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Abstract. The last 25 years has witnessed a wealth of publica-
tions on the creation of carbon materials whose compression
bulk modulus and hardness are much higher than those of
diamond. This review presents a critical analysis of these stu-
dies. Three groups of myths that have emerged lately are
discussed. The first is related to the possibility of creating
materials whose bulk moduli are significantly higher than those
of diamond. The second group is devoted to ‘experimentally
measured’ values of hardness, much higher than that of dia-
mond. The third includes alleged ‘theoretical’ grounds for a
several-fold (!) increase in the hardness of covalent substances
due to the effects of quantum confinement. It is shown that
materials whose elastic moduli significantly exceed those of
diamond cannot in principle be produced under normal condi-
tions. Issues surrounding the quantitative measurement of hard-
ness are discussed; it is noted that the creation of obstacles to the
movement of dislocations in nanomaterials may allow a 20—
40% increase in the effective measured hardness of ultrahard
materials. It is emphasized that alternative hypothetical ap-
proaches to increase hardness, for example, due to quantum
confinement, actually have no physical grounds whatsoever.
The highest mechanical characteristics of diamond are asso-
ciated with reliably established physical laws, and any asser-
tions regarding possible obtainment of materials whose elastic
characteristics or hardness are several times greater than those
of diamond may not be regarded as reliable to any extent or even
science-based.
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1. Introduction

Until the early 1990s, the synthesis of and research on new
ultrahard materials were quite respectable areas of material
science. By that time, the relationship between the elastic
characteristics of substances and their atomic and electron
density, the degree of electron density anisotropy, and
structure, in particular the coordination number, had
already been established and explained [1]. It was also
realized that operational mechanical characteristics, such as
hardness, fracture toughness, and abrasion resistance, can
only be considered qualitative comparative characteristics
that depend on the method and conditions of measurement or
testing. In particular, if hardness is measured using an
indenter, the results depend on the load on the indenter, the
loading time, the indenter shape, the quality and method of
surface finish of the material under testing, the degree of
elastic restoration of the indentation, etc. (see [1, 2] and
references therein).

There were no doubts 30 years ago that diamond and its
isoelectronic analog, cubic boron nitride, have under normal
conditions elastic moduli that are the highest among all
substances. It should be recalled that the bulk modulus of
diamond is 445 GPa, the shear modulus is 530 GPa, and the
hardness is 80-120 GPa [1, 3]. New ultrahard materials, i.e.,
materials whose elastic moduli and hardness exceed the
corresponding values for sapphire Al,O; or hard alloy
(sintered tungsten carbide with a binder), starting from the
mid-20th century traditionally (and reasonably) were
searched for among compounds of light elements (Be, B, C,
N, O) and among carbides, borides, oxides, and nitrides of
heavy metals (Ta, Mo, Nb, W, Re, Os, Cr, etc.) [1]. It was also
well known that the operational mechanical properties of the
same material can substantially depend on its structure and
state of defects at the micro- and especially at the nanoscale
level [1, 2]. However, in contrast to ductile metals, in which
the nanocrystalline state can be achieved quite easily (by
means of intense plastic deformation, rapid quenching from
the melt, etc.), ultrahard materials in the nanocrystalline state
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by the beginning of the 1990s had not really been produced
and, consequently, not investigated. An exception was
TiN—NbN and TiN—VN multilayer nanostructures [2, 4],
for which a significant excess of hardness (by a factor of 1.5—
2) compared to that of single crystals of individual com-
pounds was observed.

A series of publications appeared about 25 years ago that
announced the production of new ultrahard materials
(mainly carbon-based) whose hardness and bulk modulus
were 2—4 times higher than the corresponding values for
diamond [5-7]. In particular, according to [5], the bulk
moduli of the new materials were as high as 1700 GPa(!)
and the hardness as high as 300 GPa [7-9]. These were usually
highly disordered carbon materials obtained by the thermo-
baric processing of Cgy fullerenes under pressures of 13—
14 GPa. These results, which were subject to criticism [2, 3,
10-13], and, on the whole, were not confirmed by other
groups. It was announced recently (in 2014) that such
fullerite-based ultrahard materials were obtained at room
temperature at relatively low pressures (6.5 GPa) under
strong shear deformations using carbon sulfide (CS,) as a
catalyst for the 3D polymerization of fullerite [14].

The author of this review participated in 2004 in the
publication of an open letter to colleagues— physicists,
chemists, and material scientists [15]—wherein it was
pointed out once again that under normal conditions
diamond is and will be the undisputed leader in the shear
modulus value among all substances. The letter also called all
researchers to be careful and prudent when reporting about
‘hardness higher than that of diamond’. The appeal was
followed by a short pause of 5-7 years, during which there
were virtually no new publications about materials whose
elastic moduli and hardness significantly exceed those of
diamond.

Significant progress has concurrently been witnessed in
the synthesis and exploration of new ultrahard materials with
a nanostructure. A number of teams [16-23] produced
samples of nano-polycrystalline diamond and, somewhat
later, cubic boron nitride. The nanocrystalline diamond
state was obtained in this case using various initial sub-
stances (graphite, fullerites, nanotubes, soot) (see, for exam-
ple, [18, 20]). The crystalline grain size in the newly obtained
ultrahard polycrystals also varied over a wide range— from 5
to 100 nm [16-23]. The grain morphology (spheres, flakes,
needles) also varied widely. The nano-polycrystalline state of
diamond and boron nitride turned out to feature hardness,
wear resistance, fracture toughness, and heat resistance that
are much higher than those of corresponding single crystals
[16-23]. It was found that the mechanical characteristics of
nano-polycrystalline diamond are the highest if the grain size
is 10-20 nm [17-19]. The hardness of such polycrystals
measured according to Knoop (various methods for deter-
mining and measuring hardness are presented in Section 3) is
then as high as 120-140 GPa, i.c., 20-40% higher than the
generally accepted hardness of single-crystal diamonds.

Progress was also observed at the same time in theoretical
calculations of the mechanical properties of ultrahard
materials. Calculations based on first principles, which were
made using state-of-the-art computers, allow determining
with high accuracy (1-2%) the elastic characteristics of
ultrahard materials in the linear region of deformations and
their ideal strength under various deformations, including
those beyond the linear elastic region (albeit with much less
accuracy — with an error of several tens of percent) [24-28].

Since the hardness of materials is a poorly defined parameter,
the ‘ideal’ hardness is usually analyzed in calculations, and is
defined as the theoretical shear strength corresponding to
certain loads on the indenter [29]. If the load increases further,
even in the ideal case of a defect-free single crystal, a local loss
of lattice stability and the emergence of dislocation loops or
twin boundaries are observed [29]. A number of new
empirical formulas have been proposed recently to calculate
hardness on the basis of correlations between mechanical
properties and elastic moduli, covalence bond character,
optical gap width, etc. [30-33]. Although such formulas for
calculating hardness are not strict, they are convenient for
rapid evaluations of the mechanical properties of hypothe-
tical substances and have been very actively used recently
(albeit often uncritically).

A new wave of publications has appeared in the last 5—
10 years, devoted to the synthesis of materials whose elastic
moduli and hardness are several times higher than those of
diamond. These studies have been carried out primarily by
Chinese research teams. Moreover, a number of researchers
attempt to substantiate the sensational ‘experimental’ results
by introducing a certain new ‘theoretical’ base associated with
the ideas of quantum confinement. The goal of this review is
to analyze the scientific consistency of these reports.

2. Myth I: materials with giant elastic moduli
significantly exceeding those of diamond

The myth of materials with elastic moduli significantly
exceeding those of diamond is the easiest to analyze. Elastic
moduli are uniquely determined by interaction between
particles and can be calculated from first principles with
high accuracy. The effect of the microstructure and defects
in the substance on the elastic moduli is small (at the level of
several percent). The elastic moduli are apparently greater the
greater the binding energy in the material, the greater the
atomic and electronic densities, and, consequently, the
smaller the interatomic distances.

2.1 Bulk modulus

The physical meaning of the bulk modulus is actually the
density of the binding energy in the material. For a degenerate
electron gas, the compression modulus B, as well as the
electron gas pressure, is uniquely related to the electron
density:

B~ p

where B is the bulk modulus and p is the electron density.

In the case of real substances, the total energy E is some
function of the volume V: E = Eyf(V/Vy), where Ey and V)
are the energy and volume at zero pressure. The bulk modulus
at normal pressure is apparently expressed then as [34]

EO //( > EO
Bo=—f"(— =Cc=2, 1
‘ J 0 f J 0/ v=v, J 0 ( )

where C = f"(V/Vo)_y,-

The cohesion energy may be expressed in some model
casesas E = A/V"— B/V". Inthiscase, /" (V/Vo),_y, = mn,
i.e., for the Lennard-Jones potential, for which 3n = 12 and
3m = 6, we have f” = 8. This value is in good agreement with
experimental data for condensed inert gases and a number of
molecular substances, for which, indeed, By ~ 8Ey/Vy [1].
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Figure 1. (a) Bulk module as a function of the bulk density of binding energy for elemental substances and compounds of group IV of the periodic table.
(b) The ratio of the compression modulus to energy density for the same substances. (Data taken from [37] with permission of the author.)

The bulk modulus in the case of metals, covalent
substances, and partly ionic compounds is apparently
determined primarily by the density of valence electrons. It
should be noted that it was established long ago [35] that for
many ionic compounds B~1/V~p, where V is the specific
volume. The relation B ~ 1/d*> ~ p'"'7 (d is the interatomic
distance) was also established long ago for covalent sub-
stances with a diamond-like structure [36]. It should be noted
that the value of Cin Eqn (1) varies slightly for all substances
with a ‘strong’ type of interaction between particles (covalent
substances, most metals, ionic compounds) [1]. For example,
the value of C changes in the carbon subgroup by only 10%
from ultrahard covalent diamond to soft metallic lead [37]
(Fig. 1). Moreover, the values of C in the covalent and
metallic modifications of tin (‘gray’ and ‘white’ tin) are the
same [37]. Thus, the so-called degree of ‘covalence’ (or
nonuniformity of the electron density distribution) makes
virtually no contribution to the bulk modulus. The compres-
sibility of a material is primarily determined by the averaged
electron density of valence electrons [I-3]. It may be
concluded that the record-high value of the bulk modulus of
diamond is associated with its electron (and atomic) density,
which is record high among all substances. The record-high
density of diamond is, in turn, directly related to the position
of the carbon atom in the middle of the first filled row in the
periodic table. The carbon atom has in compounds a very
small ionic radius (effective radius of the orbitals of the inner
‘core’ electrons) and the largest number of valence elec-
trons—4 [38]. The density of valence electrons indirectly
affects the total energy, as a result of which the correlation
By ~ p%, where o ~ 1.25, is observed on average [2] (Fig. 2)
for all substances with a ‘strong’ type of interaction between
particles. This correlation is rather close to the relation
B ~ p'17 established earlier for covalent substances with a
diamond-like structure [36]. Figure 2 is plotted using
experimental reference data (see the details given in reviews
[1-3]). The ‘drop down’ of a number of p-element substances
from the overall dependence is associated with their quasi-
one-dimensional or quasi-two-dimensional structure (see
below). The downward trend from the general dependence
for substances on the basis of f-elements is due to strong
localization of f-electrons and the calculated number of
valence electrons not being unique.

The above arguments refer to weak-anisotropy materials.
Quasi-one- or quasi-two-dimensional substances will exhibit

strong anisotropy of compressibility along different direc-
tions. The bulk modulus will then be naturally smaller than
that of an isotropic solid body with the same electron density.
For example, the bulk modulus of 3D-bound sp> carbon
phases B~ 200—300 GPa, while the bulk modulus for
anisotropic graphite is almost ten times smaller (B~
20—30 GPa), although the linear compressibility of graphite
in a plane is less than that of diamond [1-3].

The issue of anisotropy is closely related to the issue of
topological stiffness [39, 40], i.e., the effect of the extent of
connectivity and the number of nearest neighbors on the
effective stiffness of the system. If the average coordina-
tion number Z diminishes in covalent structures to
Z =2.4-2.7 (depending on the type of topological of
bonds), system stiffness is lost, and elastic moduli,
including the bulk modulus, steeply decrease (the struc-
ture de facto disintegrates into quasi-one- and quasi-two-
dimensional regions) [3].

Figure 3 shows the bulk modulus (both experimental and
calculated data) as a function of the density for various
carbon modifications with various topological connectivities
(the sources of data displayed in Fig. 3 are quoted in review
[3]). Calculations show that the carbon modification with the
BC-8 structure, which is shown in the figure, is a stable high-
pressure carbon phase under a pressure higher than 6-8 Mbar.
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Figure 2. Bulk modulus as a function of the density of valence electrons for
elemental substances.
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Figure 3. (Color online.) Bulk modulus as a function of density for a
number of existing and hypothetical carbon modifications.

