
Abstract. The k coefficient method proposed by Bondi is ex-
tended to the general case where the angle a between the velocity
of a signal from a distant source at rest and the velocity of the
observer does not coincide with 0 or p, as considered by Bondi,
but takes an arbitrary value in the interval 04 a4 p, and to the
opposite case where the source is moving and the observer is at
rest, while the angle a between the source velocity and the
direction of the signal to the observer takes any value between
0 and p. Functions k��b; a� and k��b; a� of the angle and
relative velocity are introduced for the ratio x=x 0 of proper
frequencies of the source and observer. Their explicit expres-
sions are obtained without using Lorentz transformations, from
the condition that the coherence of a bunch of rays is preserved
in passing from the source frame to the observer frame. Owing
to the analyticity of these functions in a, the ratio of frequencies
in the cases mentioned is given by the formulas x=x 0 �k��b; a�
and x=x 0 � k��b; p ÿ a� � 1=k��b; a�, which coincide with
those for the Doppler effect, in which the angle a, the velocity
b, and one of the frequencies are measured in the rest frame. A
ray emitted by the source at an angle a to the observer's velocity
in the source frame is directed at an angle a 0 to the same velocity
in the observer frame. Owing to light aberration, the angles a
and a 0 are functionally related through k��b; a� � k��b; a 0�.
The functions a 0�a; b� and a�a 0; b� are expressed as antideriva-

tives of k��b; a� and k��b; p ÿ a 0�. The analyticity of the func-
tions k��b; z� and k��b; z� in z � a in the interval 04 z4 p is
extended to the entire plane of complex z, where k� has poles at
z�n � 2pn� i ln cos a1 (see (17)), and k� has zeros at the same
points shifted by p. The spatiotemporal asymmetry of the
Doppler and light aberration effects is explained by the close-
ness of these singularities to the real axis.

Keywords: special relativity theory, invariance of coherence, invar-
iance of phase, Doppler effect, aberration of light, analyticity in
angle, conjugate poles and aberration scale

1. Introduction

In the proposed generalized k coefficient method, the ratio
o=o 0 of light ray frequencies in the proper frames of a source
and an observer is equal to the coefficient k��b; a� when the
source is at rest and the observer is moving, and to the
coefficient k��ÿb; a� � k��b; pÿ a� � 1=k��b; a� when the
source is moving and the observer is at rest. In both cases,
b � V=c is the relative velocity of the reference frames and a is
the angle between the ray direction ng and the direction nb of
the relative velocity of the observer in the source frame or of
the source in the observer frame.

Analytic expressions for the coefficients can be obtained
from the condition that the coherence of a light beam is
preserved in passing from the source frame to the observer
frame. Using the fact that a monochromatic coherent light
beam incident on a crystal lattice stays monochromatic and
coherent under reflection at Bragg±Wulff angles, we show
that in a frameMmoving relative to the lattice opposite to its
normal, the incident and reflected beams remain coherent and
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monochromatic, but their frequencies differ from those in the
lattice frame by shifts to the red and blue sides as the incident
ray `runs after' M and the reflected one `meets' M.

For a � a1, cos a1 � b=�1� �1ÿ b 2�1=2�, the frequency
shift of an incident ray vanishes because k��b; a1� � 1, and for
a1 < a < p=2, it turns blue, although in the lattice frame the
ray is still `running after' M (light aberration). As a result, for
the ratio of frequencies in the frames of the source (lattice)
and observer M we have the Doppler effect formula o=o 0 �
k��b; a� valid when the source is at rest and the observer is
moving.

A ray emitted by the source at an angle a to the velocity
of the observer relative to the source in the observer frame is
directed at an angle a 0 to that same velocity. The angles a
and a 0 are functionally related: a 0�a; b� is the antiderivative
of the coefficient k��b; a�, and a�a 0; b� is the antiderivative of
the coefficient k��b; pÿ a 0� � k��ÿb; a 0�. The coefficients
k��b; a� and k��b; a�, being analytic functions of the variable
z � a in the interval 04 z4 p, are analytic in the entire
plane of complex z, where k��b; z� has poles at the points
z�n � 2pn� i ln cos a1 and k��b; z� has zeros at these points
shifted by p. Light aberration is related to the closeness of
these poles and zeros to the real axis.

For the observer M moving with a velocity b in the
environment of distant fixed sources sending rays to M at
different angles a to its velocity with frequencies larger and
smaller than oL, to detect them at angles a 0 � a 0�a; b� with
the same frequency oL, it is necessary that the ratios of the
high oG and low oS frequencies to oL be mutually reciprocal
and

oG

oL
� k��b; a� � oL

oS
� 1

k��b; pÿ a 0� :

In this case, M coincides with a moving source of the
frequency oL, whose rays are seen by distant observers at
rest as making the angle a with its velocity and having the
frequency o � oLk��b; a�. This is the formula for the
Doppler effect when the source is moving and the observer
is at rest.

