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Abstract. Dipole—dipole interaction between molecules of
hydrogen-bonding polar liquids (HBPLs), which has a collec-
tive and long-range nature, determines the basic large-scale
properties of such liquids. We present a two-scale phenomeno-
logical vector model of polar liquids (VMPLs), wherein the
liquid is described by a polarization vector. The simplest ver-
sion of this model satisfactorily reproduces the well-known
properties of HBPLs and interaction between macroscopic
objects in a liquid. The possible existence of a ferroelectric
phase transition (FPT) in supercooled liquid water is dis-
cussed. Near the FPT, fluctuations of the polarization vector
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increase, which may be the cause of the so-called ‘anomalous’
properties of water. We propose a quantitative classification of
body surfaces based on the properties of their wettability by
polar liquids. The ordering of dipoles of molecules located in the
near-surface layers of HBPLs and phase transitions in these
layers are discussed. The proposed model enables a significant
reduction in computer time in numerical simulations of systems
that contain a large number of water molecules.

Keywords: polar liquid, dipole—dipole interaction, phase transition,
topological phase transition, ferroelectrics, paraelectrics, ferro-
electric phase transition, interaction of bodies in a polar liquid,
wetting, hydrophobic surfaces, hydrophilic surfaces, wetting phase
transitions

1. Introduction

Coulomb long-range interaction between plasma particles,
o r~!, predetermines virtually all of the plasma’s basic
properties, which only weakly depend on the details of the
interaction between particles at small distances r. Each
particle moves then in a collective electric field created by a
large number of other particles ~ Np > 1, where Np is the
number of particles inside a sphere with the Debye radius rp.
Unlike plasma particles, molecules of polar liquids, whose
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Figure 1. Charges and fields in a uniformly polarized liquid layer. Each
molecule is located inside a cavity formed by other molecules. This entire
system, including the foreign charges (indicated by the circles) that create
the external field E, is immersed in an electron ‘jelly’ (see Section 2.1.2).
Foreign charges may be located both outside and inside the liquid.

main representative is water, are electrically neutral, but have
a static electric dipole moment dy. The interaction between
molecules decreases in this case more rapidly as the distance r
between particles increases, o< r 3. We show in this review
that hydrogen-bonded polar liquids (HBPLs) possess a
collective electric field generated by the dipole—dipole inter-
action, owing to which they exhibit a number of important
and universal properties. Manifestations of this long-range
action may be observed in experiments and the results of
numerous calculations that are mainly based on the molecu-
lar dynamics (MD) method. In particular, the long-range
dipole action is exhibited in MD via the strong dependence of
calculation results on the conditions set at the computational
domain boundaries. This should not be a surprise. If dipoles
are oriented in the same direction, polarization charges arise
at the domain boundaries that generate a depolarizing electric
field E;, (Fig. 1). This field created by the entire ensemble of
molecules affects, in turn, each of the particles. We show in
Section 2.1.2 that the ‘molecular’ field Ey, [1] shown in Fig. 1is
also generated by the long-range dipole interaction. This
observation alone demonstrates that long-range effects play
an important role in polar liquids, and that the latter are
similar in this sense to plasma. We are not aware of studies
wherein due attention has been paid to these features of polar
liquids. The goal of this article is to fill the gap.

According to Earnshaw’s theorem [2], a system of classical
dipoles, which are a rather accurate approximation of HBPL
molecules, is unstable; therefore, short-range interactions
play a key role in polar liquids along with dipole—dipole
forces. The complex phase diagram of water and the proper-
ties that distinguish it from many other liquids, which are
referred to as ‘anomalous’, are due to the existence of short-
range hydrogen bonds between molecules, whose energy is
large compared to temperature, and a significant static dipole
moment of the molecules [3—11].

The problem of interactions between macroscopic bodies
immersed in water is of great interest for many applications in
physics and chemistry, including computational physical
chemistry, as well as biophysics and structural biology. This

problem naturally arises, for example, in computer simula-
tions of the interaction of molecules with biological objects in
the development of new drugs [12]. The technique that is the
most effective for such practical applications as calculating
the free binding energy (inhibition constant) of protein—ligand
complexes, predicting protonation states for biomolecules,
studying membrane physics, etc. is the MD computer method
based both on perturbation theory for free energy and on
direct computer simulation of the microscopic dynamics of
solvent molecules and dissolved substance. At present, MD
makes it possible to determine thermodynamic parameters of
biologically significant systems [11, 13] with an accuracy
higher than that obtained from measurements. The technical
difficulties arising in MD calculations are directly related to
the advantages of this method: an accurate computer
simulation of the interaction between macromolecules and a
solvent requires coordinates and velocities to be computed for
a very large number of atoms with a time step 7 ~ 10713 s. To
have the solvent medium completely relaxed to the equili-
brium state, effective averaging over time must span at least
hydrogen bond lifetimes of ~ 10~ s (or even the much longer
relaxation times of macroscopic solvent-substance clusters of
~ 1073 s). The capacities of state-of-the-art computers make
it possible to numerically simulate the macromolecule
dynamics in a solvent medium at time scales of up to 107 s,
a value that may be insufficient for the complete relaxation of
water molecules that surround the macromolecule. Although
MD results are fairly accurate, specific practical applications
require very large computing resources. They are especially
needed in studying the properties of supercooled water, in
which the relaxation times of structures = 1 nm in size may
be as long as several tenths of a second [14—-17]. Thus, the
main task is to make the results obtained reliable.

HBPLs and, in particular, water are characterized by large
values of the static dielectric constant, &y > 1. The theory of
solvation (hydration) largely reduces for this reason to
macroscopic electrostatics, where the solvent is described as
a medium with large ¢y, and the macromolecule is assumed to
be located in a spherical vacuum cavity. Such an approxima-
tion, which originates from the work of Born [18], enables
obtaining quantitative predictions for the solvation energy of
small molecules and estimating the binding energy of
biomolecular complexes [19, 20]. On the other hand, the
interactions between some small electrically neutral bodies
immersed in an HBPL are known to be determined by the
hydrophobic effect, associated with the short-range forces
between molecules of liquid that arise due to the hydrogen
bond network being deformed by the bodies immersed in that
liquid. Models based on the analysis of the density functional
are successful in explaining hydrophobic interactions at
molecular scales (less than 1 nm) [21-23], but do not take
into account effects characterized by large scales that are
observed in MD calculations. These effects include electro-
static and long-range interactions due to the dipole moments
of the molecules. As a result, techniques must be applied in
many important cases that are more complex than the density
functional method. A list of such effects includes the ordering
of the dipole moments of solvent molecules parallel to the
hydrophobic surface [24-27], the emergence of vortex
structures in networks of molecular dipole moments, and
the emergence of dipole bridges between macromolecules
immersed in a solvent [28].