Similar to diamond, this modification has a tetrahedral
coordination of the nearest-neighbor environment, which is,
however, somewhat distorted compared to that of diamond
and has a somewhat denser structure. This phase has not been
experimentally obtained and maintained under normal
conditions. Calculations of the modification with the BC-8
structure and a number of suchlike hypothetical carbon
phases with a distorted diamond-like structure (see below)
show that their density at normal pressure may be several
percent higher than that of diamond.

So, diamond is the record holder under normal conditions
in atomic density and valence electron density among all
materials known today, and it is this factor that determines its
record-setting value of the bulk modulus. Is it possible to
create a material less compressible than diamond? This, of
course, is not strictly prohibited. The proportionality coeffi-
cient C in Eqn (1) for various substances with a ‘strong’ type
of interaction can differ by several tens of percent. Moreover,
the electron density of a number of transition metals, such as
W, Re, Os, Ir, and a number of their compounds, is close to
that of diamond, and the moduli for these substances lie in the
range from 300 to 430 GPa (for diamond, B = 445 GPa). Itis
plausible that stable or metastable compounds with an even
lower compressibility may exist. However, the bulk modulus
of such materials at normal pressure in any case cannot
exceed that for diamond by more than 10-20% [1-3]. It
should be noted that pure carbon crystalline modifications
are predicted, apart from modifications with the BC-8
structure, whose density is several percent higher than that
of diamond, and some of these phases can apparently be
metastable under normal pressure [1, 41]. The modulus of
such modifications may also exceed the value for diamond by
several percent [41]. However, in any case, it is in principle
impossible to obtain on the basis of well-known chemical
elements a material whose bulk modulus at normal pressure
will significantly (by several times) exceed the values for
diamond.

It should be noted that experimental studies of carbon
modifications obtained from fullerites at high pressures, as
well as assertions regarding ultrahigh values of the elasticity
moduli or hardness of such materials, were largely fueled and
inspired by a series of curious theoretical publications [42—44].
These papers presented estimations of the bulk modulus of an
individual Cgy molecule. It was assumed that all 60 carbon

atoms, along with electrons, are located within a sphere 7.1 A
in diameter [42—44]. The bulk modulus of such an individual
molecule formally turned out to be almost twice that of
diamond. Next, an absolutely erroneous assumption was
made that a close-packed crystal may be made from
contacting Cgp molecules. Again, the estimated bulk mod-
ulus of such a crystal formally should be 620-720 GPa, i.e.,
exceed that of diamond by a factor of about one and a half.
Such estimates are not a surprise, since, from a formal point
of view, the density of an individual fullerene molecule,
6.3 g cm ™, is also almost twice the density of diamond, and
the density of a hypothetical crystal that consists of contact-
ing molecules is 1.5 times higher than that of diamond [12, 13].
However, such a crystal cannot exist in principle, since carbon
atoms from neighboring molecules must be localized at an
impossibly small distance from each other (less than 0.5 A),
while the molecules are not geometric objects and cannot
touch each other (!) [12, 13]. Both density and compression
moduli of any polymerized modification based on fullerene
molecules, are, of course, significantly inferior to those of
diamond. It should be noted that even smaller carbon
molecules or clusters will have from a formal point of view
even higher (and meaningless) values of density and compres-
sion moduli. Thus, the density and bulk modulus of an
individual hypothetical cube Cg made of carbon atoms are
formally nine times higher than that of diamond, while for a
carbon tetrahedron Cy4 they are 40 times higher (!) [12, 13].
These numbers have no relation whatsoever to the bulk
carbon material; it is as pointless to consider the bulk moduli
of small clusters as it is to discuss the moduli of individual
atoms or molecules. It is of interest that the same error was
repeated 27 years later by the authors of [45], who obtained
estimated densities of larger carbon fullerene-like onion-type
clusters close to that of diamond. It is incorrect to compare
the formal densities of small clusters (that consist of several
hundred atoms) and a bulk material (diamond), which
resulted in an erroneous analysis of the carbon phase
diagram [45].

We now consider the experimental and theoretical
‘evidence’ of the creation of materials whose bulk moduli
substantially exceed those of diamond. It should be kept in
mind that the first such reports [5] appeared in 1998. Acoustic
microscopy was used to measure the velocities of longitudinal
and transverse waves in bulk amorphous-crystalline samples
of carbon modifications obtained from fullerite Cgy at high
pressures and temperatures. The bulk and shear moduli of the
studied samples were calculated then based on these data. The
calculated values of the bulk modulus for a number of
samples turned out to be anomalously high, up to 1700 GPa,
a value that is four times (!) higher than that of diamond. The
density of these carbon phases is in this case 10-20% lower
than the density of diamond. It is immediately evident that
these results are doubtful. Moreover, the shear modulus for
these samples is 2—3 times lower than that for diamond, which
leads to anomalously high Poisson’s ratios (v > 0.4). These
values are characteristic, for example, of rubber or soft metals
such as lead, but not of covalent carbon materials, whose
Poisson’s ratio is in the range of 0.05-0.20. Moreover, the
calculated values of shear moduli automatically imply that
the hardness of these carbon materials must be much inferior
to that of diamond. This is not observed; moreover, the
authors themselves argue in [7-9] that these materials are
even harder than diamond (see below). As shown in [2, 46],
large errors in determining the bulk modulus using data on
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sound velocities may be due to anisotropy (nanotexturing)
and nonuniformity of sample properties. Such anisotropy
emerges in samples very frequently: it is associated with
temperature and pressure gradients in the process of synth-
esis. Nevertheless, some authors keep quoting the unrealistic
value of the compression modulus, 1700 GPa, in subsequent
studies, both experimental [7, 47] and theoretical [48, 49].

Several reports of abnormally large compression moduli
were based on data of X-ray diffraction under pressure. The
error, by a factor of 1.5-2.5, was apparently associated with
strongly nonhydrostatic experimental conditions [2]. For
example, the bulk modulus B = 600 GPa was obtained in [6]
using diffraction data for the three-dimensional (3D) poly-
merized fullerite phase, while subsequent studies of samples
obtained with similar parameters of synthesis but under more
hydrostatic conditions yielded B =280 GPa [10] and
B =220 GPa[l1].

In addition, bulk samples obtained from fullerite under
approximately the same conditions (13—14 GPa, 1200 K) were
studied in detail by means of Brillouin spectroscopy [50].
‘Reasonable’ values of the bulk and shear moduli were
obtained: B =368 GPa and G = 375 GPa, and ‘normal’
Poisson’s ratio v=10.12 [50], which is characteristic of
carbon covalent modifications.

The bulk moduli of amorphous or strongly disordered
phases were often indirectly estimated (and similar estimates
are still made [14]) based on measuring Raman frequencies as
a function of pressure. An apparently overestimated com-
pression modulus B = 585 GPa is often obtained in this case
[14]. If the Griineisen constant for a given mode is known,
compressibility may in principle be estimated in the case of a
crystal using the baric dependence of the corresponding
vibration frequency. For example, the Griineisen constant
for crystalline diamond is close to one, and the shift of the
Raman frequency under pressure may be used to estimate the
bulk modulus. However, this is impossible in principle in the
case of a highly disordered state, since the very shape of a very
wide Raman peak changes significantly in the process of
compression, and no fixed Griineisen constant can be
considered. Moreover, an amorphous state may very often
exhibit a lower compressibility of individual interatomic
bonds than that in the corresponding crystal, and at the
same time, a higher compressibility of the entire amorphous
sample [51]. This is due to the continuous distortion and
transformation of the structure of the amorphous lattice
under compression [51]. Finally, the aforementioned Raman
studies were primarily carried out also under highly non-
hydrostatic conditions, which can lead to a significant error in
determining the pressure derivatives of the Raman frequen-
cies.

It was asserted in [20] that carbon material samples were
obtained that feature a bulk modulus higher (by 10%) than
that of diamond, but also a higher (by 0.2-0.4%) density. The
samples, which were also obtained from fullerite Cg4 at high
pressures and temperatures, were structured as clustered
needle-like diamond nanocrystals with an amorphous inter-
layer between granules. In determining the X-ray density and
compression modulus (also using the technique of X-ray
diffraction under pressure), only the positions of the maxima
of very wide lines were taken into account. The X-ray
amorphous regions that constitute about half the sample
volume were actually not explored. This is apparently the
reason for the erroneous statement about ‘the densest and
least compressible form of carbon’ [20]. It is also possible that

high shear stresses persist in the clustered diamond nanorods,
and X-ray data can also yield in this case an overestimated
bulk modulus, even though the measurements were carried
out under sufficiently hydrostatic conditions. The same
authors have recently presented similar data for nanocrys-
talline diamond microspheres, reporting very high values of
the bulk modulus: B = 489 GPa [52] and B = 482 GPa [53].
The density estimated using X-ray diffraction data was
3.54 g cm~® (approximately 0.5% higher than that of
diamond). In our opinion, these data are also erroneous
for the reasons specified above.

A study [54] of similar diamond nanopolycrystals
obtained from graphite showed an increase in the long-
itudinal speed of sound by 3% compared with the averaged
value for a diamond single crystal. The measurements were
carried out using picosecond ultrasonic spectroscopy. Dia-
mond has a cubic lattice with weak anisotropy (11%), and
clusters of twin nanocrystals may be anisotropic (a preferred
direction for crystal growth and the emergence of twins
related to temperature and pressure gradients in the process
of synthesis). Ultrasound data do not correspond then to the
standard averaged values for a polycrystal. This is indirectly
confirmed by the observation that there was no increase in the
longitudinal speed of sound for a number of samples in [54],
while the speeds of sound in some samples were lower than in
single crystals.

Thus, all the ‘experimental’ evidence of the creation of
carbon materials with a bulk modulus substantially exceeding
that of diamond are based either on incorrect experimental
data or on their erroneous interpretation.

Curious reports on the synthesis of carbon materials with
a bulk module of 600, 800, and 1700 GPa [5, 6, 14] might not
have been mentioned in the context of this review but for a
series of reports on computer simulation that appeared in
recent years [48, 49, 55] that allegedly ‘explain’ the plausibility
of obtaining such materials. The bulk modulus of any carbon
modification whose density is lower than that of diamond is in
theoretical calculations evidently also lower than the value for
diamond (this refers to all authors without exception). This
once again confirms the validity of the thesis that the bulk
modulus is actually nothing but the bulk density of the
binding energy. Thus, the modulus of a uniform carbon
phase may not be higher than that of diamond.

To explain the unusual results obtained in [5, 6, 14], it was
suggested that a composite material may be created based on
two (or more) carbon phases, each of which individually has
under normal pressure elastic moduli and a density lower
than those of diamond, while in the composite material (also
under normal pressure!) they are higher than in diamond [48,
49]. A specific implementation of such composites consisted
of nanometer-scale grains of 3D polymers of the Cg fullerite
strongly compressed inside a diamond matrix (Fig. 4). The
density of the initial polymerized fullerite phase at normal
pressure is 3.1 g cm™> and its calculated bulk modulus
B =340 GPa. The authors of [48, 49] suggested that the
grains of this fullerite phase may be located inside the
diamond matrix in a compressed state with a polymerized
phase density of up to 5 g cm™3 and its bulk modulus over
2000 GPa.

It should be noted that such a change in density
corresponds to an external pressure on grains of =~ 500 GPa
(the authors themselves give an incorrect estimate of 60 GPa);
consequently, the same negative pressure (tensile stresses)
must act on the diamond matrix. The maximum tensile
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A Grain size is 1.82 nm. Diamond matrix is 4.7 nm thick.
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Figure 4. (Color online.) Simulation of a compressed grain of polymerized Cg fullerite in an also compressed diamond matrix. Figure from [48],
reproduced with permission of the American Chemical Society (ACS) © 2015.

strength of diamond is &~ 100 GPa; at higher tensile stresses, a
plastic flow of diamond occurs [24-26, 56]; therefore, this
degree of compression of fullerite polymers in the composite
is, of course, unrealizable. However, this is not the most
important flaw. As follows from the theory of elasticity [57],
in the simplest case, when the matrix and the inclusions are
made of the same material, if a finite inclusion volume is
created in a compressed state inside the matrix, the total
change in volume is strictly equal to zero. Shear stresses
emerge in the system, which lead to bulk changes whose
values for the compressed inclusion and for the matrix are the
same but have opposite signs. As a result, the density of a
hypothetical composite based on the same substance should
be equal to that of the initial unstressed mixture of phases
with the same phase ratio. This, of course, is not true if
materials are not the same. If a strained composite material is
created, the more compressible substance undergoes a greater
change in density and bulk modulus than the denser and
incompressible one. However, it is fundamentally impossible
to create, based on materials with different bulk moduli, a
composite material whose specific volume and bulk modulus
are higher than those of each of the components. Roughly
speaking, it is not possible to create on the basis of rubber and
steel a composite material whose moduli and specific volume
are higher than those of steel. Or, if completely reducing the
issue to absurdity, it is not possible to create a porous material
whose modulus and density are higher than those of the
continuous counterpart. The maximum pressures at which
grains of polymerized fullerite may persist in the diamond
matrix in the elastic mode are actually less than 100 GPa; this
fullerite will be compressed then by about 15%, while the
diamond matrix (with the same volume as the fullerite grains)
is stretched by 10%. This implies that the composite density in
any case does not exceed 3.4 g cm3, and the bulk modulus
does not exceed 400 GPa.