The method of the k coefficient was first proposed by
Hermann Bondi, a professor at King's College, London, in
the article ``The space traveller's youth,'' published in
Discovery [1] and then in his book Relativity and Common
Sense [2]. Later, it appeared in books by D Bohm [3],
L Marder [4], and others. I have to present it here because
the goal of this article is an extension of this transparent
method to the general case where the angle a between the
velocity of a signal from a fixed distant source and the
observer velocity is not equal to zero or p, as was assumed
by Bondi, but can take an arbitrary value in the interval
04a4 p, and to the opposite case where the source is
moving and the observer is at rest, and the angle a between
the source velocity and the direction of the signal to the
observer takes any value between 0 and p.

2. The k coefficient method proposed by Bondi

Let there be two observers A and B at rest in the laboratory
frame, separated by a distance d and keeping synchronized
clocks. At the moments tAn � ntA1 , n � 0; 1; 2; . . . ; which are
multiples of the period tA1 , A emits light signals in the
direction of B. These signals reach B at the moments
tBAn �tAn � d=c with the same period tA1 because tB1 �
t BA
n�1 ÿ tBAn � tA1 .

We now assume that observer M is moving along the line
connecting A and B, in the direction from A to B with a
velocityV. Then the signals sent by A at moments tAn reachM
at the moments t �n satisfying the requirement that the path of
M and the nth signal are equal, Vt �n � c�t �n ÿ tAn � (Fig. 1).
Hence, t �n � tAn =�1ÿ b�, b � V=c. This means that the period
t �1 between the signals arriving toM is, according toA's clock,

t �n�1 ÿ t �n �
tAn�1 ÿ tAn
1ÿ b

� tA1
1ÿ b

:

Because of the constant increase in the distance between the
receiver and the source, this period is larger than that of
emission.

But we are interested in the period of the signals coming to
M according to M's clock. We let tM1 denote it. Because it is
also proportional to the emission period tA1 , we introduce the
proportionality coefficient k,

tM1 � ktA1 ; �1�
which depends on the velocity V and should exceed 1 because
the detector of signals M is moving away from the signal
source A.

We note that observer M can treat signals coming from A
as being emitted by M itself toward B over intervals tM1 (see
Fig. 1). Because the interval between the signals received by
observer B equals tA1 and is related to tM1 by (1), writing it in
the form

tB1 � tA1 �
1

k
tM1 �2�

7tA1

3tA1

2tA1

tA1

0
A

tBA3

tBA2

tBA1

3t �1

2t �1

t �1

tBA0 �d=c

tBA7

Vt �1 Vt �2 Vt �3 B x
d

M

t

Figure 1. Computations of the relation between period-tA1 signals emitted

by the source A and their periods t �1 and tM1 received by a moving observer

M by clocks of A and M, respectively.

602 V I Ritus Physics ±Uspekhi 63 (6)



we can regard it as a relation between the emission period of
the signals at the `source' M and their detection period at B
when the source is approaching the detector. Because of the
constant increase in the distance between the source and the
detector, the period at the detector is shorter than the
emission period, which once again leads to k > 1.

We now consider the case where an observer at rest
equipped with a detector R receives signals from a source M
first moving away from R with a speed V to a maximum
distance, and then approachingRat the same speedV (Fig. 2).

LetTM be the total motion time of the sourceMmeasured
by the clock of M, and TR be this time measured by the clock
of R. Then the signals emitted whenMmoves away reachR in
the time

t �R � k
1

2
TM ; �3�

and signals emitted by M when approaching R arrive in the
time

TR ÿ t �R �
1

k

1

2
TM : �4�

Eliminating t �R from these two equations, we find the
important relation

TR �
�
k� 1

k

�
1

2
TM : �5�

Because k 6� 1 (otherwise, V � 0), it follows that k� 1=k > 2
and hence

TR > TM :

Thus, the timeTR it takesM to return toR by the clock of R is
always larger than the proper time TM of M. This is the twin

`paradox'Ð a twin returning after a journey in space is
younger than the one who stayed at home.

We now find the function k�b�. By the clock of the
observer R, M was moving away from R for the time TR=2,
reaching the largest separationVTR=2. A signal emitted byM
at themoment of the largest separation takes the timeVTR=2c
to reach R, reaching R at the moment

t �R �
TR

2
� VTR

2c
� 1

2
TR�1� b� : �6�

Eliminating the time ratios t �R=TM, TR=TM, and t �R=TR from
the three equations (3), (5), and (6), we obtain the sought
relation between k and b,

k�b� �
�����������
1� b
1ÿ b

s
: �7�

Using this function in formula (5), we arrive at the known
relation between the intervals of proper and laboratory
motion time of M:

TR � 1��������������
1ÿ b 2

p TM : �8�

The extension of the k coefficient method to the general
case where the direction of rays from a source makes an
arbitrary angle with the direction of the observer's velocity
was prompted by an article submitted to Physics±Uspekhi,
which claimed that the occurrence ofmaxima in reflected light
intensity for particular incidence angles of a monochromatic
beam on a crystal lattice (Bragg±Wulff angles) ceases to be
Lorentz invariant, and constructive interference of reflected
rays in the laboratory frame can become destructive if
observed from another inertial frame. This is clearly not the
case because it contradicts the phase invariance of a
monochromatic light wave. The proposed extension of the k
coefficient method offers a transparent and informal way to
obtain general expressions for the Doppler effect and light
aberration without resorting to Lorentz transformations and,
in particular, to prove the Lorentz invariance of constructive
interference of reflected rays in the Bragg±Wulff effect.