The long range nature of the interaction greatly compli-
cates MD calculations, since, to analyze the motion of an
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individual molecule, the collective field created by all
molecules must be taken into account. However, a problem
that is difficult for a computer might be solved by analytical
methods. Application of first principles, i.e., a chain of
Bogolyubov—Born—Green—Kirkwood—Yvon equations, fails
to provide a significant advancement on this path [9]. To
develop a unified picture of the hydration forces that are
operative at mesometer distances, we employ a phenomen-
ological description of the polar liquid [29-31]. We develop
on its basis a theoretical scheme that provides an explanation
of both hydrophilic and hydrophobic interactions in a unified
approach.

We consider here a continuous vector model of a polar
liquid (VMPL) that enables taking into account both long-
range and short-range interactions in a polar liquid. The
model is applicable to studying the interaction of mesoscopic
charged or neutral bodies of various shapes both with solvent
molecules and with each other. We use the VMPL to show
that the combined effect of short-range hydrogen bonds and
long-range dipole—dipole interactions in the HBPL leads to
the emergence of strong long-range forces operating between
macroscopic objects.

The mutual orientation of the liquid molecules (to be
specific, we consider water) is correlated and ordered on a
small scale, < 1.5—2 nm. This orientational correlation of
molecules is destroyed on a large scale by thermal fluctua-
tions. Thus, water is under normal conditions a liquid
paraelectric substance that consists of separate domains, the
presence of which is the cause of the high permittivity of
water. As temperature decreases, a second-order ferroelectric
phase transition (FPT) to an ordered ferroelectric state occurs
in supercooled bulk liquid water at a temperature
T. ~ —40°C. This phenomenon was theoretically predicted
on the basis of the VMPL in [29, 30, 32] (the temperature of
this transition is also referred to below as the A-point).
Indications of the possible existence of such a bulk-water
state were seen as early as in experiments [33], while an
assumption about this was made in [34]. However, the
A-point was not reached in [33] due to the accelerated bulk
nucleation with a decrease in temperature and only a few
degrees remained to be overcome before it. As the A-point is
approached from above on the temperature scale, the
fluctuations of the order parameter, the s(r) polarization
vector, are enhanced (see Section 2.1.1). It may be hypothe-
sized that the enhancement of these fluctuations is a reason, if
not the primary one, for the singularities to emerge in other
physical properties of water that were observed in [35-40].

The FPT has been observed in experiments [16, 41, 42] at
temperatures very close to that predicted. Lowering of the
freezing temperature of water in porous materials was used to
this end [43]. The VMPL phenomenological model consid-
ered here, which was proposed in [29-32, 41, 44-49], is a
natural generalization of continuous models [50-59]. The
VMPL was initially developed to calculate the solvation
energies of small molecules and biomolecules and their
mutual interaction in water. Although the mathematical
form of this model is quite simple, it allows a number of
important conclusions based on analytical solutions of its
equations. Even the ‘minimal’ mathematical formulation of
the VMPL presented here enables explaining numerous
measurement data and making new predictions.

To avoid misunderstanding, we emphasize that the
manifestations of long-range effects in water that are
discussed in this publication and summarized in the Conclu-

sions section do not imply at all that water, for example,
remembers various kinds of effects to which it was subjected
in the past (criticism of such a hypothesis may be found
in [60]).

2. Phenomenology of polar liquid

In this section, advancing from simpler to more complex, we
derive an expression for the free energy of HBPLs that
describes their electrophysical properties under invariable
external conditions. We consider four models based on the
mean field approximation: the electronic ‘jelly’ model, the
complete HBPL model with and without an external electric
field E. in the liquid, and a simplified model where the
polarization of the electron shells of molecules is disre-
garded. To confirm the applicability of the mean field
approximation and the conclusions obtained below on its
basis, we calculate in Section 3 the equilibrium free energy in
the ring-diagram approximation, the validity of which is
based on the long-range nature of dipole interaction.

2.1 Internal energy and entropy of liquid

2.1.1 Starting expression for the internal energy of HBPL.
Following[29, 30, 32], we derive an expression for the internal
energy of a bulk liquid based on a microscopic description of
interaction between molecules.

We specify the direction of the static electric dipole
moment d, of the molecule number @ by the unit vector
S. = d,/dy, which we conventionally call the ‘spin’. Here,
dy = |d,| is the absolute value of the static dipole moment.
Polar liquids are similar to ferroelectrics. With this analogy in
mind, it is now possible to develop a theory of the vector field,
the VMPL, in which liquid is described by the local value of
the molecular polarization vector

(d)

S(l') - d() )
where averaging (. ..) is carried out over a volume of liquid,
which is small but nevertheless contains a large number of
molecules. Thus, the proposed HBPL model belongs to the
class of mean-field theories also referred to as the Rosing—
Weiss approximation of the self-consistent molecular field
[61]. Strictly speaking, the term ‘static polarization vector’ is
used in publications for the average value of the sum of static
dipole moments in the unit volume Py4(r) = n(r){d) =
n(r)dos(r), where n(r) is the local bulk particle number
density of the liquid. We use the same name for s(r), which
will not cause any confusion below.

The vector model is designed, in particular, to describe the
properties of liquids on spatial scales that exceed the size of
molecules (~ 0.3 nm). Variations of n(r) may be ignored at
such scales, at least in the phenomenological approach, to set

(1)

n(r) = ny = const ~ 3.3 x 102 cm 2. (2)

Then, Py(r) = no{d) = Pys(r), where Py = nodp.

In accordance with the nature of the interaction between
the molecules, the internal HBPL energy U consists of three
terms (it is shown in Section 2.2.2 that the most complete
description needs one more term to be added):

U=Ug + Uyq + U, . (3)

Here, Uy is due to the short-range part of the intermolecular
interaction, i.e., the hydrogen bond, van der Waals attraction,
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and repulsion of molecules at short distances caused by both
the saturation of their covalent bonds and Coulomb repulsion
between nuclei. The term Ugq describes the interaction of
molecular dipole moments D, = d, + d., with each other,
where D, is the total dipole moment of the ath molecule and
d., is the dipole moment induced in its electron shell. The term
U. includes the interaction between these dipoles and an
external electric field,

Ee(r) = Vo, 4)

which is created in a vacuum by foreign charges with density
p.(r), and the energy of this field itself. It should be noted that
the foreign charges include both uncompensated charges and
polar groups that have dipole moments, both of which can be
located outside or inside the liquid, as well as on particles
immersed in it.

