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METHODOLOGICAL NOTES

Was Sommerfeld wrong?

PACS numbers: 01.65. + g, 03.65.—w

(To the history of the appearance of spin in relativistic wave equations)
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Abstract. This article presents a brief history of the appearance
of electron spin in relativistic wave equations. Dirac derived his
wave equation in 1928 with the intention to obtain an equation
for the ‘simplest’ particle with spin zero. But, as Dirac later
announced at the European Conference on Particle Physics
(Budapest, 49 July 1977), it was a big surprise for him that
the equation described the states of a particle with spin 1/2.

Keywords: spin, relativistic wave equations

Fifteen years ago, Physics—Uspekhi published a letter to the
Editorial Board [1] entitled “Sommerfeld formula and the
Dirac theory,” which offered a critical analysis of the
coincidence between the formulas for the energy spectrum of
the hydrogen atom obtained in the framework of the ‘old
quantum theory’ (Bohr—Sommerfeld quantization) and as a
result of solving the Dirac equation. The result of the analysis
was already formulated in the abstract: ““A surprising
coincidence of the fine-structure formulas by A Sommerfeld
and P Dirac is the consequence of an error made by the first
author.”

In our opinion, the situation, first, is not as unambiguous
as presented in Ref. [1], and, second, concerns such an
important issue as the connection between quantum
mechanics and classical mechanics, and, more precisely, the
question of how spin appears in passing from the classical
dynamics of a relativistic particle to its quantum dynamics.!
Precisely this reason motivated writing this note, despite the
long time since Ref. [1] was published.

The author of [1] is firmly convinced that the coincidence
mentioned above is impossible, because if it were not the case
one had to admit that “an eclectic theory turned out in one
way or another to be equivalent to Dirac’s rigorous theory.”
We note, first of all, that the coincidence between the
Sommerfeld and Dirac formulas by no means implies the
equivalence of the theories; the point is only the coincidence
between energy levels.> Sommerfeld’s error, in the opinion of

! Needless to say, we are interested here in the historical aspect of the
question and not the contemporary state of the theory.

2 In particular, an adequate classification of states follows only from the
Dirac theory.
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the author of [1], was that he incorrectly quantized the orbital
angular momentum L: instead of half-integer values
L= (/+1/2)h as would follow from the semiclassical
treatment, Sommerfeld assumed that L = n,h, where n,, is
an integer. Had he done it ‘correctly,” he would have obtained
the energy levels that coincide with the eigenvalues of the
Klein—-Fock—Gordon equation, which, as stressed in [1],
“should be the outcome in the spinless case.” Yet, in 1916,
when Sommerfeld published his study [2], it was difficult to
follow the recipes of the semiclassical analysis, which was
created 10 years later [3—5]. Moreover, in 1916, nobody even
guessed the existence of the electron spin. Dirac was saying
that “at that time (i.e., up to 1924—S P) the spin of the
electron was unknown,” although “some physicists had
thought about it” [6]. Indeed, in 1918, Compton formulated
an idea that both translational and rotational motions are
inherent in an electron [7], and three years later came to the
conclusion that the electron is ““a primary magnetic particle”
rotating “‘similar to a minuscule gyroscope” [8]. Kronig tried
to use the idea of internal magnetic moment of an electron to
describe the spectra of alkali metals, but his hypothesis failed
to receive the approval of Pauli, Heisenberg, and Kramers [9].
Finally, in 1925-1926, Uhlenbeck and Goudsmit published
two short papers justifying the introduction of spin [10, 11].
The second of these papers was accompanied by a letter from
Bohr supporting the idea of a rotating electron.

Sommerfeld followed the path laid by Bohr [12], who took
into account that an electron stays on a selected circular orbit
of radius a owing to the balance between the Coulomb and
centrifugal forces,
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Bohr complemented this purely classical condition with the
condition of quantum nature, according to which the
magnitude of electron orbital angular momentum L = mva
cannot be arbitrary, but must satisfy the condition

2nL = nh, (2)

where n is an integer, beginning from 1. From these two
relations, the energy of an electron on a selected orbit can
easily be found:

2n2mZ2%e* 1

En= h? n?’