The authors of [48, 49] do not report the average density of
the entire simulated system. The value of this density (like that
of the bulk modulus of the entire system) should actually be
intermediate between the densities of diamond (3.5 g cm™3)
and polymerized fullerite (3.1 g cm™3). If this is not so
(judging by the data in [48, 49]), then the simulated system
was effectively subjected to high pressure (200-300 GPa) at a
very high density (about 4.5 g cm™3), and the authors

considered incorrectly the boundary conditions. The authors
of the calculations acknowledged in a recent private con-
versation that they really had considered a composite
material with periodic conditions, in which both polymerized
fullerite nanograins and diamond nanosized layers (see Fig. 4)
were in a highly compressed state, and the outer boundary of
the sample was not considered. Both phases compress each
other (while external pressure is zero), similarly to Baron
Munchausen pulling himself out of a swamp by his own hair.
Such a situation, of course, contradicts Newton’s third law. It
apparently corresponded to a large external pressure (200—
300 GPa) applied to the entire sample, which was not taken
into account by the authors of [48, 49] (external boundaries at
infinity were not considered).

It should be noted that, to analyze possible errors, it is
useful to consider a composite material under stress in which
the matrix and the grains consist of the same substance, for
example, diamond. The diamond grains inside the diamond
matrix will be compressed; the diamond layers between them
will be stretched; the total change in volume will be zero; and
the compression modulus of such a diamond will decrease
slightly (the negative contribution from the stretched regions
will prevail over the positive contribution from the com-
pressed regions).

A conceptually similar approach was used in Ref. [54] to
explain the increase in the moduli of nano-polycrystalline
diamond in comparison with those of a single crystal. The
contribution from twin boundaries under stress was consid-
ered in this case. It is shown that a large concentration of twin
boundaries can lead to an increase in the elastic moduli by,
however, only a few tenths of a percent, while the variation of
the results depending on the interatomic potential used in the
calculations is several percent. Such a small increase is
actually possible for shear or Young moduli for certain
directions in the anisotropic system, but it is forbidden for
the bulk modulus under the laws of thermodynamics (and
ultimately, simply under Newton’s third law). If the external
pressure is zero (atmospheric), the total compression modulus
in the state under any complex stress can only decrease. A
possible increase in the compression modulus of nano-
polycrystalline diamond was also explained in [52] by a
complex anisotropic shear stress in some grains. However,
as was said above, shear stresses cannot lead to an increase in
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the density and bulk modulus (but can only cause the opposite
effect). It is worth noting that recent precision measurements
of elastic moduli of nanocrystalline diamond using two
methods — gigahertz ultrasonic interferometry and the
‘resonance sphere’ method [58]—failed to reveal with an
accuracy of 0.05% (!) any differences among the moduli from
the average values for diamond single crystals.

Thus, there is no theoretical basis whatsoever for the
existence of lower-density carbon materials whose bulk
moduli would be substantially higher than those of diamond.

2.2 Shear modulus and Young’s modulus,

anisotropic systems

Shear and Young’s moduli are more important for the
operational characteristics of a material, such as strength,
hardness, fracture toughness, and wear resistance than the
compression bulk module, since shear stresses emerge in all
mechanical tests. Depending on the symmetry of single
crystals, there are several (up to 21) elastic constants. We
primarily discuss the shear module G and Young’s module E
of polycrystalline or amorphous materials. It should be
recalled that Young’s modulus characterizes the ability of a
material to resist one-sided compression or tension in an
elastic region. In the case of one-sided tension (compression),
components of both shear and hydrostatic compression are
present. There are only two moduli that are independent in
the linear region of small strains for an isotropic body, while a
third modulus, like Poisson’s ratio, is expressed in terms of
these two moduli. In particular, for Young’s modulus,
E =9BG/(3B+ G). The shear modulus and Young’s mod-
ulus (as well as the compression modulus) are also associated
with the density of the energy of bonds and, consequently,
with the atomic and electron density in the material [1, 2].

However, of importance for shear moduli is not only the
average density of valence electrons, but also the degree of its
spatial localization, which, as noted above, is not really
essential for determining the bulk modulus. The importance
of the spatial distribution of electron density is apparent,
since any shear deformation leads to a change in this
distribution (so-called angular stiffness emerges). The depen-
dences of the shear modulus on the average electron density
for various groups of substances range from G ~ p to
G ~ p3/3 (Fig. 5).

The plot in Fig. 5 is based on experimental reference data;
details are given in review [2]. A high degree of covalency and,
consequently, a high degree of angular stiffness can increase
the shear modulus by a factor of 1.5-3 compared with that for
amore uniform distribution of electron density, as in metals [1,
2]. For example, the shear moduli of covalent compounds such
as SiC and B4C are higher than those of metals such as W and
Re, although their bulk modulus is significantly lower [1, 2].
Both the density and bulk modulus of metallic white tin exceed
those of semiconductor gray tin by 20%, while the polycrystal-
line shear modulus is almost 1.5 times smaller [1, 2]. Covalent
modifications with a nonuniform distribution of electron
density, as a rule, are realized in structures with a small
coordination number. However, similar to the case of the
bulk modulus, the topological stiffness of the system is a
critical factor [39, 40]. As a result, the coordination number of
covalent structures with a high shear modulus ranges from 3 to
6, and the coordination number 4 (as in a diamond lattice) is
close to optimal (see the discussion in [1-3]).

The degree of covalence can be characterized from a
formal point of view by Pugh’s ratio k = G/B or Poisson’s
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Figure 5. (a) Polycrystalline shear modulus of elemental substances as a
function of the corresponding density of valence electrons. (b) The same
with a division of substances into groups.

ratiov = (3 — 2G/B) /(6 + 2G/B). Among metals with a high
coordination number, only beryllium has a high Pugh ratio
and, consequently, a small Poisson’s ratio because of the very
small size of the Be ion and the strongly nonuniform
distribution of electron density (actually, a significant
angular stiffness of bonds emerges in this metal).

Thus, the shear modulus (like Young’s modulus) is also
primarily determined by the atomic density of the material
and the density of valence electrons. However, unlike the bulk
modulus, the shear modulus may vary by a factor of 1.5-3,
depending on the degree of spatial nonuniformity of electron
density (the degree of bond ‘covalence’).

It should be noted that diamond is the record holder in
terms of shear modulus (and hardness) even among all
hypothetical carbon materials, including predicted materials
with a higher density and bulk modulus [41]. In contrast to the
‘sensational’ assertions about the bulk modulus, there are
virtually no similar assertions in both experimental and
theoretical publications about shear moduli or Young’s
modulus that exceed those of diamond. It is only for nano-
polycrystalline diamond with a large number of twin
boundaries that theoretical calculations predict a possible
increase in the shear modulus by several tenths of a percent
[54], although the data obtained are very sensitive to the
empirical effective interatomic potentials used in calculations.
Moreover, as mentioned above, precision studies of the elastic
characteristics of polycrystalline diamonds using gigahertz
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ultrasonic interferometry [58] confirmed that both the shear
modulus and the bulk modulus for such materials coincide
with very high accuracy with the corresponding averaged
values for diamond single crystals. We also note that,
according to nanoindentation data, Young’s modulus of the
abovementioned clusters of needle-shaped diamond nano-
crystals [20] is 1070 + 54 GPa, a value that is even slightly
lower than that of diamond (1140 GPa) [21].

Although diamond is (and will be) the undisputed record-
holder among all substances (including hypothetical ones) in
terms of the averaged polycrystalline shear modulus and
Young’s modulus, the situation for highly anisotropic
materials is much more interesting and promising. It is
known that, for example, a graphite single crystal in a layer
features shorter and stronger interatomic bonds and, con-
sequently, lower compressibility and a higher Young’s
modulus along the planes of atomic layers than diamond.
Chains of carbine (linearly coupled quasi-one-dimensional
carbon material) should have also a record high modulus for
uniaxial compression-tension. Filaments based on nanotubes
or carbinoid structures can feature not only record-high
moduli in a single direction, but, consequently, also record-
high mechanical properties (tensile strength). Observed in
many anisotropic multilayer nanostructures is not only a
several-fold increase in hardness, but also an increase in
Young’s modulus along certain directions by several tens of
percent [2, 4].

It should be noted that all elastic moduli are determined
for small deformations (linear approximation of the theory of
elasticity). Large deformations (changes in volume) simply
make it necessary in the case of hydrostatic compression to
take into account the dependence of the bulk modulus on
pressure. The pressure may be, in this case, arbitrarily large if
the possibility of phase transitions and the effects of quantum
‘cold melting’ at ultrahigh pressures are ignored. However,
the situation regarding shear deformations is more compli-
cated. The crystal lattice loses stability at a critical deforma-
tion [24-29] (Fig. 6a). The theoretical shear strength o was
previously considered in simplified models (see, e.g., the
famous Frenkel formula, which is almost one hundred years
old: ¢ = G/(2m) [29]). We have as a result a theoretical
estimate of the shear strength for diamond: ¢ ~ 85 GPa.
Similar estimates are still widely used to this day.

At the same time, state-of-the-art computers made it
possible to calculate the ideal shear, tensile, or uniaxial
compression strengths of a crystal starting from the first
principles. Such calculations have been actively carried out
in the last 20 years. Despite the high accuracy of first-
principle-based calculations that predict the binding energy
and the electron density distribution, the dispersion of the
calculated shear strength is quite large. The main reason for
this dispersion is that changes in the spatial distribution of
electron density should be very meticulously taken into
account for large deformations (this change can be ignored
in calculating elastic moduli in a linear elastic region)
(Fig. 6b). For example, for a defect-free single-crystal
diamond, the ideal shear strength in various directions
varies, depending on the specific study, from 60 GPa to
200 GPa [24-26]. The most accurate calculations yield values
that range from 95 GPa to 115 GPa [27]. Semi-quantitative
experimental measurements yield critical shear stresses of
~ 130 GPa [56].

It should be noted that the ideal strength (which
corresponds to the loss of stability of the crystal lattice
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Figure 6. Calculated stress in diamond as a function of (a) shear
deformation ¢ and (b) tensile deformation [26]. (Reproduced from [26]
with permission of the American Physical Society © 2001.) (c) Electron
density distribution in diamond under normal conditions and at a critical
degree of tension, when covalent bonds are ‘broken’ [24]. (Reproduced
from [24] with permission of the American Physical Society © 2000.)

under a load containing shear components) for deformations
of various types, like elastic moduli, is determined only by the
structure and interaction between particles, i.e., is a uniquely
defined microscopic parameter. In other words, these are
actually the same elastic moduli or their combinations, but
manifested in a strongly nonlinear region of large deforma-
tions. It is worth pointing out that shear deformations
inevitably lead in the nonlinear region of large deformations
to a minor change (decrease) in volume, whereas, according
to the linear theory of elasticity, shear deformations do not
cause any change in volume [26].



June 2020

Ultrahard nanomaterials: myths and reality 531

Summarizing, we can conclude that there are neither
reliable experimental data nor theoretical grounds for
creating materials whose elastic moduli at normal pressure
significantly exceed the corresponding values for diamond.
The experimental problems of measuring the moduli are
associated with the small size of the samples, often their
disordered and nonuniform structure, their anisotropy and
texturing at the nano- and micro-levels, nonhydrostatic
conditions in the experiment, etc. The record-high moduli of
diamond are ensured from a theoretical point of view by
diamond’s record-high density of valence electrons (in fact,
energy density) and a high degree of electron density
localization. The creation of any composite materials cannot
provide any significant changes in this area.

