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Abstract. In general relativity, isolated black holes are invis-
ible due to the infinitely large redshift of photons propagating
from the event horizon to a remote observer. However, the
dark shadow (silhouette) of a black hole can be visible on the
background of matter radiation lensed by the gravitational
field of the black hole. The black hole shadow is the celestial
sphere projection of the cross section of photon capture by the
black hole. If the illuminating background is far behind the
black hole (at a distance much greater than the event horizon
radius), a classic black hole shadow of a maximal size can also
be observed. A minimal-size shadow can be observed if the
same black hole is illuminated by the inner part of the accre-
tion disk adjacent to the event horizon. In this case, the shadow
of an accreting black hole is a lensed image of the northern or
southern hemisphere of the event horizon, depending on the
orientation of the black hole spin axis. A dark silhouette of the
southern hemisphere of the event horizon is seen in the first
image of the supermassive black hole M87* presented by the
Event Horizon Telescope. The brightness of accretion matter
is much higher than the corresponding one of the usual astro-
physical stationary background in the form of numerous stars
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or extensive hot gas clouds. For this reason, it is improbable
that a black hole shadow can be observed in the presence of
very luminous accretion matter.

Keywords: gravitation theory, general relativity, black holes, event
horizon, gravitational lensing

1. Introduction

The black holes predicted by general relativity (Einstein’s
theory of gravity) are known to be invisible objects by their
nature. Strictly speaking, the event horizon of any black hole
represents a surface formed by geodesic photon trajectories
that do not end at spatial infinity [1]. In simple terms, the
photons forming (generating) the event horizon cannot reach
the remote observer. Nevertheless, in real astrophysical
conditions, astrophysical black holes can be seen as dark
shadows (dark silhouettes) on a radiation background. In
cosmic situations, it can be either a bright background of
luminous stars and extended gas clouds located far behind the
black hole or a hot matter falling onto the black hole and
radiating near its event horizon.

In recent years, studies of black hole images widely use
the terminology taken from photography — photographed
objects (black holes), object image, its shadow, silhouette,
silhouette contour. In usual photography, the photographed
object can be visible or invisible. However, in the case of
black holes, we are dealing with an object that is invisible
by itself if described by general relativity (GR). In the
image of an astrophysical black hole, one can see only its
dark shadow (dark silhouette) if an external radiation
source illuminates the black hole. The title of this paper
emphasizes precisely this feature of black hole images. In
particular, inner parts of silhouettes of white holes and
wormholes can be visible, unlike totally dark black hole
silhouettes.


https://doi.org/10.3367/UFNe.2020.01.038717

584 V I Dokuchaev, N O Nazarova

Physics— Uspekhi 63 (6)

Astrophysical observations of the most probable candi-
dates, such as supermassive objects SgrA* in the center of our
Galaxy and M87* in the center of galaxy M87, can directly
probe the existence of black holes.

Direct proof of the existence of a black hole is the
detection of an object with the total mass contained inside
the event horizon. Such direct evidence was first presented in
April 2019 when the international EHT (Event Horizon
Telescope) collaboration published an image of the super-
massive black hole in the galaxy M87 with a record high
angular resolution of the order of several microarcseconds [2—
7]. For the mass 6 x 10° M, the event horizon of this black
hole has exactly this angular size. The obtained unique image
qualitatively consists of a bright asymmetric ring, which is
interpreted as the glow of an accretion disk, and a dark central
part, which is interpreted as an observed black hole silhou-
ette.

The MS87 black hole image presented by the EHT
collaboration is consistent with the black hole silhouette
shape predicted by GR. Hence, this is the first direct evidence
of the existence of black holes in the universe. Strictly
speaking, all presently known astrophysical observations of
black hole candidates, even including the successful detection
of several gravitational wave events that can be explained
only by stellar-mass binary black hole coalescences, provide
circumstantial evidence of the existence of black holes.

The most crucial goal of the EHT observations also
includes the imaging of the nearby supermassive black hole
SgrA* in the galactic center [8—17]. The supermassive black
hole in the center of the Milky Way with the mass M =
(4.3 40.3) x 10°M, [18-22] has been the focus of the most
thorough research [23-92]. First of all, this supermassive
black hole is the closest ‘napping’ or ‘sleeping’ quasar with
deficient activity, which is hopefully transparent for observa-
tions. Second, the technological level of the EHT project
and related BlackHoleCam (Black Hole Camera) [93] and
GRAVITY [94, 95] projects enables taking black hole images
with an angular resolution corresponding to their event
horizons [96-109].

The observed shapes of black hole images depend on the
matter distribution around the black hole and near its
projection on the sky. The maximum black hole shadow size
is observed in the case of a remote luminous background near
the black hole sky projection. The dark shadow image is a sky
projection of the photon capture (absorption) cross section in
the black hole gravitational field. A bright background can be
created by extended hot gas clouds and bright stars orbiting
the black hole, as well as by steady parts of an accretion disk
outside the light spheres (the spherical photon orbits).

In addition to the remote bright background, the gas
accreting onto a black hole and radiating at the black hole
horizon can be observed. In Section 6.2, we show that the
shadow of a black hole illuminated by an accretion disk has a
smaller size than in the case of background illumination.

The shadow of an accreting black hole is shaped by high-
redshifted photon trajectories near the event horizon. A
detailed image of the shadow from an accreting black hole is
sensitive to the angular resolution of the telescope. The
shadow of an accreting black hole represents a lensed image
of its event horizon, and it is therefore natural to call this
shadow the silhouette of the black hole event horizon. For a
thin accretion disk, the black hole event horizon silhouette
turns out to be a lensed image of the northern or southern
hemisphere of the event horizon globe, depending on the

orientation of the black hole spin. The contour of this
silhouette is a lensed image of the equator on the event
horizon globe. In the image of the supermassive black hole
MS87* obtained by the EHT, the dark silhouette of the event
horizon of this black hole, represents a lensed image of the
southern hemisphere of the event horizon.

In this paper, the black hole shadow with maximal size
formed on a remote background is referred to as the classical
black hole shadow. This type of black hole shadow is the most
actively studied in recent publications. We demonstrate that
for an accreting black hole, a shadow with minimal diameter
is observed. In this case, the shadow is the silhouette of the
event horizon itself.

The enormous energy released from an accreting black
hole provides a high luminosity of the accretion disk
compared to the background radiation from gas and stars
surrounding the black hole. In other words, in real astro-
physical conditions, the accretion disk producing the event
horizon image of a black hole is much brighter than the
remote background creating the classical black hole shadow.
For this reason, using even very high angular resolution
observations, it is much more likely to observe the silhouette
of the event horizon of an accreting black hole than the
classical black hole shadow. As a result, the conventional
black hole shadow is difficult to detect either because of the
low accretion activity of the black hole or due to the shadow
blurring by powerful accretion disk emission.

The forthcoming EHT upgrade will enable experimental
studies of black holes and shapes of their images to test GR
and its modifications in the strong-field limit [110-150].
Prospective instruments for future studies are space inter-
ferometers with nanoarcsecond angular resolution [151-153].

We note that in real cosmic conditions, black hole masses
increase by accretion of the surrounding matter or due to
coalescence with other black holes. The outer capture
boundary of a black hole with changing mass is called the
apparent local horizon. In contrast, the global event horizon
is determined by the full history of the black hole in the
universe and is determined by its ultimate mass (see, e.g., [154]
for more details). Below, we do not distinguish between the
apparent horizon and the event horizon, ignoring the black
hole mass change.

Traditionally it is thought that the event horizon of a
black hole is invisible and it is impossible to reconstruct its
image. In Section 6.3, we show that the gravitational lensing
of radiating matter falling into a black hole outside its
equatorial plane offers a fundamental possibility of con-
structing the lensed image of the entire event horizon of the
black hole. This image is projected onto the sky inside the
black hole shadow. The image of the event horizon is a lensed
sky of the total surface of the event horizon and not of its
frontal size only. Black holes turn out to be unique objects in
the universe that can be seen simultaneously from all sides.

In the future, the black hole shadow and the image of
its event horizon can be detected simultanecously in observa-
tions with different telescopes with required angular resolu-
tion. Namely, the shadow of a black hole on a distant
background can be measured, e.g., in the X-ray or near-
infrared (IR) band in observations of extended background
sources and lensed images of ordinary stars and neutron stars
behind the black hole. At the same time, a remote observer
can take a picture of the event horizon by detecting high-
redshifted photons produced near the event horizon by hot
matter accreting onto the black hole.
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2. Rotating Kerr black hole

It is convenient to present the famous Kerr metric [155],
which is the exact solution of Einstein’s equations for a
rotating black hole, in the Boyer—Lindquist coordinates
(t,r,0,¢) [156] in the standard form valid for any stationary
axially symmetric asymptotically flat space—time [157-161]:

ds? = —e?dr* + ¥ (dp — 0 dr)* + e dr? + ¥ d0?. (1)

This standard metric represents the Kerr solution with

62‘,:&7 62[/,:Asin297
A z (2)
ez"‘zi, e =%, w:zAjm,
where
A=r?—2Mr+ad®, (3)
X =r?+a’cos’0, (4)
A= (r?+a%?—a’4sin’0, (5)

M is the black hole mass, a = J/M is the specific angular
momentum (spin) of the black hole, and w is the so-called
frame-dragging angular velocity. Geometrical units G = 1
and ¢ =1 are used. To simplify the formulas below, we
frequently use the dimensionless length r = r/M and time
t = t/M, whichis equivalent to the condition M = 1. In other
words, we express dimensionless radial distances in units of
GM/c? and the corresponding time intervals in units of
GM/c3. Accordingly, we use the dimensionless black hole
spin @ = J/M? < 1 and assume that @ > 0 without loss of
generality.

The most general laws of dynamics (or thermodynamics)
of stationary axially symmetric black holes were formulated
in the seminal paper [162].

The event horizon of a Kerr black hole in the Boyer—
Lindquist coordinates is a sphere with the radius

=M+ VM?—aZ. (6)

Itis the larger root of the quadratic equation 4 = 0. The event
horizon exists only for ¢« < M. For a > M, there is no event
horizon, and Kerr metric (1) describes a naked singularity.
For a = 0, the Kerr metric coincides with the Schwarzschild
metric for a static spherically symmetric black hole. We
emphasize that, strictly speaking, the event horizon of a
Kerr black hole has a spherical shape only in the topological
sense, because the Gaussian curvature of the event horizon
surface is not constant and depends on the polar angle 6 [163,
164]. The purely spherical form of the event horizon of a Kerr
black hole in the Boyer—Lindquist coordinates is the salient
feature of this unique reference frame.

A remarkable property of the frame-dragging angular
velocity w in Eqn (2) is its independence from the angle 0 at
the black hole event horizon:

(7)

a
w(ry) = Qh = .
(rn) 2M(M +VM? —a?)
The angular velocity ©, is called the angular velocity of the
black hole horizon. Thus, the event horizon in the Boyer—
Lindquist coordinates rotates as a rigid body!

3. Locally nonrotating frames

In any stationary axially symmetric asymptotically flat space—
time, it is convenient to use orthonormal locally nonrotating
reference frames (LNRFs) [157-159] in which observers
are moving along the world lines r = const, 6 = const,
¢ = ot + const. In the Kerr metric, the frame-dragging
angular velocity w is defined by Eqn (2). Physical observers
in the LNRF °‘rotate’ together with the black hole, and, for
them, all physical processes in the Kerr metric appear in the
most natural way, as opposed to how they look in other
frames [159].

The basis vectors of an orthonormal tetrad connected to
the physical observers in the LNRF have the form [159]

. V(2,8 A 1/za+ 2Mar O .
=e - o — = — — —
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The corresponding basis differential one-forms (or covariant
basis vectors) are expressed as

A 1/2
O =e'dt= (=) dt
0 —erar=(5)

=\ 172

el) =—et2dr=3124do,

©)

el = —weVdr + ¢ do

2Mar sin 0 A
__Wdt—i-(f) sinfde.