(3)

This result proved to be in full agreement with the Balmer
formula, and 13 years later it was shown that energy values (3)
are eigenvalues of the Schrodinger equation. Obviously, full
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agreement would not be possible had Bohr allowed half-
integer values of n in condition (2). Developing the ideas of
Bohr, Sommerfeld quantized all planar elliptic orbits with the
help of conditions imposed on the action variables [13]:

Jop = jﬁpw do = n,h, (4)
J, = ﬁ;pr dr =n,h, (5)

where r and ¢ are polar coordinates in the orbital plane, p,
and p,, are the conjugate momenta, and n, and n,, are integers.
The first of these conditions reduces to Bohr condition (2). In
order to implement condition (5) it is necessary to take into
account that the Hamiltonian is an integral of motion equal to
the electron energy E. Then one can easily obtain p, as an
explicit function of the radial variable » and compute the
integral in (5). The result is the same formula for energy levels
(3), where n = n, + n(p.3 Already here, in the nonrelativistic
case, the situation mentioned by the author of [1] is manifest,
namely, an ‘eclectic theory’ leads to the same results as the
‘rigorous theory’ by Schrodinger.

Sommerfeld took the next step along the path laid by
Bohr, trying to explain the fine structure of hydrogen spectral
lines, which was experimentally discovered by Michelson [14].
He preserved the same quantization conditions (4) and (5),
but, in calculating the integral in (5), replaced the nonrelati-
vistic Hamiltonian with the relativistic one:

Z 2
H=c\/p?+m2c2 — = (6)
P

In polar coordinates on a plane, it is expressed as

|, r; Ze?
H=c p’,2+r*§+m2(,277 (7)

Using conditions (4) and (5) and taking into account that (just
as in the nonrelativistic case) the energy E and the orbital
angular momentum L are integrals of motion, Sommerfeld
obtained
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According to this formula, the Bohr energy levels are split,
because now the energy (distinct from the nonrelativistic case)
cannot be described by a single quantum number n = n, + n,,
which explains the fine structure of the Balmer lines. The
dimensionless quantity o = 2rne/hc =~ 1/137 that automati-
cally appeared in the derivation of formula (8) and was called
the ‘fine-structure constant’ fully determines the magnitude
of energy level splitting.

The energy levels of Dirac’s hydrogen atom [15] are
defined by the principal quantum number » =1,2,... and
the quantum number of the total angular momentum (i.e.,

Enz‘”(/) =

3 The fact that the solution of a more general problem leads to the same
result (3) as the particular case of circular orbits did not surprise
Sommerfeld, because (in his words [13]) “in this family of ellipses each
ellipse is energetically equivalent to a fully definite Bohr circle.” Today, we
refer to this phenomenon as the degeneration of energy levels.

the sum of orbital and spin electron momenta) j, which (for
given n) takes the half-integer values 1/2,3/2,...,n—1/2:
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The numerical coincidence of both formulas is obvious. It
suffices to replace the quantum number n,, in (8) with j+ 1/2,
and n, withn — (j+ 1/2).

We now return to the key question that gave rise to letter
[1] as well as this note, namely the statement that the energy
values obtained by Sommerfeld should coincide with the
eigenvalues of the Klein—-Fock—Gordon equation, and not
the Dirac equation.

The first relativistic wave equation was published by Klein
[16], Fock [17], and Gordon [18]. One can easily notice the
analogy between the origin of the Klein—-Fock—Gordon
equation® and the nonrelativistic Schrodinger equation.