3. Coefficients k��b; a� and k��b; a�
in the problem of invariance of the coherence
of a bunch of monochromatic rays

We consider light reflection by two layers A and B of a crystal
lattice (Fig. 3). Laser beams incident on surfaces A and B are
coherent. This means that constant phases of wave front
surfaces that are normal to the rays and separated by the
wavelength l differ by 2p. The surfaces with definite phases
travel with the speed of light. For neighboring rays 1 and 2
reflected at the neighboring (nearest) points of neighboring
layers A and B, the optical path difference is

D � 2d

sin y
ÿ 2d cot y cos y � 2d sin y ;

where d is the distance between layers A and B, and
y � p=2ÿ a, with a being the incidence angle, equal to the
reflection angle. If this difference is equal to an integer
number of wavelengths,

2d sin y � ml ; 0 < sin ym � ml
2d

4 1 ; �9�

1

2
TR

TR

t

0
1

2
VTR

Geodesic of M

Geodesic of M

Geodesic
of R

x

t �R

Figure 2. Computation of the relation between the proper time TM and

laboratory time TR of the motion of M.
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the rays reflected from layers A and B at such angles remain
coherent. This is the Bragg±Wulff condition for the direction
of maximum reflected light intensity.

We define a signal to be the part of the coherent light rays
between two fronts with the phase difference of 2p, i.e., with
the length l and duration T � l=c of one period.

We assume that t � tA0 � 0 is the moment incident ray 1 is
reflected from layer A; it coincides with the moment when the
front of rays 1 and 2 crosses layer A (see Fig. 3). Then the
front of rays 1 and 2 reflected from layer B starts crossing
layer A at the moment

t � tABA
0 � 2d sin y

c
� ml

c
� mT

(see Fig. 3). The next front of rays 1 and 2 crosses layer A at
the moment t � tA1 � l=c � T and after reflection from layer
B starts crossing layer A at the moment

t � tABA
1 � mT� T :

The signals incident on layer A at the moments tAn �
ntA1 � nT, n � 0; 1; 2; 3; . . . ; spend the same time d sin y=c on
the path from A to B and arrive at B at the moments

tBAn � tAn �
d sin y

c
:

Hence, the period the subsequent signals from A arrive at B
equals the period they appear in A:

tBAn�1 ÿ tBAn � tAn�1 ÿ tAn � tA1 :

In turn, the signals reflected at the moments tBAn arrive at A at
the moments

tABA
n � tBAn � d sin y

c
� tAn �

2d sin y
c

;

and hence the period at which the signals reflected from B
arrive at A coincides with the period they originally appeared
at A,

tABA
n�1 ÿ tABA

n � tBAn�1 ÿ tBAn � tA1 :

Signals reflected from layer A at the moments tAn and signals
reflected by layer B and starting to cross A at the moments
tABA
n propagate in the same direction and are coherent if the
interval

tABA
n ÿ tAn �

2d sin y
c

is a multiple of the light period T, i.e, if the Bragg±Wulff
condition is satisfied,

2d sin y
c

� mT :

Let observer M move away from A and approach B at a
constant velocity V normal to the layers. Then the arrival of
the signal sequence from A to M is uniform according to the
clocks of both A and M, but their arrival period tMA

1

measured by the clock of M is larger than their emission
period at A. We let

k� � tMA
1

tA1
> 1 �10�

denote the ratio of these two periods. On the other hand,
because M approaches B with the same velocity V, signals
reflected from B also arrive at M uniformly as measured by
the clock of both A and M, but their arrival period tMBA

1

measured by the clock of M is k� times shorter than tA1 ,

tMBA
1 � 1

k�
tA1 : �11�

Indeed, because M, on receiving signals reflected from layer
B, could have considered them to be its own signals emitted
in the direction of A, they would have reached layer A with
the period tA1 , which should be larger than the emission
period tMBA

1 by k� times, because M is moving away from A
with the velocity V.

We find the functions k� and k�. The observer M is at the
distance Vt �n from A when at the moment t �n it receives the
front of the signal emitted atA at themoment tAn . But the path
that the front should pass during the time t �n ÿ tAn is Vt �n cos a
(Fig. 4). Therefore, Vt �n cos a � c�t �n ÿ tAn �, whence

t �n �
tAn

1ÿ b cos a
; b � V

c
; a � p

2
ÿ y ; cos a � sin y :

The signals from A arrive to M with the period

t �n�1 ÿ t �n �
tAn�1 ÿ tAn
1ÿ b cos a

� tA1
1ÿ b cos a

;

and the respective period of the proper time of M is

tMA
1 �

��������������
1ÿ b 2

q
�t �n�1 ÿ t �n � �

��������������
1ÿ b 2

q
tA1

1ÿ b cos a
;

�12�

k��b; a� �
��������������
1ÿ b 2

q
1ÿ b cos a

:

We note that k� < 1 if

cos a < cos a1 � b

1�
��������������
1ÿ b 2

p :

This phenomenon, unexpected for angles a1 < a < p=2, is due
to aberration.