2.1.2 Description of the dipole—dipole interaction between
molecules in the electronic ‘jelly’ model. To describe the
electron shell polarization at the circular frequencies of the
external field w < 10'° s~!, we use the ‘jelly’ model, which
naturally arises from the analysis of experimental data on the
frequency dependence of the dielectric constant of water &(w)
at, say, room temperature [62]. For example, the dielectric
constant of water at w < 10'° s~! is equal to the static value
&0 ~ 88. However, at frequencies 10'2 < w < 10'° s~!, which
are higher than the rotational frequencies of the molecules but
lower than the characteristic electronic frequencies ~ 1016 s~1,
& & £ ~ 5. If the frequency increases further, ¢(w) tends to
one. Thus, there is a wide transition region [63]

10° << 102570 (5)

the nature of which is associated with the presence of domains
and superdomains (see Section 2.4). It should be noted that if
the water molecule polarizability o = 1.455 x 1072* cm?® is
taken from reference books [64, 65], then, at the density ny we
get & = 1 +4mngae = 1.61, a value that greatly differs from
that given above. This is explained by the mutual effect of the
polarized shells of various molecules in the spirit of the
Clausius—Mossotti relation. Thus, ¢, is a phenomenological
parameter that corresponds to the description of the electro-
nic subsystem in water within the jelly model, the essence of
which is the formula for the electronic polarization vector

Pe(r) = n(r) () ~ mlde) = =L E(r). (6)

Equation (6) takes into account that the electron liquid
responds to the total electric field created by all charges,
which, according to the principle of superposition of electric
fields, is expressed as

E(r) = Ep(r) + Ee(r) = Vo, (7)
where E; is the ‘depolarizing’ electric field,
Ep = —V(Pp ’ (8)

created at the molecule localization point by distant polariza-
tion charges whose density is

pp=—-VP, 9)

¢, is the polarization potential, and ¢ = ¢, + ¢, is the total
potential. Here, P(r) is the total liquid polarization vector,

P(r) = ng(D) = Py(r) + Pe(r), (10)
i.e., the total dipole moment of molecules per unit volume.

The depolarizing field is found from Eqns (8) and (9) and
the formula

VE, =4np,, . (11)
The field E, depends on the liquid sample geometry. Some
calculations of this field for specific samples are presented,
e.g., in [66]. The meaning of the field E;, and charges of
various types that exist in a polar liquid is illustrated in Fig. 1,
using as an example a dielectric layer with uniform polariza-
tion P = const. The surface density of polarization charges on
the upper surface of the layer is positive, P = |P|. The upper
surface together with the lower one forms two capacitor
plates, yielding E, = —4nP. Thus, the field E, is directed
opposite to the polarization vector. Given Eqn (6), we bring
the last expression to the form E, = —4nPy — (¢, — 1)E.
This formula, combined with Eqn (7), implies a relation that
is natural for the jelly model:

74T5Pd+E.

&0 &0

E—

(12)

In the absence of electrons and at E. = 0, the field in the
capacitor would be equal to —4nP4. As it should be, the
electron liquid contained in the capacitor reduces the field in
its interior by a factor of &, and reduces the energy of
interaction between the static dipoles of any pair of
molecules by the same amount.

So in the jelly model the static dipoles of molecules d, are
immersed in a homogeneous electron liquid with dielectric
constant &,,. We assume that both the entire liquid sample
and the foreign charges are immersed in this jelly. We also
assume that the size of the jelly is much larger than that of the
sample. We can avoid in this way discussing effects of no
significance for further analysis, which are associated with the
field of polarization charges located at the jelly boundaries.
The problem of finding Uyq is then simplified: this energy
should be found in a vacuum, taking into account only static
dipoles, and then divided by ¢, (the same should be done with
the vacuum field E.(r)). Thus, the energy of the dipole—dipole
interaction between molecules in the jelly model has the form

1 d,d, — 3(ngd,)(ng,d
Gy =L 3 G = 300 )

€00 4 i (awb) rab
= % Z d,Eoci(ra) (13)
where 1, = [¥apl, Yap = ¥4 — Tp, Ny = Tup/Fap, and
Fuary) = - Y et =0,
b (b#a) ab

Attention should be paid to the factor 1/2 on the right-hand
side of Eqn (13), without which the interaction between each
pair of dipoles would be taken into account twice.

As Fig. 1 clearly shows, there are also polarization charges
on the surface of the spherical cavity that surrounds the
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molecule; therefore, the field inside the cavity, which acts on
the molecule, has the form [1]

Eact:Ep+Ema (14)
where E, is the additional, molecular field created by these
charges. The field E, is referred to as the ‘acting’ field. Thus,
according to Eqn (14), each polar molecule ‘feels’ two fields;
therefore, the energy being sought consists of two terms:

Udd:Up+Um. (15)
The term U, describes the interaction between molecules
and polarization charges located far from the molecules. For
example, in the case of uniform polarization (see Fig. 1), these
charges are located on the surface of the layer. This clearly
shows that the term U, describes the long-range interaction
between molecules generated by their dipole—dipole interac-
tion. It is for this reason that the main contribution to U,
comes from spatial scales far exceeding the molecule size.
Therefore, to calculate this contribution, it is sufficient to
perform in Eqn (13) integration rather than summation:

1
U, = —EJd3rPdEp, (16)
where
1 [ 3n(nPy) — P
Ep(l’) :C—Ed, Ed :Jd3l’/ 7( ]{;2’ d 5 (17)

R =r—r',n = R/R Weintroduced here the vacuum field of
static dipoles E4 that satisfies the equation VE4 = 4np,.
Comparing (17) with (9) and (11), we conclude that in the
jelly model

(18)

where py = —V Py is the density of only static charges.

Formula (16) is also valid for an infinite sample of liquid;
therefore, upon integrating by parts with consideration for
Eqns (8), (9), and (11) and assuming that both polarization P
and field E, vanish at infinity, we obtain

E{

Teso

U, = Jd3rPdEp:JdV (19)

1
2
The jelly uniformly fills the liquid, including the cavity.
Therefore, the polarization charges on the cavity surface are
only created by static dipoles. In the absence of the jelly [1],
4n

En=—Py.

: (20)

Given the additional factors 1/2 and 1/¢,, discussed above,
we arrive at the expression for the contribution Uyy,:

2—an3rsz = —Z—TE P(%Jd3rs2(r).