Equations (8) and (9) define the components ¢, and e,V of
basis vectors in the LNRF:

0 i i
€() :eﬂ(,-) P e :eu()dx“. (10)
In particular, the standard transformations of second-rank

tensors with these components have the form

L b
H(a)e!(b)‘]/l“ 5 ],uv = eu(@ev( )J(H)(/,) .

Jaw =€ (11)
In Section 6.2.2, we use the LNRF to calculate the energy shift
of a photon due to gravitational redshift and the Doppler
effect associated with lensing in the black hole gravitational

field.

4. Equations of motion for test particles

Integrals of motion fully determine the trajectory of a massive
test particle in the Kerr metric (disregarding gravitational
radiation). These are the test particle mass y, the total energy
E, the azimuthal angular momentum L, and the Carter
invariant Q related to the nonazimuthal part of the particle
angular momentum [100, 165]. In particular, for Q = 0, the
motion of the particle is bounded to an orbital plane. Using
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these integrals of motion, Carter [165] obtained first-order
differential equations for test particles. Carter’s remarkable
equations have the form [100, 159-161, 166]

b % = +/R(r), (12)
do

=4 1
5 = V00, (13)

Zi—f:Lsin’z(i—i—a(A’lP—EL (14)

Z%:a(L—aEsinZH)—&—(rz—i—az)A*lP, (15)

where 1 is the proper time of a massive particle or an affine
parameter along the trajectory of a massless particle (u = 0).
In these equations, the effective radial potential determines
the radial and polar motion,

R(r) = P? = A[ur® + (L —aE)* + 0], (16)
where P = E(r? + a?) — aL, and the effective polar potential
is

0(0) = Q —cos* 0[a*(u* — E*) + L*sin 0] . (17)
Notably, zeros of these effective potentials determine the
turning points dR/dt = 0 and d@/dr = 0 in the radial and
polar directions.

Trajectories of massive particles (p # 0) in the Kerr
metric are determined by three parameters (constants of
motion):y = E/u, A = L/E,and ¢ = +/Q/E. The correspond-
ing photon trajectories (light or null geodesics) are deter-
mined by two constants of motion: A = L/E and ¢ = \/Q/E
(we ignore possible photon trajectories with Q < 01in the Kerr
metric, because they do not reach the remote observer).

Differential equations (12)—(15) can be represented in the
integral form [100, 159, 160, 165], convenient for numerical
integration:

L (;er(r):L 2(29)’ (18)
T—Jc%mdr—&-Lacho(S;;)dG, (19)
¢—Jcm;£mdr+L;;Z%de, (20)
—L% ;~+L(L_“gs(gl;9)ade, 21)

where the effective potentials R(r) and ©(0) are defined by
formulas (16) and (17). Integrals in (18)—(21) are contour
integrals of the first kind along the particle trajectory C. The
most important feature of these integrals is their monotonic
increase along the particle path. Formally, this means that the
integrands do not change sign when passing through the
radial and angular turning points. In particular, the contour
integrals in (18) reduce to ordinary integrals in the absence of
the radial r and angular 0 turning points along the trajectory:

J"o dr Jﬂs de
Ts R(l’) o @(9) .

(22)

Here, ry and 6 are the radius and latitude of the initial point of
the trajectory (for example, the point of photon emission);
ro > ry and 6 are the coordinates of the endpoint of the
trajectory (for example, the detection point by a remote
observer). If the trajectory has one turning point Ouin (4, ¢)
(the extremum of the polar potential ©(0)), the contour
integrals in (18) are expressed through ordinary integrals:

nodr % do ©do
— == + . (23)
s R(I‘) Omin V/ @(6) Omin \/ @(6)
Correspondingly, the contour integrals in (18) for trajectories
with two turning points, Onin(4,¢) and rmin(4,¢9) (the

extremum of the radial potential R(r)), are also expressed
through ordinary integrals:

J dr +J"0 dr _J”s do *JOO do
s VRO i VRG) S0 /O(0) N, (/O(0)
(24)

Integral equations (18)—(21) for trajectories with additional
turning points can be expressed similarly through ordinary
integrals.

In the Kerr metric, shapes of trajectories remain the same
during the simultaneous change of the sign of the time ¢ and
the angular velocity of metric rotation w (i.e., after the flip of
the black hole spin). For example, the trajectory of a particle
falling into a black hole coincides with the trajectory of the
same particle (i.e., of the particle with the same integrals of
motion) ejected from a white hole. We also note that in the
Kerr metric, test particle trajectories around a black hole are
the same for a white hole if we change the sign of time .

5. Features of particle trajectories

5.1 Inevitable rotation in the ergosphere

The most striking feature of the gravitational field of a
rotating Kerr black hole outside the horizon is the existence
of the ‘ergosphere’—a region in which physical observers
cannot be ‘at rest’ (with r, 0, ¢ = const) relative to a remote
observer. The inner boundary of the ergosphere coincides
with the black hole horizon r, = 1+ v/ 1 —a?2. The outer
boundary of the ergosphere (the static limit) » = rgs(0) is

res(0) = 14+ V1 —a2cos?f. (25)

Inside the ergosphere, all material objects, including photons,
are dragged into rotation around the black hole with the
angular velocity ¢ = d¢/dt « a, which tends to the horizon
angular velocity Q from (7) in approaching the horizon.
Inside the ergosphere, there are geodesics with negative total
energy, E < 0, falling into the black hole. Such geodesics are
responsible for the practicability of the ‘Penrose mechanism’
of extraction of rotational energy from the black hole [160,
167].

5.2 Winding on the event horizon

The second remarkable feature of the gravitational field of a
Kerr black hole is the azimuthal winding of particle
trajectories on the event horizon when falling into the black
hole with a #0. As r — ry, the angular velocity of the
trajectory winding of all particles falling into the black hole
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Figure 1. (Color online.) 3D trajectory of a massive test particle falling
into a black hole with spin a = 0.998. The particle trajectory starts at the
radius 7(0) = 4.4. In approaching the black hole, the particle (the small
blue ball) starts winding up on the event horizon with the constant
angular velocity Q. The purple sphere is the black hole horizon. The
purple axis marks the black hole rotation axis.

(including photons) in the Boyer—Lindquist coordinates tends
to the constant angular velocity of the event horizon Q, in (7),
which is independent of the polar angle 6. In other words, all
particles falling into the black hole by approaching the
horizon are dragged into its solid-body-like rotation,
dp/dt — Q = const (see the illustration of this effect in
Figs 1-3). The orbital parameters 4 and ¢ for these 3D
trajectories are found by numerically solving the integral
equations of motion (18). The 3D trajectories of massive
particles (1 # 0) and photons (1 =0) are computed by
numerical integration of the differential equations of motion
(12)—(15).

Figure 1 shows the 3D trajectory of a massive test particle
(u # 0) with the orbital parameters Q = 0.3 M?u?, E/M =
0.85, and L/M = 1.7 falling into a black hole with the spin
a = 0.998. The trajectory starts at the radius (0) = 4.4. In all
3D pictures, we use the Boyer—Lindquist coordinates,
because both the black hole horizon and trajectories of all
particles can be represented most simply and visually in these
coordinates.

Figure 2 shows similar examples of 3D trajectories of
massive test particles (small blue balls) falling into a black
hole with the spin @ = 0.998 near the north pole of the event
horizon (y =1, A =0, ¢ =1.85), near its equator (y =1,
A=—1.31, ¢ =0.13), and in the southern horizon hemi-
sphere (y =1, A =—1.31, ¢ =0.97). In approaching the
black hole, all particles start winding up on the event horizon
with the constant angular velocity Qy, in (7).

Figure 3 shows the trajectory of a massless particle (a
photon) falling into a black hole with the impact parameter
b= L/E = —6.5(i.e., with the azimuthal angular momentum
directed against the black hole spin) and the Carter parameter
Q = 4. The trajectory of this photon illustrates both striking
features of the gravitational field of a rotating black hole: the
irresistible rotation around the black hole inside the ergo-
sphere and the winding of the particle trajectory on the
event horizon. Outside the ergosphere, this photon moves
with a negative angular velocity relative to a remote observer,
dp/dt < 0. When entering the ergosphere, the angular
velocity of the photon motion changes sign and becomes
positive, de/dt > 0. In approaching the black hole, the
photon, like massive particles, starts winding up on its event
horizon with the constant angular velocity y,.

-1

Figure 2. (Color online.) 3D trajectories of massive test particles falling
into a black hole with spin ¢ = 0.998 near the north pole of the event
horizon, near its equator, and in the southern hemisphere. In approaching
the black hole, all particles start winding up on the event horizon with the
constant angular velocity Qy,.

Figure 3. (Color online.) 3D trajectory of a photon falling with a negative
azimuthal angular momentum. Outside the ergosphere, the photon moves
with a negative angular velocity relative to a remote observer, de/dt < 0.
After entering the black hole ergosphere, the photon angular velocity
changes sign and becomes positive, dg/d¢ > 0. Moreover, in approaching
the black hole event horizon, the photon is dragged into its rigid-body
rotation, d¢/dr — Qy, = const.

5.3 Spherical orbits
The third feature of the gravitational field of a rotating black
hole is the existence of relativistic spherical orbits of particles
along which they move on a sphere with a radius » = const by
oscillating in the polar direction between the turning points
Omin and Opax = T — Omin. Spherical orbits in the Kerr metric
were studied in detail by Wilkins [168] (see also [169—172]). In
the particular case of equatorial orbits (for Q = 0), the
spherical orbits reduce to circular orbits or rings [159].
Spherical orbits can be found from the joint solution of
the equations R(r) = dR(r)/dr =0, in which the effective
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0 q

Figure 4. (Color online.) For 0 < a < 1, radii of photon spheres depend on
one of the photon orbit parameters, 4 or ¢. For a = 1 (red curve), rpn =
1+v2=4 ¢*=(1++v2=7)* x (3—+/2—=7). These photon spheres
exist in the radial range 1 < rpp < 4. For a = 0, the photon spheres reduce
to photon rings with the radius rp, =3 (green semi-circle), for which
2+ g* = 27. The blue curve corresponds to photon spheres at a = 0.6.

radial potential R(r) is given by formula (16), and the polar
turning points are zeros of the effective polar potential ©(0)
in (17). In the particular case of an extreme Kerr black hole
with a = 1, spherical orbits of massive particles (corotating
with the black hole) at the radius » = 1, which coincides with
the event horizon in the Boyer—Lindquist coordinates, form a
one-parameter family [168]:

2 3
~—_<L<2, =121,
V3 0=y

1

E=ZL. (26)

As shown in Section 6.1, unstable spherical photon orbits
(or photon spheres) play a crucial role in the black hole
silhouette formation. In the case of a Schwarzschild black
hole (a = 0), the photon spheres reduce to photon rings with
the radius rpy, = 3. For a > 0, there is an infinitely large
number of photon spheres with the radius depending on one
of the photon orbit parameters, 4 or ¢. For a = 1, the photon
spheres are located at the radii rpp=1+V2—1, ¢>=
(14++v2=17)°(3—v2—=2), within the range 1 < Fph < 4.
Figure 4 shows the corresponding dependences of the photon
sphere radii on 4 or ¢ for the black hole spins a = 0, a = 0.6,
anda = 1.

5.4 Multiple images
Lensing in the gravitational field of a black hole, generally
speaking, gives rise to an infinite number of images of
individual objects [173—-177]. The Cunningham—Bardeen
scheme is a convenient classification of multiple images (or
light echos) [173, 174]. Each of the multiple images uniquely
corresponds to the number n of photon trajectory crossings of
the equatorial plane of the black hole along the entire path
from the source to the observer. Photons forming the direct
image of the emission source (type zero or order-zero
trajectories) do not cross the black hole equatorial plane
along the entire path from the source to the observer. Photons
of type-one trajectories (of the first light echo) intersect the
black hole equatorial plane once. Correspondingly, type-n
light echo photons (trajectories of type n) cross the black hole
equatorial plane n times.

Figure 5 shows a direct image, as well as the first and
second light echo, of a star rotating around a nearly extreme

Figure 5. (Color online.) Direct image and the first and second light echos
from a lensed compact star (radiating probe) on a circular equatorial orbit
with the radius r = 20 around the almost extreme black hole SgrA*. All
multiple images of the star lie beyond the black hole shadow (grey region).