3. Myth II: materials whose hardness
far exceeds that of diamond

The myth of the hardness of ‘ultrahard’ materials is the issue
that is most complex and convoluted for a coherent analysis.
The main reason for this difficulty is the extreme vagueness of
the very concept of ‘hardness’. Hardness is a qualitative
rather than a quantitative characteristic, which depends not
only on the properties of the material, but also on the
measurement method, as well as on the interpretation of
measurement results.

3.1 Concept of hardness, definitions,

and measurement methods

One of the most common definitions is formulated as follows:
hardness is the degree of resistance of a material when a
harder body (indenter) is introduced into it or when the
material is scratched with an indenter. The definition is
extended in most cases by adding words ‘in the process of
plastic deformation’. Sometimes, the term ‘hardness in the
elastic mode’ is used, but if so, this value is uniquely
determined by the elastic moduli of the material, the indenter
shape, and the magnitude of the load.

Historically, the first technique employed to measure
(estimate) hardness was the ‘comparative scratching’ method
referred to as sclerometry. Depending on the ability of one
mineral to scratch another, conventional hardness is assigned
to minerals in Mohs mineralogical scale units, which range
from 1 (talc) to 10 (diamond). This technique became obsolete
by the mid-20th century due to the advent of quantitative
methods for measuring hardness based on indentation.
Recently, however, in obtaining micrometer-sized samples
at ultrahigh pressures, a conclusion about their hardness is
also often made on whether they can scratch a flat diamond
anvil [8, 59, 60]. It should be noted that microindentation
actually occurs in the process of scratching, and a particle of
the sample is able to plastically deform the flat surface of the
anvil even if the sample hardness is 3—4 times lower (see the
discussion in Section 3.3).

Dynamic techniques for measuring hardness include the
‘rebound hardness’ method. This technique consists of
measuring the height of the ‘bounce’ of a diamond-tipped
hammer dropped from a fixed height onto the surface of the
material under testing. This method is not used to study small
samples.

The most common methods to measure hardness involve
using various indenters made of ultrahard materials (dia-
mond, hard alloy, hard steel, etc.). The techniques used to
measure hardness include the Brinell test (spherical indenter),

Rockwell test (conical indenter), and the Vickers, Berkovich,
or Knoop test (pyramidal indenters of various profiles and
vertex angles). Indentation hardness is defined as the ratio of
the load to the imprint surface area (sometimes to the imprint
projection area, to the imprint depth, or to its volume). The
hardness corresponds in the standard definition to the
average pressure in the plastic deformation region. Also
distinguished are ‘restored hardness’ if the imprint is exam-
ined after the load is removed, and ‘unrestored hardness’ if
the imprint area or more often the indenter penetration depth
is investigated directly under load. ‘Unrestored hardness’ is
measured, in particular, using the nanoindentation technique.
It is clear that if ‘restored hardness’ is measured, for the
measurements to be correct, a significant plastic deformation
of the sample is required. Otherwise, if indenting is carried out
in the elastic mode, no imprint will persist after the load is
removed, which formally means infinitely high hardness.
Moreover, these absurd results may be obtained not only for
hard materials, but also, for example, for soft but elastic
rubber.

It is clear in connection with the foregoing that the most
correct data in measuring hardness can be obtained by
recording the in situ movement of the indenter in the process
of nanoindentation. The initial stage of nanoindentation
always corresponds to the elastic mode, and the data
obtained may be used to measure Young’s modulus of the
material with good accuracy [29]. As the indenter is
introduced further and stresses grow, a sharp elastic-plastic
transition (pop-in) may occur at a certain depth in the
nanocontact as a result of the rapid spontaneous emergence
of dislocations or twin boundaries in the region beneath the
imprint [29]. If the nano-region beneath the imprint does not
contain any movable defects (primarily in the case of single
crystals), the pressure at the beginning of this transition
corresponds to the ‘ideal’ hardness of the material. This
value is uniquely determined by the material moduli in a
strongly nonlinear region of large deformations, the ‘theore-
tical strength’ (see above). During the elastoplastic transition
in the process of nanoindentation, a homogeneous avalanche-
like nucleation of dislocations and their movement occurs,
which, as a rule, leads to a sharp decrease in the measured
hardness. Several hundred or thousand dislocations are
formed simultaneously in single crystals of metals when
pop-in occurs, while in brittle solids, for example in sap-
phire, they only number a few dozen [29].

A sharp elastic-plastic transition during nanoindentation
is not observed, as a rule, in nanomaterials or amorphous
substances. On the one hand, such materials always contain in
the region underneath the imprint potentially movable
defects, and the stresses that correspond to the lattice
instability are not attained. As a result, the transition to the
plastic regime is smooth. On the other hand, the dislocation
mobility in these materials is very low, and the onset of plastic
deformation does not lead to a noticeable decrease in contact
pressure or sinking of the indenter (pop-in). Figure 7 displays
the nanoindentation curve of the 3D polymerized fullerite Cg
[3] showing that the elastic-plastic transition has just begun
(elastic restoration is 93%). The curve does not contain pop-
in anomalies. The load that corresponds to the onset of plastic
deformation can be estimated in the case of smooth
nanoindentation curves using various methods [61-63]. The
most correct but labor-consuming method is the technique in
which the maximum loads are consequently increased in a
large number of experiments. The load is fixed, after the
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Figure 7. Nanoindentation curve for a sample of 3D polymerized
fullerite [3].

application of which the indentation curve ceases to be
completely reversible (reversibility corresponds to the elastic
regime). A simpler method is to approximate the initial
segment of the indentation curve by a simple function
(usually a power function). For the quasispherical part of
the indenter in the Hertz contact problem, F ~ h'?, where F
is the load and / is the indenter penetration depth. By fitting
this or a similar approximation to the entire loading curve, it
is possible to find where the increase in mean pressure begins
slowing down and, consequently, the plastic flow com-
mences.

Although in situ studies of nanoindentation provide the
most reliable information, the use of nanoindenters to study
ultrahard materials is limited. This is due to several reasons.
First, because of the high price and complexity of operation,
nanoindentation devices may not be used as desktop testers
for measuring hardness by all research groups. Second, strict
requirements are set for nanoindentation regarding the
quality of the sample surface and the indenter tip. And
finally, the main point: in studying materials whose hardness
is comparable to that of diamond, as a rule, only elastic
sections of the loading curves can be captured, since the
indenter often collapses before the onset of the elastic-plastic
transition (pop-in) in the sample [29]. No sharp pop-in
transition in single crystal diamond has ever been observed
by anyone. It was only recently that the pop-in transition in
single-crystal cubic boron nitride c-BN with a low dislocation
density was observed for the first time at a load of 7 mN [61]
(Fig. 8a). The average pressure of the onset of plastic
deformation before the pop-in for the (111) face of c-BN
was 84 GPa, and the nanohardness in the plastic regime was
62 GPa. Figure 8b shows for comparison the nanoindentation
curve of polycrystalline boron nitride with fine grains (size
from 100 to 400 nm) [61]. The pressure that corresponds to the
onset of plastic deformation is in this case even slightly lower
than that for a single crystal, but the hardness in the plastic
regime is higher (approximately 72 GPa) [61].

All methods to measure hardness using indenters were
initially developed for only those cases when the indenter
hardness and elastic moduli are at least several times higher
than the corresponding values of the material under study. It
is assumed that a change in the indenter size and shape in the
process of its elastic deformation under loading may be
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Figure 8. Nanoindentation curves and calculated contact pressure for (a) a
single crystal and (b) a polycrystal of cubic boron nitride. (Data taken
from [61] with permission of the author.)

disregarded. Plastic deformation of the indenter is, more-
over, not allowed, implying that an ‘ideal’ indenter must be
incompressible and nondeforming. If a diamond indenter is
used, this requirement is almost always satisfied for most of
the materials studied, i.e., a diamond indenter can be
considered ‘ideal’ for most materials. However, if the elastic
and mechanical properties of the indenter and the test sample
are comparable, indentation is only a comparative and
qualitative rather than an accurate quantitative measure-
ment method. If the hardness of a material whose character-
istics are close to those of diamond is measured using a
diamond indenter, values of hardness may be obtained that
are several times higher than those obtained when a
hypothetical absolutely hard and incompressible indenter is
used.

Hardness is measured in three load ranges: macro-,
micro-, and nano-scale. The nanoscale only sets the indenter
penetration depth, which should be less than 0.2 pm. It
should be noted that a value of 0.1-0.2 um exactly corre-
sponds to the standard curvature radius of the vertex of the
sharpest trihedral Berkovich pyramid used in nanoscale
hardness testers [29]. As a result, the pyramid vertex in
nanoindentation is actually a spherical indenter. The micro-
range (micro-hardness) sets the magnitude of the load up to
2 N and the indenter penetration depth significantly greater
than 0.2 um, so that the pyramidal or conical part of the
indenter starts ‘working’. The characteristic curvature radius
of the Vickers and Knoop pyramid vertex is 0.2-0.4 pm. The
macro-range sets the load from 2 N to 30 kN.
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The measured hardness depends on many factors,
primarily on the load on the indenter. The average pressure
below the imprint increases for a spherical indenter with a
load (the Hertz problem known in the theory of elasticity),
and, consequently, the measured hardness also increases. For
a conical and pyramidal indenter, the pressure below the
imprint does not depend on the load [64, 65]; the measured
restored hardness decreases as load increases and almost
plateaus at high loads. Due to the almost spherical rounding
near the vertex of the pyramid or cone, the measured hardness
can start growing as load increases and afterwards starts
decreasing (in the case of a conical or pyramidal part of the
indenter). The reason for the decrease in measured hardness
with an increase in load is a reduction in the relative fraction
of the elastic deformation energy of the material compared to
the energy spent on creating a new surface in the process of
plastic deformation [1, 2]. The measured hardness for
ultrahard materials is saturated at high loads, starting from
10-100 N [1], i.e., standard devices that measure micro-
hardness are not applicable to explore such materials. It
should be noted that the proportionality between the load
and the imprint area is not strict even in the plastic regime [2].
Mayer’s empirical law F ~ d” is usually applicable in this
case, where F'is the load, dis the linear size of the imprint, and
n is the exponent, usually n = 1.5—2 [66]. The exponent n for
ultrahard materials significantly differs from two: for
diamond, n =~ 1.5, while for nano-polycrystalline diamond,
n=14() [17]. Thus, a slight decrease in the measured
hardness with an increase in load is observed even in the
plastic region. For example, a slow decrease in the measured
hardness is observed for ultrahard silicon carbide SiC at loads
up to 200 N [15].

Apart from the load, the hardness measured using even
the same method is affected by many factors, in particular, the
surface quality of the sample under study and the method of
preparing a smooth flat surface (polishing, etching, proces-
sing with an ion beam, etc.), since the type and amount of
structural defects depend on this, and the quality of the
indenter (type of diamond, sharpness of edges and vertex,
etc.). Of importance in many cases are the indenter loading
and unloading rates, as well as the time of exposure under
load and the time between unloading and the start of
measurement. The process of plastic deformation involves
certain kinetics; if exposure to the load is long, new
dislocation loops, twin boundaries, and other defects may
emerge. Many materials exhibit viscoelastic properties, and
the imprint obtained after unloading ‘heals’ (partially or
completely disappears) over time. A number of complicating
circumstances arise in studying materials whose moduli and
hardness are comparable to those of diamond; the factors are
considered below. Finally, it should be noted that hardness is
primarily measured under normal conditions. Plasticity (i.e.,
ease of formation and mobility of dislocations and twin
boundaries) of brittle solid materials rapidly increases at
high temperatures, which can lead to a significant decrease
in the measured hardness. For example, the measured Vickers
hardness of a diamond single crystal decreases at a tempera-
ture of 1400 K almost five-fold, to about 20 GPa, i.e.,
diamond becomes less hard than silicon carbide SiC at the
same temperature (= 25 GPa) [2].

All of the above refers to measuring the hardness of a
particular material sample. If various samples of the same
material are studied, the measured hardness, of course,
depends on the grain size, defects, and stresses in each

specific sample. This issue is considered in Sections 3.2
and 3.3.