Un == RIS 3éso

(21

2.1.3 Orientational entropy. We consider first the case of a
weakly polarized liquid,

s(r) = |s(r)| <1, (22)

which arises if the electric field is weak, E < Pj. The single-
particle distribution function over the molecular-dipole
orientations has in this case the form

f(0) z%(l—l—&vcos@)? (23)

where 0 is the angle between the ‘spin’ S and the polarization
vector s(r). Indeed, let the coordinate origin be placed at the
point r and the z axis be directed along the vector s(r). Then,
as required, we have for the average value of (s.): (s.) =
fdQs f(0)scos =5, where dQg is the solid angle element
into which the spin S is directed. Using the basic formula of
statistical physics, we obtain the following expression for the
configurational entropy of liquid:

S=- Jno d*rdQs fIn f~ Jno dV(—% s2(r) — 1 s4(r)> .

2.1.4 Term Uy, due to the short-range part of the intermolecular
interaction. Due to approximation (2), it is sufficient to take
into account in energy Uy, only the contribution from the
distortion of the hydrogen bond network caused, e.g., by
immersed bodies. Thus, the contribution of Uy, to free energy
is quite similar to that considered in Refs [67, 68], which is
called ‘hydrophobic interaction.’ If this network is deformed,
anonzero polarization of liquid s(r) inevitably emerges. Since
s(r) = 0 in the absence of bodies and an external field (or at
least s(r) = const), such a distortion is described by the
derivatives of the polarization vector with respect to the
coordinates 0s,/0xp, where o, f = x, y, z are spatial indices.
The energy U, should not change if the sign of the
polarization vector is reversed; therefore, the ‘minimal’,
simplest expression for this energy is given by the Oseen
formula quadratic in those derivatives [69]:

[N 0s, 0sy , 5
Ush:EPOJdI{C;; +C'(Vs)*| . (25)

ax/; ax,;

Integration is carried out here over the volume of liquid; C
and C’ are positive constants (energy should be the smallest at
s(r) = const!) expressed in cm?.

In all the applications of the vector model considered here,
the constant C’ only affects quantitative rather than qualita-
tive conclusions regarding the properties of the liquid. The
point is that if Vs # 0, when a polarizing charge is present in
the volume, the terms containing both C’ and C are
simultaneously nonzero. We have no confidence that both
parameters can be reliably found in this case from a
comparison of the VMPL- and MD-based calculations.
However, in considering many important cases, e.g., phase
transitions in bulk and surface water, the main role is played,
as is shown below, by the ‘force-free’ polarization configura-
tions, Vs = 0, wherein there is no polarization charge. For
these reasons, below, we set C' = 0. Of course, here, as
elsewhere in this article, we choose the simplest of all possible
ways to describe HBPL. Otherwise, no useful information
about these properties could be extracted.

In deriving Eqn (25), simpler arguments may be used as is
done, e.g., in the theory of ferromagnetism. The terms in the
formula for internal energy that depend on the vector s and
this vector squared s> and reflect the major large-scale
properties of the polar liquid are presented in Sections 2.1.1—
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2.1.3. It is now only required to take into account large-scale
deviations from inhomogeneities that, given Eqn (2), depend
on derivatives 0s,/0xg and, for the reasons described above,
have the most general Oseen form (25).

2.2 Free energy of polar liquid

in the absence of foreign charges

2.2.1 Jelly model. IfE. = 0, taking into account Eqns (3), (15),
(19), (21), and (25), we obtain the following expression for the
nonequilibrium Gibbs free energy, which is a functional of the
polarization s(r):

Gls(r)] =U—-TS+ph

Os, Os
_ P2 3 o o
Ojdl |: ZGX[; ax,;

+ph.
(26)

E2
2 d
)} * JdV 8Mes

Here, p is the pressure and V) is the volume of the liquid.
Formula (26) is presented in a form applicable for arbitrary
values of the polarization vector modulus 0 < s < 1, for
which the ‘equation-of-state’ function ¥(s?) was introduced.
The temperature T is given here and below in units of energy,
1.e., T = kg T, where kg is the Boltzmann constant, while the
temperature 7 is measured in degrees Kelvin. We assume in
all applications of the model that the pressure p has a fixed
constant value, and the variation in the density of a liquid is
small (see Eqn (2)), so we ignore the constant pV; below.

Free energy (26) with a potential of the general form V(s?)
may be considered a phenomenological expression in the
mean field approximation. If s ~ 1, the short-range part of
the intermolecular interaction potential is essential, and so
V(s2) depends in this region on the details of the interaction
between individual molecules.

The equilibrium polarization s(r) should be found from
the condition of minimum free energy (26). We obtain for 6G
under an arbitrary small variation in the static polarization
vector 8P4 (r) after several integrations by parts with Eqns (11)
and (18) taken into account

dv(s?)
ds?

SG:Jd%{ CAP4 +2 Py —E,|oPqg,
which yields the Euler equation

dr(s?)
)

—CAPy + 2 Py =E,. (27)
We used here the formula § jd3r P.E, = -2 [dVE, 3P;.
We now discuss properties of the function V(s?). The
exact form of ¥(s?) can only be found by comparing
the VMPL predictions with experimental results or MD
calculations. However, some properties of V(s?) may be
determined using a number of simple arguments. For
example, polarization should be saturated in the limit of a
strong electric field. According to (27), this observation
implies that dV(s2)/ds?> — oo if s — 1. If the polarization of
the liquid is small, s < 1, then, according to Eqns (21) and

(24), we have, with an accuracy of up to ~ s2,

2n T
N —1+—)s? 2
V) (<1 ), 9
where
47m0d02
T, = . 2
¢ 9 (29)

The physical meaning of temperature 7. is discussed in

Section 3. We also retain for further applications the term
4

~ 8§

1
~ = As® + Bs*,

V(s?) 3

s<1. (30)
Here, A and B are dimensionless positive constants that
depend on the type of liquid:

4nt _ 4t
36 T 1356y
T-T

A= (31)

The formula for B in (31) takes into account that the
temperatures considered in this article are close to 7, (see
Section 3), as a result of which the condition

7] < 1
is fulfilled.