Kerr black hole in a circular orbit of the radius r = 20 [178,
179]. Below, we model only direct images of luminous
sources, because the brightness of direct images (except for
the particular relative location of the source, black hole, and
observer) greatly exceeds that of light echos [173, 174].

6. Shapes of black hole images

We consider models of lensed images of supermassive black
holes SgrA* and M87* as examples.

To numerically calculate the trajectories of massive and
massless particles, we use geodesic equations in the Kerr
metric (12)—(15) and (18)—(21). To compute the brightness of
lensed images of radiating matter, we use the Cunningham—
Bardeen formalism [173, 174]. For the supermassive black
hole SgrA* in the Milky Way center, the polar angle (latitude)
of a remote observer is 0y ~ 84.24°, with cosfy = 0.1 (see
examples in Figs 4, 5, 12-14, and 16-18).

The other supermassive black hole M87* available for
EHT observations, with a mass of (6.6 = 0.4) x 10°M,, is in
the nucleus of the nearby giant elliptical galaxy M87 (NGC
4486) located in the Virgo galaxy cluster center [180-183]. An
extended relativistic jet is observed to extend from the nucleus
of this galaxy [184-197] at the viewing angle of 17°. Detailed
long-term interferometric observations of the jet base at cm
wavelengths suggest that the black hole and the surrounding
accretion disk rotate clockwise [198-202], which means that
the polar angle of the remote observer on Earth is 6y =
180°—17°, which we use in our numerical modeling (see
examples in Figs 11, 15, 19, and 20).

6.1 Classical black hole shadow on the remote background
In real astrophysical conditions, a black hole can be
illuminated by hot matter, e.g., by extended hot gas clouds
or bright stars located behind the black hole. In this case, a
classical black hole shadow with the maximum size can be
observed (see numerous studies [96-101, 203-285]). In the
pioneering paper by Bardeen [98], the shadow of a Kerr black
hole on a remote luminous background is called the ‘visible
boundary’ of the black hole. (For more general definitions of
the black hole shadow, see, e.g., [286-288]).

Photon trajectories of constant radius r = const deter-
mine the observed shape of the outer boundary of the sky
projection of the classical shadow of a black hole. These
trajectories represent spherical orbits or photon spheres (see
Section 5.3). According to the equation of motion (12), a
particle remains forever in a circular orbit r = const if the



June 2020

Silhouettes of invisible black holes 589

orbit is the eternal turning point, i.e., if the condition
dr/dz = 0 holds not only instantaneously but at all subse-
quent moments of the particle’s proper time t. This require-
ment corresponds to the conditions R = 0 and dR/dr = 0 for
the effective potential. In the case of photons, 7 is an affine
parameter along the photon trajectory. Photon trajectories
(orbits) of constant radius for a # 0 are called spherical (or
photon spheres) because, while keeping the constant radius
r = const, the photon motion oscillates in the polar direc-
tion 0. We note once again that the photon trajectories with
constant radius are unstable.

A joint solution of the equations R =0 and dR/dr =0
determining the shape of the black hole shadow in the
parametric form (4,q) = (A(r),q(r)) (see, e.g., [98, 100]) is
given by

=343t —at(r+ 1)

A= a(r—1) ’ @7)
1’3 az —r\r— 2
q2 = [4612(1' _(1)2 3) ] (28)

For a = 1, these equations are significantly simplified [98]:

J=—r>4+2r41,
> =r3d-r).

Moreover, because of the nonuniform nature of the limit
a — 1, the parameter ¢ at r = 1 changes within the range
0<¢<V3

The photon trajectory parameters L= L/E and ¢ =
V/O/E are related to the impact parameters o and f8 in the
sky corresponding to photons detected by a remote observer
located at a given radius ry > ry (i.e., almost at infinity),
latitude 0y, and azimuth @, (see [98, 173, 174] for more details):

o= ! B==+V0(0),

sin 00 ’

(1)

where © () is determined by Eqn (17). The parameters o and
p are called the respective horizontal and vertical impact
parameters.

For a remote observer in the equatorial plane of a black
hole (with 6y = 1t/2), the constants . = L/E and ¢ = \/Q/E
coincide with the respective horizontal and vertical impact
parameters in the sky.

Figure 6 shows the shadow (purple disk) of a Schwarz-
schild black hole (a = 0) with the radius rg, = 3v/3~52, as
well as the typical 3D trajectory of a photon (with the impact
parameters A = 0 and ¢ = 3v/3 + 1073) emitted by a remote
luminous background. The photon trajectory winds up many
times around the black hole horizon (blue sphere) near the
radial turning point at ryiy ~ rpp = 3 and reaches the remote
observer at the north pole of the black hole shadow. A
fictitious image of the horizon (blue disk) with the radius
rn = 2 is shown inside the black hole shadow in an imaginary
Euclidean space.

Figure 7 shows the corresponding shadow from an
extremal Kerr black hole (¢ = 1). As a typical example, we
present the trajectory of a photon (with orbital parameters
/=0and g =+/11 + 82 + 1073 ~ 4.72) near the shadow
boundary; the photon is emitted by a remote luminous back-
ground, winds up many times around the black hole horizon
near the radial turning point, and reaches the observer at the

Figure 6. (Color online.) A classical shadow (purple disk) of a Schwarz-
schild black hole on a remote bright background. Shown is the typical
background photon ray (multi-color 3D curve) observed near the north
pole of the shadow edge. The ray winds up many times around the black
hole event horizon (blue sphere) near the radial turning point. Inside the
shadow, the blue disk shows a fictitious image of the event horizon in the
imaginary Euclidean space.

Figure 7. (Color online.) A classical shadow (closed purple region) of an
extreme Kerr black hole on a remote bright background. Shown is the
typical photon ray (multi-color 3D curve) observed near the black hole
axis projection crossing with the shadow edge. The ray winds up many
times around the black hole event horizon (blue sphere) near the photon
sphere. Inside the shadow, the blue disk shows a fictitious image of the
event horizon in the imaginary Euclidean space.

intersection point of the shadow edge with the black hole spin
axis. The radial turning point of this photon on the light
sphere is at ryin = 1 + V2.

In Fig. 5, for comparison, we show a numerically
calculated direct image as well as the first and second light
echos from a compact star in a circular orbit around the
rotating black hole SgrA* as seen by a remote observer in
discrete time intervals [178]. All light echos (multiple images)
lie outside the black hole shadow. (See the corresponding
numerical animation in [179].)
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The shadow of an extreme Kerr black hole (¢ =1) at
0p=0 is a disk with the radius rg =2v/3 +2v2 ~ 4.83.
Photons with orbital parameters A = 0 and ¢ = /11 + 8v/2,
which have the radial turning point on the light sphere at
rmin = 1 +1/2, produce the contour of this shadow. By
numerically solving integral equation (22), it is possible to
show that in this case, the event horizon silhouette is a disk
with the radius re, ~ 2.035.

Shapes of black hole shadows in GR have been studied in
many papers. However, presently, as well as in the foreseeable
future, observations of real black hole shadows are highly
improbable because the radiation intensity of the remote
background formed by extended hot gas clouds that are
needed to identify the black hole shadows is far too low to
be detected by current interferometric methods. In the case of
very bright accreting black holes, their shadows must be
blurred by the radiation of hot matter. Here, instead of the
black hole shadow, the silhouette of the black hole horizon
itself is most likely to be observed.

The calculation of the gravitational lensing of radiating
material during spherical accretion onto a black hole requires
that three-dimensional motion of matter falling into the black
hole be taken into account, which has not been done yet.
However, in the case of a thin accretion disk, the motion of
matter is two-dimensional, and the modeling of its gravita-
tional lensing in the gravitational field of a black hole turns
out to be quite an easy problem. In Sections 6.2, 6.3, and 7, we
describe the features of such gravitational lensing using a
simple model of radiation from the inner parts of a thin
accretion disk approaching the black hole horizon.

6.2 Shadow of an accreting black hole

Besides a remote luminous background, matter falling into a
black hole and radiating near its event horizon can probably
be observed. This matter can consist of hot gas, compact gas
clouds, or bright compact stars. In the last case, the black hole
image would have a shape quite different from the black hole
shadow [203, 289-293]. In particular, in the case of a thin
accretion disk, the visible black hole image represents a dark
lensed silhouette of its event horizon. The outer boundary of
the dark silhouette then represents a lensed equator of the
event horizon globe [299, 300].

The model of thin accretion disks around a supermassive
black hole provides a good description of the main observa-
tional properties of quasars and various types of active
galactic nuclei, which are the most powerful sources in the
observed universe, and numerous close binary systems with
accreting stellar-mass black holes.

We consider the main properties of the event horizon
silhouette in GR using model images of supermassive black
holes SgrA* and M87* as examples. For this, the most
appropriate model is a thin nonselfgravitating accretion disk
around the black hole [301-309].

6.2.1 Inner parts of the accretion disk. The inner relativistic
part of an accretion disk near the event horizon, where most
of the energy is released, is the brightest emitting region [310,
311]. A relativistic disk is called geometrically thin if its
thickness /1 is much smaller than the event horizon diameter,
/1 < 2rh.

Circular orbits of particles rotating at radius r in a
geometrically thin accretion disk in the equatorial plane of a
rotating black hole correspond to the orbital parameters E
and L that are determined by the joint solution of equations

R = 0and dR/dr = 0, where the effective potential R is given
by Eqn (16):

E P32 2012 4 g

ﬁ:r3/4(r3/2_3r1/2+2a)1/2 ) (32)
L, 12— 2ar'’? + 42 13
ﬁ_r3/4(r3/2—3r1/2+2a)1/2 . (33)

The limit case of a circular orbit is the photon orbit
corresponding to infinite £/u in Eqn (32). The radius of the
circular photon orbit is

Fph = 2{1 + cos E arccos (fa)} } .

In an accretion disk, the inner boundary of stable motion of
massive particles is determined by the innermost stable
circular orbit (ISCO), r = risco (see [159] for more details):

(34)

rsco =3+2Z>— /(3= Z1) 3+ Z1 +22,), (35)
where
Zi=1+(1-a)"(1+a) +1-a)", (36)

Zy =/3a>+ Z}.

The radius of the photon orbit ryy, is smaller than risco for any
black hole spin a.

By definition, we say that the inner part of a thin accretion
disk is the region r, < r < risco that adjoins the event horizon
and contains no stable orbits of the accretion disk matter.
This part of the disk is the region of nonstationary accretion.
The motion of fragments of matter in this region is fully
nonstationary, is controlled by the black hole gravitational
field, and is independent of the local properties of matter,
including viscosity. In this region, individual fragments of the
accretion disk spiral-in independently towards the black hole
(see [302-311] for more details).

A widespread misconception is the assumption about
rapid decay of emission from the accretion disk in approach-
ing the innermost stable orbit, which is also referred to as the
‘inner boundary’ of the disk. Here, it is erroneously believed
that the radiation from the inner disk edge is fully absent or
can be ignored.

We use a simple physically motivated model to describe
the nonstationary motion of the emitting material inside the
inner region of a thin accretion disk r, < r < risco. In this
model, individual disk fragments (as well as compact stars
and dense hot gas clouds) move along geodesics with orbital
parameters E and L from Eqns (32) and (33) corresponding to
r = risco. In other words, separate small disk fragments
falling into the black hole ‘remember’ the total energy E and
azimuthal angular momentum L they had at the radius risco.

To account for gravitational effects alone, we also assume
that the accretion disk is transparent to radiation. In other
words, we entirely disregard scattering and absorption of
photons in the plasma around the black hole. The transpar-
ency of the hot plasma to radiation down to the event horizon
is a necessary condition to observe the black hole image.
Correspondingly, the accretion rate onto the black hole
should be sufficiently low. This condition is apparently
satisfied for SgrA*, which shows shallow activity. However,
for SgrA*, an additional difficulty for observations is a high
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Figure 8. (Color online.) 2D trajectory of an accretion disk fragment (small
red dot) falling into a Schwarzschild black hole (¢ =0) in the inner
accretion disk part. The fragment spirals in from r = rigco = 6 (green
ring) and reaches the event horizon (blue circle) at r = r, = 2 after making
two complete turns.