2 1

y

y

y y y

y

a

a

a a
2a

a

10
200

100d cot y

d

d cot y

A

B

F 0

F

d sin y

Figure 3. For a coherent bunch of rays, the optical path between the front

AF that has just passed the layer A and the front AF 0 passing through it

equals 2d sin y.
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At the moment t�n , having passed the distance Vt�n from
A, observer M receives the signal that was reflected from B at
the moment tBAn � tAn � d sin y=c. The optical path of the
front of the signal reflected from layer B to layer A can be
expressed as the sum of the path c�t�n ÿ tBAn � from layer B to
the encounter with M and the remainder Vt�n cos a from the
encounter withM to layer A (Fig. 5). Because this sum equals
d sin y, from the equation

c�t�n ÿ tBAn � � Vt�n cos a � d sin y

it follows that

t�n �
tAn

1� b cos a
� 2d sin y
c�1� b cos a� :

Thus, by the clock at A, the period at whichM sees the signals
reflected from B is

t�n�1 ÿ t�n �
tA1

1� b cos a
;

while by the clock of M it is

tMBA
1 �

��������������
1ÿ b 2

q
�t�n�1 ÿ t�n � �

��������������
1ÿ b 2

q
tA1

1� b cos a
;

�13�
k��b; a� � 1� b cos a��������������

1ÿ b 2
p :

Formulas (12), (13) relate the frequency o of signals from a
distant source in the laboratory frame to their frequency o 0

measured by an observer M moving either from or to the
source; the signs are ÿ or �, respectively,

o � o 0
��������������
1ÿ b 2

p
1� b cos a

; cos a � sin y �14�

(see formula (15) in [5]). This formula was first obtained by
Einstein in his first paper [6] on the theory of relativity.

Thus, signals reflected from layers A and B are also
coherent for observer M if they are coherent for A (i.e., if
y � ym; see (9)), and their periods (or frequencies) are
related by the usual formulas (12)±(14) for the Doppler
effect. This is a consequence of the invariance of the light
wave phase. Here, this is proved with the help of the
coefficients k� and k�.

4. Analyticity of the coefficients k��b; a�
and k��b; a� in the angle a
and the relation between them

We note that the angle a that we use is confined within
04a4 p=2 and, according to Figs 3±5, defines the arrange-
ment of the velocities of the signal and observer with respect
to each other and relative to layers A and B in the laboratory
frame. The angle aP used by Pauli in formula (15) has the
physical sense of the angle between the velocities of the
observer and the signal from a remote source that is at rest
in the laboratory frame. It can range the interval 04aP 4 p.
When the signal runs after the observer (see Fig. 4), our angle
a � aP, and when the signal and observer move toward each
other (see Fig. 5), a is related to aP as a � pÿ aP. For this
reason, the passage from formula (14) to formula (15) by
Pauli amounts to replacing a with aP for the upper sign and a
with pÿ aP for the lower sign, such that the term �b cos a is
replaced with ÿb cos aP.

This is nothing but an analytic continuation of the func-
tions k��b; a� and 1=k��b; a� in the angle a to the entire
interval 04a4 p, in which, both by value and by physical
sense, a � aP for k��b; a� and a � pÿ aP for 1=k��b; a�. In
other words, these functions coincide as functions of aP:

1

k��b; pÿ aP� � k��b; aP� �
��������������
1ÿ b 2

q
1ÿ b cos aP

; 04aP 4 p :

�15�
The coincidence of these two analytic functions of the

variable z � aP in the interval 04 z4 p means that they
coincide in the whole plane of the complex variable z, having
simple poles at the points z�n � 2pn� i ln cos a1, with n an
integer, cos a1� b=�1� �1ÿ b 2�1=2�, with the residues � i.

The angle a1 plays an important role in the generalized
k coefficient method.

5. Derivation of relativistic Einstein formulas
for the Doppler effect and light aberration
using the generalized k coefficient method

5.1 Relation between the angles a and a 0 made by ray
directions and the velocity of the detector
relative to the source in the source and detector frames
With the help of functions (15), the Einstein formula for the
ratio oL=o 0M of proper frequencies of a distant source L

y

y yyy

a

a

a

d

A

B

Vt �n

M
Vt �n cos a �
c�t �n ÿ tAn �

Figure 4.Computation of themoment t �n when observerM is taken over by

the front of the nth signal, which passes layer A at the moment tAn .

a

a

a

d

c�t�n ÿ tBAn �

Vt�n cos a

A

B

M

y y y

Figure 5.Computation of themoment t�n when observerMmeets the front

of the nth signal reflected from layer B.
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resting in the laboratory frame and a moving observer M can
be written as

oL

o 0M
� 1

k��b; pÿ aP� � k��b; aP� �
��������������
1ÿ b 2

q
1ÿ b cos aP

; �16�

where aP is the angle between the direction ng of the signal
velocity and the direction nb of the velocity of observer M in
the laboratory frame. For 0 < aP < p=2, formula (16)
describes the situation depicted in Fig. 4, and for
p=2 < aP < p, the situation in Fig. 5, because as aP
increases, the source L is displaced to a different position
relative to M along an arc lying far fromM.

