
Abstract. A plasma with an anisotropic velocity distribution of
particles in a magnetic field is considered. It is shown that the
Weibel instability arises in the reference frame rotating to-
gether with the particles, for example, ions. When considered
in the immobile reference frame, this instability is known as
the Alfv�en cyclotron instability.

Keywords: Weibel instability, Alfv�en cyclotron instability,
filamentation

1. Introduction

For definiteness, we consider the Alfv�en ion-cyclotron (AIC)
instability, which is one of the electromagnetic (nonpotential)
plasma instabilities in a magnetic field.

Let ions with massM, charge q � Ze, and volume density
ni, which are charge-neutralized by electrons, have zero
longitudinal (along the magnetic vector B0 in the plasma:
hereinafter, this is the z-axis) and the same transverse
velocities,

u5 c : �1�

Here, e and c are the elementary charge and the speed of light,
respectively. According to theoretical [1±3] and experimental
[4±8] results (see also reviews [9, 10]), the AIC instability plays

the leading role in the case of a high value of the dimensionless
parameter

b � 4pni �Mu 2=2�
B 2
0

: �2�

The excess energy of transverse motion results in an
amplification of the AIC wave propagating along the
magnetic field (kkB0). The AIC instability arises from
random fluctuations, when the radiation of AIC waves by
rotating ions prevails over their absorption [11]. A character-
istic consequence of the AIC instability is the isotropization
of the ion velocity distribution, which was determined in open
trap experiments [4±8]. Suppressing the AIC instability also
calls for taking special precautions in tokamaks [12±14].

The dispersion equation, which determines the depen-
dence of the AIC wave frequency on the wave vector k, is of
the form

t
�
1� b

�Oÿ 1�2
�
� O2

Oÿ 1
� 0 ; �3�

where we introduced dimensionless quantities

t �
�
kc

oi

�2

; O � o
oBi

and took into account the plasma quasineutrality condition.
In accordance with this condition, the relation ne � Zni is
satisfied, according to which the following relation holds:

o 2
e

oBe
� o 2

i

oBi
:

Here, ne is the electron volume density, oBi � qB0=Mc and
oi �

���������������������
4pniq 2=M

p
are the Larmor and plasma ion frequencies

respectively,oBe � eB0=mc andoe �
��������������������
4pnee 2=m

p
are similar

quantities for the electrons, and m is the electron mass.
For b! 0, expression (3) corresponds to an AIC wave

with a constant amplitude, which travels along the direction
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of themagnetic field. In particular, foro5oBi, we obtain the
well-known dispersion law for low-frequency AIC waves:
o � uAk, where uA � B=

��������
4pr
p

and r �Mni is the density of
the plasma substance. The last term in the square brackets in
Eqn (3) imparts the instability property to this wave. As a
result, its amplitude grows exponentially. In the limiting case

b5 1 ; �4�

this term, which is responsible for the instability, becomes
significant for o � oBi, which corresponds to

O � 1 : �5�

Consequently, the AIC instability develops primarily in
domain (5), and the solution is therefore sought in the form
O � 1� D, where jDj5 1. As a result, for the branch of
unstable oscillations, we obtain

O � 1� i

����������������
bÿ 1

4t 2

r
: �6�

Formula (6) holds when t4 1. It is seen from Eqn (6) that the
AIC instability buildup increment reaches its maximum for
t4 1=

���
b
p

and amounts to

g �
���
b

p
oBi � uo i

c
���
2
p : �7�

Thus, it follows that the AIC instability develops rapidly in
comparison with the ion-ion collision time in the majority of
cases of practical interest.

In the literature, the Weibel instability (WI) and the AIC
instability are treated separately from each other and are
considered to be different in nature. In particular, in books on
plasma physics known to the authors, these two instabilities
are considered in different sections unrelated to each other.
We show that the WI and AIC instability mechanisms are
identical.