Figure 9. (Color online.) 2D trajectory of an accretion disk fragment (small
red dot) falling into a rotating black hole with the spin @ = 0.9 in the inner
accretion disk part. The fragment starts moving from r = rigco =~ 2.32. It
winds up many times on the rotating black hole in approaching the event
horizon at r = r, ~ 1.44.

gas and dust density along the line of sight in the galactic disk.
In the case of M87%*, which is a high-luminosity object, the
scattering and absorption of photons in the surrounding
plasma, in principle, can be substantial. In this case, the
nonstationary accretion can provide temporary transparency
windows. Quite possibly, the team that produced the first
observations of M87* was just very lucky to see the black
hole when it was transparent to radiation down to the event
horizon.

Additionally, in our numerical calculations of the
observed radiation from the nonstationary inner parts of the
accretion disk, we assume that the energy flux in the comov-
ing frame of small gas fragments is isotropic and is conserved
until they reach the gravitational radius r,. These model
assumptions enable us to calculate the lensed accretion disk
brightness quite simply. Importantly, the specific model of
radiation from the inner parts of the accretion disc does not
affect the shape of the event horizon silhouette and is deter-
mined by the gravitational field of the Kerr black hole only.

Figure 8 shows the two-dimensional trajectory of a small
fragment of an accretion disk or a compact gas cloud (clump)
falling into a Schwarzschild black hole (¢ = 0) in the inner
parts of the disk around the black hole event horizon,
rm < r<rsco. The clump starts moving at r = rigco = 6
(green ring) with the orbital parameters E/u = E(risco)/ut =
2v/2/3 and L/u=L(risco)/u — 0.001=+/3/2 — 0.001, where
E, L, and rigco are determined by formulas (32), (33), and (35).

A similar two-dimensional trajectory for a black hole with
spin ¢ = 0.9 is shown in Fig. 9. Here, the disk fragment starts
falling with the orbital parameters E/u = E(risco)/u =~ 0.844
and L/lt = L("ISCO)/M —0.001 =~ 2.099 at r = risco &~ 2.32
(green ring). The disk fragment, in contrast to the case of a
Schwarzschild black hole (see Fig. 8), winds up many times on
the rotating black hole in approaching the event horizon at
r=ry, >~ 1.44.

6.2.2 Gravitational redshift and Doppler effect. To calculate
the energy shift of a photon emitted by matter falling into a
black hole inside the inner parts of the accretion disk at
m < r < risco and detected by a remote observer, we need
to take the gravitational redshift and Doppler effects into
account. For these calculations, it is convenient to use the
orthonormal LNRF described in Section 2.

In the LNRF, the azimuthal component of the velocity
of a small accretion disk fragment (or a compact gas cloud)
at a radius r with orbital parameters E, L, and Q = 0is[157—
159]

AL

o) — )
[r3+a?(r+2)]E—2aL

(37)

The corresponding radial velocity component of the fragment
in the LNRF takes the form

" _ [r34+a%(r+2) v/ R(r)
Ve = r [r3+a?(r+2)|E—2aL "

Here, the effective radial potential R(r) is defined by Eqn (16)
with the parameter Q = 0.

We also need expressions for the components of the
photon 4-momentum in the LNRF:

(38)

7

p(</’) _—] m, (39)
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o0 = _i\/(”“’;—“ﬂ)_ -2 +q7.  (41)
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The condition p(i)p<,-) = 0 determines the fourth component
of the photon 4-momentum. The energy of a photon in the
LNRF is Ernrr = p . At the same time, the energy of the
same photon in the orthonormal reference frame moving with
a velocity V(@) relative to the LNRF is

pl) — @)y

V1= V) '

The photon energy Ej, depends only on /. In this frame, the
accretion disk fragment still moves with the radial velocity

)
Ve (43)

V1= [V '

As a result, the photon energy in the comoving frame of the
fragment is

EV(q;) - (42)

£0.q) = Eypw —opt) _ P —p@p@) _ y,) )
Vi—ov? V1= V0P — v

Correspondingly, the photon energy shift (ratio of the photon
frequency detected by a remote observer to the frequency of
the same photon in the comoving frame of the fragment) is
g(4,9) =1/E(A,q). In approaching the black hole event
horizon, the gravitational redshift starts dominating the
Doppler effect and lim,_.,, g(4,¢) = 0.

We use the photon shift g(4, ¢) in the Cunningham—Bardeen
formalism [173, 174] to numerically calculate the energy flux
from accretion disk fragments detected by an observer. The
results are presented in Figs 14, 15, 17-20. The local colors of
lensed images of the accretion disk are related to the local
black-body temperature in the disk, which is proportional to
the energy shift of photons g(4,q) = 1/E(4, q).

In the thin accretion disk model, the brightest point at all
spins of the black hole is located at the radius r = rigco (see
Section 6.2.4) (marked with the red star in the correspond-
ing figures). The position of the brightest point on the circle
with the radius r = rigco corresponds to the photon trajec-
tory without turning points with the maximum admissible
azimuthal angular momentum 4 > 0 given by the solution
of Eqn (22). For a remote observer, this point corresponds
to the accretion disk part moving toward the observer with
the maximum Doppler factor.

6.2.3 Silhouettes of black holes SgrA* and M87*. In the
simplest case of a spherically symmetric Schwarzschild black
hole (@ = 0), the boundary of the event horizon image seen by
a remote observer is given by the solution of the integral
equation

¥ odr (P do
Jz R(r) Lmin 0(0)
Here, Oy is the turning point in the polar 6-direction on the
photon trajectory for the direct image of the probe source
found from the equation ©@(0) = 0. Photons forming the
direct image of the source, according to the Cunningham—
Bardeen classification scheme of multiple lensed images [173,
174], do not cross the black hole equatorial plane along the
entire path from the emitter to the observer. The event
horizon radius of a Schwarzschild black hole is r,, = 2, and

the turning point is Omin = arccos (¢/+/¢q? + A?). The integral
in the right-hand side of (45) is then equal to /+/q? + 2. As

(45)

-5

Figure 10. (Color online.) Two 3D trajectories of photons emerging near
the event horizon of the black hole M87* at different points on a circle of
radius »=1.01r, in a thin accretion disk (light-green oval) in the
equatorial plane of a black hole with the spin @ = 0.9982. The rays reach
the remote observer near the outer edge of the event horizon silhouette.
The closed dark-red curve corresponds to the outer boundary of the black
hole shadow.

a result, the numerical solution of integral equation (45) yields
the radius of the image (silhouette) of the event horizon
Feh = \/q?% + /% ~ 4.457. This radius is significantly smaller
than the radius of the black hole shadow rg, = 3v/3 ~ 5.2.

In the case of a Kerr black hole (a # 0), the polar turning
point (if it exists) is found as

2 \/4“qu+ (q>+ 22— a*) = (¢*+ 7’ — a?)
CcOS” Omin = 502
a

. (46)

This expression for Oy, is used for the numerical solution of
integral equations (23) and (24).

The location of the black hole M87* and its accretion disk
relative to a remote observer on Earth (or in a near-Earth
orbit) is shown in Fig. 10. The dashed circle in Fig. 10 (and in
all other similar figures) marks the black hole horizon image
in an imaginary Euclidean space. Figure 10 also shows 3D
photon trajectories starting at different points of the circle
with » = 1.01r, near the event horizon in a thin accretion disk
(light-green oval) in the equatorial plane of a black hole with
the spin @ = 0.9982 and reaching the observer near the outer
edge of the event horizon silhouette (grey region). The orbital
parameters of these two photons are 4; = —0.047, ¢; = 2.19
and )»2 = —0.029, qr = 1.52.

Figure 11 shows the plots of the parameters 4 and ¢ of
rays emitted from the accretion disk around the black hole
M87* with the spina = 0.75at radiir = 1.01r, and r = risco
and reaching a remote observer. The blue color in the plots
corresponds to photon trajectories without turning points
and the red color to rays with a polar turning point with
0 = Omin(/, ¢), which is obtained from the numerical solu-
tion of integral equation (23). The brightest spot in the
accretion disk, marked with a red star, is located at the
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Figure 11. (Color online.) Parameters of photon trajectories / and ¢ for the photons emerging from an accretion disk around the black hole M87* with the
spin a = 0.75 at radii (a) r = 1.01ry, and (b) r = risco and reaching a remote observer. The blue color corresponds to photon trajectories without turning
points, the red color to rays with a turning point in the polar direction at the polar angle 0 = 0y (4, ¢). The red star marks the brightest spot on the

accretion disk.

Figure 12. (Color online.) Silhouette of the northern hemisphere of the
event horizon of the supermassive black hole SgrA* (black shaded region)
inside the black hole shadow (closed purple curve) for the black hole spin
(a) a = 0.9982, (b) 0.65, and (c) 0.

radius rigco ~ 1.16r, and corresponds to the photon orbit
parameters 4 = 1.18 and ¢ =3.79 (or « = —4.03 and f =
—0.18).

The possible shapes of the dark silhouette of the event
horizon of the supermassive black hole SgrA* are shown in
Fig. 12 for three values of the black hole spin a. We note that
in the case of M87* (taking its spin orientation into account),
we observe the silhouette of its southern hemisphere (black
shaded region) located inside the corresponding shadow of
this black hole (closed purple curve).

The supermassive black hole SgrA* in the galactic center
has the mass M = (4.3 £0.3) x 10°M,,, which is three orders
of magnitude smaller than that of M87%*, but SgrA* is three
orders of magnitude closer than M87*. Therefore, the event
horizons of these black holes have about the same angular
sizes accessible to EHT observations. The spin axis of SgrA*
is almost certainly close to the Milky Way rotational axis
[312]. For definiteness, we assume that the remote observer
lies close to the black hole equator, more precisely, with
cosBy = 0.1, or Oy ~ 84.24°. The possible forms of the event
horizon silhouette of the supermassive black hole SgrA* are
shown in Fig. 12 for three values of the black hole spin a.

In Fig. 13, the dark silhouette of the northern hemisphere
of the event horizon is visible (black shaded region) in the case
of a thin accretion disk in the equatorial plane of a black hole
with the spin ¢ = 0.9982 corresponding to SgrA*. Strongly
redshifted photons emitted near the event horizon by hot
matter and reaching the remote observer form the contour of

6

Figure 13. (Color online.) The dark silhouette of the northern hemisphere
of the black hole horizon (black shaded region) in the case of a thin
accretion disk in the equatorial plane of a black hole with the spin
a = 0.9982 corresponding to SgrA* in the galactic center. The contour of
this silhouette is formed by strongly high-redshifted photons emitted near
the event horizon by hot accretion disk gas and registered by the remote
observer. One such photon ray is presented.

this silhouette. Figure 13 shows one of these light rays with
the orbital parameters A = 0.063 and ¢ = 0.121. The photon
starts in the black hole equatorial region at the radius r =
1.01r, and is observed near the outer edge (contour) of the
silhouette of the event horizon northern hemisphere. Similar
silhouettes for other spins @ are shown in Figs 14 and 15 for
SgrA* and M87*.

Black hole silhouettes with shapes very similar to those
shown in Figs 12-15 have been calculated numerically for
many years from accretion disk images around black holes
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Figure 14. (Color online.) Lensed image of the inner accretion disk
adjoining the event horizon of the black hole SgrA* with the spin
a = 0.65. The closed green curve is the image of the equatorial circle with
the radius risco =~ 3.25 ~ 1.85r. Shown is the bright emission from a thin
accretion disk ring at the radius rigco and faint emission from a thin ring at
the radius 1.01r, suppressed by a significant gravitational redshift near the
event horizon. The brightest spot on the accretion disk is marked with the
red star (also in other similar figures). The black shaded region shows the
silhouette of the event horizon northern hemisphere. The outer boundary
of this silhouette is the gravitationally lensed image of the event horizon
equator. The closed purple line marks the black hole shadow boundary. A
sharp brightness change on the lensed image of the thin ring at the radius
risco is due to the transition from light rays without turning points
(numerical solution of Eqn (22)) to those with a turning point Opi,
(numerical solution of Eqn (23)). The latter rays reach the observer along
longer paths and provide much lower local brightness than those without
turning points.

