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Abstract. At present, ptychography seems to be the most nat-
ural and efficient method for approaching the diffraction-lim-
ited optical resolution. The general setup of a ptychoscope does
not contain refracting or focusing elements and includes a
coherent illumination source, a translation stage for displace-
ment of a macroscopic object, and a detector for recording
transmitted or reflected radiation from the object, which is
connected to a computer for processing diffractograms. In
classical optics, the main problem with achieving high spatial
resolution is the correction and elimination of aberrations in
optical systems, whereas the spatial resolution in ptychography
mainly depends on the reliability of recording and computer
processing diffractograms with large numerical apertures.
After a brief introduction to the history and current state of
ptychography, the wave-packet method for calculating the wave
field on a detector in the far field and for a large numerical
aperture is considered in detail. This gives a relation between
fields on the object and on the detector, which underlies the
ePIE (extended Ptychography Iterative Engine) algorithms
for recovering images used in practice. The realization of algo-
rithms involves operations with functions defined in certain
domains (coordinate networks) of the direct space and Fourier
space related to the object and detector. The size of and steps
involved in such networks are strictly related to the object size,
its distance from the detector, and the numerical aperture. The
programs developed in this paper are used to refine the limits of
applicability of the paraxial approximation (Fresnel integrals)
in calculations of the field on the detector. Simulations of
images obtained by the ptychography method are presented.
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1. Introduction

The term ‘phase problem in optics’ is closely related to the
concept of ‘lensless optics’. In both cases, a problem arises
that was initially formulated as the retrieval of the phase of a
wave field produced by a laser beam by measuring its
modulus in two parallel planes: of the object and of the
detector. Iterative calculations of the propagation of coherent
radiation from the object plane to the detector plane are used
to obtain distributions of the complex field amplitude in both
planes. A similar problem was first considered back in 1972
[10] using one of the best computers at that time with a
memory of ~ 1 MB and a rate of ~ 1 megaflop, providing
the analysis of numerous 32 x 32 images. The development of
the ideas proposed in that paper resulted in the appearance of
lensless imaging ' in the form used at present in the visible,
vacuum UV, an X-ray ranges [2-9].2 The initial algorithm [1]
has been modified many times, becoming more efficient, in
particular, due to the improvement in computers. Algorithms
were developed based on the use of a priori information
instead of measurements of the intensity distribution on the
object. As a result, lensless imaging methods are now used in
physical studies, and related commercial projects have
appeared [17-20]. Currently the most popular among them
is ptychography [21, 22], the method for the retrieval of the
field amplitude and phase on an object by computer
processing of its diffractograms during the subsequent
known displacement of the object with respect to the
illuminating beam and the detector. In this case, adjacent
fields of view should overlap by no less than a half.
Ptychography is described in more detail in Section 5.

One of the main advantages of lensless imaging and
ptychography is the fundamental possibility of bypassing
problems related to aberrations of optical elements (lenses,
mirrors, zone plates, etc.) and approaching the diffraction-
limited resolution in microscopy and atmospheric and
astronomical optics. Obviously, to fully realize this advan-
tage of lensless systems, it is necessary to think outside the

! Imaging without using optical elements placed between an object and the
detector of radiation from the object.
2 Examples of work done in this country are [10-16].
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scope of paraxial methods of simulating the propagation of
light beams from the object to the detector. This paper is
devoted to solving this problem within the framework of the
scalar wave equation.

2. Retrieval of the coherent field phase
and modulus. The wave packet method

Most of the modern phase-retrieval methods are essentially
the development of algorithms formulated in work per-
formed 30—40 years ago (see the references in [10, 23, 24]).
Algorithms presented in many papers and monographs are
still being refined. These algorithms allow finding a
complex field (intensity and phase) on the object surface
from the measured field intensity on the detector. We recall
that optical elements between the object and detector are
absent; however, a priori information on the object proper-
ties is used. As a side result of the algorithm operation, the
phase distribution on the detector surface is obtained. In
practice, the most convenient diffraction integral for a
given experiment is used, which expresses the field on the
detector in terms of the field distribution on the object
surface. As a rule, the calculation of the diffraction integral
reduces to the calculation of direct and inverse Fourier
transforms.