2. Weibel instability

The WI is known to arise in a plasma with an anisotropic
particle distribution in the absence of amagnetic field, i.e., for
B0 � 0 [17]. A simple and lucid explanation for the mechan-
ism of this instability is given in Refs [18, 19]. We briefly
reproduce the conclusions given there, as we will need them
below. For definiteness, we consider the ionmotion, although
the WI also develops on electrons, and does so much faster.

Let an electromagnetic wave with electric and magnetic
fields (Fig. 1) related by Faraday's law of electromagnetic
induction propagate along the z-axis in the plasma:

E � E�t� �cos Z; 0; 0� ;
B � kc

o
E�t� �0; cos Z; 0� :

8<: �8�

Here, Z � kzÿ ot and E�t� is the wave amplitude varying
slowly in comparison with the frequency o.

A detailed description ofmany plasma instabilities may be
obtained proceeding from theVlasov equation for the particle
distribution function f �r;Vp; t�, which defines the number dN
of particles that are in a volume element d3r and have
velocities Vp in an interval d3Vp, dN � f �r;Vp; t� d3r d3Vp.
When it is known, the particle density n�r; t� and the electric
current density j�r; t� the particles produce at a given point r in

time t are expressed as

n�r; t� �
�
f �r;Vp; t� d3Vp ;

j�r; t� � q

�
Vp f �r;Vp; t� d3Vp :

�9�

Next, it would suffice to consider functions of the form

f �r;Vp; t� � n�r; t� d �Vp ÿ V�r; t�� :
In this case, the Vlasov equation is equivalent to the ordinary
equation of motion (see, e.g., Refs [20, 21])

_V � q

M
E� q

Mc
�V� B�

(here and below, the ions are considered to be nonrelativistic).
Following Refs [18, 19], we consider the case when the

ions, prior to the appearance of the wave, possess the same
velocity u directed along the x-axis. On appearance of the
wave, the ion velocities change slightly: V � u� dV, where
dV satisfies the equation linearized in the wave amplitude:

d _V � q

M
E� q

Mc
�u� B� : �10�

When projected on the axes, Eqn (10) takes the form

d _Vx � q

M
E cos Z ;

d _Vy � 0 ;

d _Vz � qku

Mo
E cos Z :

8>>><>>>: �11�

We write the ion number conservation law directly in the
form linearized in the wave amplitude:

qdni
qt
� ni

qdVz

qz
� 0 :

We differentiate this equation with respect to time to obtain,
in view of the last equation of system (11),

q2dni
qt 2

ÿ qnik
2u

Mo
E �t� sin Z � 0 :

We seek the solution in the form E�t� / exp �ÿiOt�. For the
AIC wave induced ion density variation, this yields a value

dni � ÿ qnik
2u

MoO2
E �t� sin Z : �12�

B

E

x

y

z

Figure 1.Weibel instability.
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Therefore, in agreement with Fig. 1, layers with an excess and
deficiency of ions appear, and theWI is sometimes referred to
as the filamentation instability.

An additional electric current d j � �d jx; 0; 0� arises along
the x-axis,

d jx � qu dni � ÿ q 2nik
2u 2

MoO2
E �t� sin Z : �13�

In the nonrelativistic ion case (1), the displacement current
may be disregarded, and therefore

H� B � 4p
c

d j : �14�

Hence, in view of expressions (8) and (13), we obtain the
relation

k 2c

o
E �t� sin Z

�
1� g 2

O2

�
� 0 :

Consequently, an instability emerges with increment (7).
One can see from the above treatment that themain role in

the onset of the WI is played by the presence of the magnetic
field rather than the electric field, which, in addition, may be
screened by electrons. An anisotropic particle velocity
distribution is the necessary condition for the onset of the
WI. That is why the WI also results from the field fluctuation
of the form E � 0, B 6� 0, which corresponds to the o � 0
case in the example discussed above. In Refs [17±19] a field of
this type was considered with B � B �t��0; cos �kz�; 0�. In this
case, instead of the last equation in system (11), we obtain

d _Vz � qu

Mc
B �t� cos �kz� ; �15�

and instead of formula (12), we obtain the equation

dni � ÿ qniku

McO2
B �t� sin �kz� ; �16�

whence there follows a conclusion about theWI development
with increment (7) once again.