As the angle aP increases, the ratio oL=o 0M decreases and,
according to the note after formula (12), becomes less than 1
when aP crosses the value

a1 � arccos
b

1�
��������������
1ÿ b 2

q <
p
2
: �17�

For angles aP in the interval a1 < aP < 2pÿ a1, the function
k��b; aP� and the ratio oL=o 0M become smaller than 1. This
means that the frequency o 0M of signals received by the
moving observer M is higher than the proper frequency oL

of signals emitted by the source L, owing to aberration of
these signals or to M approaching L.

If the source L, oL in the laboratory frame, which sends
signals to M at the angle a � pÿ a 0P lying in the interval
a1 < a � pÿ a 0P < p, 0 < a 0P < pÿ a1, is replaced with a
source S, oS of signals with a reduced frequency oS < oL

such that observerM receives these signals in his proper frame
with the frequency oM equal to oL,

oM� oL � o 0Mk��b; a� � o 0M

��������������
1ÿ b 2

p
1ÿ b cos a

; a1 < a < p ;

�18�
then the ratio of the frequency of the emitted signal to the
frequency of the signal received by M,

oS

oM
� oS

oL
� oL

o 0M
� k��b; pÿ a 0P� �

��������������
1ÿ b 2

p
1� b cos a 0P

;
�19�

0 < a 0P < pÿ a1 ;

must remain the same as before the replacement of L with S,
because for oM � oL it is also defined by the proportionality
coefficient k��b; a� � k��b; pÿ a 0P�, which depends only on
the velocity b and the angle a � pÿ a 0P, a1 < a < p, between
the velocity direction nb and the direction ng of the signal
coming from the source (Fig. 6).

On the other hand, if we require that observer M receiv-
ing signals from the source L, oL at an acute angle aP,
0 < aP < a1, between the directions of velocities of the
observer and the signal, cos aP � nbng, detect them not with
a frequency o 0M lower than oL but with the frequency
oM � oL, i.e., the same frequency as from the source S,
oS, then this source L, oL has to be replaced by a source G,
oG whose frequency exceeds oL by oL=oS times, oG �
oL�oL=oS�. The boundary conditions oS � oL and oG �
oL are automatically satisfied in this case and are con-
sequences of one another, and oL � �������������

oGoS
p

(see Fig. 6).
In this and only in this case,

oL

o 0M
� k��b; aP� � oG

oL
� oL

oS
� 1

k��b; pÿ a 0P�
� k��b; a 0P� ;

�20�

which is equivalent to the angle a 0P being related to the angle
aP as ��������������

1ÿ b 2
q

1ÿ b cos aP
� 1� b cos a 0P��������������

1ÿ b 2
p : �21�

Pauli gives this formula under the number (16c) and
obtains it, just as Einstein did in [7], from the invariance of
the monochromatic light wave phase under Lorentz transfor-
mations. Here, we obtained it with the generalized k
coefficient method, without resorting to Lorentz transforma-
tions.

We also note that the intervals 04aP 4a1,
04a 0P 4 pÿ a1 of the angles aP and a 0P used in the derivation
of relation (21) can be extended owing to the analyticity of all
functions that depend on these angles. This is why relation
(21) between aP and a 0P is automatically preserved in the
extended interval 04aP, a 0P 4 p of these angles. We consider
this relation, viewing aP as an argument and a 0P as a function
of aP and omitting the index P, aP � a, a 0P � a 0�a�. The
function a 0�a� also depends, certainly, on the parameter b,
a 0�a� � a 0�a; b�, which we keep in mind in what follows.

5.2 Function a 0�a; b� as an antiderivative
of the coefficient k��b; a�
Differentiating both terms in (21) with respect to a, we obtain
an expression for the derivative that relates it directly to
k��b; a�:

qa 0�a�
qa

� _a 0�a� �
��������������
1ÿ b 2

q
1ÿ b cos a

� k��b; a� : �22�

Now, integrating this expression over a, we find the sought
function, the antiderivative of k��b; a�:

a 0�a; b��
��������������
1ÿ b 2

q � a

0

da
1ÿ b cos a

� 2 arctan

� �����������
1� b
1ÿ b

s
tan

a
2

�
:

�23�
At the ends of the interval 04a4 p, it takes the values

a 0�0� � 0 and a 0�p� � p ;

0

A;oS

S;oS

p
2

p
pÿ ab

ab
G;oG

a1

pÿ a1

M

b
ng

ng

ng

ng

B;oG

Figure 6. Signals of sources G and S with frequencies oG > oL and

oS < oL arrive to M with the frequency oL � �������������
oGoS
p

and are sent by M

with the frequency oL to the observers B and A, who detect them with

frequencies oG and oS. In the plot, b � 0:9, aG � 20�, and aS � 105�.
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and at intermediate points, characterized by a given b,
a � ab � arccos b, a � a1, a � p=2, it takes the values

a 0�ab� � p
2
; a 0�a1� � pÿ a1 ; a 0

�
p
2

�
� pÿ ab :

The derivative _a 0�a� attains its maximum and minimum
values at the ends of the interval,

_a 0�0� � k��b; 0� � k��b; 0� �
�����������
1� b
1ÿ b

s
;

