÿC, the AÿB oscillator can also be active. It follows
from (3) that the effective microscopic ion charge e �S can be
determined from experimental data. This charge was pre-
viously measured for A2B6 compounds with an accuracy
of �0:02 [24] to be e �S �ZnS� � 0:88e; e �S �ZnSe� � 0:72e;
e �S �ZnTe� � 0:65e; e �S �CdS� � 0:87e; e �S �CsSe� � 0:83e; and
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e �S �CdTe� � 0:74e. Thus, for the ZnSexS1ÿx alloy, the
difference between the charges of sulfur and selenium ions
under the replacement of sulfur atoms by selenium atoms is
0:16e. This means that in an electrically neutral crystal cell of
a solid solution, an SÿSe dipole should appear with an
oscillator strength one tenth that of the Zn±S and Zn±Se
dipoles, because its charge is �0:08e, and not about 0:8e, as
for pure compounds. We can see from experimental values of
ion charges in the A2B 6 compounds presented above that an
S±Se dipole can exist in a solid ZnSexS1ÿx solution.

In the system of solid Zn1ÿxCdxSe solutions, additional
inverted phonons were also discovered in the frequency range
where the real part of the crystal permittivity is negative:
between fundamental TO and LO phonons [25, 26]. The

reflection spectra of single crystals of solid Zn1ÿxCdxSe
solutions look similar to the spectra of Zn1ÿxCdxS crystals
(Fig. 3). These spectra were used to obtain the frequency
dependence of the crystal permittivity, optical phonon
frequencies, phonon lifetimes, and oscillator strengths.
Figure 7 presents the concentration dependences of optical
phonon frequencies in Zn1ÿxCdxSe crystals.

The authors of [25] theoretically found the normal
vibrations of atoms in the isodisplacement model [6] taking
the interaction of ZnSe- and CdSe-like vibrations into
account. The fundamental assumption of this model is that
the anions and cations of ZnSe (CdSe) groups vibrate in phase
with the same amplitude, and each ion is subjected to forces
statistically averaged over all neighbors. The concentration
dependences of optical mode frequencies (Fig. 7) and
oscillator strengths (Fig. 8) calculated for solid Zn1ÿxCdxSe
solutions agree well with experimental data.

The atomic displacement amplitudes have also been
calculated (Fig. 9). It is shown that except for the Zn±Se and
Cd±Se dipoles, vibrations exist in which Se atoms are in fact
immobile, while the Zn and Cd atoms vibrate with respect to
each other, forming a weak Zn±Cd dipole.

For x � 0, the Zn and Se atoms oscillate out of phase in
the fundamental mode, which is well known for the optical
mode in a ZnSe crystal. As x increases, the Cd atoms start
taking part in these oscillations. They oscillate in phase with
Zn atoms and their amplitude increases, whereas the oscilla-
tion amplitude of Zn atoms decreases. We note that the
oscillation amplitude of Se atoms very weakly depends on
the solid solution composition.

In the quasiresonance mode with inverted LO±TO
phonon frequencies, the Cd and Zn atoms oscillate out of
phase, while the participation of Se atoms in this mode is
insignificant [25]. As x increases, the displacement amplitude
of Cd atoms decreases, but the displacement amplitude of Zn
atoms oscillating out of phase with Cd atoms increases. The
dipole moment appearing during these oscillations is deter-
mined by the difference between the effective charges of Zn
and Cd ions. This difference is small and the dipole moment
of the Zn±Cd oscillations is just over 10% the dipole moment
of the fundamental (Zn±Se or Cd±Se) oscillations. This
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corresponds to a small oscillator strength for Zn±Cd oscilla-
tions and a low intensity of theRamanpeaks and the functions
Im e�o� and Im�ÿeÿ1�o�� in the Zn±Cd mode [15, 25, 26].

3. Conclusions

An analysis of data on the dispersion and the density of states
of optical phonons [20] in ion±covalent crystals has shown
that the density of states of optical phonons in almost all
crystals of A1B7 and A2B6 compounds and some A3B5

crystals has a dip at frequencies between the LO and TO
phonons in the center of the Brillouin zone. This dip
(quasigap) in ZnS most clearly divides the density of optical
phonons into two parts, with transverse optical phonons
dominating in the low-frequency part and longitudinal
phonons in the high-frequency part. The local vibrations of
impurity atoms fall just into the quasigap. The real part of the
crystal permittivity in the quasigap is negative; the long-
itudinal±transverse splitting of vibrations of impurity atoms
proves to be inverted, i.e., the longitudinal vibrations of
impurity atoms have lower frequencies than do transverse
vibrations.

It follows from (3) that the LO±TO splitting at the
Brillouin zone center is proportional to the dynamical ion
charge e �S squared. Because of the different ionicity of binary
solutions (different charges e �S ), additional weak dipoles
appear, as predicted in [7, 8]. In our case, these are local
dipole oscillations of Zn±Cd ions in solid Zn1ÿxCdxS,
Zn1ÿxCdxSe, and Zn1ÿxCdxTe solutions and weak S±Se and
ZnSexS1ÿx dipoles. The oscillator strength of these local
vibrations is negative: they seem to borrow the oscillator
strength from fundamental phonons of crystals. Their
discovery resolves the contradiction related to the apparent
violation of selection rules. Two-phonon states can also fall
into the quasigap, as was observed in ZnSexS1ÿx crystals at
frequencies close to 300 cmÿ1 [23]. Inverted optical phonons
were discovered earlier in the low-temperature phase in the
a-b structural phase transition in crystalline quartz
(Tc�846 K) [27, 28]. In the temperature range from 800 K
to 300K, a narrow dip is observed in the high-frequency band
of residual rays (E-phonons) in IR reflection spectra. This dip
is related to the appearance of additional frequency-inverted
optical phonons caused by the interaction of the E-phonons
with the A2-phonons forbidden in the given geometry [27, 28].

Inverted oscillators with a negative oscillator strength can
appear not only in purely phonon spectra of impurity crystals.
For example, the authors of [29±31] discovered the effect of
interaction of the 4f-electron excitations corresponding to the
transition to the first excited Stark level of the Pr�3 ion in a

PrFe3�BO3�4 crystal when it falls into the LO±TO splitting
region of a low-frequency phonon of a crystal of the same
symmetry. In this case, the corresponding electron±phonon
oscillator is inverted, and its longitudinal frequency becomes
smaller than the transverse frequency.

We note that the oscillator strengths of optical phonons
and effective ion charges obtained from experimental spectra
along with standard phonon-frequency and lifetime measure-
ments allow one to better understand and explain the features
of IR and Raman spectra of crystals observed in experiments.
We also note that IR reflection spectra are always obtained
from the crystal surface, and the surface layer typically
contains many packing defects, such as vacancies, variable
interatomic distances, and defects produced by the mechan-
ical polishing of crystals. Figure 3 shows that vibrations of
vacancies can also fall into the quasigap in the density of
optical phonons, producing the feature in the reflection
spectrum discussed here.
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