(33)

2.2.2 Account for the deformation of the electron shells of
HBPL molecules. The free energy of a liquid was previously
believed to be a functional of the polarization vector s(r) (or,
equivalently, of the vector P4(r)) associated with the static
dipole moments of molecules. Equation (6) in this case ‘hangs
in the air’. In the most comprehensive approach, P¢(r) should
be another independent parameter on which the free energy
G[Pq(r), P(r)] depends, and Eqns (6) and (27) should follow
from the condition of minimum energy

3G[Py(r), Pe(r)] _
6Py(r) 7

SG[Pd (r), Pe(r)]

SP,(r) =0

(34)

The form of correction required may be determined using
a simple model of two classical charges: ¢ and —¢ connected
by a spring with stiffness coefficient k. Their energy U in an
electric field E is U = kx?/2 — gEx, where x is the spring
length. We use the minimum condition for this energy to
derive the formula d, = gx = ¢?E/k, which is similar to (6).
We arrive in this case at the expression Upin = —q>E?/(2k),
similar to the well-known expression —aE2/2 for the energy
of an unexcited atom in an external field, where o is atom
polarizability. A term similar to kx2/2, which describes the
electron shell ‘elasticity’, should be added for these reasons to
the right-hand side of Eqn (3):

2n
el—Jd3 1

Exo —

P2(r). (35)

Given Eqns (8)—(11), (34), and (35), we arrive at the formula
(cf. (26))

G[Py(r), Pe(r)] = pO2J [ Z 05 051 1y

6v,; aX/;

E? 2
+JdV—p+Jd3r T
8 —

€oo

PRI (36)

2.3 General expression for the free energy of polar liquid
with hydrogen bonds in the presence of foreign charges

To derive the expression for U, included in Eqn (3), we turn to
study [66, §10]. We consider a conductive body with a charge
ge, which creates a field E.(r) in a vacuum, immersed in a
liquid. Since the body is conductive, the potential ¢ on its
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surface I' is constant. The vectors of electric induction in the
liquid and E; satisfy the same equations: VD = 4np, and

VE. = 4Tcpe ) (37)

from which we have

e = —

1 1
— | Ddf=—-——1 E.df.
47'[4[‘1" 4WJF ¢

Here, df is the vector of the surface area element I" of the body
directed at its interior, i.e., outward with respect to the liquid.
It should be noted that, generally speaking, D(r) # E.(r): due
to the presence in the general case of polarization charges,
these vectors are only equal in some particular geometric
arrangements of the liquid sample and external charges. To
establish the dependence of U, on E,(r), we fix the molecular
dipoles,

5Py =0, 8P, =0. (38)

We now consider an infinitesimal charge d¢. transported to
the conductor from infinity. Due to Eqn (38), the work
needed to transport the charge increases the term U, in the
free energy of the liquid: G = dU.. Given that outside the
conductor V E, = 0, we obtain

1 1
dUe = ordqe = f@L @OE, df = fRJV(@Ee) &’r

1 ( 3 1 3
_ _%J SE.Vo dr — EJBEC (D(r) — 4P(r)) d*r

=5ulV + 38U

Ul = —J d*rP(r)SE.(r),

SUP = 4nJ5E (r)D(r) d’r.

Thus, U, = Uem + Uéz). Since molecular dipoles are fixed
(see Eqn (38)), the first of the terms that emerges upon
completlon of Charge transport makes the contribution
U() fd3rP E.(r). Using Eqn (4) and the relation
VD =0, which is valid in the volume of the liquid, we
transform the second term:

3UP) = _4]7: J V(3¢ (r)D(r)) d*r

_ L ser 5ol
=~ S, JFD(r)df—S(peqe.

Since ¢!  ¢., upon completion of charge transport we

obtain
1 1 EZ
Ue(z) = E (que = — g‘[‘r @eEe df = Jﬁ d3r .
The final full expression for free energy has the form

B[ fE e )

G[Py(r), Pe(r)] =

E’ E2 2nP2
3 -p _ e e
+J &r <8n P(T)EL(r) + 55 +— 1) (39

We obtain from this the formula for the variation of free
energy

3G[Py(r), Pe(r)] :Jd { CAPy +2 dd( )Pd— E|5Pq

+ J d3r (47”1 P.(r) - E> 5P,
Eo0 —

which yields Eqn (6) and
dr(s?)
ds?

Equations (6) and (40) combined with Eqns (7), (8), (10),
(11), and (37) form a closed system, which we call below the
VMPL equations. These equations are nonlocal and non-
linear. We only consider below, whenever possible, approx-
imation (22) that enables determining in an analytical form
the asymptotic behavior of long-range interactions between
large objects in bulk water and investigating physical
phenomena both in the volume of water and in its layers
adjacent to the surfaces of bodies of various natures.

—CAPy +2 P;=E. (40)

2.4 Dielectric constant of polar liquid with hydrogen
bonds. The two-scale nature of the vector model

We consider the case of a weakly polarized liquid (22), where,
according to (30), ¥(s?) ~ As?/2. The VMPL equations for
an unbounded liquid are analytically solved in this case using
the transition to Fourier components. Here and below, the
following definition of the Fourier transform of an arbitrary
function £ (r) is adopted: fi = [d’rf(r)exp (—ikr)/\/7;. The
inverse Fourier transform is given in this case by the formula
f(r) =", fxexp (ikr)/+/V1. The sample of liquid is assumed
to have the form of a cube with the side / = 4'/3 and the
physical quantities to be periodic in all three coordinates
(x,p,z) with the period /. Thus, the wave vector k takes the

discrete values
2n
k = 7 (nx7 ny, nz) 5

where n,, n,, and n. are integers. The procedure for replacing
the sum over wave vectors with the integral has in this case the

following form:
d*k
(2m)

; B Il\—;n:
A solution of linearized VMPL equations (6) and (40) has the
form

e(k) — 1 Eck Pex

k in Kk k s(k)’ Pk e(k) (41)
Here,
47 R2k2+1
e(k) = e d 42
ok) =t + G = L2k2+1° (42)
L \/’ _ = C L (43)
r= At + e A AT
T
60,%%*%(” ) (44)

The following formula follows for the electric displacement
vector from Eqn (41): Dx = Ex + 4nPy = ¢(k)Ex. Therefore,
¢(k) is the effective dielectric constant for the wave vector k



May 2020

Effects of action at a distance in water 447

and zero frequency w = 0 (since the foreign charges are
immobile), and ¢ is the dielectric constant for k = 0 that
corresponds to a uniform field E(r) = const, for which we
obtain the standard formula P = E(¢y — 1)/(4mn). An estimate
A =~ (.15 follows from Eqn (44) for water at room tempera-
ture. We use this estimate and Eqn (43) to conclude that at
this temperature Ry =~ 0.25L7.