3.2 ‘Theoretical’ models of hardness

The data quoted in Section 3.1 seem to be an unambiguous
indication that hardness is not a clearly defined quantitative
characteristic. The measured hardness of a material can vary
by several tens of percent and sometimes several times, even
within the same method. Therefore, by definition, there can
be neither a strict theory of hardness nor unambiguous
quantitative theoretical models of hardness. Moreover, hard-
ness as a technological characteristic is an almost useless
concept. In machining materials (cutting, lathe turning,
grinding, drilling, etc.) it is naturally highly desirable that
the hardness of tool elements be superior to that of the
processed material, or at least not much inferior to it. No
other requirement is set. Moreover, machining can be carried
out by means of abrasive processing and grinding using a
powder whose hardness is lower by a factor of 1.5-2 (see
Section 3.3). Much more important in industrial machining of
materials are other technological properties of solid materi-
als, such as fracture toughness, wear resistance, heat
resistance, and chemical inertness to the processed material.
However, these more important technological characteristics
have always been and still are ‘eclipsed’ by hardness in both
research and pop-science articles. Moreover, interest in new
ultrahard materials is only growing, and new empirical
formulas for determining hardness are continuously being
proposed. The main reason for this phenomenon is that the
concept of ‘hardness’ (the ability to scratch or indent) seems
to be clearly evident, and the words ‘hard’ and ‘soft’ are
widely used in everyday language (in contrast, e.g., to the use
of the terms ‘wear resistance’ or ‘fracture toughness’). In
addition, the development of the industry of synthetic
ultrahard materials (diamond and cubic boron nitride) is
one of the most prominent milestones of the technological
revolution of the 20th century. The global production of
synthetic diamonds and cubic boron nitride is currently
several thousand tons per year (several hundred times greater
than mining of natural diamonds). Several hundred billion
dollars circulate annually in the global industry of ultrahard
materials. It is therefore understandable why the terms ‘new
ultrahard material’ or ‘material harder than diamond’ are so
popular in publications and grant applications. Material
scientists, physicists, and chemists are naturally tempted to
develop a more solid theoretical foundation for the fuzzy
concept of hardness.

The most straightforward idea is to find a correlation
between measurable (by some method) hardness and the
uniquely defined characteristics of the material —elastic
moduli. Such correlations have been studied for almost
100 years (see [1-3, 67] and the references therein). A
correlation between hardness and bulk modulus does exist,
but it is very weak and flawed by many exceptions [1, 3].
Many metals exhibit a very high bulk modulus and relatively
low hardness. Stricter correlations are observed between
hardness and the shear modulus, as well as between hardness
and Young’s modulus [2, 3, 68] (Fig. 9). This, of course, is not
accidental, since all methods to measure hardness involve
shear deformation of the material [1]. Moreover, as men-
tioned above, in loading with an ideally sharp nondeforming
conic or pyramidal indenter (with angle 2¢ at the tip), the
pressure in the elastic region (‘ideal’ ‘elastic’ hardness) is
uniquely determined by only Young’s modulus of the
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Figure 9. Correlation between hardness and the elastic polycrystalline
shear modulus (a) and Young’s modulus (b) [2] and more complete data
for the correlation between hardness and the shear modulus (c) [31].
(Reproduced from [31] with permission of Elsevier © 2011.)

material and does not depend on the load [1]:

Ecoto

P=5"%7

where E is Young’s modulus and v is Poisson’s ratio. Such
an ‘ideal’ hardness in the elastic region lies for diamond in a
range from 200 GPa to 300 GPa, depending on the vertex
angle of the indenter used. It should be noted that if the
vertex angle is sufficiently small, this value always exceeds
the plastic flow stress, i.e., if indentation is performed using
a pyramid or cone with an ideally sharp angle, the plastic
flow should immediately begin, and the elastic region will
be absent.

Actually, by the end of the 20th century, all the ‘theories’
of hardness only consisted of these correlations between the
measured hardness and the elastic moduli. However, as noted
above, there was a temptation to make calculations of the
hardness of hypothetical predicted materials more rigorous.
For example, a semi-quantitative approach to indentation
applied in [31] yielded estimated hardness H ~ 0.151G. Such
a proportionality coefficient, indeed, describes rather well the
correlation between the measured hardness and the shear
modulus [2, 3, 31]. This ‘new’ formula is not far ahead of the
century-old Frenkel estimate of theoretical shear strength:
H ~ G/(2n). The hardness obtained for diamond, 81 GPa, is
slightly lower than the generally accepted values. However, it
is known that if the shear moduli of various substances have
close values, the measured hardness is higher for the material
with a higher Pugh coefficient, K = G/B. An approximate
relation for hardness has been derived recently: H ~ k2G[31].
However, this correlation is not directly used in this specific
form. A large array of experimental data was used in its stead
to obtain the relation H = 2(k2G)"™® — 3 [31], which, of
course, can in no way be considered ‘theory-based’. This is a
purely empirical formula, whose dimensionality is, moreover,
incorrect: all numerical coefficients depend on the units in
which the values of the moduli and hardness are measured
(the empirical formula is obtained for the case when B, G, and
H are all measured in GPa). It should be stressed that such
‘accurate’ formulas for hardness give rise to a paradoxical
situation: the hardness values predicted in most calculation
articles are accurate to a few tenths of a percent, while the
experimental hardness of a material cannot be determined,
even within the same measurement method, with an error of
less than £10%, and for very hard materials the measurement
error is much higher.

A large and actively developing area of the ‘theory’ of
hardness for covalent substances is related to the correlation
between the maximum shear strength of an ideal crystal and
the semiconductor gap width. This empirical correlation was
found by J J Gilman more than 50 years ago [69, 70], and the
shortcomings of this approach have also been well known for
a long time [71, 72]. However, these empirical estimates have
‘magically’ transformed in the last decade into a ‘theory of
hardness’ [30, 32, 33, 73]. The shortcomings of these
approaches are discussed in detail in Section 4, devoted to
quantum confinement.

It is well known experimentally that the measured
hardness may depend on the size of crystalline grains in a
polycrystal and on the concentration of various defects
(dislocations, point defects, chemical impurities) [1-3, 74].
Real crystals almost always contain a noticeable concentra-
tion of dislocations or twin boundaries that maintain plastic
deformation even at moderate shear stresses. At the same
time, if the concentration of grain boundaries and other
defects and impurities is very high, they hinder the movement
of dislocations. Most materials exhibit, as a result, an
enhancement of mechanical characteristics (hardness,
strength) with a decrease in grain size, the Hall-Petch effect
(see [1] and the references therein). An increase in hardness
with a decrease in grain size is well described in a certain range
of grain sizes by the empirical relation H = Hy + Ad~'/?,
where d is the grain size (Hall-Petch law). Starting from a
certain grain size (usually 5-10 nm), a further decrease leads
to a deterioration of mechanical characteristics (inverse Hall—
Petch effect). This phenomenon is due to the active slip and
rotation of very small grains relative to each other and to the
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emergence of coherent twin boundaries [75]. The contribution
due to the Hall-Petch effect is taken into account in a number
of recent ‘theoretical’ expressions for hardness [33]. It is
assumed that the total hardness is just a sum of the
‘theoretical’ hardness for a single crystal and various
contributions from grain boundaries (Hall-Petch effect) and
other defects. Such an approach is partially justified only if
empirical expressions fitted to experimental data are used for
the hardness of a single crystal (as in [31]). However, the
hardness of an ideal defect-free single crystal should be
considered as the theoretical shear strength at which the
crystal lattice loses stability (this actually corresponds to the
emergence of the first dislocation loop(s) and the onset of
plastic deformation). Of course, no contributions from grain
boundaries and other defects to the value for hardness need be
added in this case: the Hall-Petch effect only allows the
hardness of a real sample to get close to the ‘ideal’ value for
a defect-free single crystal.

3.3 Experimental studies

of materials ‘harder’ than diamond

We analyze in this section major reports on experimental
studies of materials, which, allegedly, are substantially harder
than regular single-crystal diamonds.

As mentioned earlier, the first wave of such reports dates
back to the 1990s [7-9]. A Russian team synthesized ultrahard
carbon phases from fullerite Cgy during polymerization and
partial destruction of molecules at high pressures and
temperatures. The first experiments showed that the phases
obtained from fullerite under ultrahigh pressures make
scratches on diamond anvils of a high-pressure chamber
(Fig. 10). The ability to scratch diamond anvils to this day is
often considered ‘evidence’ of the unusually high hardness of
newly synthesized materials [59, 60]. These conclusions are, of
course, incorrect: the sharp edge of a material can scratch
under a heavy load the flat surface of another material, even if
the hardness of the first material is 3-4 times lower than that
of the second substance (see the discussion below). Ultrahard
fullerite-based materials were obtained later in the form of
bulk samples several millimeters in size, which made it
possible to perform quantitative studies. The obtained
carbon modifications featured a strongly disordered (nano-
crystalline or quasi-amorphous) structure and a density of
3.10-3.35gcm 3.

It should be stressed that the authors of [7-9] correctly
noted that the hardness measured by the indentation method
in the case of comparable mechanical characteristics of the
sample and the indenter are not fully reliable, and proposed a
method of semi-quantitative sclerometry of their own [8, 9].
Scratches on various materials are studied in this method in a
comparative way using an atomic force microscope. The key
measured parameter is the scratch width at a fixed load. It was
found that the scratches on the surface of the diamond single
crystal under the same experimental conditions are deeper
and have a greater number of micro-cracks than those on the
‘ultrahard fullerite’ surface [8], which indicates a higher
hardness and fracture toughness of new materials. More-
over, the ‘ultrahard fullerite’ tip makes scratches on the
surface of diamond that are smoother and have fewer cracks
than the diamond tip. Semi-quantitative sclerometry mea-
surements of new samples yielded a hardness from 170 to
300 GPa [7-9]. However, it should be noted that the hardness
of various diamond faces measured using the same technique
ranged from 140 to 170 GPa, which is almost twice as high as

200 pm

R >~ 4 3

Figure 10. Scratches on the surface of a diamond anvil produced as a
result of shear deformation under the pressure of ultrahard fullerite
particles [14]. (The photo, from [14], is reproduced with permission of
Elsevier © 2014.)

generally accepted values. The authors of [7-9] recognized
that the absolute values of the estimated hardness should be
treated with caution. It can only be argued that the hardness
of the new material, ‘ultrahard fullerite’, is apparently no
lower than that of diamond, and the anvils made of the new
material make imprints on the faces of the hardest single-
crystal diamonds (nitrogen-free diamonds, type I1a) during
indentation. It should be noted that bulk samples obtained
from fullerite by another group under approximately the
same conditions (13-14 GPa, 1200 K) [50] had a Vickers
hardness of 80-90 GPa at a 10 N load, i.e., their hardness was
no greater than that of diamond. It should be noted that the
authors of [8, 9], acknowledging that their measurements of
hardness (and the concept itself) are not unambiguous, paid
some attention to studying other, more important, technolo-
gical characteristics, such as wear resistance. They found that
samples of new carbon materials are significantly superior to
commercial diamond polycrystals in terms of wear and
fracture toughness [9]. It should be noted that it is just the
higher fracture toughness rather than hardness of “ultrahard
fullerites’ compared to that of ordinary diamond that can
explain the comparative sclerometry data.

A team of researchers from Japan (Irifune group) was the
next to report the synthesis of ultrahard nano-polycrystalline
diamonds [16-19]. The first bulk (several cubic millimeters)
samples of nano-polycrystalline diamond were obtained and
investigated by this group at the beginning of the 21st century
[16]. The samples were produced by direct noncatalytic
conversion of graphite into diamond with ultrafine grains at
high pressures (> 15 GPa) and temperatures (> 2300 K). This
team systematically studied over the next 15 years the
structure and properties of the obtained nanopolycrystals
using various carbon sources (graphite, soot, fullerite,
nanotubes, etc.) in a wide range of the P, T parameters of
synthesis; the eventual sample size was of the order of
centimeters [18, 19]. The results of a detailed study of various
nano-polycrystalline diamonds and the prospects for their use
in tools and as elements of high-pressure chambers were also
presented in later publications by this group [76-80].

Depending on the initial carbon material and the synthesis
parameters, diamond polycrystals with a crystal grain size of
3 to 100 nm have been synthesized [17-19, 76-80]. Many of
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the nanopolycrystals had a lamellar (laminar or needle-
shaped) grain morphology. The hardness of the materials
obtained was investigated using ‘classical’ indentation meth-
ods. It was found that the Vickers and Berkovich indenters
collapse in testing the hardest of the nanopolycrystal samples
under even moderate loads at the first loading, which
indicates a very high hardness of the new materials [17].
Reliable reproducible prints could only be obtained using a
Knoop indenter, and only at loads less than 7 N. These
imprints have been studied in detail using atomic force and
electron scanning microscopes [17-19, 76-78]. Most of the
measurements of the new materials were carried out as a
result at only one load of 4.9 N. The dependence of hardness
on load is not yet saturated at this load value; therefore, the
measured value of hardness is to a great extent conventional.
This technique allows at the same time a quantitative
comparison of the corresponding indicators for various
ultrahard materials. It was found that the maximum hard-
ness is attained for nanopolycrystals obtained from graphite
with a lamellar structure and a grain size of 10-20 nm [17-19].
The Knoop hardness of such materials (at a load of 4.9 N) lies
in the range of 120-145 GPa [17-19, 76-80]. At the same time,
the hardness of the hardest single crystal diamond (group I1a)
measured in the same way did not exceed 130 GPa, and the
hardness of ordinary single crystal diamond (group 1b) did
not exceed 105 GPa [17]. The hardness of nanopolycrystals
obtained from other carbon materials (including fullerite Cg)
measured using the same Knoop-indenter technique ranged
from 80 to 120 GPa, depending on the size of the grains and
their morphology [17, 18, 76].