The Schrodinger wave equation for a free particle (we are
trying to understand how spin emerges in a relativistic wave
equation, and it therefore suffices to consider the case of a free
particle),
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(10)
can be formally obtained from the relations between the
energy and momentum of a free particle

2m
if we assign E the operator i/ (0/0¢) and the momentum p the
operator (7/i) V.
The relativistic analog of relation (11) is the expression

(12)

where p is now the relativistic momentum of the particle.
In the left-hand side of (12) we have a scalar product® of the
4-momentum P = (E/c, p) with itself, which is an invariant, as
also is the scalar product of any two relativistic 4-vectors.
The relativistic wave equation can be obtained if we replace
the 4-momentum P with the operator P, the four components
of which are the differentiation operators with respect to the
components of 4-radius-vector R = (ct,r) times /i/i: ¢

2 A2
<—h—a—+h2A—m2c2)‘P:O. (13)

c? 012

The first two terms in the parentheses form the scalar product
of the 4-gradient with itself, multiplied by %2, and therefore
the operator acting on the wave function is relativistically
invariant. Hence, in order that wave equation (13) (like any
relativistic equation) preserve its form under Lorentz trans-
formations, i.e., be covariant, the wave function ¥ must be a

4 A sad tradition is that the name Fock is not commonly mentioned in the
name of this equation (see in this respect Refs [19-21] published in
Physics—Uspekhi). We note that de Broglie and Schrodinger [6] were also
involved in the creation of the Klein—Fock—Gordon equation.

> We mean the scalar product in the pseudo-Euclidean Minkowski space.
6 The operator P is the 4-gradient up to the factor n/i.
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scalar function of coordinates and time only, because terms
responsible for spin are absent from Eqn (13). Following the
paradigm of quantum mechanics (the replacement of dyna-
mical variables by the respective operators) and special
relativity (the requirement of relativistic invariance), we
automatically arrive at wave equation (13) describing the
motion of a spinless particle. Initially, no additional require-
ment that the particle have zero spin was imposed in the
derivation of the wave equation.

The relativistic wave equation for the electron was
published by Dirac in 1928 [22]. He had devoted the
preceding two years to formulating quantum mechanics in a
symbolic language based on abstract vectors of state.” In
Dirac’s opinion, “‘the symbolic method, however, seems to go
more deeply in the nature of things” and “enables one to
express physical laws in a neat and concise way,” whereas the
method of the pictures (the wave mechanics of Schrodinger
and the matrix mechanics of Heisenberg—Born—Jordan) is
more convenient to use for solving concrete problems [23].

A point of departure in the derivation of the relativistic
wave equation was the absolute rejection by Dirac of the
Klein—-Fock—Gordon equation. Taking for granted the
principle of superposition during the whole time interval (at
least when the system is not subject to any perturbation), the
equation describing the evolution of a state vector should be a
linear differential equation of the first order with respect to
time [23], whereas the Klein—Fock—Gordon equation con-
tains a second time derivative. Half a century later, Dirac
recalled [6] that in 1927 “Bohr seemed to be pretty satisfied
with the Klein-Gordon theory and that was the opinion of
most physicists of that time, perhaps of all of them.” And it
was so notwithstanding the unreconcilable contradictions
among computations of probabilities of dynamical variables
appearing in the framework of the Klein—-Fock—Gordon
theory:® “If you wanted to find the probability of the
momentum having specified values you cannot answer the
question at all. Similarly for other dynamical variables,
you cannot get any information at all about their probabil-
ities” [6].

The requirement of linearity for the time derivative is
satisfied by the Schrodinger-type wave equation

oV
ih —=HY 14
in o (14)
with the relativistic Hamiltonian
H=c\/p*+m3c? (15)

in the right-hand side. However, this form of writing the wave
equation could not satisfy Dirac, for, because of the equal
status of the four coordinates of any point in spacetime, a
correct relativistic theory must be fully symmetric with
respect to derivatives with respect to time and Cartesian
coordinates, and hence the wave equation must also be
linear in the spatial components of the 4-gradient. Thus,
Dirac faced the problem of how to take the square root in
expression (15). As Dirac recalled later [6], he came to the