The algorithms are based on the multiple application of
four main operations to a complex function f: the Fourier
transform F; the replacement of the Fourier-transform
modulus by a function 4 obtained from experiments:
AF[f]/|F[f]]; the inverse Fourier transform F~'; and the
transformation P of f'reflecting a priori information on the
object. The result of these transformations is a new
function

/! _P[F—l {A

defined in the same domain as /. If /" and f coincide with the
specified accuracy, the goal is achieved. A priori information
(P) can be the field modulus measured directly behind the
object or in some other plane, the object shape, i.e., the zero
field in the object plane outside some region, the nonnegativ-
ity of the field, etc.

We explicate the foregoing with the example of an error
reduction algorithm used to determine the image of a
transparent planar object. We assume that the object is
illuminated by coherent radiation propagating through a
round hole located directly in front of its surface. In this
case, a priori information P is the zero field in the object plane
outside the hole. We also assume that the field intensity
distribution 7 is measured in a parallel plane at some distance
from the object (in the detector plane). We also assume for
simplicity that the field calculation in this plane reduces to the
Fourier transform of the field in the object plane, and hence
the modulus of the Fourier transform of the object field, 4, is
trivially calculated from V1. With these assumptions, the
algorithm starts with the specification of an arbitrary
complex function f within the hole including the object. At
the first step, we perform the Fourier transformation F[f]
corresponding to the calculation of the field propagation
from the object to the detector. At the second step, the
transformation AF[f]/|F[f]| is performed, which means
that the modulus F[f] at each point of the inverse Fourier
space is replaced with the corresponding value of A. The

] m

\EL/]]

phase F[f] remains unchanged. At the third step, the inverse
Fourier transformation F~'[AF[f]/|F|[f]|] is performed,
which corresponds to the inverse calculation of the field
from the detector to the object. Finally, the last step is the
transformation P[F~'(4F[f]/|F|f]|)]. which means that the
values of the complex function F~'[AF[f]/|F[f]|] outside
the hole are assumed to be zero.

These four operations represent one iteration of the
algorithm that gives a refined field distribution f” defined in
the object plane. These iterations are performed during the
algorithm operation until /" = f within a specified accuracy.
As shown in [25], this algorithm always converges and is
equivalent to the conjugate gradient method for seeking the
field energy minimum outside the hole (a positive quantity,
the so-called error), and is therefore called the error reduction
algorithm. Unfortunately, such an algorithm almost always
converges to a local minimum, preventing the reduction of the
inherent error to zero. However, other, more sophisticated
algorithms exist that can ensure the approach to the zero
error. In the case of success, the function f found is treated as
the problem solution. This function allows finding the
amplitude and phase modulation by the object, which can
be called the object image.

The scheme of a typical lensless diffraction-limited
microscope contains a coherent radiation source illuminat-
ing an object that transmits radiation and is located in the
plane S (Fig. 1). Unlike conventional microscopes, this
scheme does not contain optical elements between the object
and the detector. A laser illuminating the object on the left
and computer processing of the data obtained from the
detector are not shown in the diagram.

We show the role of the Fourier transform with the
example of a wave packet that describes the propagation of
coherent radiation from the object S to the detector S (Fig. 1)
and is an exact solution of the wave equation for the field in
the half-space in terms of spatial harmonics in the object

Vv

Figure 1. S is the object plane, S is the detector plane, z is the distance
between them, (Ly, d,) and (L, 0,) are the detector domain size and pixel
in directions x and y, respectively, and (l:\,7 5\) and (ljy7 S)) are the object
domain size and pixel in directions x and y, respectively.




768 N L Popov, I A Artyukov, A V Vinogradov, V V Protopopov

Physics— Uspekhi 63 (8)

plane:
Y(r) = ”i ¢o(p) d’pexp {ipp +ivk? - pzz},

= (%,0,2) = (p:2), (2)

where k = 2n/2 is the wave vector and ¢ (p) is the Fourier
transform of the field distribution (p,z = 0) in the object
plane. Expression (2) was derived in [26-29], where its relation
to other forms of the diffraction integral was considered.
Here, we discuss only questions concerning simulations of the
propagation of nonparaxial beams in problems of image
phase retrieval and of ptychography. Wave packet (2),
which is an exact solution of the wave equation, is free from
limitations of the paraxial approximation and can be used to
study effects near the optical-resolution limit associated with
the wavelength.