3. Alfv�en ion-cyclotron instability

3.1 Laboratory reference frame K
We consider case (4). Bearing in mind relation (5), for ease of
calculations we consider the resonance case

o � oBi : �17�
Now,

B � B0 � B1 ; �18�

where E and B1 are the low �in comparison with
B0 � �0; 0; B0�� electric and magnetic fields of the AIC
wave with projections on the X-, Y-, and Z-axes of frame K:

EX � E �t� cos Z ; EY � E �t� sin Z ; EZ � 0 ; �19�

B1 � kc

o
E �t��ÿ sin Z ; cos Z ; 0� : �20�

Here, as in Section 2, Z � kzÿ ot and E �t� is the AIC wave
amplitude varying slowly in comparison with the frequency

o. The corresponding condition is of the form

oE
_E
� o

g
4 1 :

It is satisfied in the case of inequality (4).
With condition (17), fields (19) and (20) rotate together

with the ions with the same angular velocity. In the absence of
an AIC wave, the projections of the velocity of an individual
ion on the X-, Y-, and Z-axes are

u�t; y� � u�sin w ; ÿ cos w ; 0� ; �21�

where w � ÿot� y, y is the angle between the x-axis and the
ion velocity at the time t � 0, u � or0, and r0 is the radius of
ion orbits. We first assume that angle y is also the same for all
ions. This ionmotion is described by the distribution function

f �r;Vp; t� � nid �Vpx ÿ u sin w� d �Vpy � u cos w� d �Vpz� :

The ion and electron charges are mutually compensated,
and so the net charge density is equal to zero,

rtot � 0 : �22�

The Larmor orbit dimensions for electrons are negligible
compared to r0, and therefore they hardly move in the XY
plane. Consequently, the density of the ion current perpendi-
cular to external magnetic field B0 is not compensated by
electrons. In the frame K, according to expression (9), the ion
current density j � qni u �t; y�. Accordingly, the current
density 4-vector in the plasma in the frame K is given by the
expression

j i � �rtotc; j� � qniu �0; sin w; ÿ cos w; 0� : �23�

With the appearance of an AIC wave, the ion velocities
change slightly:V � u� dV, where the ion velocity variations
dV are quantities of the first-order in the amplitude of theAIC
wave. Since uZ � 0, the same is true for the VZ velocity
component itself. In the general case, the ion density also
changes: ni�r; t� � ni � dni�r; t�. The electrons move freely
along the magnetic lines of force and compensate the ion
charge density variations in a time te � 1=oe. The character-
istic times for the processes under consideration, � 1=oBi,
exceed te by many orders of magnitude, and so the
quasineutrality condition (22) is safely satisfied not only in
the absence of the AIC wave but also in its presence.

3.2 Rotating reference frame K 0
From laboratory reference frame Kwe go to frame K 0, which
rotates about the Z-axis together with the ions (Fig. 2), i.e.,
with the angular velocity defined by vector o � ÿoẐ, where
Ẑ is the unit vector aligned with the Z-axis. This transition is
described in detail in the Appendix. Here, we keep the terms
� 1=c and ignore the relativistic quantities of higher order in
1=c. Account should also be taken of the centrifugal and
Coriolis forces of inertia, which emerge in K 0. As a result,
within the above accuracy order, we obtain the equation of
motion in the rotating reference frame:

M
dv

dt
� q

�
E 0 � 1

c
v� B 0

�
� 2M �v� x� �Mo 2q : �24�

Hereinafter, the vectors represented by the projections on the
x-, y-, and z-axes of frameK 0 are denoted by lowercase letters,
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e.g., r � �x; y; z� is the radius vector of an ion, v � �vx; vy; vz�
is its velocity, q � �x; y; 0�, and the fields, as usual, are
denoted by uppercase letters:

E 0 � E� 1

c
V0 � B ; B 0 � Bÿ 1

c
V0 � E ; �25�

whereV0 � x� r � ÿoẐ� q is the linear velocity of motion
of frame K 0 relative to K at the point r where the ion is
located.