(see, e.g., [203, 289-298]). However, these studies have not
identified these silhouettes with a hemisphere of the black
hole event horizon. A principal feature of these numerical
models has been accounting for radiation from the inner
accretion disk at r, < r < rigco when a dark image of the
northern or southern hemisphere of the event horizon globe
(depending on the viewing angle of the black hole spin axis) is
observed inside the accretion disk, with the outer edge of
this image being the lensed image of the equator of the event
horizon globe. Here, the size of the event horizon silhouette is
significantly smaller than the expected black hole shadow
diameter.

Model images of accretion disks around a Schwarzschild
black hole (¢ = 0) with the inner disk boundary at rigco = 6
much exceeding the circular photon orbit radius r,, = 3 have
also been elaborated. In this case, the accretion disk without
radiation at r < rigco 18, for a black hole, a replica of the
remote background. Therefore, these models reproduce the
black hole shadow and not the event horizon silhouette (see,
e.g., [260, 269, 273)).

We also note that in the famous supercomputer simula-
tion for the movie Interstellar, radiation from the inner
accretion disk (1, < r < risco) approaching the black hole
event horizon was ignored at the producer’s request. As a
result, the gravitational lensing of the stationary part of the
model accretion disk with the inner boundary at r = 9.26
around a black hole with the spin a = 0.999 yielded a dark
image of the black hole shadow but not the dark silhouette of

Figure 15. (Color online.) Radiation from the inner accretion disk part in
the equatorial plane of the black hole M87* and the silhouette of the
southern hemisphere of the event horizon (black shaded region) located
inside the black hole shadow (closed purple curve) for the black hole spins
(a) @ =0.9882 and (b) a = 0.

the event horizon. The producer also demanded that the
energy redshift of photons from the accretion disk be taken
into account to model the observed disk brightness but not
the color [313-315]. As a result, this numerical supercomputer
simulation also relates to models that effectively reproduce
the black hole shadow image only, ignoring possible disk
radiation near the event horizon.

6.2.4 Brightest spot on the accretion disk. In relativistic models
of thin accretion disks, the local disk brightness measured by
a remote observer increases in approaching the black hole
[301-309]. The intensity is thought to reach a maximum at the
radius risco, Eqn (35). In approaching a black hole, the
redshift of emitted photons registered by the remote observer
increases. However, an increase in the local brightness at
r < risco, in principle, could be sustained by Doppler
beaming in the rapidly rotating disk part directed towards
the observer. Our numerical simulations [316] do not support
this hypothesis. In the inner parts of a thin accretion disk (i.e.,
at r, < r < risco) adjoining the black hole horizon, the
gravitational redshift of photons dominates over the Dop-
pler effect at any black hole spin a.

In our numerical simulations, we use the physically
justified assumption that the nonstationary fall of small
accretion disk fragments into a black hole at r, < r < risco
occurs along geodesics with orbital parameters £ and L from
Eqns (32) and (33) with r =rigco. In other words, we
postulate that small fragments of the accretion disk falling
into the black hole ‘remember’ their orbital parameters at the
radius risco. The numerical modeling enables us to find the
location of the brightest spot on the ring with the radius risco.
This spot corresponds to the direct-image photons (those
reaching a remote observer without crossing the equatorial
plane of the black hole), which have a maximum possible
azimuthal angular momentum A. For such a photon, the
Doppler boost is maximal. In particular, the brightest spot on
the accretion disk around the black hole SgrA* with the spin
a = 0.65 at the radius risco is determined by the direct-
image photon ray with parameters 4 = 4.29 and ¢ = 0.430
corresponding to the impact parameters « = —4.32 and f§ =
—0.042 in the sky (see Fig. 16 in Section 6.3).

In Figs 14, 15, 16, and 20, we show examples of lensed
emission from the nonstationary inner parts of an accretion
disk r, <r < risco adjoining the event horizon ry, and
producing a direct image of the event horizon with the
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photon energy gravitational redshift and Doppler effect taken
into account as g(4,q) = 1/E(4, q), where £(4, q) is given by
formula (44). The visible image of a black hole surrounded by
a moderately thick luminous accretion disk with thickness
h < 2ry includes a dark silhouette in the near-polar region of
the event horizon globe bounded by a parallel with the
latitude angle arcsin [/#/(2r4)]. For & — 0 (a thin accretion
disk), a dark silhouette of the northern hemisphere of the
event horizon of the black hole illuminated by the inner part
of the accretion disk must be observed. The contour of this
dark silhouette is the lensed image of the equator on the event
horizon globe.

6.3 Mapping of the event horizon

We now proceed from describing the dark silhouette of the
event horizon to mapping (or reconstructing) the image of the
entire event horizon globe.

It is convenient for what follows to do a thought
experiment by throwing emitting probes from all sides into a
black hole (e.g., neutron stars or compact emitting hot gas
clouds). The lensed image of the probes is registered and
studied by a remote observer. When approaching the black
hole, the radiation from the probes is observed increasingly
redshifted, up to infinity on the horizon. The sky location of
every ‘last’ photon from the probe crossing the horizon,
which can still be detected by the remote observer, provides
information on the unique specific point on the black hole
horizon.

Measurements of the last-detected photons from numer-
ous radiating probes falling from all sides into the black hole
enable one not only to ‘see’ the outer boundary (contour) of
the lensed dark silhouette of the event horizon but also to
reconstruct (or ‘map’) the image of the entire event horizon
globe (see [300, 316, 318] for more details). The numerical
results of event horizon mapping are in full agreement with
analytic mapping [319].

Formally speaking, photons emitted from the vicinity of
the event horizon and detected by a remote observer enable
the observer to uniquely project the whole event horizon
globe onto a bounded sky region. We refer to the result of
such a mapping as a ‘lensed image’ or, simply, an ‘image’ of
the event horizon. On this ‘image,’ the event horizon can be
‘seen’ from all sides simultaneously.

Photons emitted near the event horizon by the luminous
matter falling into a black hole and detected by a remote
observer are strongly redshifted. Therefore, the accuracy of
the ‘mapping’ of the black hole event horizon depends on the
detector sensitivity. The lensed image of the entire event
horizon is entirely inside the black hole shadow in the sky.

Figure 16 shows a map (reconstruction) of the event
horizon of an extreme Kerr black hole (¢ =1) and the
typical light rays forming this image as seen by a remote
observer in the equatorial plane of the black hole. The
photons are emitted from the northern and southern poles
of the event horizon globe with orbital parameters 1 =0,
qg = 1.77, as well as from its equator with 4 = —1.493 and
q = 3.629. The largest purple shaded region is the black hole
shadow. Shown are some parallels (blue looped curves) and
meridians (black curves) on the event horizon globe (blue
sphere) and its sky projection (blue shaded region). The light
blue part of the image is the sky projection of the front
hemisphere of the event horizon globe. Correspondingly, the
dark-blue part of the image is the sky projection of the rear
region of the event horizon globe [299, 318]. The numerical

Figure 16. (Color online.) Reconstructed image of the event horizon of an
extreme Kerr black hole (¢ = 1) and the individual photon trajectories
(multi-color 3D curves) forming this image and reaching a remote
observer located in the black hole equatorial plane. The photons come
from the vicinity of the north and south poles and equator of the event
horizon globe. Shown are some parallels (closed blue curves) and
meridians (black curves) on the event horizon globe (blue sphere) and its
sky projection (blue shaded region). The dark blue part of the image is the
sky projection of the rear hemisphere of the event horizon.

modeling results shown in Fig. 17 demonstrate an example of
the gravitational lensing of a massive spherical radiation
source (a compact star or gas cloud) with the trajectory
parameters y = 1, 2 = ¢ = 0 that falls into a black hole with
the spin @ =0.998 in its equatorial plane. The remote
observer lies at the latitude with cos 0 = 0.1. In approaching
the event horizon, the lensed images of the infalling source are
projected on the sky inside the black hole shadow and start
‘winding up’ many times on the black hole, with each winding
approaching the equatorial parallel # = t/2 on the event
horizon globe. The lensed image of this radiation source
identifies (maps) the event horizon equator § = n/2 asympto-
tically in time (after many turns around the black hole). (See
the animation of this process in [317].)

Figure 18 shows the black hole shadow from SgrA* with
the spin a = 0.9982 and the silhouette of the northern hemi-
sphere of its event horizon illuminated by the inner part of a
thin accretion disk with a thickness # much smaller than the
event horizon diameter, 7 < 2ry,. If the radiating accretion
disk is moderately thick, & < 2r,, the dark spot on the
corresponding image of the black hole is the silhouette of
the polar part of the event horizon globe above the parallel
with latitude angle arcsin [i/(2r)]. Here, the intermediate
region of the event horizon globe between this latitude and the
equator is fully or partially blurred by the emission from the
inner accretion disk. If, conversely, the accretion near the
event horizon is very thick, # > 2ry, the dark spot on the black
hole image is either absent or partially smeared out by the
inner accretion disk emission.

7. Spin of the supermassive black hole M87*

The model of the lensed image of a part of a thin accretion
disk, r, < r < risco, considered in Section 6.2 allows us to
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Figure 17. (Color online.) Numerical modeling of the gravitational lensing
of a compact star falling into the rotating black hole SgrA* (with the
assumed spin a = 0.9982) observed from infinity in discrete time intervals.
The star, with zero azimuthal angular momentum, moves in the black hole
equatorial plane. In approaching the event horizon, the lensed images of
the source fall inside the black hole shadow (light purple region) and then
start winding up the black hole by gradually approaching the equator
0 = n/2 in the lensed image of the event horizon globe (light blue region).
Shown is the first cycle of this winding-up.

Figure 18. (Color online.) Complete map of the event horizon globe (closed
blue region with a dark spot) as reconstructed from observations of
compact radiating sources falling into a black hole from different sides.
The blue curves show parallels and meridians on the reconstructed image
of the event horizon globe. The vast bounded light purple region is the
shadow of the black hole SgrA* with the spin ¢ = 0.9982. In the image of
the black hole surrounded by a moderately thick radiating accretion disk
with a thickness /1 < 2ry,, a dark silhouette of the near-polar region of the
event horizon globe above the parallel with the latitude angle
arcsin [h/(2r)] is visible. For #— 0 (a thin accretion disk), a dark
silhouette of the northern hemisphere of the event horizon of this black
hole (dark grey region) illuminated by the inner accretion disk with color
changing from blue to red is to be observed. The contour of this dark
silhouette is the lensed image of the event horizon equator.

find the dependence of the distance d of the brightest spot
on the accretion disk to the dark silhouette center as a
function of the black hole spin a. The dependences d(a) are
plotted in Fig. 19 for supermassive black holes SgrA* and
MB87*. The application of the function d(a) to the EHT
image interpretation suggests that the thin accretion disk
model best fits the image of M87* when its spin is a =
0.75 £ 0.15 (with a 1o statistical error) [316]. This estimate is
in agreement with independent evaluations of the M87*
spin [320-328].

Figure 20 shows the superposition of the EHT image of
MS87* with the thin accretion disk model for the black hole
spin a = 0.75. The brightest point on the accretion disk
marked in Fig. 20 by the red star lies on a circle with the
radius risco between two bright spots on the M87* image.
The presence of two luminous spots instead of one bright spot
is due to an insufficient number of Fourier components used
to restore the interferometric image observed by eight
telescopes. The dark spot at the image center is the black
hole horizon silhouette predicted by GR. The black hole
shadow, which is much larger than the event horizon, is not
visible in this image.

8. Conclusion

Possible shapes of dark images (shadows) of black holes
depend sensitively on the distribution of the surrounding
luminous matter and the black hole spin viewing angle.