We assume that a detector measuring the radiation
intensity is located in the far-field zone, i.e., in the Fourier
plane, where

z» —, p==ztand, (3)

2

a is the object size, and the aperture angle 0 is fixed.
Considering (2) under condition (3) and using the stationary
phase method [30], we can readily obtain the field on the
detector as

2
W (p, )_2nk z

1zz+

X(P0<P—k\/#7p2)~ (4)

Expression (4), obtained from an exact solution of the
Helmholtz wave equation, shows that the far-field spatial
distribution is expressed in terms of the Fourier transform on
the object. As the coordinate p on the detector changes from 0
to oo, the corresponding spatial harmonic p changes from 0
to k. In other words, the far-field zone does not contain
harmonics with p > k. This expresses the general fact that the
limit spatial resolution in the far-field zone is determined by
the wavelength A = 21t/k, irrespective of the optical system
type.

In practice, because of difficulties in the numerical
realization of algorithms based on exact expression (4), a
simpler relation is used in phase-retrieval problems (see
review [23]), the Fresnel integral,

0o =R g0 apeny (k(" =i ) 7
5)

which follows from exact expression (2) for small angles 6 and
in far-field zone (3) takes the form

W(p,z) = %exp [ikz(l +;;22>](p0 <p - kg) . (6

We compare expression (6) with the exact far-field field (4). A
comparison of the arguments of the Fourier transform of the
initial distribution ¢, (p) shows that the Fourier integral in the
far-field zone, Eqn (6), can be used to calculate the field on the
detector only for p < z, i.e., for 6 < 45° and the aperture

5 €Xp (1k \/m )

NA =sinf < 0.71. Otherwise, the harmonics of the initial
distribution p > k would be involved, which, according to (4),
are not contained in the far-field zone at all. By adding the
requirement of the coincidence of phase factors in (4) and (6),
we obtain the condition of the applicability of the Fresnel
integral in the far-field zone (3) (see [31]):

a 4 )
— <z< —

an A 7 tan*0

(7)

This problem is considered theoretically in more detail in
review [32].

Thus, the wave packet approximation, like the paraxial
approximation, leads in the far-field zone to the above-
mentioned relation between the field intensity on the detector
and the modulus of the Fourier transform of the field in the
object plane. Below, we call the wave packet approxima-
tion—in fact, the application of integral (2)—the wave
packet method.?

3. Phase retrieval discretization
in the wave packet method

We consider the setup of a lensless microscope in Fig. 1
assuming that the wavelength 4, the detector sizes L, and L,,
the pixel sizes ,. and J,, and the distance z between the object
and the detector are specified in experiment. We then find the
object sizes L, and L (i.e., the field of view) and the spatial
resolution d, and 5 leferent formulations of the problem
are also possible, for example, if the size and scale of the
resolved details of the object are specified and the distance z is
used to optimize other parameters of the system presented in
Fig. 1.

For the phase retrieval algorithms to work, the modulus
of the Fourier transform should be known, which amounts to
assuming the existence of a uniform rectangular frequency
mesh on which the modulus is defined. Correspondingly, a
rectangular uniform mesh on which the object field is defined
is reciprocal to the frequency domain in which the Fourier-
transform modulus is defined. We define the spatial and
frequency domains as the sets

—L, ,
X‘ye{ 2‘ +]5‘C‘1}7 J:07"'7N.\‘|ya

T 2n
p’e{_—+1 }7 /:Oaan 8
X[y 5x|y Lx\y x|y ( )
Ly,
5x\y = N_b y
x|y

where x|y means the direction along x or along y, py, is the
spatial frequency, L., N, and &), are respectively the
domain size, the number of pixels, and their size, determined
by the physical properties of the detector, which are assumed
to be known. It is assumed that the coordinate origin is
located at the center (see Fig. 1).

The choice of the corresponding domain in the object
plane is not unique. Neither its size nor the size of its pixels are
known beforehand. We define the domain structure similarly
to (8), specifying it by the spatial resolution 5 «|y» the field of
view Lm, and the number th of pixels on the object.