7 The symbolic method was presented in 1930 in a completed form in the
famous ‘Principles’ [23].

8 Because the Klein—-Fock—Gordon equation is a second-order differential
equation with respect to time, the probability density has to be defined as a
bilinear form in ¥ and 0¥ /01 [24], which, as a result, can take both positive
and negative values, and therefore loses its sense of probability density.

solution “‘rather by accident.” In 1927, the existence of the
electron spin was not causing any doubts. In particular, the
two-row Pauli matrices o1, 0,2, and o3 were known. And so at
one time, as Dirac wrote [6], “‘playing with the mathematics,”
he discovered “‘a very interesting result, just”

(01px + Gapy + 03p2)" = P2+ P+ p2, (16)
and “you had thus a sort of square root for 2 +13f +pr.”
However, in expression (15), there is a sum of four squares in
the radicand; therefore, the three Pauli matrices were
insufficient and one needed to add the fourth matrix having
the same properties as the Pauli matrices, namely, its square
had to be an identity matrix and it had to anticommute with
any of the Pauli matrices. But there was no such matrix, and
that “was a serious difficulty for me for some weeks,”” before
it was found that, in order to obtain the Hamiltonian linear in
Cartesian components of momentum

Hp = c(oypy + o2py + a3p2) + me’p, (17)
the quantities o; (i =1,2,3) and f satisfying the same
requirements as the Pauli matrices

oo + ooy = 0,
oiff + Po; =0,
a?:ﬁzzl

l

(18)

could be taken as Hermitian 4 x 4 matrices independent of
the components of p (otherwise the Hamiltonian Hp would
not be linear) and independent of the coordinates and time,
because for a free particle all points in four-dimensional space
should be equivalent. As such matrices, Dirac took the
matrices

_ 0] ag;
ai_(o’,* 0)’
I O

where O and I are two-dimensional zero and identity
matrices. The independence of the matrices o; and f§ from
‘traditional’ dynamical variables inevitably leads to the
conclusion that these matrices “describe some new degrees
of freedom, belonging to some internal motion in the
electron” [23]. In other words, if in 1928 there had been no
experimental data pointing at the internal angular momen-
tum of an electron, the Dirac relativistic wave equation would
have been a theoretical prediction of its existence.

From the matrix structure of Dirac Hamiltonian (17), it
follows that the wave function should be a 4-dimensional
column, ? each element of which is a function of coordinates
and time, and the wave equation presents a system of four
coupled equations of the first order. Finally, direct computa-
tions in [22] (see also [23]) showed that the equation obtained
is covariant under Lorentz transformations. Thus, Dirac
obtained “really a relativistic equation” [6], flawless from
the standpoint of both quantum mechanics and special
relativity, but it turned out that it is valid only for particles
with spin 1/2. However, Dirac’s argument gives no answer to
the question as to why the equation obtained describes the

(19)

(20)

% Bispinor in modern terminology.
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motion of a particle with spin one half, and not any other. It
may seem that using the Pauli matrices just indicates that
Dirac strived to obtain a wave equation for particles with spin
1/2. In this respect, Dirac was saying [6] that his goal was to
satisfy the requirements of both quantum mechanics and
special relativity, and that it turned out that “the simplest
particle satisfying those requirements is a particle with a spin
of a half. That was a great surprise to me. I thought that the
simplest particle would naturally have a zero spin, and that a
spin of a half would have to be brought in later as a
complication, after one had solved the problem of a particle
with no spin. But it turned out otherwise.”

Thus, both the absence of spin in the Klein—Fock—Gordon
equation and the appearance of spin 1/2 in the Dirac equation
take place automatically, without any pre-imposed condi-
tions regarding the presence or absence of spin in wave
equations.

The coincidence between the results of Sommerfeld and
Dirac (or Klein—Fock—Gordon under a suitable replacement
of the integer number n, with a half-integer /4 1/2 in
condition (4)), as well as the coincidence between the results
of Bohr and Schrodinger is, by all probability, just accidental.
“It seems that one does get coincidences of this sort in the
search for understanding Nature” [6].
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