Equation (42) shows that water acquires the property of
spatial dispersion owing to hydrogen bonds. It is also seen
that two characteristic scales, Ry and L7, arise naturally.
Their origin is associated with the existence of domains and
superdomains in water, i.e., molecule clusters in which the
directions of ‘spins’ S are strongly and weakly correlated. The
existence of such structures was hypothesized in [70]. Indeed,
the directions of the molecule dipole moments should
correlate due to the combined effect of hydrogen bonds and
the dipole—dipole interaction on a certain characteristic scale
Ry, comparable to the molecule size. The dipoles of neighbor-
ing molecules act on each other within this region of space,
which we call the domain, by means of rather large electric
fields: ~ Py ~ 107 V.ecm~!. The energy of interaction between
neighboring dipoles inside such a domain is of the order of the
hydrogen bond energy, Ujq ~ Uy. Since in the vector model
Uy ~ Usy ~ CPZRy and Ugg ~ PR, we obtain the follow-
ing estimated size of the domain: Ry ~ Ry ~ v/C. The second
scale, Ly (the ‘superdomain’ size), describes correlations
between the domains. It follows from the estimate Lp
obtained in Section 2.8 that the superdomain contains
N7 ~ 100 molecules. Correlations between domains are
destroyed at scales larger than Ly by thermal fluctuations.
At the same time, L7 is nothing but an analog of the Debye
screening radius in plasma physics, i.e., the characteristic size
at which the dipoles screen each other (see Section 3.3).
Superdomains determine the response of the polar liquid to
a weak uniform and static electric field applied to the liquid,
i.e., static dielectric constant &. They do not have sufficient
time to adjust to the high-frequency electromagnetic field, to
which smaller and more rigid domains manage to respond. As
the frequency of the electric field applied to water increases, a
gradual transition occurs from the excitation of domain
vibrations in superdomains to oscillations of the dipole
moments of individual molecules in the domains. It is for
this reason that a transition frequency range (5) exists.

The qualitative arguments set forth above are con-
firmed by calculations of the correlation function of
polarization vectors at various points of the infinite liquid
0,8(R) = (s4(r)sg(r')), where R =r —r’, and averaging is
carried out over thermal fluctuations of polarization with
the Gibbs weight exp(—G/T). In approximation (22),
retaining in V(s2) the s> term alone and expanding func-
tional (47) in a Fourier series, we find

G[P(r)] =) (G — ExP_y)

k

= > (2Gi—EaP  —E4P")),
k (k->0)

1
Gy = 5 Z,,: Fop(K) Preo Pip

(45)

1 4
=3 [(Ckz + AP+ [kPy |
Eoo

4 . -
Foup(k) = (Ck> 4 A)8,5 + F_” kkiy

The terms that do not contain polarization s and are therefore
inessential for this calculation are omitted here. In addition,
the unit vector k = k/k is introduced, and it is taken into
account that

Pl = 30 ER I

P(r) exp (—ikr) .
Py = | &r ————2=P] +iP/.
S L

The Fourier components have the property Py = P*,; there-
fore, the real (P,) and imaginary (P})) parts of the vectors Py
in the semi-space of the wave vectors k. > 0 may be chosen as
a complete set of independent variables. Taking into account
the procedure for replacing the sum over the wave vectors
with the integral ), — V] jd3k/(21c)3, we arrive at the
expression

0:p(R) = g L
_exp(—R/Ly)
R
L3[1 —exp (—=R/L7)] — R{[1 —exp (—R/Rq)]
R .

Laﬂ 81/)7

- V.Vp
(46)
The limiting cases are instructive:

1

E5a57 Ry <R<Lr,
Lyp(R) = 12 o
w5 O = 3RRy), R> L,

where R = R/R. The polarization correlations decrease
according to a power law, since they are due to the dipole—
dipole interaction between molecules, which, as has been
shown, has a long range. They are characterized by the scale
L. The reason is that at |t| < 1 the fluctuations in model (26)
are basically ‘force-free’: Vs =0, p, =0, E; =0 [29]. No
energy is required in this case to create an electric field, and
the correlations span a distance ~ Ly that is larger than the
molecule size.

2.5 Simplified form of the free energy

of polar liquid with hydrogen bonds

The electronic contribution &, to permittivity (~ 5) is at
normal temperatures much less than that provided by static
molecular dipoles (~ g ~ 80); therefore, to simplify the
calculations, whenever possible, we disregard the electron
shell polarization. In other words, we put P. = 0 and ¢,, = 1
in all the formulas above, where ¢., can be ignored due to its
smallness compared to &. For example, we now have
¢ = 1 +4n/A instead of Eqn (44). It is of importance at the
same time to preserve the electrophysical properties of the
liquid at temperatures close to normal, in particular, the
previous value of the dielectric constant. We use to this end
A =~ 0.144 instead of A4 ~ 0.15. Formula (39) is simplified in
this approximation:

c 0P, 0P, [ .-
G [PO] =5 > J & Oxp Oxp * J SrEVs?)

2
+ J & <_% P(r)E, (r) — P(r)E(r) + Egi‘”) . (47)
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All properties of ¥(s?) are preserved, in particular (30) with
B ~ 1. The polarization of the liquid in this approximation,
P = Pys, determines the polarization charge density
pp = —div P. The polarization electric field E, = —Vo, is a
solution to the Poisson equation divE, = 4mnp,. The total
field in the liquid is E = E. 4+ E,. The Euler equation
dGp[P(r)]/3P(r) = 0 preserves its previous form (40) in the
notations introduced here.

2.6 Equilibrium free energy

If the VMPL equations are solved, then, by substituting (6)
and (40) into (39), we obtain the following formula for the free
energy of the liquid at the minimum:

dr
Gmin = J derOz(V—SZW>

( 1
_J d’r <§ Py(E, — E) +

2 — &y

8m
Equations (40) and (48) in case (22) take the following form:

2, b 12
Ee+§Ep>. (48)

— CAP4 + AP4 =E,

1
n = § : E2 .
Gmin - 8ne(k) ek

(49)

(50)

2.7 Solvation energy of foreign charges immersed in liquid
Solvation energy is a change in Gibbs equilibrium energy in
the process of moving a system of charges from a vacuum,
wherein their energy is

G :Jd3r Ee —JV'OPk Bl

% a (27’[)3 8w
into a liquid: Gsoly = Gmin —
approximation (50)

G _JVud‘k |E|’ (L—1)
o (2n)®  8n \&(k)

I

Gyac. We have in the linear

(51)
_ 1{@ arlpal” (1
2] en)} k2 e(k) ’
or in coordinate representation
!
Geoly = — J d3rd3r'M L, (52)
260800 [r —r’|
_ !
L =¢x(e0—1) — (80 — &x0) €XP (—u> .
Ry

Equation (52) shows that in the presence of external charges
the polarization of a liquid is characterized by the scale Ry. In
thiscase, VP # 0, E;, # 0, and a solvation shell ~ Ry in size is
formed around the external charges.