[«

0.2 0.4 0.6 08 , 10

Figure 19. (Color online.) Distance d (in units GM/c?) between the
brightest point on a thin accretion disk lying in the black hole equatorial
plane and the center of the visible silhouette of the event horizon as a
function of the spin a for the black holes M87* and SgrA* (lower and
upper curves, respectively). Shaded is the region +1¢ around the spin
a=0.75. The spin a = 0.75 corresponds to the best-fit accretion disk
model and observed location of the bright spot on the M87* image shown
in Fig. 20.

In the case of a remote radiating background behind the
event horizon of a black hole, a classical dark shadow of the
black hole with maximum size can be observed. A shadow
with a minimum diameter can be seen if the black hole is
illuminated by the inner parts of an accretion disk adjoining
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Figure 20. (Color online.) Superposition of the EHT image of the black
hole M87* and the thin accretion disk model for the black hole spin
a = 0.75. The purple arrow marks the black hole spin axis. The small
dashed circle corresponds to the black hole event horizon in the imaginary
Euclidean space. The green closed curve is the lensed image of a ring with
the radius r = rigco. The brightest spot on the accretion disk is marked
with a red star. The largest closed purple curve is the boundary of the black
hole shadow, which is invisible in this image. The black spot at the image
center is the observed black hole event horizon silhouette predicted by GR.
(See [316] for more details).

the event horizon. If the accretion disk is thin, the contour
(outer edge) of this shadow represents the lensed image of the
event horizon equator.

The dark silhouette of the southern hemisphere of the
event horizon is visible in the M87* image obtained by the
EHT collaboration with a record high angular resolution. It is
the first direct proof of the existence of black holes because, in
the M87* image, on top of the bright background, a dark spot
is seen whose size is of the order of the event horizon of this
supermassive object. Satisfaction of exactly this condition is
direct proof that black holes exist in the Universe. The size
and shape of the dark spot in the M87* images fully agree
with GR predictions for the expected black hole silhouette.

Enormous energy is released in accretion onto a black
hole. The accretion disk can be much brighter than the
background that is needed to observe the black hole
shadow. For this reason, the black hole shadow is not visible
in the M87* EHT images. The supermassive black hole SgrA*
in the galactic center is a ‘latent quasar,” because presently it
shows deficient activity. There are many bright stars and hot
gas clouds in the vicinity of SgrA* that could serve as a
background for the black hole shadow. However, the low
brightness of this background compared to the enormous
luminosity of active galactic nuclei like M87* leads to a severe
problem of experimental measurement of the shadow from
the supermassive black hole SgrA* by millimeter radio
interferometry. Another difficulty with the shadow from
SgrA* is related to the possible strong scattering and
absorption of the lensed image photons in the dense galactic
disk plasma around this black hole.

There is a fundamental possibility of reconstructing the
lensed image of the entire event horizon globe by observing
compact luminous objects falling into a black hole outside its

equatorial plane. The reconstructed ‘image’ of the event
horizon is projected on the sky inside the classical black hole
shadow. An analogous statement on the possibility of
mapping the entire event horizon globe of a Schwarzschild
black hole is made in [329].

Photons emitted by objects falling into a black hole close
to its horizon are very strongly redshifted for a remote
observer. Therefore, the accuracy of determination of the
sky position of the last detected photon from an object falling
into the black hole and hence the accuracy of the event
horizon mapping is determined by the ability of a telescope
to detect low-energy photons.

We also note that gravitational-wave bursts registered by
laser interferometers [330-334] can be explained only by
coalescences of stellar-mass compact objects with the proper
size: of the order of their event horizons. From the GR
standpoint, only black holes or neutron stars can be such
objects. Nevertheless, gravitational wave detection provides
reliable proof of the existence of black holes, but only, in fact,
indirectly, because it does not prove that the proper sizes of
the coalescing objects are smaller than their event horizons.

Acknowledgments
The authors thank E O Babichev, V A Berezin, Yu N Ero-
shenko, and A L Smirnov for the fruitful discussions and
critical remarks. The authors acknowledge financial support
from the Russian Foundation for Basic Research grant no. 18-
52-12001-NCNlIa.

References

1.  Hawking S W, Ellis G F R The Large Scale Structure of Space—Time
(Cambridge Monographs on Mathematical Physics) (Cambridge:
Cambridge Univ. Press, 2011)

2. Akiyama K et al. (The Event Horizon Telescope Collab.) Astrophys.
J. Lett. 875 L1 (2019)

3. Akiyama K et al. (The Event Horizon Telescope Collab.) Astrophys.
J. Lett. 87512 (2019)

4. Akiyama K etal. (The Event Horizon Telescope Collab.) Astrophys.
J. Lett. 875 L3 (2019)

5. Akiyama K et al. (The Event Horizon Telescope Collab.) Astrophys.
J. Lett. 875 L4 (2019)

6. Akiyama K etal. (The Event Horizon Telescope Collab.) Astrophys.
J. Lett. 875 L5 (2019)

7. Akiyama K et al. (The Event Horizon Telescope Collab.) Astrophys.
J. Lett. 875 L6 (2019)

8. Fish V Letal. Galaxies 4 (4) 54 (2016)

9. Lacroix T, Silk J Astron. Astrophys. 554 A36 (2013)

10. Kamruddin A B, Dexter J Mon. Not. R. Astron. Soc. 434 765 (2013)

11.  Johannsen T et al. Phys. Rev. Lett. 116 031101 (2016)

12.  Johannsen T et al. Phys. Rev. Lett. 117 091101 (2016)

13.  Broderick A E et al. Astrophys. J. 820 137 (2016)

14.  Chael A A et al. Astrophys. J. 829 11 (2016)

15.  KimJ et al. Astrophys. J. 832 156 (2016)

16.  Roelofs F et al. Astrophys. J. 847 55 (2017)

17. Doeleman S S Nat. Astron. 1 646 (2017)

18.  Ghez A M et al. Astrophys. J. 689 1044 (2008)

19. Gillessen S et al. Astrophys. J. 692 1075 (2009)

20. Gillessen S et al. Astrophys. J. 707 L114 (2009)

21.  Meyer L et al. Science 338 84 (2012)

22.  Johannsen T et al. Astrophys. J. 758 30 (2012)

23.  Baade W Publ. Astron. Soc. Pacific 58 249 (1946)

24. Becklin E E, Neugebauer G Astrophys. J. 151 145 (1968)

25.  Dokuchaev VI, Ozernoi L M Sov. Astron. Lett. 3209 (1977); Pis’'ma
Astron. Zh. 3 391 (1977)

26. Dokuchaev V I Sov. Astron. Lett. 15 167 (1989); Pis’'ma Astron. Zh.
15 387 (1989)

27. Allen D A, Hyland A R, Hillier D J Mon. Not. R. Astron. Soc. 244
706 (1990)



598

V I Dokuchaev, N O Nazarova

Physics— Uspekhi 63 (6)

28.
29.

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
SIL.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67.
68.
69.

70.
71.
72.
73.
74.
75.
76.
71.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.

89.
90.
91.
92.
93.
94.

Dokuchaev VI Mon. Not. R. Astron. Soc. 251 564 (1991)
Dokuchaev V1 Sov. Phys. Usp. 34447 (1991); Usp. Fiz. Nauk 161 (6)
1(1991)

Manko V S, Novikov I D Class. Quantum Grav. 9 2477 (1992)

Lo K Y et al. Nature 362 38 (1993)

Backer D C et al. Science 262 1414 (1993)

Eckart A, Genzel R Nature 383 415 (1996)

Haller J W et al. Astrophys. J. 468 955 (1996)

Ghez A M et al. Astrophys. J. 509 678 (1998)

Backer D C, Sramek R A Astrophys. J. 524 805 (1999)

Reid M J et al. Astrophys. J. 524 816 (1999)

Baganoff F K et al. Bull. Am. Astron. Soc. 31 1463 (1999)

Falcke H, Markoff S Astron. Astrophys. 362 113 (2000)

Novikov I D, Frolov V P Phys. Usp. 44 291 (2001); Usp. Fiz. Nauk
171 307 (2001)

Baganoff F K et al. Nature 413 45 (2001)

Hornstein S D et al. Astrophys. J. Lett. 577 L9 (2002)

Genzel R et al. Nature 425 934 (2003)

Aschenbach B et al. Astron. Astrophys. 417 71 (2004)

Yusef-Zadeh F et al. Astrophys. J. 650 189 (2006)

Marrone D P et al. Astrophys. J. 682 373 (2008)

Ghez A M et al. Astrophys. J. 689 1044 (2008)

Doeleman S S et al. Nature 455 78 (2008)

Doeleman S S et al. Astrophys. J. 695 59 (2009)

Dodds-Eden K et al. Astrophys. J. 698 676 (2009)

Broderick A E, Loeb A, Narayan R Astrophys. J. 701 1357 (2009)
Sabha N et al. Astron. Astrophys. 512 A2 (2010)

Dexter J et al. Astrophys. J. 717 1092 (2010)

De Paolis F et al. Gen. Relativ. Gravit. 43977 (2011)

Broderick A E, Loeb A, Reid M J Astrophys. J. 735 57 (2011)
Neilsen J et al. Astrophys. J. 774 42 (2013)

Borka D et al. JCAP 2013 (11) 050 (2013)

Fish V L et al. Astrophys. J. 795 134 (2014)

Gwinn C R et al. Astrophys. J. Lett. 794 L14 (2014)

Johnson M D Astrophys. J. Lett. 794 150 (2014)

Dokuchaev V I Gen. Relativ. Gravit. 46 1832 (2014)

Moscibrodzka M et al. Astron. Astrophys. 570 A7 (2014)

Bower G C et al. Astrophys. J. 802 69 (2015)

Johnson M D et al. Science 350 1242 (2015)

Chatzopoulos S et al. Mon. Not. R. Astron. Soc. 447 948 (2015)
Dokuchaev V1, Eroshenko Yu N Phys. Usp. 58 772 (2015); Usp. Fiz.
Nauk 185 829 (2015)

Rauch C et al. Astron. Astrophys. 587 A37 (2016)

Zakharov A F et al. JCAP 2016 (05) 045 (2016)

Becerril R, Valdez-Alvarado S, Nucamendi U Phys. Rev. D 94
124024 (2016)

Giddings S B, Psaltis D Phys. Rev. D 97 084035 (2018)

Johannsen T Class. Quantum Grav. 33 113001 (2016)

Ortiz-Ledn G N et al. Astrophys. J. 824 40 (2016)

Parsa M et al. Astrophys. J. 84522 (2017)

Capellupo D M et al. Astrophys. J. 845 35 (2017)

Shiokawa H, Gammie C F, Doeleman S Astrophys. J. 846 29 (2017)
Johnson M D et al. Astrophys. J. 850 172 (2017)

Eckart A et al. Found. Phys. 47 553 (2017)

Abdujabbarov A et al. Int. J. Mod. Phys. D 26 1750051 (2017)
Ponti G et al. Mon. Not. R. Astron. Soc. 468 2447 (2017)

Zajacek M et al. Mon. Not. R. Astron. Soc. 480 4408 (2018)

Abuter R et al. (Gravity Collab.) Astron. Astrophys. 618 L10 (2018)
Zakharov A F Int. J. Mod. Phys. D 27 1841009 (2018)

Zakharov A F Eur. Phys. J. C 78 689 (2018)

Zakharov A EPJ Web Conf. 191 01010 (2018)

Zhu Z, Johnson M D, Narayan R Astrophys. J. 870 6 (2019)
Izmailov R N et al. Eur. Phys. J. Plus 134 384 (2019)

Zakharov A F Int. J. Mod. Phys. D 28 1941003 (2019)

Do Tetal. Bull. Am. Astron. Soc. 51 530 (2019) Astro2020: Decadal
Survey on Astronomy and Astrophysics, Science White Papers,
No. 530

Do T et al. Astrophys. J. Lett. 882 L27 (2019)

Giddings S B Universe 5 (9) 201 (2019)

Dai D, Stojkovic D Phys. Rev. D 100 083513 (2019)

Moriyama K et al. Astrophys. J. 887 227 (2019)

Goddi Cetal. Int. J. Mod. Phys. D 26 1730001 (2017)

Abuter R et al. (Gravity Collab.) Astron. Astrophys. 615 L15 (2017)

95.
96.
97.
98.