_a 0�p� � k��b; p� � k��b; p� �
�����������
1ÿ b
1� b

s
;

which coincide with k�b� and 1=k�b� in Bondi's method, and
at the intermediate points mentioned above, it takes the
values

1��������������
1ÿ b 2

p ; 1 ;

��������������
1ÿ b 2

q
:

The function a 0�a; b� is plotted in Fig. 7. Its curvature reaches
an extremum at a � a1, equal to ÿ cot a1=

���
2
p

.
We note that the inverse function a�a 0� follows from (23)

by the sign change at the parameter b,

a�a 0� � 2 arctan

�����������
1ÿ b
1� b

s
tan

a 0

2

 !
: �24�

5.3 Derivation of the Einstein formula for a moving source
and a resting observer
We assume that on the arc 04aP 4a1 there are sources G,
oG whose frequency oG�aP� monotonically decreases as aP
increases from oG�0� � oL

���������������������������������1� b�=�1ÿ b�p
for aP � 0 to

oG�a1� � oL for aP � a1.
We assume that on the arc a1 4aP 4 p there are sources

S, oS, whose frequency oS�aP� monotonically decreases as
aP increases from oS�a1� � oL for aP � a1 to oS�p� �
oL

���������������������������������1ÿ b�=�1� b�p
for aP � p.

Themoving observerM sees all these signalswith the same
frequency oL in his proper frame and sends them to observers
B and A in the laboratory frame. They reach observer B with
the frequency oG�aP�5oL if 04aP 4a1 and with the
frequency oS�aP�4oL if a1 4aP 4 p=2. We draw attention
to the fact that because of light aberration, observer B detects
the frequency oS < oL for the angle aP in the range
a1 < aP < p=2, even though the source M is approaching.

The signals reach observer A with the frequency
oS�aP� < oL because for p=24aP 4 p, the source M moves
away from A. Here, as previously, aP is the angle between the
direction nb of the velocity of the source M and the direction
ng of the velocity of signals arriving to B or A, cos aP � ngnb.

The requirement that the frequency ratio oG=oL be equal
to the ratio oL=oS is equivalent to the transfer of the source
with the frequency oL from the laboratory frame to the
proper frame of observer M. As a result, M becomes a source
moving with the velocity b emitting at the frequency
oM � oL, and B and A become detectors of signals of the
frequency o from the source M, oL, approaching B and
moving away from A,

o
oL
� k��b; aP� �

��������������
1ÿ b 2

q
1ÿ b cos aP

: �25�

Observer B detects a frequency o5oL for the interval
04aP 4a1, and o4oL for the interval a1 4aP 4p=2.
Observer A always detects a frequency o4oL because in
this case p=24aP 4 p.

Thus, the function k��b; aP� in formula (16) with the same
sense of the angle aP in the range 0 < aP < p, cos aP � nbng,
describes the relation of the proper frequency oL of the
laboratory source L to the frequency o 0M of signals reaching
observer M moving away �0 < aP < p=2� or approaching
�p=2 < aP < p� the source.

In formula (25), the same function k��b; aP�with the same
sense of the angle aP relates the proper frequency oL of the
moving source M to the frequency o of signals arriving to a
laboratory observer, if the source M is approaching �o > oL

for 0 < aP < a1 and o < oL for a1 < aP < p=2� or moving
away from �o < oL for p=2 < aP < p� this observer.

Formula (25) coincides with formula (48.12) in [8] and
with the solution of problem 1.21 in [9], found by the
traditional methods of relativity theory. Both formulas, (16)
and (25), were first obtained by Einstein in [6, 7] relying on the
phase preservation of a monochromatic light wave under
Lorentz transformations.

In this respect, Einstein's explanations of these formulas
are very enlightening. We present them using Pauli's notation
for the angle and dimensionless velocity as adopted here and
removing the indices M and P. Einstein writes [7]:

``1. If an observermoves with the velocity vwith respect to
an infinitely distant light source of frequencyo so that the line
`light source±observer' makes an angle a with the observer
velocity with respect to a reference frame that is at rest relative
to the light source, the frequency o 0 of light detected by the
observer is given by the relationship

o 0 � o
1ÿ b cos a��������������

1ÿ b 2
q :

2. If a source emitting light of frequency o0 in the
reference frame moving together with it moves so that the
line `light source±observer' makes an angle awith the velocity

3.0
p

p

2.5

2.0

1.5

1.0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0
a

a 0

b
� 0
:5

b
� 0
:9

b
� 0
:9
9

b �
0:
99
9

b �
0

Figure 7. Function a 0�a; b� for five values of the parameter b � 0, 0.5, 0.9,

0.99, and 0.999. This function increases monotonically with the angle a,
04a4 p, as well as with the parameter b, 04b4 1.
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of light source in the frame resting with respect to the
observer, the frequency o detected by the observer is given
by the relationship

o � o0

��������������
1ÿ b 2

q
1ÿ b cos a

: ''

We stress that irrespective of the object of motionÐbe it
the observer or the sourceÐ the velocity b of this object M
and the angle a are defined by Einstein relative to a rest frame,
which we call the laboratory one. The magnitude b and the
direction nb of velocity, the frequency o, and the direction ng
of light emitted by the laboratory source or detected by the
laboratory observer are measured by laboratory instruments,
whereas frequencies o 0 and o0 are predicted or considered to
be known in advance.