3 Another term is the plane-wave angular spectrum method (https://
en.wikipedia.org.wiki/Angular_spectrum_method).
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Hereafter, all the object parameters are indicated by a tilde. It
follows from the results in Section 2 that the frequency
domain of the object can be found from the known detector
domain with the help of relation (4). Namely, the spatial
frequency p of the object is related to the coordinate p on the
detector as

- p
p=k s ©)

Therefore, the maximum value is

Ly,/2
max (pyy) = k% (10)
22+ (Lyy/2)

On the other hand, as in (8), this value is n/éxb,. This gives the
optimum (largest) pixel size on the object

< T A Lw 2

y=————=—-124/1 : 11
Oxl max (py,) Ly ‘} + < 2z (1)

The value be, is the maximum possible discretization step
allowing the reconstruction of the object. In this case, the
aperture of radiation emitted by an object part of size d,),
is completely overlapped by the detector. If the character-
istic size of the object details is smaller than (11), the
object reconstruction is impossible (if the object is
continuous) and it is necessary to choose a shorter
distance z. In the paraxial approximation Ly, < z, expres-
sion (11) becomes
< A

Oy =—12
x|y .
Ly

Thus, the object pixel size for the wave packet method in
Eqn (11) exceeds that in the paraxial approximation, and for
large apertures Ly,/2z > 1 tends to 1/2.

Asin the derivation of (11), according (8), the mesh size in
the object frequency domain is 21 /I:xb,. At the same time, it
follows from (9) that pixels of the object frequency domain
are mapped into a pillow-shape mesh of image pixels on the
detector. Because the gradient of the function p(p) is

@ _ kz?

= 12
dp (224 p2)%% (12)

the density o,,(p) of these images per detector pixel in the
direction x|y is given by

- (P) _ dﬁx\}'/(zn/ixly) _ kz? [’x\yéx\y
' da)/og (2 4p2)  2n
z? if\c\vér\v

T "

Table. Formulas for determining the spatial resolution d, +y and the field of view Li\,‘y depending on (Lyjy, 6|,

distance z. Square brackets denote the integral part.

Obviously, the equality o,,(p) = 1 for all p would be ideal.
This would correspond to the exact matching of two domains
when their information capacities (the numbers of pixels)
coincide. However, the density a,,(p) monotonically
decreases with increasing p, having a maximum at the
detector center p = 0:

LipOxy

oyy(0) = T .

(14)
If the size L, «|y i chosen such that a,,(0) is less than unity,
then the density of pixel images of the object on the detector is
insufficient, which means a lower informative capacity of the
object domain than that of the detector domain. Therefore,
the inequality oy, (0) = 1 should hold, which gives the
minimal possible size of the object domain

L

,=—12z. 15
x|y 6,\'\yZ ( )

Itis shown in Section 4 that such a choice of the object domain
size provides good numerical accuracy, and we use it in what
follows.

Expressions (11) and (15) determine the spatial resolution
and the field of view in the object plane. For convenience, we
present all the key formulas in the Table. With the notation
NA,j, =sin0,, and tan 0, = L,,/(2z), we obtain a classical
formula for the diffraction-limited resolution from (11):

~ A

Oylp = = . 16
x|y N Axly ( )

Because we are considering the far-field zone, condition (3)

should be satisfied with a = 1:x|y. Taking (15) into account, we
find from (3) that

< W. 17
r< = (17)
We assume for simplicity that the detector has a square shape:
0y =0,=0,Ly =L, =L,and N, = N, = N. It then follows
from (11) and (15) that the domain in the object plane is also
square: 0y = 0, = 0, Ly = L, = L, Ny N = N. According
to (15) and (17), the d1stance
52

Zm:7 (18)

exists for a square domain at which the field of view L reaches
the maximum

— (19)

for a given detector. Thus, when the detector is located in the
far-field zone, the field of view on the object is determined by

) for the detector, the wavelength A, and the

Sy (11) Ly, (15)

\'h [L \}/‘th]

2
A - Ly \? Pk
Ly~ 2 i
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the detector pixel size. Substituting z,, in (11), we obtain the
pixel size and the number of pixels on the object for the
maximal field of view:

~ 2 2

b=\ 14 <;5—L2) , (20)

_ ) L

Np= 2 — . 1)
Om {\/52+(/1L/2)2(1/52)]

It follows from (21) that the function Ny, (8) has a maximum

at o = om = \/AL/2, with

N*\ﬁ P Y R
M — /17 M_\/E7 M = 27ZM_2-

Thus, by setting J equal to Sy, we maximize N and hence the
amount of information obtained. In this case, it is obvious
that the aperture is

(22)

1
NAM = Sil’l@M === 0717

ie. Oy = 45°.
NG M

(23)

This aperture provides the optimum combination of high
resolution with a large field of view (Fig. 2). We note that the
maximum possible number of pixels on the object is
independent of the pixel size on the detector, but is
determined only by the detector size and the wavelength.

In practice, the required detector pixel size can be
achieved by combining adjacent physical pixels into one
virtual pixel. Such an operation is called data binning— the
summation of signals from adjacent cells of the detector into
one pixel. For example, if four adjacent square cells are
combined into one virtual pixel, then, according to (19), the
field of view increases twofold. In this case, the distance zj
(see (18)) increases fourfold, while the resolution d,, deterio-
rates, according to (20). Other than the increase in the field of
view, binning allows expanding the dynamic range of the
number of incident photons per pixel and increasing the
signal-to-noise ratio.

It follows from (22) that the maximum possible number
Ny of pixels on the object increases with decreasing 4. For
example, for A = 0.5 ym and L = 1 cm, we have Nu = 141,
while for 4 = 10 nm, Ny = 103. Thus, to obtain resolution in
the visible range close to the diffraction limit, we should
reduce the number of pixels on the object and the related field
of view Ly = Nymom. However, ptychography (see Section 5)
provides an increase in the field of view due to a large number
of shots without deteriorating the spatial resolution.

The argument concerning the optimal field of view
presented above is applied to a classical lensless object
reconstruction from one shot. In the case of ptychography,
the argument regarding the digital domain and the optimal
size of an object, Eqn (19) applies to each individual exposure
(scan).

Because relation (9) between p and p is nonlinear, a
uniform lattice in the p space is mapped into a nonuniform
lattice in the p space. However, to use the discrete Fourier
transform, the latter should also be uniform. Therefore, the
interpolation of the function |@,(p(p))| is necessary. For-
tunately, this function is quite smooth in practice, and
therefore its interpolation poses no problem. However, the

0.6 | | | | | | | | |
10 12 14 16 18 20 22 24 26 28_ 30
25/7

Figure 2. Dependence of N, /NM on the dimensionless quantity 25/2. The
maximum is reached at 6 = oy = 1/v/2.

calculation of the complex amplitude (p,z) in the direct
problem by expression (4), as in the numerical experiment
considered in Section 4, requires a full interpolation, which
can be performed by expanding in a Taylor series in the
vicinity of a point nearest to p(p). In this case, derivatives
can be calculated using the fast Fourier transform as
—0um@o (B(p)) = FUV[(ip)" (ip,)"F | @y (p(p)). For exam-
ple, to achieve the result presented in Section 4, it was
necessary to calculate 20 additional discrete Fourier trans-
forms (derivatives through the fifth order). In the general
case, obviously, the interpolation reduces the accuracy and
increases the calculation time. Therefore, whenever possible,
it is natural to use the paraxial approximation, in which
interpolation is absent (because p=kp/z depends linearly
on p). Obviously, this somewhat impairs the spatial resolu-
tion J.

4. Results of calculations.
Comparison of the wave packet
and paraxial approximation methods

To estimate the accuracy of calculations by wave-packet
formulas (4) and in paraxial approximation (6) under the
condition that the digital domain in the object plane is
calculated by expressions (11) and (15), we made a compar-
ison with a point-like source function:

1 .
Wy (r) = w550 (ik|r[) , (24)

i
Pos(p) = m .

It can be readily shown that the substitution of (24) in (4)
leads to the identity, i.e., the wave-packet approximation in
the far-field zone gives the exact result.