As in Section 2, hereafter we take into account only the
terms linear in the amplitude of the AIC wave and ignore the
higher-order terms in smallness. Then, from expressions (24)
and (25) we obtain

dvx
dt
� q

M
Ex ÿ ovy ;

dvy
dt
� q

M
Ey � ovx ;

dvz
dt
� q

Mc

�
B1y�vx � oy� ÿ B1x�vy ÿ ox�� :

8>>>>>>><>>>>>>>:
�26�

Here the E andB1 field projections on the x-, y-, and z-axes of
frame K 0 are expressed as

Ex � EX cosj� EY sinj � E �t� cos �kz� ;
Ey � ÿEX sinj� EY cosj � E �t� sin �kz� ;
Ez � EZ � 0 ;

8<: �27�

B1 � kcE

o

ÿÿ sin �kz�; cos �kz�; 0� ; �28�
where j � ÿot is the angle of rotation of frame K 0 relative to
K.

The ion velocity perturbations dv��dxx=dt; dxy=dt; dz=dt�
caused by the electromagnetic field of the AIC wave itself are
responsible for the AIC instability. Based on Fig. 2, we write

x � R0 cos �ot� � r0 cos y� xx ;

y � R0 sin �ot� � r0 sin y� xy :

Hence, we obtain

vx � dx

dt
� ÿoR0 sin �ot� � dvx ;

vy � dy

dt
� oR0 cos �ot� � dvy ;

where dvx � dxx=dt and dvy � dxy=dt. Then, we disregard the
second-order terms in the amplitude of the AIC wave to bring
Eqns (26) to the form

ddvx
dt
� q

M
E cos �kz� ÿ odvy ;

ddvy
dt
� q

M
E sin �kz� � odvx ;

dvz
dt
� ÿ qku

Mo
E sin �kzÿ y� :

8>>>>>>><>>>>>>>:
�29�

As in Section 2, we obtain, in view of Eqns (29), the
following expression for the ion density variation:

dni � ÿ qnik
2u

MoO2
E cos �kzÿ y� : �30�

In the planes z � const, the plasma remains uniform in the
presence of an AIC wave. This is also evident from the first
two equations (29), according to which dvx and dvy are
independent of the x and y coordinates. Consequently, the
motion of particles along these coordinates does not make a
contribution to their density variation.

In going fromK 0 toK, the thicknessesDz of plasma layers
perpendicular to the rotation axis remain invariable, even
with the inclusion of relativistic effects. That is why formula
(30) is valid in the laboratory frame K as well. In the frame K
at the time t, the ions travel with the velocity defined by
expression (21). In view of the plasma quasineutrality
discussed above, as in the case (23), we conclude that the
current density 4-vector in frame K is of the form

d j i � qdniu �0; sin w; ÿ cos w; 0� :

Hence, we find its components in frame K 0 (see Appendix):

�d j 0�i �
X3
k�0

qx i

qX k
d j k � qdniu �0; sin y; ÿ cos y; 0� :

Therefore, the projections of the electric current density
vector on the spatial unit vectors of frame K 0 are expressed as

dj � qdniu �sin y; ÿ cos y; 0� : �31�

Wenote that, due to quasineutrality in our case,Ez � EZ � 0.
Now, let us compare the AIC instability and theWI. Their

kinship becomes evident even on comparing formulas (15)
and (16) with the last equation (29) and formula (30). Hence,
it is clear that the AICI development is attended by
filamentation, i.e., by the formation of bunches and rarefac-
tions in the plasma, as well as the isotropization of particle
velocities.