We also note that the use of an `infinitely distant' light
source is equivalent to the condition that the angle a remains
constant as M moves.

6. Aberration of light from stars
and the function a 0�a; b� describing a shift
in the angular position and color of stars

Formulas (16) and (25) obtained for the Doppler effect
(which coincide with Einstein's formulas) are the general
form of the dependence of the ratio of proper frequencies of
light emitted by a source and detected by an observer at the
relative velocity b and the angle ameasured in the laboratory
frame.

At the same time, the description of light aberration
mentioned above requires the knowledge of how the angle
a 0 depends on a. We recall that a is the angle between the ray
direction ng in the laboratory frame and the velocity direction
nb of the moving frame relative to the laboratory one (i.e., the
direction of the x axis), and a 0 is the angle between the ray
direction n 0g in the moving frame and the direction nb of the
velocity of this frame relative to the laboratory one (i.e., the
direction of axes x, x 0).

The function a 0�a� and its derivative _a 0�a� by a are already
obtained above and are given by formulas (23) and (22).
Because they also depend on the parameter b in addition to
the dependence on a, we let them be denoted as a 0�a; b� and
_a 0�a; b� in what follows.

These functions were given in the preceding section for
five characteristic values of a in the interval 04a4 p. These
values are sufficient to qualitatively describe a picture of the
sky seen by the crew on a spacecraft M moving with the
velocity b in the center of a giant spherical laboratory with
stars at its periphery.

Stars on the celestial sphere can be to a very good
approximation considered fixed light sources that are almost
`infinitely far,' according to Einstein, from the region where
spacecraft M is traveling. The position of a star in the sky can
be characterized by the angles y and j of the spherical
coordinate system with the polar axis (the x axis) in the
direction nb of the velocity of spacecraft M. Because of
azimuthal symmetry, the Doppler and aberration effects
depend only on the magnitude of b and the polar angle y,
replaced here by the angle a � pÿ y, which was also selected
by both Einstein and Pauli.

If for b � 0 the position of a star in the sky is deter-
mined by the angle a between the ray direction ng from this
star to spacecraft M and the direction nb of its future

velocity (the direction of the x axis), then, upon acquiring
the velocity b, the position of this star in the proper frame
of spacecraft M is described by the angle a 0�a; b�, which is
larger than a,

a 0�a; b� � 2 arctan

�����������
1� b
1ÿ b

s
tan

a
2

 !
> a ; �26�

except for the cases a � 0 and a � p, when a 0 � a. Thus, the
stars in the � and ÿ directions of the x axis stay without
displacement in the spacecraft M proper frame, whereas the
stars off the x axis, acquiring a positive shift, are displaced in
the positive direction of the x axis such that their concentra-
tion in the rear hemisphere decreases, increasing in the
forward hemisphere.

Stars with the characteristic angular coordinates for a
given parameter b

a � ab � arccos b ; a � a1 ; a � p
2

�27�

in the moving frame of M are situated at angles a 0 equal to

a 0�ab� � p
2
; a 0�a1� � pÿ a1 ; a 0

�
p
2

�
� pÿ ab ; �28�

having acquired the displacements a 0�a; b� ÿ a equal to
p
2
ÿ ab ; pÿ 2a1 ;

p
2
ÿ ab : �29�

Stars with the coordinate a � a1 undergo the largest
shift. Stars from the rear sky hemisphere in the interval
ab < a < p=2 are to be seen in the forward hemisphere of
spacecraft M inside the interval p=2 < a 0 < pÿ ab neighbor-
ing the spherical sector pÿ ab < a 04 p that hosts stars from
the forward hemisphere for b � 0 (Fig. 8).

We note that for a small b and an arbitrary a, the shift can
be expressed as a series in powers of b,

a 0�a; b� ÿ a

� b sin a� 1

4
b 2 sin 2a� 1

4
b 3

�
sin a� 1

3
sin 3a

�
� . . . : �30�

It can be readily obtained from integral (23).
We now consider how the color of stars changes if viewed

from a spacecraft moving with a velocity b. According to
formulas (16) and (22), the frequency o 0M of star light seen
from the spacecraft is lower or higher than its proper
frequency oL if

k��b; a� � _a 0�a; b� > 1 or < 1 :

The functions take the value 1 for a � a1 (see (17)). Stars with
this angular coordinate in the laboratory frame have a shifted
coordinate a 0 � pÿ a1 in the frame of spacecraft M, but the
proper frequency of their light is preserved. Consequently, as
seen from the spacecraft, the frequency o 0M of stars with the
coordinate a 0 in the range 04a 0 < pÿ a1 is lower than their
proper frequency oL (the red shift), and is higher than the
proper frequency (the blue shift) for the interval
pÿ a1 < a 04 p. If the spacecraft velocity increases, the
angle a1 decreases, approaching zero. As a result, the region
of the sky where the red shift is observed steadily grows,
whereas the region where the blue shift is observed steadily
decreases.
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In conclusion, we note that the aberration of light from
stars was discovered by the English astronomer James
Bradley in 1725±1728 as a fairly small change (with a semi-
annual period) in angles between directions to various
stars [10]. He then found the speed of light, which was correct
to within 2%.