Numerical calculations were performed for the wave-
length 2 = 10 nm, and domains in the object and detector
planes were chosen as in Section 3. The detector pixel size was
0 = 13 um, and the distance to the detector and its size were
chosen in accordance with (18) and (22), ie., z=1zy =
1.69 cm, L = 2z, = 3.38 cm. In this case, the resolution is
5]\/[ =7 nm.

Numerical calculations have shown that the wave-packet
method gives the relative error | ((r) — g (r)) /ipy(r)| ~ 10716
in the angular interval tan6 € [—1; 1], except for a small
number of angles (artifacts) at which the error is of the order
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of 1077, The accuracy of the paraxial approximation rapidly
decreases with increasing 6, such that the relative error
exceeds 0.013 already for tan@ > 0.01. According to the
estimate of the applicability of paraxial approximation (7),
the angle 0 must be quite small: tan 0 < {/41/(nz) = 0.029.
The calculation showed that the relative error of the paraxial
approximation for tan § = 0.029 was 0.88.

Thus, the numerical experiment with point-like source
function (24) shows that the error of the paraxial approxima-
tion exceeds 50% already for the angle 6 = 1.66°(tan 0 =
0.029), whereas the numerical calculation by the wave-packet
method (4) actually gives the exact result. In the region
0 < 0 < 26°, the error is within 10~!°, which corresponds to
the machine epsilon. In the region 26° < 0 < 45°, the error
remains at the same level for most of the points and is about
1077 for the rest of the points.

5. Ptychography. Results of calculations

Ptychography is a method of computer imaging of over-
lapping field intensities (scans) recorded upon small lateral
displacements of an object in the plane S (Fig. 1). During the
object scan, the illumination beam and the detector position
are assumed invariable. The use of several overlapping scans
instead of one scan (as in reconstructing the phase) allows
dropping a priori conditions related to the object properties.
The principles of ptychography and the term ‘ptychography’
itself were proposed in [21, 22]. However, this approach
remained poorly known for a long time because of the
absence of an efficient algorithm for its realization. The first
such algorithm was proposed by Rodenburg only in 2004
[33, 34] after his long-term studies beginning in the early
1990s.* This algorithm was called the Ptychography Iterative
Engine (PIE). However, the algorithm had a disadvantage:
the field of a source illuminating the object was assumed to be
known beforehand. After four years, in 2008, this disadvan-
tage was eliminated in another iterative algorithm based on
the difference-map approach [35, 36]. Somewhat later, in
2009, an improved PIE algorithm was proposed —the
extended Ptychography Iterative Engine (ePIE) [37], which
we use in this paper to illustrate ptychography.

The ePIE algorithm is used to solve the system of J
equations

Ai(p) = |FFT [P (p—p)O®)]|, j=1,....,J. (25)
Here, P (p — p;) is the amplitude of the illumination beam on
the object surface (‘probe function’), O(p) is the required
transmission (or reflection) function of the object,
P (p—p;)O(p) is the amplitude of the transmitted (reflected)
wave on the object surface, 4;(p) is the modulus of the Fourier
transform of the wave propagating from the object on its
surface (cf. the beginning of Section 2), J is the number of
scans used in the calculation, j is the number of a scan, and
{ﬁj}j{:l is the known set of displacements for which P (p — p;)
and P (p — p,_,) overlap by 60-70%. The last is necessary for
the unique solution of system of equations (25). The use of the
probe function is a distinct feature of ptychography. The
probe function can be known a priori, found simultaneously
with the object function O(p), or found independently by
standard phase retrieval methods. It is important that it be
unchanged during measurements [37]. In more detail, the

4 The history of this question is described in more detail in review [24].

ePIE algorithm involves the iterative simultaneous calcula-
tion of the object function O(p) and the probe function P (p):

0,-+1(f>):0_/(f>)+apji(57tﬁjz) () ~£®),  (26)
|Pj(p - pj)}max
o O/(P+m) o o
Pi1(p) —P_/(p)+ﬁ—| 0+ ) (@) -fp).  (@27)
01(p) = 0o(p) , (28)
Py(p) = Po(p), (29)
1i(0) = O;(p)Pi(p— b)) , (30)
70— [0 20 ). a1)
A/H(f’) = A_/(f)), f)jw = f)jv (32)

where o and f§ are dimensionless coefficients of the order of
unity, Og(p) is the initial object, Py(p) is the initial probe
function, and j is the iteration number. Scans are cyclically
repeated with the period J. The process stops when O;(p)
ceases to change. We note that the only quantity in (26)—(32)
directly related to the detector signal is the modulus of the
field amplitude 4;(p). All the other quantities are determined
in calculations.