In a quantitative comparison of these instabilities, the
particles should be assumed to be uniformly distributed in
angle y. Indeed, in the limiting case B0 ! 0 the particle beam
becomes uniform in density, as in the example discussed in
Section 2, and the radius of curvature r0 of particle

x

y

ot

R0

B0

y

y
r0

Figure 2. Motion of one of the ions in the rotating reference frame K 0.
Position of its Larmor orbit at the next point in time is shown by dashed

lines. Angle y remains time-independent. Also shown is the Larmor orbit

of radius r0, along which the ion moves in the frame K.
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trajectories becomes infinite, i.e., the particle trajectories
straighten. We average the current density (31) over angle y
to obtain

d jx � ÿ o 2
i k

2u

8poO 2
E sin �kz� ; d jy � o 2

i k
2u

8poO 2
E cos �kz� : �32�

Taking into consideration expression (32), we write the
fourth Maxwell equation in frame K 0. In frame K, in this
equation the displacement current may be ignored according
to inequality (1). To be more precise, this may be done
provided [17]

kc4oi : �33�

Note that the smallest spatial scale characteristic of Alfv�en
waves is the ion cyclotron orbit radius rBi, and so

k9kmax � 1

rBi
:

Hence, and from inequality (33), we conclude that the
displacement current may be disregarded provided that

coBi

uoi
4 1 ;

which is almost always fulfilled. Actually, this condition need
not be fulfilled. Our analysis is performed in frame K 0, in
which the forces of inertia operate, and so the Maxwell
equations should be written in the framework of general
relativity. In frameK 0, the space-timemetric is stationary (see
Appendix). Furthermore, according to expressions (27), the
electric field is time-independent in frame K 0. Therefore,
according to Ref. [23, æ 90], the displacement current is
exactly equal to zero, and the fourth equation takes the
form (14). From expression (28), it follows that

HH� B1 � ck 2

o
E
ÿ
sin �kz� ; ÿ cos �kz� ; 0� :

We write the x component of Eqn (14) to obtain the relation�
1� g2

O

�
E sin �kz� � 0 :

Therefore, o � ig in accordance with formula (7). The same
conclusion follows when we consider the y component of
Eqn (14).

4. Conclusions

The physical meaning of the Alfv�en ion-cyclotron plasma
instability and the identity of the AIC instability and Weibel
instability mechanisms become clear when the AIC instabil-
ity is considered in a rotating reference frame. It is clear from
our analysis that the AIC instability is the Weibel filamenta-
tion instability, which takes place in the rotating reference
frame. The sequence of events is as follows. The thermal
fluctuation of plasma currents gives rise to an electromag-
netic field. The magnetic component of this field bends the
trajectories of charged particles in plasma, which results in a
redistribution of their density (see formulas (29) and (30)).
Due to the anisotropy of the particle velocity distribution, this
density redistribution gives rise to currents, which enhance

the field fluctuation. Therefore, the indicated anisotropy is
the cause of the appearance of positive feedback in the
plasma. The WI is the special case of the AICI in the limit of
zero external magnetic field B0.

5. Appendix.
Rigorous treatment of Alfv�en ion-cyclotron
waves in a rotating frame of reference

Let Xi � �X 0; X 1; X 2; X 3� denote the four-dimensional
coordinates of an event (for instance, a point-like flash of
light) in the laboratory inertial frame K. Here, i � 0; 1; 2; 3,
X 0 � ct, t is the time synchronized in K, and X a � �X; Y; Z�
are the Cartesian coordinates of the event. The magnetic field
B0 is aligned with the Z-axis.

We construct the frame K0 rotating about the Z-axis of
frame K with an angular velocity ÿo. To this end, we
consider a system of numbered clocks describing circumfer-
ences about the Z-axis according to the law

r � ������������������
X 2 � Y 2
p � const ;

Z � const ;
j � cÿ ot :

8<:
Here, j � arctan �Y=X �, X � r cosj, Y � r sinj, and c is
the value of angle j at the point in time t � 0. The number
that labels the clock is a set of three numbers: r; Z; c.