Because the scale of aberration is governed by the
difference of the angle 2a1 from p or the angle ab from p=2
(see (29)), for Earth, with its orbital velocity of 30 km sÿ1,
b � 10ÿ4, we find pÿ 2a1 � b � 20;5 00. This observation
confirmed Copernicus's idea that Earth orbits the Sun.

7. Conclusions

Alternative ways of describing complex, enigmatic, or
paradoxical phenomena missing in our everyday life are
always helpful for their deeper understanding.

The Lorentz transformations connect the descriptions or
measurement results of the same physical quantity at the
same point by two observers moving relative to each other
at a constant speed. Examples of such quantities primarily
are the 4-coordinates in proper inertial frames of observers
and units of length and time used in them.

Another important quantity in this work is the wave
4-vector k m of a plane monochromatic wave. Its scalar
product k mxm with the coordinate 4-vector forms the wave
phase, which is invariant under Lorentz transformations.
Wave 4-vectors k m � �k;o=c� and k 0m � �k 0;o 0=c� of a ray
in a given reference frame and a framemoving relative to it are
related by the direct and inverse Lorentz transformations (see
Eqn (6.1) in [8]).

For frequencies o, o 0 and angles a, a 0 �k1 � �o=c� cos a,
k 01 � �o 0=c� cos a 0�, these relations take the form

o � o 0
1� b cos a 0��������������

1ÿ b 2
q � o 0k��b; a 0� ;

�31�

o 0 � o
1ÿ b cos a��������������

1ÿ b 2
q � o

k��b; a� ;

whence��������������
1ÿ b 2

q
1ÿ b cos a

� 1� b cos a 0��������������
1ÿ b 2

q or k��b; a� � k��b; a 0� :
�32�

These formulas for the coefficients k�, k� and the relation
between them coincide with formulas (16), (20), and (21)
obtained with the generalized k coefficient method.

Measurements indicate that in agreement with Lorentz
transformations, moving rulers are shorter than their counter-
parts at rest and that moving clocks run slower than those at
rest. And yet, to explain the twin paradox, the phenomenon of
aberration, and the relativistic Doppler effect, one has to
compare the rate of identical clocks separated by large
distances (measuring time at a distance) or even resort to
noninertial frames.

In the k coefficient method proposed by Bondi and in the
generalized k coefficient method proposed here, determining
time at a distance is intrinsically a necessary condition.
Furthermore, in the generalized method the coefficients
k��b; a� and k��b; pÿ a� � 1=k��b; a� are mutually recipro-
cal analytic functions of the complex variable z � a in the
interval 04 z � a4 p and in the entire plane of complex z,
which presents a natural domain where these functions exist
as a single entity. Preserving a periodic dependence on z under
its change parallel to the real axis, these functions have
singularities outside the real axis at the points

z�n � 2pn� i ln cos a1 ; cos a1 � b

1�
��������������
1ÿ b 2

p ; �33�

which are the poles for k��b; z� and zeros for k��b; pÿ z�.
Just these poles and zeros are responsible for the essential
spatiotemporal asymmetry of the relativistic Doppler and
light aberration effects, which consist of a shift of the
angular position and color of light rays from distant
sources in the direction of the observer velocity. If z
changes parallel to the imaginary axis, k��b; z� decays
exponentially, and k��b; pÿ z� exponentially increases.

The mathematical elegance of the derivation of these
functions from Lorentz transformations competes with the
common sense of their appearance in the k coefficient
method. The Lorentz transformations emphasize the local
equivalence of inertial frames (with and without prime),
whereas the generalized method collects and integrates the
information on distant events with the help of periodic signals
to and from them. The coherence of such signals does not
change if their phase is incremented by 2pn. The periodicity of
the functions k��b; z� and k��b; pÿ z�when z runs parallel to
the real axis is apparently related to this.

In this respect we cannot resist recalling the words of
Dirac fromhis article ``The relation betweenmathematics and
physics'' [11] as regards the principle of mathematical beauty
and the theory of functions of a complex variable. ``This
branch of mathematics is of exceptional beauty, and further,
the group of transformations in the complex plane, is the
same as the Lorentz group governing the space-time of
restricted relativity. One is thus led to suspect the existence
of some deep-lying connection between the theory of
functions of a complex variable and the space-time of
restricted relativity, the working out of which will be a
difficult task for the future.''

The use of analytic functions k��b; z� and k��b; pÿ z�
with poles and zeros (33) is in line with this connection.

p
2

p
2

pÿ ab

pÿ abab

ab

a1

a � a0 � p

a1

pÿ a1

pÿ a1

a � a0 � 0 b

Figure 8. Stars at angles a � 0, ab, a1, p=2, and p in the laboratory frame,

are seen in the frame of spacecraft M at angles a 0 � 0, p=2, pÿ a1, pÿ ab,
and pwith a red shift if a 0 < pÿ a1, and with a blue shift if a 0 > pÿ a1. In
the plot, the parameters are b � 0:9, ab � 26�, and a1 � 51�.
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