99.

100.

101.
102.
103.

104.
105.
106.
107.
108.

109.
110.
111.

112.

113.
114.
115.
116.
117.
118.
119.

120.
121.
122.

123.
124.

125.
126.

127.
128.
129.
130.

131.

132.

133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.

148.
149.

Amorim A et al. (Gravity Collab.) Phys. Rev. Lett. 122 101102
(2019)

Mielnik B, Plebanski J Acta Phys. Polon. 21 239 (1962)

Synge J L Mon. Not. R. Astron. Soc. 131 463 (1966)

Bardeen J M, in Black Holes (Eds C DeWitt, B S DeWitt) (New
York: Gordon and Breach, 1973) p. 219

Young P J Phys. Rev. D 14 3281 (1976)

Chandrasekhar S The Mathematical Theory of Black Holes (The
International Series of Monographs on Physics, Vol. 69) (Oxford:
Clarendon Press, 1983) Ch. 7

Falcke H, Melia F, Agol E Astrophys. J. 528 L13 (2000)

Takahashi R Astrophys. J. 611 996 (2004)

Kardashev N S, Novikov I D, Shatskiy A A Int J. Mod. Phys. D 16
909 (2007)

Falcke H, Markoff S B Class. Quantum Grav. 30 244003 (2013)

Li Z, Bambi C JCAP 2014 (01) 041 (2014)

Inoue M et al. Radio Sci. 49 564 (2014)

Cunha PV Petal. Phys. Rev. Lett. 115211102 (2015)
Abdujabbarov A A, Rezzolla L, Ahmedov BJ Mon. Not. R. Astron.
Soc. 454 2423 (2015)

Younsi Z et al. Phys. Rev. D 94 084025 (2016)

de Vries A Class. Quantum Grav. 17 123 (2000)

Schnittman J D, Krolik J H, Hawley J F Astrophys. J. 651 1031
(2006)

Shatskii A A, Novikov I D, Kardashev N S Phys. Usp. 51457 (2008);
Usp. Fiz. Nauk 178 481 (2008)

Bambi C, Freese K Phys. Rev. D 79 043002 (2009)

Frolov V P, Shapiro I L Phys. Rev. D 80 044034 (2009)

Tamburini F et al. Nat. Phys.7 195 (2011)

Vincent F H et al. Class. Quantum Grav. 28 225011 (2011)
Amarilla L, Eiroa E F Phys. Rev. D 85064019 (2012)

Johannsen T Astrophys. J 777 170 (2013)

Babichev E O, Dokuchaev V I, Eroshenko Yu N Phys. Usp. 56 1155
(2013); Usp. Fiz. Nauk 183 1257 (2013)

Amarilla L, Eiroa E F Phys. Rev. D 87 044057 (2013)

Zakharov A F et al. Adv. Space Res. 54 1108 (2014)

Dokuchaev V I, Eroshenko Yu N JETP Lett. 101 777 (2015); Pis'ma
Zh. Eksp. Teor. Fiz. 101 875 (2015)

Wei S-W et al. JCAP 2015 (08) 004 (2015)

Abdolrahimi S, Mann R B, Tzounis C Phys. Rev. D 91 084052
(2015)

Herrera-Aguilar A, Nucamendi U Phys. Rev. D 92 045024 (2015)
Becerril R, Valdez-Alvarado S, Nucamendi U Phys. Rev. D 94
124024 (2016)

Cunha PV Petal. Int J. Mod. Phys. D 25 1641021 (2016)
Abdujabbarov A et al. Phys. Rev. D 93 104004 (2016)

Will C M, Maitra M Phys. Rev. D 95 064003 (2017)

Cunha P V P, Herdeiro C A R, Radu E Phys. Rev. D 96 024039
(2017)

Ferrer F, Medeiros da Rosa A, Will C M Phys. Rev. D 96 083014
(2017)

Amarilla L, Eiroa E F, in The Fourteenth Marcel Grossmann
Meeting. Proc. of the MG 14 Meeting on General Relativity, Univ. of
Rome La Sapienza, Italy, 12—-18 July 2015 (Eds M Bianchi,
R T Jantzen, R Ruffini) (Singapore: World Scientific, 2017) p. 3543
Mureika J R, Varieschi G U Can. J. Phys 95 1299 (2017)

Amir M, Singh B P, Ghosh S G Eur. Phys. J. C 78 399 (2018)

Lan X G, PulJ Mod. Phys. Lett. A 33 1850099 (2018)

Wang M, Chen S, Jing J Phys. Rev. D 98 104040 (2018)

Lamy F et al. Class. Quantum Grav. 35 115009 (2018)

Mizuno Y et al. Nat. Astron.2 585 (2018)

Repin S Vet al., arXiv:1802.04667

Wei S-W et al. JCAP 2019 (08) 030 (2019)

Blackburn L et al., Astro2020 APC White Paper

Meierovich B E Universe 5 (9) 198 (2019)

Abdikamalov A B et al. Phys. Rev. D 100 024014 (2019)

Zhu T et al. Phys. Rev. D 100 044055 (2019)

Tian S X, Zhu Z-H Phys. Rev. D 100 064011 (2019)

Davoudiasl H, Denton P B Phys. Rev. Lett. 123 021102 (2019)
Konoplya R A, Pappas T, Zhidenko A Phys. Rev. D 101 044054
(2020)

Hess P O, Lopez-Moreno E Universe 5 (9) 191 (2019)

Rummel M, Burgess C P JCAP 2020 (05) 051 (2020)



June 2020

Silhouettes of invisible black holes

599

150.

151.

152.
153.
154.

155.
156.
157.
158.
159.

160.

161.

162.

163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.

179.

180.
181.
182.
183.
184.
185.
186.
187.
188.

189.
190.
191.
192.
193.
194.

195.
196.
197.

198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.

Alexeyev S O, Prokopov V A J. Exp. Theor. Phys. 130 666 (2020);
Zh. Eksp. Teor. Fiz. 157 796 (2020)

Kardashev N S et al. Phys. Usp. 57 1199 (2014); Usp. Fiz. Nauk 184
1319 (2014); Ivanov P B et al. Phys. Usp. 62 423 (2019); Usp. Fiz.
Nauk 189 449 (2019)

Roelofs F et al. Astron. Astrophys. 625 A124 (2019)

Palumbo D C M et al. Astrophys. J. 881 62 (2019)

Wald R M General Relativity (Chicago, IL: The Univ. of Chicago
Press, 1984) p. 311

Kerr R P Phys. Rev. Lett. 11 237 (1963)

Boyer R H, Lindquist R W J. Math. Phys. 8 265 (1967)

Bardeen J M Astrophys. J. 161 103 (1970)

Bardeen J M Astrophys. J. 162 71 (1970)

Bardeen J M, Press W H, Teukolsky S A Astrophys. J. 178 347
(1972)

Misner C W, Thorne K S, Wheeler J A Gravitation (San Francisco,
CA: W.H. Freeman, 1973)

Gal’'tsov D V Chastitsy i Polya v Okrestnosti Chernykh Dyr
(Particles and Fields in the Vicinity of Black Holes) (Moscow: Izd.
Mosk. Univ., 1986)

Bardeen J M, Carter B, Hawking S W Commun. Math. Phys. 31 161
(1973)

Smarr L Phys. Rev. D7 289 (1973)

Sharp N A Can. J. Phys. 59 688 (1981)

Carter B Phys. Rev. 174 1559 (1968)

de Felice F Nuovo Cimento B 57 351 (1968)

Penrose R Riv. Nuovo Cimento (Numero Speziale I) 252 (1969)
Wilkins D C Phys. Rev. D 5 814 (1972)

Grossman R, Levin J, Perez-Giz G Phys. Rev. D 85023012 (2012)
Hod S Phys. Lett. B 718 1552 (2013)

Liu C, Ding C, JingJ Sci. China Phys. Mech. Astron. 6210411 (2019)
Glampedakis K, Pappas G Phys. Rev. D 99 124041 (2019)
Cunningham C T, Bardeen J M Astrophys. J. 173 L137 (1972)
Cunningham C T, Bardeen J M Astrophys. J. 183 237 (1973)
Viergutz S U Astron. Astrophys. 272 355 (1993)

Rauch K P, Blandford R D Astrophys. J. 421 46 (1994)

Gralla S E, Holz D E, Wald R M Phys. Rev. D 100 024018 (2019)
Dokuchaev V I, Nazarova N O JETP Lett. 106 637 (2017); Pis’'ma
Zh. Eksp. Teor. Fiz. 106 609 (2017)

Dokuchaev V I, Nazarova N O “Star motion around rotating black
hole™, https://youtu.be/P6DneVOvk7U (2018)

Ho L C Annu. Rev. Astron. Astrophys. 46 475 (2008)

Gebhardt K, Thomas J Astrophys. J. 700 1690 (2009)

Gebhardt K et al. Astrophys. J.729 119 (2011)

Walsh J et al. Astrophys. J. 770 86 (2013)

Curtis H D Publ. Lick Observatory 13 11 (1918)

Rees M J Mon. Not. R. Astron. Soc. 184 61P (1978)

Eichler D, Smith M Nature 303 779 (1983)

Rees M J Annu. Rev. Astron. Astrophys. 22 471 (1984)

Begelman M C, Blandford R D, Rees M J Rev. Mod. Phys. 56 255
(1984)

Stiavelli M et al. Nature 355 802 (1992)

Junor W, Biretta J A Astron. J. 109 500 (1995)

Junor W, Biretta J A, Livio M Nature 401 891 (1999)

Di Matteo T et al. Astrophys. J. 582 133 (2003)

Kovalev Y Y et al. Astrophys. J. 668 L27 (2007)

Beskin V' S Phys. Usp. 53 1199 (2010); Usp. Fiz. Nauk 180 1241
(2010)

Hada K et al. Nature 477 185 (2011)

de Gasperin F et al. Astron. Astrophys. 547 A56 (2012)
Moscibrodzka M, Falcke H, Shiokawa H Astron. Astrophys. 586
A38(2016)

Doeleman S S et al. Science 338 355 (2012)

Lacroix T et al. Phys. Rev. D 96 063008 (2017)

Akiyama K et al. Astrophys. J. 838 1 (2017)

Walker R C et al. Astrophys. J. 855128 (2018)

Broderick A E Astrophys. J. 805 179 (2015)

Luminet J-P Astron. Astrophys. 75 228 (1979)

Zakharov A F Class. Quantum Grav. 11 1027 (1994)

Beckwith K, Done C Mon. Not. R. Astron. Soc. 359 1217 (2005)
Zakharov A F et al. New Astron. 10 479 (2005)

Takahashi R Publ. Astron. Soc. Jpn. 57 273 (2005)

Takahashi R, Watarai K Mon. Not. R. Astron. Soc. 374 1515 (2007)

209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.

221.

222.
223.
224.
225.
226.
227.
228.
229.

230.

231.

232.
233.
234.
235.

236.
237.

238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.

250.
251.
252.
253.
254.

255.

256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.

268.
269.