The study of ultrahard nano-polycrystalline diamond
by the nanoindentation method at loads up to a record-high
250 mN (penetration depth of 450 nm) shows that the
character of loading is close to elastic [17]. The elastic
restoration coefficient exceeded in this case 90%, but no
attempts were made to estimate hardness using the obtained
nanoindentation curve. My own estimates based on fitting
the nanoindentation curve of nano-polycrystalline diamond
reported in [17] yield a hardness of 130 GPa. It should be
kept in mind that no elastic-plastic transition (pop-in) has
been previously observed in studies of regular diamond
crystals using nanoindentation (penetration depth of less
than 100-200 nm [29]. Although the hardness of diamond
nanopolycrystals at room temperature is only slightly
superior to that of single crystal group-Ila diamond, this
difference becomes dramatic at high temperatures. For
example, the hardness of diamond nanopolycrystals at a
temperature of 1000 K becomes almost twice as high as that
of single crystals(!) [19]. This is apparently due to easier
plastic deformation and greater mobility of dislocations in
single crystals at high temperatures. Diamond nanopoly-
crystals also feature significantly higher fracture toughness
and wear resistance than those of single crystals and
commercial polycrystals [17-19, 76-80]. Synthesis of cen-
timeter-sized nano-polycrystalline diamond samples has
been deployed recently; these products may be used after
processing as elements of megabar-range high-pressure
chambers (Fig. 11).

The next team to announce the obtainment of materials
whose hardness is significantly higher than that of diamond
was a US Geophysical Laboratory group [81]. This group
grew large diamond single crystals using chemical vapor
deposition (CVD). The single crystals were then subjected to
thermal annealing at high pressures (2200 K, 7 GPa). The
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Figure 11. Large samples of nanopolycrystalline diamond used as elements
of high pressure chambers [80]. (The photo, from [80], is reproduced with
permission of Elsevier © 2014.)

Figure 12. Photo of the imprint after indentation with a Vickers pyramid
on an ‘ultrahard” CVD diamond [81]: d;, d> are the imprint diagonals for
calculating hardness; ¢; and ¢, are the imprint diagonals with cracks for
calculating fracture toughness. (The photo is reproduced from [81] with
permission of John Wiley and Sons © 2004.)

Vickers hardness of the single crystals obtained as a result
of such annealing, according to the data of [81], is higher
than 160 GPa, although rather large loads (10-30 N) were
used.

Indenter imprints were examined using an optical micro-
scope, while the quality of the imprints left much to be desired
(Fig. 12). The authors indicate that the Vickers indenter did
not collapse and produced imprints even under heavy loads,
although it could only be used once or twice. The Knoop
hardness of these single crystals has not been measured. The
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actual hardness of these single crystals is apparently much
inferior to that of the Irifune group’s nanopolycrystals, since
the Vickers indenters always disintegrated during their
indentation at loads above 5 N [17]. It may be assumed that
the actual hardness of the annealed CVD diamonds did not
exceed 120-130 GPa.

The mechanical characteristics of the abovementioned
polycrystals consisting of diamond nano-needle clusters,
which were obtained by the Dubrovinskii group by a direct
transition at ultrahigh pressures from Cg fullerite [20], have
also been investigated in detail [21]. It turns out that the
Vickers hardness of these samples cannot be reliably
measured, while the Knoop hardness at a load of 5 N varied
from 90 to 115 GPa, a value that is consistent with the results
for the Irifune group’s samples, whose microstructure is
similar [17-19]. The only difference is the morphology of
nanopolycrystal grains. The polycrystals obtained from
graphite in [17-19, 76-80] had a laminar or needle-shaped
grain morphology, while fullerite-based polycrystals mainly
featured a rounded morphology that differs from that of the
samples studied in [20, 21]. The difference in the micro-
structure of the samples may be related to the synthesis
conditions (various temperature and pressure gradients).
Similar to the nanopolycrystals obtained by the Irifune
group, diamond nano-needle clusters had very high wear
and fracture toughness [21]. Nanoindentation of these
samples was only studied in a purely elastic regime at low
loads [21].

Finally, many reports of Chinese groups have appeared in
the last five years, in which the synthesis of ultrahard
materials based on diamond and boron nitride has been
reported [82-88]. Diamond polycrystals with nanotwinned
diamond were obtained at high pressures and temperatures
(20 GPa, 2200 K) from a compact set of onion carbon
nanoparticles [83]. Several Chinese teams subsequently
produced nanotwinned diamonds using other initial materi-
als (nanotubes, fullerites, etc.).

These activities were kindled by the synthesis of cubic
boron nitride also with a nanotwinned structure and
outstanding mechanical characteristics [82]. It should be
kept in mind that the shear modulus of cubic boron nitride
is the second largest among all materials and only inferior
to that of diamond by 30% [1]. At the same time, the
measured hardness of boron nitride single crystals is 2—
2.5 times worse than that of diamond, which is apparently
due to the easier formation and propagation of disloca-
tions. Creating a nanostructure in boron nitride enabled an
increase in its hardness to 80-85 GPa [22, 23]. These values
agree well with the results of in situ measurements by
nanoindentation [61].

According to the authors of [82], nanotwinned boron
nitride has an even higher hardness: up to 108 GPa according
to Vickers and 78 GPa according to Knoop. These results
were subjected to intense criticism [89], to which the authors
of [82] attempted to respond [90], albeit, in our opinion, not
too convincingly. Moreover, the reported values significantly
exceed those obtained in recent in situ studies of single crystals
[61], according to which the ideal hardness of c-BN before
pop-in is 80-85 GPa. The Vickers hardness by definition
should be less than the nanohardness (due to different vertex
angles of the Vickers and Berkovich pyramids) [29]; therefore,
the results of [82] cannot be considered reliable.

The hardness of nanotwinned diamond samples (average
thickness of twins is 5 nm), according to the authors of [83],

was (under a load of 5 N) 175-203 GPa according to Vickers
and 168-196 GPa according to Knoop. The hardness was
measured at loads up to 8 N, and in measuring fracture
toughness, loads of 9.8 and 19.6 N were used. Neither fracture
nor deformation of the Vickers indenter was observed even at
such high loads [83] (which, on the contrary, were observed by
the Irifune group in testing nanopolycrystals). The record-
high hardness of nanotwinned diamonds was explained in [83]
by quantum confinement effects (similar to earlier explana-
tions of the anomalous hardness of twinned boron nitride
crystals [82]). The discussion of the possible relationship
between hardness and quantum confinement effects is
continued in Section 4. It was predicted in the same study
[83] that a further decrease in the size of twins may lead to an
increase in hardness to 400 GPa (!). It should be noted that
neither information on the surface roughness of the samples
under study, nor the curvature radius of the indenter tip, nor
photographs of the imprints were presented in [83]. It should
be noted that at a load of 5 N the depth of Vickers pyramid
penetration for the declared hardness should be 0.8-1.0 um, a
value that is comparable to both the roughness of the polished
surface (0.3-1.0 um) and the indenter tip-blunting radius
(0.2-0.4 um). A review by the same authors [84] announced
once again that a Vickers hardness significantly exceeding
200 GPa was attained, but the obtained imprints have been
neither displayed nor discussed. Imprints on the surface of
ultrahard samples explored using optical and atomic force
microscopes were presented in a later publication [82]
(Vickers pyramid, load 9.8 N) (Fig. 13). The Vickers hard-
ness reported for a number of samples is as high as 200-
250 GPa. The imprint depth after indentation under a load of
9.8 N is as small as 0.2 pm [85], which evidences an immense
degree of elastic restoration after indentation. It should be
noted that the Berkovich indenter penetration depth in the
case of in situ nanoindentation of diamond nanopolycrystals
is 0.45 pum (twice as much) at a low load of 0.25 N (40 times
smaller!) [17]. Because of the quality and profile of the
imprints displayed in Ref. [82], it is not possible to draw any
conclusions about the hardness with an accuracy better than
40-70%. A significant plastic deformation in the imprint is
actually only observed near the Vickers pyramid vertex and
edges. Given the quoted loads, indentation apparently has
not yet reached the saturation regime (significant plastic
deformation).

It was reported in subsequent studies [86, 87] of nano-
twinned diamonds that a hardness of 300400 GPa (!) was
attained according to both Vickers and Knoop, and it was
predicted that a hardness of 600 GPa (!) is attainable for twins
of minimum size. Recent paper [88] also predicts unique
mechanical properties of hypothetical structures based on
nanotwinned diamond multilayers and cubic boron nitride.

A large number of publications by Chinese groups
regarding the production of diamonds from nanotwins with
a hardness of up to 400 GPa (to be increased in the future up
to 600 GPa) caused well-founded criticism and many
questions. First of all, the question arises as to whether
materials this hard can be indented using a standard
diamond indenter. To explain their results, the authors of
[82—85] note that the sample undergoes tensile shear stresses
during indentation, while the indenter pyramid is subject to
compressive stresses. Therefore, in the opinion of the authors,
the indenter can produce an imprint on a material which is
five times harder than the indenter itself, since the tensile and
compression strength of diamond differ by approximately the
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Figure 13. (a) Image of the imprint on the surface of nanotwinned diamond
after indentation with a Vickers pyramid (load 9.8 N) obtained using an
atomic force microscope; the inset shows the optical image of the imprint.
(b) Imprint depth profiles along two diagonals obtained using an atomic
force microscope [85]. (The figure, from [85], is reproduced with permis-
sion of the Chinese Physical Society © 2018.)

same factor. This assertion is not quite true— the profiles of
both shear and compressive stresses in the indenter and the
sample are very complex and change in the process of
indentation. The spherical part of the indenter operates at
the initial stage of indentation, and the contact is flattened,
after which the pyramidal part starts penetrating into the
sample. In addition, it is necessary to take into account the
friction force between the indenter and the sample, which is
also different for different sections of the indenter. The
indenter generates the greatest stress at a small depth beneath
the contact spot and near the sharp edges of the pyramid. It is
experimentally known that the plastic flow of a diamond
indenter (like diamond anvils with a similar vertex angle)
commences at pressures of 180—190 GPa [56], values that are
almost twice the pressure at the onset of plastic deformation
of a flat diamond surface beneath the indenter. This implies
that the indenter in the elastic mode can indeed make a plastic
imprint on a sample whose hardness is approximately twice

that of the indenter. If plastic deformation and disintegration
of the indenters have not been observed, this implies that the
contact pressures (and hardness of the sample) were signifi-
cantly less than 180 GPa. Interestingly, an insignificant
plastic flow of the anvil (= 3 um) is almost completely
‘healed’ in several years (dislocations ‘emerge’ on the sur-
face) [91].

The pressure beneath the indenter, of course, can continue
to increase with an increase in load also after the onset of
plastic deformation of the indenter, and the maximum
pressure can additionally increase by a factor of 2-2.5 [56],
but the irreversible deformation of the indenter will be in this
case very significant. Thus, a flat surface may be scratched by
a micro-sample with sharp edges whose hardness is 3—4 times
worse (the scratching particles themselves naturally also
experiences severe strains and disintegrate). It is for this
reason that the presence of scratches on the diamond anvil
sites may not be used as evidence of the anomalously high
hardness of the micro-samples that make traces (see above).

The quality of the imprints presented in [85] is, of course,
not quite satisfactory; nevertheless, the authors appeal to the
standard definition of hardness based on the size of the
‘restored’ imprint (after unloading). The fraction of elastic
restoration is anomalously large, and the sizes of the restored
and unrestored imprints apparently significantly differ in all
studies of these diamond materials. Moreover, an elastoplas-
tic ‘healing’ of the imprint may occur for a number of
materials after unloading. Therefore, the quantitative
results obtained using this measurement method are largely
meaningless: no imprint is left on a rubber sample after
indentation, but this does not imply that its hardness is
infinitely high.