We assumed in our numerical experiment that « = 1 and
f = 1. The real probe function P(p) was chosen equal to the
field of a point-like source located at a distance of 10 cm in a
round hole with diameter L. Displacements were chosen over
a spiral:

p = 1178 18.2 (1 + rand (—0.05, 0.05)) [um],

?; = ?—gj(l + rand (—0.05, 0.05)), j=0,...
where rand (—0.05, 0.05) is a random number from —0.05 to
0.05. Altogether, there are J = 128 overlapping regions of the
object, each 13 um in diameter. The total field of view is close
to a circle 49.4 um in diameter (Fig. 3).

The digital domain L, 6 considered in Section 3 should be
used only to calculate (31); it is there that the function A;(p) is
defined. We call this domain the Fourier domain. Because the
field of view is 3.8 times larger than the Fourier domain
(13 x 13 pm?), we chose the digital domain of a larger size,
7 x L, with the same pixel d. This size is just sufficient to
accommodate all the displacements of the Fourier domain in
expressions (26)—(30), (33). This domain was used for the
functions O;(p), P;(p). fi(p), and f/(p), while the initial
function Oy (p) was a Gaussian with ¢ = 2 pm.

The wavelength was 10 nm. A square-shape detector with
square pixels with 6 = 13 pm was used. The object was a
fractal template (Fig. 4) 50 x 50 um? in size. The height of
numbers in this template is equal to the number value
multiplied by 50 nm, i.e., the height of the largest number
‘100’ is 5 um and the height of the smallest number 2’ is
100 nm. The white and black colors respectively correspond
to 1 and 0.

We make preliminary estimates of the geometry and some
details of the numerical experiment. According to (18) and
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Figure 3. Total field of view consisting of the combination of 128 disks
13 pm in diameter arranged over a spiral. The boundaries of the disks are
shown. The field of view close in shape to a disk 49.5 um in diameter is
inserted into the inner square with a side of 50 pm. The large square with a
side of 91 um shows the general domain used for calculations.

Figure 4. Object in the form of a fractal template 50 x 50 pm? in size. The
height of numbers is the ‘number value’ x 50 nm, i.e., the height of the
largest number ‘100’ is 5000 nm, and the height of the smallest number ‘2’
is 100 nm. The white and black colors respectively correspond to 1 and 0.

(23), to obtain the maximum amount of information, we
should choose z, = 1.69 cm, L = 3.38 cm, and N = 2600.
Then, according to (22), the resolution and the field of view
are dy = 7 nm and Ly = 13 pm. However, a physical pixel
of the detector measures a discrete quantity, the number of
photons, which cannot be less than zero. This means that the
number of photons in one shot should be large enough to be
sufficient for pixels remote from the axis. The initial
numerical calculation of the field on the detector by

107

Number of photons
533 3
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Figure 5. Photon distribution along a detector.

expression (4) for the object (see Fig. 4), the probe function
P (p), and the geometric parameters zy, and L presented above
with N = 2600 showed that the number of photons per pixel
near the axis should be ~ 10%. This greatly exceeds the
saturation threshold of a standard silicon pixel (~ 10%) at
this wavelength. To take this feature into account, we
changed the numerical experiment geometry by introducing
the 16 x 16 binning of detector pixels with a simultaneous 16-
fold increase in the distance. According to (15) and (16), the
size of L remained the same (13 um), while the resolution
deteriorated to 6 =80 nm. In order to ‘see’ 2’ on the
reconstructed object, we increased the detector size and
improved the resolution to 6 = 34 nm. Thus, our parameters
werez =27 cm, L = 8 cm, N = 385, 5 = 208 um, L=13 pm,
and 6 = 34 nm. The photon distribution obtained on the
detector is shown in Fig. 5. The maximum value is 1.75 x 10,
which corresponds to ~ 7000 photons per physical pixel.