Bakala P et al. Cent. Eur. J. Phys. 5 599 (2007)

Huang L et al. Mon. Not. R. Astron. Soc. 379 833 (2007)
Virbhadra K S Phys. Rev. D 79 083004 (2009)

Hioki K, Maeda K Phys. Rev. D 80 024042 (2009)

Schee J, Stuchlik Z Gen. Relativ. Gravit. 41 1795 (2009)

Dexter J, Agol E Astrophys. J. 696 1616 (2009)

Johannsen T, Psaltis D Astrophys. J. 718 446 (2010)

Amarilla L, Eiroa E F, Giribet G Phys. Rev. D 81 124045 (2010)
Nitta D, Chiba T, Sugiyama N Phys. Rev. D 84 063008 (2011)
Yumoto A et al. Phys. Rev. D 86 103001 (2012)

Abdujabbarov A et al. Astrophys. Space Sci. 344 429 (2013)
Atamurotov F, Abdujabbarov A, Ahmedov B 4strophys. Space Sci.
348 179 (2013)

Atamurotov F, Abdujabbarov A, Ahmedov B Phys. Rev. D 88
064004 (2013)

Wei S-W, Liu Y-X JCAP 2013 (11) 063 (2013)

Tsukamoto N, Li Z, Bambi C JCAP 2014 (06) 043 (2014)

Papnoi U et al. Phys. Rev. D 90 024073 (2014)

Tinchev V K, Yazadjiev S S Int. J. Mod. Phys. D 23 1450060 (2014)
Kraniotis G V Gen. Relat. Gravit. 46 1818 (2014)

Ghasemi-Nodehi M, Li Z, Bambi C Eur. Phys. J. C 75315 (2015)
Tinchev V K Chin. J. Phys. 53 110113 (2015)

Gralla S E, Porfyriadis A P, Warburton N Phys. Rev. D 92 064029
(2015)

Atamurotov F, Ahmedov B, Abdujabbarov A Phys. Rev. D 92
084005 (2015)

Perlick V, Tsupko O Yu, Bisnovatyi-Kogan G S Phys. Rev. D 92
104031 (2015)

Shipley J O, Dolan S R Class. Quantum Grav. 33 175001 (2016)
Liu X, Yang N, Jia J Class. Quantum Grav. 33 175014 (2016)

Yang L, Li Z Int. J. Mod. Phys. D 25 1650026 (2016)

Gralla S E, Lupsasca A, Strominger A Phys. Rev. D 93 104041
(2016)

Amir M, Ghosh S G Phys. Rev. D 94 024054 (2016)

Gralla S E, Zimmerman A, Zimmerman P Phys. Rev. D 94 084017
(2016)

Vincent F H et al. Phys. Rev. D 94 084045 (2016)

Dastan S, Saffari R, Soroushfar S, arXiv:1606.06994

Tretyakova D A, Adyev T M, arXiv:1610.07300

Dastan S, Saffari R, Soroushfar S, arXiv:1610.09477

Sharif M, Iftikhar S Eur. Phys. J. C 76 630 (2016)

Opatrny T, Richterek L, Bakala P Am. J. Phys. 85 14 (2017)
Cunha PV Petal. Phys. Lett. B768 373 (2017)

Singh B P, Ghosh S G Ann. Physics 395 127 (2018)

Wang M, Chen S, Jing J JCAP 2017 (10) 051 (2017)

Amir M, Singh B P, Ghosh S G Eur. Phys. J. C 78 399 (2018)
Porfyriadis A P, Shi Y, Strominger A Phys. Rev. D 95064009 (2017)
Gralla SE, Lupsasca A, Strominger A Mon. Not. R. Astron. Soc. 475
3829 (2018)

Perlick V, Tsupko O Yu Phys. Rev. D 95 104003 (2017)

Tsupko O Yu Phys. Rev. D 95 104058 (2017)

Bisnovatyi-Kogan G S, Tsupko O Yu Universe 3 (3) 57 (2017)
Stuchlik Z, Charbuldk D, Schee J Eur. Phys. J. C 78 180 (2018)
Cunha P V P, Herdeiro C A R, Rodriguez M J Phys. Rev. D 97
084020 (2018)

Huang Y, Dong Y-P, Liu D-J Int. J. Mod. Phys. D 27 1850114
(2018)

Tsukamoto N Phys. Rev. D 97 064021 (2018)

Bisnovatyi-Kogan G S, Tsupko O Yu Phys. Rev. D 98 084020 (2018)
Hou X, Xu Z, Wang J JCAP 2018 (12) 040 (2018)

Yan H Phys. Rev. D 99 084050 (2019)

Gyulchev G et al. Phys. Rev. D 100 024055 (2019)

Kumar R, Ghosh S G, Wang A Phys. Rev. D 100 124024 (2019)
Konoplya R A Phys. Lett. B795 1 (2019)

AliM S, Amir M, arXiv:1906.04146

Johnson M D et al. Sci. Adv. 6 eaaz1310 (2020)

Siino M, arXiv:1908.02921

Zhang M, Guo M, arXiv:1909.07033

Shipley J O ““Strong-field gravitational lensing by black holes”, PhD
Thesis (Sheffield: Univ. of Sheffield, School of Mathematics and
Statistics, 2019); arXiv:1909.04691

Shaikh R et al. Mon. Not. R. Astron. Soc. 482 52 (2019)

Shaikh R, Joshi P S JCAP 2019 (10) 064 (2019)



600

V I Dokuchaev, N O Nazarova

Physics— Uspekhi 63 (6)

270.
271.

272.
273.
274.
275.
276.
277.
278.

279.

280.
281.
282.
283.
284.
285.

286.

287.

288.
289.
290.
291.
292.
293.
294.
295.
296.

297.
298.
299.

300.

301.
302.

303.
304.
305.
306.
307.

308.

309.
310.
311.
312.
313.
314.
315.
31e.
317.

318.
319.
320.
321.
322.
323.
324.
325.

326.
327.

Ding Cet al. Eur. Phys. J. C 80 178 (2020)

Narayan R, Johnson M D, Gammie C F Astrophys. J. Lett. 885 L33
(2019)

Goddi Cet al. The Messenger 177 25 (2019)

Feng X-H, Li H Eur. Phys. J. C 80 551 (2020)

Allahyari A et al. JCAP 2020 (02) 003 (2020)

Cunha PV P et al. JCAP 2020 (03) 035 (2020)

Konoplya R A Phys. Lett. B804 135363 (2020)

Jusufi K Phys. Rev. D 101 084055 (2020)

Tsupko O Yu, Bisnovatyi-Kogan G S Mon. Not. R. Astron. Soc. 491
5636 (2020)

Vagnozzi S, Bambi C, Visinelli L Class. Quantum Grav. 37 087001
(2020)

Yu S, Gao C, arXiv:2001.01137

Li P-C, Guo M, Chen B Phys. Rev. D 101 084041 (2020)

Chang Z, Zhu Q-H Phys. Rev. D 101 084029 (2020)

Himwich E et al. Phys. Rev. D 101 084020 (2020)

Bakala P, Docekal J, Turonova Z Astrophys. J. 889 41 (2020)
Anantua R, Ressler S, Quataert E Mon. Not. R. Astron. Soc. 493
1404 (2020)

Grenzebach A, Perlick V, Laimmerzahl C Phys. Rev. D 89 124004
(2014)

Grenzebach A, Perlick V, Laimmerzahl C Int. J. Mod. Phys. D 24
1542024 (2015)

Cunha, P V P, Herdeiro C A R Gen. Relativ. Gravit. 50 42 (2018)
Bromley B C, Chen K, Miller W A Astrophys. J. 475 57 (1997)
Fanton Cet al. Publ. Astron. Soc. Jpn. 49 159 (1997)

Fukue J Publ. Astron. Soc. Jpn. 55155 (2003)

Fukue J Publ. Astron. Soc. Jpn. 55 1121 (2003)

Dexter J, Agol E, Fragile P C Astrophys. J. 703 L142 (2009)

Lu R-S et al. Astrophys. J. 817 173 (2016)

Luminet J-P, arXiv:1902.11196

Shiokawa H, https://eventhorizontelescope.org/simulations-gallery
(2019)

van der Gucht J et al. Astron. Astrophys. 636 A94 (2020)

White C J et al. Astrophys. J. 894 14 (2020)

Dokuchaev V I, Nazarova N O J. Exp. Theor. Phys. 128 578 (2019);
Zh. Eksp. Teor. Fiz. 155 677 (2019)

Dokuchaev V I, Nazarova N O, Smirnov V P Gen. Relativ. Gravit.
5181 (2019)

Shakura N I, Sunyaev R A Astron. Astrophys. 24 337 (1973)
Novikov I D, Thorne K S, in Black Holes (Eds C DeWitt,
B S DeWitt) (New York: Gordon and Breach, 1973) p. 343

Page D N, Thorne K S Astrophys. J. 191 499 (1974)

Thorne K S Astrophys. J. 191 507 (1974)

Abramowicz M A, Fragile P C Living Rev. Relativ. 16 1 (2013)
Yuan F, Narayan R Annu. Rev. Astron. Astrophys. 52 529 (2014)
Lasota J-P, in Astrophysics of Black Holes (Astrophysics and Space
Science Library, Vol. 440) (Berlin: Springer-Verlag, 2016) p. 1
Zhuravlev V'V Phys. Usp. 58 527 (2015); Usp. Fiz. Nauk 185 561
(2015)

Compere G, Oliveri R Mon. Not. R. Astron. Soc. 468 4351 (2017)
Krolik J H, Hawley J F Astrophys. J. 573 754 (2002)

Miller J M Annu. Rev. Astron. Astrophys. 45 441 (2007)

Psaltis D et al. Astrophys. J. 798 15 (2015)

James O et al. Class. Quantum Grav. 32 065001 (2015)

Luminet J-P Inference. Int. Rev. Sci. 1 (2) (2015)

Luminet J-P Universe 4 (8) 86 (2018)

Dokuchaev V I, Nazarova N O Universe 5 (8) 183 (2019)
Dokuchaev V I, Nazarova N O “Infall of the star into rotating black
hole viewed by a distant observer”, https://youtu.be/fps-3frLOAM
(2018)

Dokuchaev V Int. J. Mod. Phys. D 28 1941005 (2019)

Gralla S E, Lupsasca A Phys. Rev. D 101 044031 (2020)

Broderick A E, Loeb A Astrophys J. 697 1164 (2009)

Li Y-R et al. Astrophys J. 699 513 (2009)

Feng J, Wu Q Mon. Not. R. Astron. Soc. 470 612 (2017)

Sob’yanin D N Mon. Not. R. Astron. Soc. 479 L65 (2018)
Nokhrina E E et al. Mon. Not. R. Astron. Soc. 489 1197 (2019)
Tamburini F, Thidé B, Della Valle M Mon. Not. R. Soc. 492 1.22
(2020)

Bambi C et al. Phys. Rev. D 100 044057 (2019)

Nemmen R Astrophys J. Lett. 880 L26 (2019)

328.

329.
330.

331.

332.

333.

334.

33s.

336.

337.

338.
339.

Nalewajko K, Sikora M, Rézanska A Astron. Astrophys. 634 A38
(2020)

Antonelli R, http://rantonels.github.io/starless/ (2018)

Abbott B P et al. (LIGO Scientific Collab. and Virgo Collab.) Phys.
Rev. Lett. 116 061102 (2016)

Abbott B P et al. (LIGO Scientific Collab. and Virgo Collab.) Phys.
Rev. Lett. 116 241103 (2016)

Abbott B P et al. (LIGO Scientific Collab. and Virgo Collab.) Phys.
Rev. D 93 122003 (2016)

Abbott B P et al. (LIGO Scientific Collab. and Virgo Collab.) Phys.
Rev. D 93 122004 (2016); Phys. Rev. D 94 069903 (2016) Erratum
Abbott B P et al. (LIGO Scientific Collab. and Virgo Collab.) Phys.
Rev. Lett. 118 221101 (2017)

Scheel M A, Thorne K S Phys. Usp. 57 342 (2014); Usp. Fiz. Nauk
184 367 (2014)

Cherepashchuk A M Phys. Usp. 59 702 (2016); Usp. Fiz. Nauk 186
778 (2016)

Cherepashchuk A M Phys. Usp. 59 910 (2016); Usp. Fiz. Nauk 186
1001 (2016)

Reitze D H Phys. Usp. 60 823 (2017); Usp. Fiz. Nauk 187 884 (2017)
Postnov K A, Kuranov A G, Mitichkin N A Phys. Usp. 62 1153
(2019); Usp. Fiz. Nauk 189 1230 (2019)



	1. Introduction
	2. Rotating Kerr black hole
	3. Locally nonrotating frames
	4. Equations of motion for test particles
	5. Features of particle trajectories
	5.1 Inevitable rotation in the ergosphere
	5.2 Winding on the event horizon
	5.3 Spherical orbits
	5.4 Multiple images

	6. Shapes of black hole images
	6.1 Classical black hole shadow on the remote background
	6.2 Shadow of an accreting black hole
	6.3 Mapping of the event horizon

	7. Spin of the supermassive black hole M87^*
	8. Conclusion
	 References