According to general relativity, systems K and K0 are
equivalent. From the equivalence of K and K0, there follows
the invariance of the interval between two close events, which
gives the following expression for the space-time metric in
frame K0 [22, 23]:

ds 2K0 � ds 2K � �dX 0�2 ÿ dX 2 ÿ dY 2 ÿ dZ 2

� f �dx 0�2ÿ dx 2 ÿ dy 2 ÿ dz 2 � 2o
c
�x dyÿ y dx� dx 0 ;

�34�

where x 0 � ct � X 0, f � 1ÿ �or=c�2,
x � r cosc � X cos �ot� ÿ Y sin �ot� ;
y � r sinc � X sin �ot� � Y cos �ot� ;
z � Z :

(
The clocks on the axis of rotation are at rest both in K and

inK0, and they are therefore suited for use in these two frames
of reference. The remaining clocks are synchronized to those
located on the axis of rotation. In other words, the figures on
their clock faces are assigned in accordance with the
procedure performed, for instance, by exchanging radially
traveling light signals between the neighboring clocks with the
coinciding values of numbers c and Z [22, 23].

In frame K, the clocks may not travel at a velocity
exceeding the speed of light. For this reason, the indicated
choice of the rotating frame of reference is feasible in a limited
spatial domain f > 0, which is, however, sufficiently broad
for our consideration.

In frame K0, the ion motion is described by the equation
[23]

Dui

ds
� q

Mc 2
Fikuk : �35�

Hereinafter, we perform summation over repeated pairs of
indices, and u i � dx i=ds and ui are the contravariant and
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covariant components of the ion velocity 4-vector. Next, Fik

and Fik�K� are the respective electromagnetic field tensors in
frames K0 andK taken at the point of ion location and related
by the expression

Fik � qx i

qXl

qxk

qXm
Flm�K� : �36�

Last, Du i=ds is the covariant derivative of the velocity
4-vector,

Du i

ds
� du i

ds
� G i

klu
ku l :

The nonzero Christoffel symbols for metric (34) are of the
form

G 1
00 � ÿ

o 2

c 2
x ; G 1

02 �
o
c
;

G 2
00 � ÿ

o 2

c 2
y ; G 2

02 � ÿ
o
c
:

Then, equation of motion (35) written for the velocity
components vx � dx=dt, vy � dy=dt, and vz � dz=dt
assumes the form

d

dt
�gvx� ÿ o 2x� 2ogvy � 1

M
Fx ;

d

dt
�gvy� ÿ o 2yÿ 2ogvy � 1

M
Fy ;

d

dt
�gvz� � q

M
Fz ;

8>>>>><>>>>>:
�37�

Fx � q

�
ExQ� Bz

c
�vy ÿ ox� ÿ By

c
vz

�
;

Fy � q

�
EyQÿ Bz

c
�vx � oy� � Bx

c
vz

�
;

Fz � q

�
EzQ� By

c
�vx � oy� ÿ Bx

c
�vy ÿ ox�

�
;

g �
�
1ÿ

�
or
c

� 2

� 2o
c 2
�xvy ÿ yvx� ÿ v 2

c 2

�ÿ1=2
;

Q � 1ÿ
�
or
c

�2

� o
c 2
�xvy ÿ yvx� :

Here, Ea and Ba are the field components on K0, a�1, 2,
3 � x; y; z. Tensor Fik from expression (36) is expressed
through them in the usual way: F 0a � ÿEa, F

ab � ÿeabgBg

[23].
In our case, Ez � 0, and the remaining field components

are defined by formulas (18), (27), and (28) with B0 �
�0; 0; B0�.

We ignore the terms � V 2=c 2 and � o 2r 2=c 2 to obtain
Eqns (26).
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