Thus, almost all recent reports about materials whose
hardness is significantly higher than that diamond refer to
carbon materials with a nanocrystalline (sometimes partially
amorphous) structure. The nanostructure actually enables
increasing the hardness to the ‘ideal’ value for elastic loading.
The creation of a nanostructure in the case of cubic boron
nitride makes it possible to increase the hardness almost
twofold. Accurate estimates in the case of diamond are a
very difficult task. The creation of a nanostructure apparently
makes it possible to increase the measured hardness by no less
than 20-40% (from 90-100 GPa to 120-140 GPa). At the
same time, the absolute values of hardness of diamond and
other carbon materials above 120-130 GPa should be treated
with caution. Even the most reliable results for a Knoop
hardness of 140 GPa, which were obtained by the Irifune
group, relate to fairly small loads (4.9 N), when the
percentage of elastic restoration is a priori high. Such values
for the same loading parameters can only be considered as
comparative in studying various materials.

The structure of samples obtained by Blank’s, Dubro-
vinskii’s, and Tian’s groups is in many respects similar to that
of the Irifune group’s samples. Samples of a diamond
nanopolycrystal with lamellar grains 10 nm in size are
probably the hardest, since the Vickers diamond indenter
disintegrates if samples are indented, even at light loads [17].
The hardness of the ultrahard carbon samples obtained by
other groups are apparently slightly inferior to the hardness
of these materials, since they can be indented under
significant loads by a Vickers diamond pyramid without
collapse of the latter. The nanotwinned structure of dia-
monds obtained by groups of Chinese researchers possibly
facilitates very high degrees of elastic restoration of the
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imprint after unloading. Finally, we note that the formal
‘ideal’ hardness of diamond in the elastic linear mode (prior to
the onset of plastic deformation) is 200-250 GPa [29];
therefore, any values of the ‘restored’ hardness (after
removing the load) higher than 200 GPa are apparently
meaningless. The absence of significant plastic deformation
of the diamond indenter tip or its disintegration after
indentation also implies that the hardness of the material
under study could not exceed 180 GPa.

Thus, all assertions regarding the hardness of carbon
materials in excess of 150 GPa should be regarded as
unreliable, and the results of measuring the hardness in the
range of 120-150 GPa should be treated with great caution
and only used as qualitative comparative data.

3.4 Are quantitative in situ studies

of the hardness of ultrahard materials possible?

So, accurate quantitative methods for measuring hardness
above 100 GPa (actually, 100 GPa is the hardness of the
diamond indenter itself) do not exist. At the same time, there
is an accurate value of the critical shear stresses for various
types of loading, at which the crystal lattice becomes unstable.
Such an ‘ideal’ hardness in the regime of strongly nonlinear
deformations can be calculated from first principles, but so
far, unfortunately, with low accuracy. A cascade of disloca-
tions or coherent twin boundaries concurrently occurs in the
lattice after loss of stability, while the contact pressure and,
consequently, the measured hardness sharply decrease [29]. If
multiple barriers to the movement and multiplication of
dislocations are created, the hardness of the sample will
come close to the ideal shear strength for a given type of
loading.

For example, the ‘elastic’ ideal hardness (determined by
elastic moduli in the linear region of the theory of elasticity)
for a sapphire single crystal is for the Berkovich pyramid
57 GPa; the ideal hardness in the nonlinear deformation
region before the avalanche-like nucleation of dislocation
loops (pop-in) is 47 GPa, and after the transition, the
hardness in the plastic deformation mode is 28 GPa [29].
Even simple grinding of the sapphire surface leads to an
increase in the concentration of near-surface dislocations and
an increase in the measured hardness to 32 GPa, i.e., the
creation of the sapphire nanocrystalline structure can
apparently bring the measured hardness in the plastic
deformation regime closer to the ‘ideal’ values before the
elastic-plastic pop-in transition—up to 47 GPa [29]. The
in situ nanoindentation method enables correct and unambig-
uous determination for most single-crystal materials of both
the ‘ideal” hardness (before pop-in) and the actual hardness of
the sample after the pop-in transition, which is controlled by
grain size, concentration of dislocations, and other defects.
Materials whose hardness is close to that of diamond are an
exception, since it is not possible to observe the beginning of
an elastic-plastic transition in such materials, and, conse-
quently, to determine the ideal shear strength of the material
under a load of this type.

Thus, the situation with the quantitative in situ study of
materials whose hardness is higher than 80-100 GPa is
unsatisfactory. Imprints can only be analyzed after loading.
If the indenter has neither experienced plastic deformation
nor collapsed, imprints of normal quality can only be
obtained at moderate loads, when the fraction of elastic
restoration of the imprint is still very large, and the measured
hardness ‘has not plateaued’. The hardness values obtained in

this case could be used in comparing materials, but this is not
always correct either. A material with smaller elastic moduli
and lower ideal shear strength can at the same time feature a
higher fraction of elastic restoration (like rubber), and the
imprints obtained after indentation will formally correspond
to higher hardness, although in reality the mechanical
properties of the material are much worse. To compare the
ideal shear strength in the indentation of various ultrahard
materials, it is apparently necessary to conduct in situ
measurements.

It should be recalled that, during indentation using a
spherical indenter, the contact pressure increases as load and
penetration depth increase, while in loading with a conical or
pyramidal ideally hard and ideally sharp indenter, the
pressure is only determined by Young’s modulus of the
material and the indenter vertex angle. If actual Vickers or
Knoop indenters are used at the initial indentation stage, the
almost spherical part (rounded at the vertex) penetrates the
material. Starting with an indentation depth of 0.2-0.4 um,
the pyramidal part of the indenter is involved in the
‘operation’. Plastic deformation of materials whose hardness
is close to that of diamond begins at a penetration depth of
0.2-0.5 pm (see the nanoindentation curves for diamond and
cubic boron nitride in [17, 61]). The regions of plastic
deformation in the sample are localized in this case beneath
the imprint center (at a depth of 100 nm beneath the contact)
and near the pyramid edges (at a distance of about 20-50 nm
from the contact point). The stresses corresponding to plastic
flow in a diamond-like material will apparently emerge only
at sufficiently high loads (= 0.2—1.0 N), at which the indenter
also begins to deform and disintegrate.

To solve the problem of the in situ hardness testing of
ultrahard materials, in my opinion, the nanoindentation
method should be revived, albeit at a new technological
level. First, the maximum possible quality polishing (or
etching) of the test material is required, with possibly fine
finishing using an ion beam to a roughness of no more than
10-20 nm. Second, indenters should be manufactured from
defect-free diamonds (type I1a). The indenter top and edges
should also be ‘finished’ after grinding to the maximum
sharpness using an ion beam. It should be noted that
diamond nano-needles under loading exhibit record-high
(up to 9%!) elastic deformation without fracture [92]. The
curvature radius at the indenter vertex and near its edges
should not exceed 20-50 nm. The pyramid type and angle
optimal for indentation should be selected in the process of
testing. Indentation should be carried out in the slowest
loading mode. The elastic-plastic transition in an ultrahard
material should occur in this case at a penetration depth of
~ 100 nm at loads of less than 100 mN. Such homemade
indenters will possibly enable in-depth in situ studies of the
elastic-plastic transition and determining experimentally the
‘ideal’ shear strength of ultrahard diamond-based and other
carbon nanomaterials. As mentioned above, a sharp pop-in
transition is usually not observed in nanostructured materi-
als. Nevertheless, there are methods to estimate loads that
correspond to the onset of plastic deformation and measure
hardness by nanoindentation using loading curves [61] (see
above). Let us recall that there are successful examples of
nanoindentation of ultrahard nano-polycrystalline diamonds
at very high loads, up to 250 mN (penetration depth 450 nm),
which already show that loading is not completely elastic [17].
Unfortunately, no quantitative processing of nanoindenta-
tion curves has been done in [17].



540 V V Brazhkin

Physics— Uspekhi 63 (6)

4. Myth III: quantum nanoconfinement
as a ‘theoretical’ mechanism
for creating ultrahard materials

The myth of the quantum confinement contribution to the
record-high hardness of nanomaterials is arguably the most
ridiculous one. It has taken shape due to the piling up of
errors, incorrect interpretations, and unjustified extrapola-
tions of various theoretical and experimental results. It
should be kept in mind that empirical formulas are widely
used for the ‘theoretical’ prediction of the hardness of a new
material (see, e.g., [31]). A high concentration of defects and
nanostructuring are known to impede plastic deformation
and improve mechanical production characteristics: hard-
ness, fracture toughness, wear resistance, etc. [1, 2]. These
effects are usually taken into account using empirical
formulas (Hall-Petch law, etc.). However, intense efforts
have been made lately to develop a quantitative ‘theoretical’
basis for predicting an improvement in the mechanical
characteristics of nanomaterials [33, 73]. For example, an
additional mechanism was proposed to increase the hardness
of nanostructured materials due to the effects of so-called
quantum confinement [73]. ‘Quantum confinement’ means in
this case a change in the electronic wave functions and a
corresponding change in the semiconductor band gap and
other physical properties of materials upon transition to
nanoscale.

Briefly, the evolution of the ‘theory’ of an increase in
hardness due to quantum confinement effects may be
summarized in a positive way as follows:

(1) the activation energy of plastic deformation in semi-
conductors, including diamond-like ones, is associated with
the semiconductor band gap width [69, 70];

(2) the same energy is proportionally related to the
hardness of the material (resistance force at bond breaking),
which implies that hardness is associated with the band gap
width [30];

(3) an increase in the semiconductor band gap or exciton
energy is observed for many semiconductor nanoparticles
with a decrease in the particle size [93-99] due to quantum
confinement effects (restriction of the scale of the wave
function of the electron and the hole);

(4) a comparison of the results of the Kubo—Halperin
theory [100] for nanoparticles with experimental data for a
number of semiconductors made it possible to establish a
certain universal relationship between the increase in the
semiconductor band gap and the nanocrystal size [73];

(5) this ratio, along with the contribution from the Hall-
Petch effect, was used later to construct the ‘microscopic
theory of hardness’ of nanomaterials [33];

(6) the same ratio was used to explain the anomalously
high hardness of nanotwinned cubic boron nitride and
nanotwinned diamond [82, 83];

(7) it was predicted that for minimum-size twins in
diamond the contribution to hardness due to confinement
effects is over 300 GPa, which, along with the possible
contribution from the Hall-Petch effect (about 200 GPa),
should result in a possible hardness of nanotwinned dia-
monds of up to 600 GPa [82-87].

This series of arguments at first glance looks nice and to
some extent convincing, but in reality each of the above points
contains errors and falsifications, in several points blatant.

First, the absurdity of the numbers in item 7 is immedi-
ately evident. The fourfold increase in hardness, and hence
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Figure 14. Activation energy of the plastic flow of covalent diamond-like
semiconductors as a function of the semiconductor band gap width [69].
(The figure is reproduced from [69] with permission of AIP Publishing
© 1975.)

the shear modulus, due to the effects of quantum confinement
is predicted. This implies that actually the local density of
valence electrons should increase by a factor of four. At the
same time, the confinement effects are a change in the
envelope of the wave function of electrons on a cluster-size
scale. This change slightly modifies the electron spectrum, but
can only change the local electron density on covalent bonds
by a few percent. We now analyze all the items in more detail.

Researchers noticed in the early 1970s that the activation
energy for plastic deformation of covalent crystals with a
diamond-like lattice is close to double the semiconductor
band gap width [69] (Fig. 14). This observation actually
implies that for a dislocation loop to emerge a covalent
bond should be broken, which in turn leads to the excitation
of two valence electrons and their transition to the conduction
band. This simplified picture was later subjected to construc-
tive criticism [71, 72]. It turned out that the simple relation
between the plastic flow activation energy and the band gap
width fails for narrow-band-gap semiconductors: the activa-
tion energy remains finite when the band gap width tends to
zero [71]. It was found next that a correct description of
plasticity activation parameters requires taking into account
not only the band gap size but also the value of the Pugh
coefficient G/B [72]. In most studies on this subject,
researchers were primarily interested not in the absolute
magnitude of hardness but in its temperature dependence at
high temperatures, although a correlation between hardness
at moderate temperatures and the semiconductor band gap
width was also noted [69].

F Gao et al. [30] revived 30 years later the idea of a
correlation between hardness and the semiconductor band
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Figure 15. (Color online). (a) Illustration of the response of bonds between atoms in indenting. (b) Excitation of two electrons in the valence band
accompanied by the breakdown of a covalent bond and subsequent transition to the conduction band. (c) Spatial distribution of valence electrons for
purely covalent and polar coupling. (The figure, from [33, 84], is reproduced with permission of Elsevier © 2012.)

gap width for semiconductor crystals. The role of high
temperature is played in this approach by the indentation
process itself: bonds break in the plastic deformation mode,
and hardness is approximately proportional to the covalent
bond energy (Fig. 15). Such a model is, of course, applicable
to a very narrow class of substances and fails to describe the
high hardness of metal borides and carbides. This correlation
(for a narrow class of substances) is in principle quite justified
and is no worse than other models. Indeed, a high degree of
covalence and a large band gap imply a high electron density
(and, hence, high values of elastic moduli) and a high degree
of electron density localization (and, therefore, a large value
of the G/B ratio) [2]. F Gao group’s ideas regarding the
relation between hardness and the magnitude of the semi-
conductor band gap and the ideas of X Chen et al. on the
importance of the Pugh coefficient G/B [31] have been
combined and further developed in a number of studies (see,
e.g., [32]). The only problem is that none of these correlations
is rigorous, and that the formulas based on them should only
be regarded as empirical.