We consider the charge ¢ concentrated on a sphere of
radius R (for practical applications, the case R ~ Ry is most
interesting). Then,

2

___1 4
Gsolv = ZSOSOCR G
= R — l1—e —2R/R
G=¢x(e—1)— aléo Bw)[ xp ( /d)}.

2R

The point charge limit R — 0 does not exist in this case, since
formula (42) is only valid for the wave vector region that

corresponds to the frequencies w < 10! s7!; therefore,

Eqn (42) does not satisfy the physical requirement &(k) — 1
for k — oo that is equivalent to @ — oo. This requirement
may be satisfied if, e.g., &, in (42) is replaced with
14 a/(k? +y?), where a = (&5, — 1)y%, 7 = 1/R. Then, omit-
ting the terms ~ &, /gy < 1, we obtain

5, a+ (y+vb)Vb

2o+ VB ta
47

b=—~7y%y ~a.
c e a

Gsolv =—q (53)

An alternative approach may be used: since &y > &, we
put &, = 1, and then obtain for a point charge Gy =
—(1—1/ey)g*/(2Rq4). This formula is analogous to the
standard result of the classical Born solvation theory [18].
The solvation energy is almost completely concentrated inside
the ~ 2Ry domain that surrounds the electric charge. The size
of this domain rarely exceeds that of the ion itself (or the
charged molecule); for this reason, the exact value of the Born
radius of the ion depends on the specific features of the ion
interaction with ambient water molecules.

The obtained expressions for the solvation energy are
derived in linearized model (22) and (45); therefore, they are
only applicable for charges ¢ < PyR?. It should be noted that
they exhibit a strong dependence of Gy}, on the behavior of
the function ¢(k) at k 2 1/Ry, which corresponds to small
distances to the charge r < R4. Formula (53), which contains
several adjustable parameters, may turn out to be preferable
in this sense for the ion solvation energy.

2.8 Surface tension. Estimation of two model scales
Hydrophobic substances do not form hydrogen bonds with
water molecules; therefore, the molecules that border a
hydrophobic surface lose at least one of the four hydrogen
bonds that they have when located in the bulk of the liquid.
For this reason, the dipole moments of the molecules close to
the hydrophobic surface are parallel to it, which is confirmed
by MD calculations [24-27].

Molecules located at the interface with a vacuum or a
gaseous medium also lose one hydrogen bond, i.e., such an
interface is also hydrophobic. Thus, the solution of the
VMPL equations should be sought in the case of a free
water surface in the form

s = (s(2), 0,0), (54)
where the z axis is perpendicular to the surface. The solution
of Eqn (49) has the form s(z) = spexp (—z/Ly), i.e., the
characteristic thickness of the near-surface polarized layer is
~ L7. Free energy per unit area, i.e., surface tension, is
expressed in this case as

1
o:ngsg AC.

(55)
We obtain from this the estimates for water at sy ~ 1:
C ~ 0.9 nm?2, Ly ~2nm, and R4 ~ 0.5 nm. These estimates
are obtained in the mean-field approximation, i.e., ignoring
thermal fluctuations. In addition, when searching for a
solution in the form of (54), it is assumed that there is a
long-range order in the directions of the ‘spins’ of the
molecules located in the near-surface layer of the liquid.
Section 4 shows that, indeed, such ordering sometimes
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occurs. In the general case (see Section 2.4), the ‘spin’
correlation extends along the surface to a distance of ~ Ly.
Both Eqn (55) and the estimates obtained on its basis are for
these reasons approximate. The values of Refs [29-32]:

C~025nm?, Ry~02-03nm, Ly~ 1.2—1.5nm (56)

are in better agreement with experiment (see Section 5.3).

The solution obtained belongs to the force-free class,
Vs = 0, of which the scale Ly is characteristic. Such types of
polarization are energetically advantageous over ‘force-
based’ ones, for which Vs # 0, because E, =0 for these
solutions.

An important role in the physics of the near-surface
HBPL layers is played by the solution of Eqn (27) in the
form of a vortex: s = s(r, z)@, belonging to the same class. A
cylindrical coordinate system (r, ¢, z) with the corresponding
basis unit vectors (F, ¢, z) is introduced here. The z axis
coincides with the vortex axis, r is the distance to this axis, and
¢ 1is the azimuthal angle. It follows from (27) that
s(r, ) ~ g(r)exp (=z/Ly). g(0) =0, and g(r> L) — s,
1.e., the vortex has a core of radius ~ L.

We show next that thermal fluctuations that emerge in the
form of vortex-antivortex pairs play a key role in the physics
of surface water layers.

3. Ferroelectric phase transition
in liquid supercooled water

We show in this section that the long-range nature of dipole
interactions between molecules leads at sufficiently low
temperatures to instability of the paraelectric state of the
liquid and to a second-order ferroelectric phase transition.
The FPT temperature 7. is calculated both in the mean field
approximation and using a more rigorous ring diagram
method. We discuss experimental data on the observation of
the FPT in the supercooled water contained in pores whose
size far exceeds the molecule size. It is argued that the
properties of water in the pores and those of bulk water are
essentially the same. It may be asserted on this basis that
experiments [33] testify in favor of the existence of the
ferroelectric phase of supercooled liquid bulk water.

3.1 Prediction of the ferroelectric phase transition

in the vector model of polar liquids

We show following primarily studies [29, 30, 32] that,
according to the results of the VMPL calculations, the FPT
is possible in supercooled liquid bulk water.

Consider a strongly elongated water sample and assume
that the polarization s is directed along its largest dimension.
The depolarizing field can then be disregarded: E, = 0. If
E. = 0, we obtain both from (26) and from (39) and (47) in
weak polarization limit (22), which is valid near the phase
transition (33), the formula

A
G =VP} (5 52+ Bs4> . (57)

Equations (31) and (32) clearly show that free energy (57)
has the form characteristic of the Landau theory of second-
order phase transitions. Thus, if the temperature is lowered
in bulk water, a second-order phase transition, the FPT,
occurs. At temperature 7 > T, the equilibrium state
corresponds to the disordered paraelectric phase with s = 0

and G, = 0, while at low temperatures T < T, a transition
occurs to the long-range ferroelectric state where
s(r) = const # 0, s = \/|A4|/(4B) = 50, as a result of which
the free energy decreases to Guin = —ViP§A*/(16B).