At the first stage, we calculated the O(p)P (p — p;) field
distributions on the detector in accordance with expression (4)
for all the 128 {p;} displacements (33). The probe function
P (p) was normalized such that its modulus squared was equal
to the number of photons incident on the unit area, and the
field intensity integral over a pixel on the detector gave the
number of incident photons. After that, the rounding to
integers and noise contamination by the Poisson distribution
were performed. Then the reverse calculation of the modulus
of the object Fourier transform A;(p) given the photon
distribution on the detector was performed by expression (4)
(see Fig. 5). In this case, the simplest zero-order interpolation
was used.

At the second stage, ptychography algorithm (26)—(32)
was used. After the 47,360th iteration (370 cycles over
128 scans), the reconstructed object and the probe function
ceased to change and acquired the form shown in Fig. 6,
where the object is shown on the left and the probe function is
shown on the right. Looking at the probe function, we can see
that part of the lower edge and part of the right edge are
slightly ‘bitten off’. This is related to the invariance of
expressions (26)—(32) under the displacement of the object
coordinate system. Therefore, a small displacement of the
reconstructed object and the probe function with respect to
their real positions is quite expected. Despite this, we can
assume that the object reconstruction problem has been
successfully solved in this case. The central parts of the
reconstructed (Fig. 7a) and initial (Fig. 7b) images
10 x 10 um? in size are compared in Fig. 7. The smallest
number 2’ on the reconstructed image can be distinguished



August 2020

Wave packet in the phase problem in optics and ptychography 773

Figure 6. Reconstructed images of the object (left) and the illumination
function (right) after the 47,360th iteration (370 cycles over 128 scans).
The object diameter is 50 um, the illumination function diameter is 13 pm.
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Figure 8. Ptychoscope setup.
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Figure 7. Comparison of the central parts of (a) the reconstructed image
and (b) the original.

but cannot be read. This corresponds to the claimed
resolution of 34 nm at which 3 x 3 pixels represent the
number 2’, which is insufficient for recognition but is
sufficient for detection.

The time spent on the image reconstruction itself from the
firstiteration to the 47,360th iteration was 43 min or 0.05 s per
iteration. A 14-core CPU Intel(R) Core(TM) i9-7940X CPU,
3.10 GHz, 128 Gb computer was used.

6. Conclusions

Ptychography has been transformed in recent years into an
all-wavelength microscopy method providing accurate phase
information without using high-resolution optical elements
and a priori information on an object. Ptychography is
applied in the X-ray, VUV, and visible wavelength ranges.
Thus, we can say that the idea of lensless optics [1] proposed
about half a century ago has been realized in practice.
Commercial ‘ptychoscopes’ for cytology have appeared [17—
20]. The experimental system of a lensless microscope in the
simplest case includes four elements: a coherent radiation
source, an object stage, scanning the object perpendicular to
the optical axis, and a detector with a computer for scan
processing (Fig. 8).

In this paper, we have given a brief introduction to the
method of ptycho-imaging. As the main diffraction integral
relating the field distributions on the object and on the
detector, we use a wave packet in the far-field zone. This

preserves the possibility of imaging with the diffraction-
limited resolution 6 = /2. At the same time, calculation
algorithms still involve the Fourier transform of fields on
the object and detector. We have obtained theoretically
substantiated expressions determining the size, the discretiza-
tion step of a domain on the object, and the spatial resolution.
The distance between the object and the detector, the size of
the detector, and the pixel size are determined by experi-
mental conditions and are assumed to be known. For a
square-shape detector, criteria are formulated for choosing
the optimal distance and the size of detector pixels (binning).

The accuracy of expressions for choosing the object
domain has been demonstrated for a point-like source.
Numerical ptychographic experiments on microscopy have
demonstrated the possibility of imaging with a 50 x 50 pm?
field of view and a resolution of 34 nm at the wavelength
10 nm. The reconstruction time for one object was 43 min of
personal computer operation and can be reduced by 2 to
3 orders of magnitude with the help of appropriate software
and computers.

The further development of ptychography requires the
expansion of its applications and the experimentally based
systematic analysis of the accuracy and stability of the image
retrieval algorithms. This is necessary in order to realize the
possibilities of ptychography as a unique microscopic method
with the diffraction-limited resolution determined by the
wavelength.
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