The awareness of the relationship between the mechanical
characteristics of covalent crystals and the semiconductor
band gap width stimulated at the same time the emergence of
new ideas regarding the mechanism of the effect of nano-
structure on the hardness of substances. Reference [73] was
pioneering in this regard. To explain the increase in hardness
of nanocrystalline diamonds compared to that of ordinary
single crystals, the authors of [73] considered instead of the
well-known Hall-Petch effect the option that hardness grows
due to an increase in the semiconductor band gap, which in
turn is driven by quantum confinement effects. However, a
number of unfounded assumptions were made in this
approach.

The Kubo theory [100] is used to calculate the increase in
the band gap in an individual nanocrystal. This step is, at the
very least, strange. First, electronic levels of metal nanopar-
ticles are considered in the cited review by V Halperin [100],
and the formula taken from this review and used in Ref. [73]is
nothing but a trivial energy difference between levels that is
equal to the Fermi energy divided by the number of electrons.
This value is extremely small (~ 1 meV) even for particles
with a size of ~ 1 nm, and the effects considered in review
[100] have nothing to do with quantum confinement in
semiconductors—they can only manifest themselves in
metal nanoparticles at very low temperatures. Second, this
energy ‘gap’ is, of course, inversely proportional to the
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Figure 16. Coefficient that determines the increase in the semiconductor
band gap width due to quantum confinement effects as a function of the
cluster size [73]. (The figure, from [73], is reproduced with permission of
the American Physical Society © 2006.)

number of atoms and simply the nanoparticle volume
(6 ~ 1/V)[73,100]. Third, the additional energy ¢ is replaced
in [73], without any explanation, with a quantity Jp that only
differs in the ad hoc dimensionless parameter K, which,
moreover, may depend in an unknown way on the nanopar-
ticle size (!). The authors of [73] then approximate a set of
heterogeneous data [96-98] on the increase in the exciton
energy and the band gap for nanocrystals of several
semiconductors as a function of their size (Fig. 16). A
conclusion is made as a result in [73] that the increase in the
semiconductor band gap energy for nanocrystals of semi-
conductors can be described by a certain universal depen-
dence, and this increase is inversely proportional to the
nanocluster size rather than volume, as is the case in the
original study [100]. This implies that the increase in hardness
due to nanoconfinement effects is also inversely proportional
to the nanocrystal size D: AH ~ 1/D. The major part of the
data shown in Fig. 16 was taken from [97], where an increase
in the exciton energy with a decrease in the cluster size of the
CdS semiconductor was observed, which is only indirectly
related to an increase in the semiconductor band gap.
However, the theoretical consideration suggested in Ref. [73]
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has in reality no relation whatsoever to the theory of quantum
confinement in semiconductor materials.

The concept of quantum confinement has been known
since the mid-20th century. The general idea of confinement is
that, if the spatial scale of the electron wave function (or de
Broglie wavelength of the carrier) becomes comparable in
some dimension to the size of the particle (cluster), the energy
spectrum of carriers may change due to a change in the
boundary conditions for the wave function. The quantum
confinement effects for semiconductors often imply as well a
change in the exciton spectrum for small clusters, since the
luminescence spectra (de-excitation of the exciton) provide
basic experimental information. These effects become sig-
nificant when the Bohr radius of the exciton (the bound state
of an electron and a hole) is comparable to the nanoparticle
size. It should be noted that there is no direct relation between
the exciton energy and the semiconductor band gap width,
although in most cases they are correlated. The quantum
confinement effects are, to some extent, threshold, albeit
smooth, phenomena. An accurate theoretical description of
the energy shift of bands and changes in the carrier spectrum
due to quantum confinement effects is a rather challenging
problem [101-104]. The increase in the effective semiconduc-
tor band gap in the nanocluster has, in any case, no relation
whatsoever to the Kubo theory or the Halperin review [100]
and is in no way described by the equations from [73]. The
main contribution to the energy shift, naturally, is made by
the term that corresponds to the kinetic energy, which is
inversely proportional to the cluster size squared rather than
cubed (as in [100]) or simply to cluster size (as in [73]). The
correct kinetic quantum contribution differs from the for-
mula in [73] by the factor D/a, where D is the nanoparticle size
and a is the interatomic distance.

Rapid development of the concept of quantum confine-
ment occurred in the early 1990s in connection with the
production and study of porous silicon [93-95]. Strong
luminescence was observed in porous silicon samples, which
are an aggregate of weakly coupled filament-like nanoclus-
ters, both the valence and conduction bands being signifi-
cantly shifted with respect to those for bulk silicon samples.
An explanation for the observed effects involved quantum
confinement of electrons (and holes) in porous silicon [93-95].
Further studies showed that silicon nanoclusters obtained by
other methods also exhibit an increase in the exciton energy
and an increase in the effective semiconductor band gap as the
cluster size decreases [96].The increase in the band gap for
ultra-small clusters (~ 1 nm) is approximately 1 eV.

It should be noted that the data from various studies
disagree with each other due to the complexity of the
characterization and exploration of nanoparticles and the
effect of chemical impurities that are inevitably present on the
cluster surface.

The influence of dimensional quantum effects on the
exciton energy was studied in detail for CdS semiconductor
clusters varying in size from 1 to 6 nm [97]. An increase in the
exciton excitation energy of about 1eV was detected for the
smallest clusters, i.e., approximately 30% compared with a
bulk semiconductor (Fig. 17). Attempts were made to
theoretically describe the results obtained for CdS both in
the original paper [97] and in subsequent studies, e.g., in [104].
Possible effects of nanoconfinement for diamonds were
explored in only a few studies both for individual clusters
[98] and for island nanofilms [99]. A significant increase in the
band gap (of about 10-20%) was only observed for ultra-
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Figure 17. Exciton energy for CdS nanoclusters as a function of cluster size
according to [97]. (The figure is reproduced from [97] with permission of
the American Physical Society © 1990.)
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energy Ee as a function of the nanodiamond crystal size (in the inset, the
exciton energy shift as a function of the cluster size) [99]. (The figure,
from [99], is reproduced with permission of the American Physical
Society © 1999.)

small diamond clusters (1-2 nm) [98, 99] (Fig. 18). An
important role is played in this case by surface atoms, the
number of which is comparable to the number of atoms inside
the nanoparticle. The cluster surface structure is also rear-
ranged in the case of diamond nanoparticles into a fullerene-
like structure, a phenomenon that also affects the observed
effects [98] (Fig. 19).

A significant increase in the band gap is observed for all
the studied semiconductor nanocrystals with cluster sizes of
less than 1-3 nm, and the maximum increase in the
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Figure 19. (Color online.) Illustration of the restructuring of the nanodia-
mond surface into a fullerene-like structure according to calculations
based on the first-principles [98]. (The figure is reproduced from [98] with
permission of the American Physical Society © 2003.)

semiconductor band gap is approximately 20-40%. It should
be noted that the increase in the band gap is not directly
related in this case to hardness or impeded plastic deforma-
tion. First, the correlation between the band gap size and the
energy of bond ‘breaking’ is largely empirical. The entire
picture of electron density should actually be considered. As
the particle size decreases to the nanoscale, an increase in the
lattice parameter is usually observed, and the bonds become
kind of effectively stretched, a phenomenon that may result in
an increase in the semiconductor band gap, but the bond
energy does not increase and, moreover, in many cases it
decreases. Second, dislocations in nanocrystal can hardly
emerge at all with such a nanocrystal size [105], and a
conglomerate of nanoparticles can exhibit super-elastic
behavior even at ultra-high pressures [106].

Moreover, quantum confinement effects are only
observed for individual nanoparticles or loosely coupled
cluster aggregates. The boundary conditions for the electron
wave function at the grain boundary radically differ in the
case of a nanopolycrystal from those for a free surface, and no
reliable data on the increase in the semiconductor band gap in
any bulk nanopolycrystal are available. The coherent twin
boundaries considered in [82-87] stand apart in this regard,
since the structural-disorder effects at the boundaries of such
twins are minimal, and any dimensional effects of quantum
confinement are completely irrelevant. Moreover, twin
boundaries, on the contrary, may perform themselves as
agents of plastic deformation under load.

As noted above, empirical formulas for quantum confine-
ment effects were added in further studies to the ‘new’
‘microscopic theory’ of hardness [33], which allegedly made
it possible to explain the ‘observed’ hardness of 200-300 GPa
and ‘predict’ possible further increase in hardness in nano-
materials up to 600 GPa [82-87].

The absence of any significant quantum confinement
effects for bulk nanopolycrystals, especially those with
coherent boundaries between grains, is, of course, a strong
argument against the ‘new’ theories of hardness. However,
this argument is actually not required in this case. The
situation is even more ludicrous. The ‘fundamental’ empiri-
cal equations (6) and (7) in [73] for the increase in the band
gap and hardness due to the growth of the band gap contain
the cluster size D measured in angstroms. The same formulas
with the same coefficients were reproduced one-for-one in the
main ‘theoretical’ work of the Chinese group [33] (see
Eqns (18) and (19) there) and were used in all subsequent
articles on ultrahard materials. However, the nanocrystallite

size D in all these studies is measured in nanometers rather
than angstroms! This implies that the hypothetical contribu-
tion due to nanoconfinment apparently was inadvertently
enhanced by a factor of 10. It follows from the formulas
derived in [73] that the maximum hypothetical increase in the
gap and hardness in the obtained nanotwinned diamond at a
twin thickness of 5 nm = 50 A (as in Ref. [83]) may not
exceed 5%. As mentioned earlier, the increase in the band
gap does not exceed 20% even for ultra-small diamond
clusters ~ 1 nm in size [98, 99]. Let us recall that the
estimated contribution of the size effect to hardness found in
original study [73], where a mechanism for increasing hard-
ness due to quantum confinement was proposed, was
precisely 10-20% for minimum crystal sizes of 1-1.5 nm.

Thus, the ‘nice’ model of the effect of ‘quantum confine-
ment’ on the hardness of semiconductor materials described
at the beginning of this section should be corrected as follows.

(1) The activation energy of plastic deformation for a
number of covalent crystals correlates with the semiconduc-
tor band gap width, although this correlation is not strict.

(2) The measured hardness and the semiconductor gap
width are correlated for certain classes of semiconductor
materials, but this correlation is even less precise than that
of item 1.

(3) An increase in the exciton energy and band gap size is
observed in many semiconductor nanoparticles (clusters) as
the cluster size diminishes to the nanometer range. This
increase is only observed for individual or weakly bound
clusters and has never been observed for bulk nano-poly-
crystalline material.

(4) The behavior of the band gap depends in a complex
way on the cluster size and the structure of its surface and is in
no way connected with the Kubo—Halperin theory [100].

(5) There are no grounds to use data on quantum
nanoconfinement in small clusters to explain a possible
increase in hardness in nanopolycrystals.

(6) The hypothetical effect of quantum confinement on
the hardness of nanotwinned diamond and cubic boron
nitride is overestimated by a factor of 10 due to the incidental
(or intentional) replacement of units used for measuring the
cluster size.

(7) Nanostructuring actually provides an increase in
hardness by a factor of 1.5-2 for most materials and by 20—
40% for diamond, but only due to the well-known Hall-Patch
effect, known for a long time (inhibition of dislocations).

Consequently, there are no actual scientific grounds for an
additional increase in hardness in nanopolycrystals due to
quantum confinement effects.

5. Conclusion

Summarizing the content of this review, it may be con-
cluded that diamond still remains the hardest material
under normal conditions and the record holder as regards
elastic moduli. Moreover, shown here was the fundamental
impossibility of creating in the future any materials whose
elastic moduli and hardness would be significantly (several-
fold) larger than those of diamond. Consequently, any
assertions regarding obtainment of new ultrahard sub-
stances with giant elastic moduli cannot be considered
scientifically reliable. At the same time, a number of
production characteristics associated with the structure of
materials at the nano- and mesoscale levels, such as wear
resistance, fracture toughness, and heat resistance, can
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actually be several times larger due to the formation of a
special morphology of grains, defects, etc.
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