The long-range order that exists at T < T originates from
the dipole long-range interaction between molecules. Indeed,
the first term on the right-hand side of (28) is generated by
molecular field (20), i.e., the polarization vector P4 that
emerges in the liquid due to the correlation between the
‘spins’ of the molecules generated by their dipole interac-
tion. Both the vector P4 and the molecular field E,, are by
their very nature collective and mesoscopic characteristics of
the state of the liquid formed by a large number of molecules.
It is owing to this property that the first term in (28) generates
a long-range order. The second term, entropy, is responsible
for the opposite effect: it describes polarization fluctuations
that destroy the long-range order, which occurs if 7 > T.

We now suppose that the polarization vector is directed
along the small dimension of the elongated water sample, e.g.,
in the case of a disk, perpendicular to its plane. We then have
E, = —4nP4 and

4, 2 2
G = leoz( ‘2+—ns2+Bs4> ~ I/lpg(g—“s2+3s4).

=S
2 €00

The value of G reaches a minimum at s = 0.

We conclude from these two examples that the resulting
liquid ferroelectric most likely consists of elongated domains.
However, as is the case of ferromagnets, domain structures
with VP = 0 considered in [66, § 44] may emerge that have no
polarization charges.

The critical temperature 7. for water can be obtained
from the measured asymptotic values ¢, ~ 4.9 [71], &5, = 5.1
[72], or &5, = 5.5 [73]. Consequently, we have, according to
Eqn (29), T. =236 K (-37°C), T, =226 K (—47°C), or
T. =210 K (—=63°C). The obtained values of the transition
temperature are close to the assumed position of the
singularity for bulk supercooled water—the A point
obtained in both the early (75 = 228 K) [33, 35, 36] and
subsequent (73 =~ 231 K) [37] experiments.

The FPT is manifested in the singular behavior of the
dielectric constant of the liquid &y near the transition point 7.
To analyze the dielectric response, a weak uniform electric
field is applied along the sample. As follows from Section 2,
E, =0 and E = E/e; therefore, ignoring the term quad-
ratic in the field, we conclude that an additional field-
dependent term emerges in (57): —VieoPoEs. We obtain
from the minimum condition dG/ds = 0 the equation for s:

As+4Bsd — 2> E—9.
Py

If T > 0 and condition (33) is fulfilled, the term with B
may be ignored, which leads to Eqn (44). We find at
T = 0°C that g = 61—99, depending on the choice of .
Both values are fairly close to that observed in experiments
& = 88 (see, e.g., [71]).

If T < 0, we look for a solution in the form s = sy + 9s,
which gives s = 5, E/(2Pg|A|). We obtain in this case

dP_P ds+8w—l
dE~ ""dE" 4m

dp 3
80—1—1—41'5@—800(14—%)
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This formula and Eqn (44) show that the behavior character-
istic of the A point and the divergence at 7= T, may be
expected in the temperature dependence ¢ (7') measured in
supercooled water:

&o(T) = e (1 +1(T)) (58)
where

f(T) = T3_T°T it T>T.,

£(T) :% if T<T,.

In concluding this section, we add that the model of a
polar liquid that consists of freely rotating molecules with
static dipole moments [74] predicts the existence of the FPT at
an unreachably high temperature of ~ 1200 K. Thus, account
of the electron shell polarization plays a key role and yields a
lower FPT temperature (29).

3.2 Equilibrium free energy of polar liquid with hydrogen
bonds taking account of polarization fluctuations
in the mean-field approximation
3.2.1 Calculation scheme. Taking account of fluctuations
becomes important near the phase transition, at |t| < 1. The
equilibrium free energy of the liquid G, which is obtained
from the nonequilibrium value obtained in Section 2 by
averaging over these fluctuations, is given by an expression
that contains functional integration over HBPL polarizations
(see, e.g., [69]).

We first calculate G using a simplified formula for the
nonequilibrium free energy (47):

G=-ThZ. (59)
The argument of the logarithm is the statistical sum
G|P
Z= JDP(r) exp {— [ T(r)] } ) (60)

which is due to long-wave collective degrees of freedom of the
liquid, such as its various polarization states. Integration is
carried out over a complete set of independent variables that
characterize the polarization P(r); therefore,

DP(r)= [[ dPi dP; dP; dP/ dP} dP]..
K (k.>0)

If condition (33) is fulfilled, approximation (45) is valid,
wherein, in addition, one should set E. = 0. After calculating
Gaussian integrals in (59), we obtain the following expression
for the equilibrium free energy:

T. 3e,,C
G~T Z ln< ——°+ & k2>+const

k (k->0) 4n
d*k T,
zVTJ—ln( ——+3Rk>+const,
1 (21’[)3 T (61)

where only the term which is singular at 7 = T, is retained,
while the terms that are not singular and, therefore, insignif-
icant for determining the FPT temperature are included in the
constant. The singular term comes from ‘force-free’ fluctua-
tions Vs = 0, whose amplitude grows infinitely as the liquid is
cooled and its temperature approaches 7.

The same calculation can be easily carried out for the
general expression for nonequilibrium free energy (39). We
have now, instead of (60),

G|Py(r), Pe(r
Z= JDPd(r)DPe(r) exp {f M} .
Integration again yields result (61) but with another constant,
which, as mentioned above, is not significant.

3.2.2 Criterion for applicability of Eqn (61). The importance of
fluctuations may be estimated in quantitative terms as
follows. The fluctuations in the polarization of a liquid are
significant when the additional contribution to the specific
heat Cp, which is associated with them, becomes comparable
with a jump in heat capacity AC at the FPT [75, 76]: Cy 2 AC,
where, according to (61),

2 3
o726 J(dk 1 Vi

or2” " (2n)} (v + 3R] 24mV/3eR]
(62)

Estimating AC by means of (57), we find as in [69] that
Cn/AC ~ 1/(z\/]t]), where z = 4nngR3 /3 is the number of
particles in a volume with radius Ry. For water, z ~ 4.
Therefore, fluctuations are significant if

s . (63)
This implies that the phenomenological formulas for free
energies (26), (39), (47), and (61), which are based on the mean
field approximation, are applicable to water at T 2 — 20°C,
while in region (63) this approximation is not applicable, and
more sophisticated approaches should be used (see, e.g., [77]).

3.2.3 Possible explanation of the anomalous temperature
dependence of the density of water. The density of water
reaches its maximum at 7 =4°C [78-80], which is often
associated with the anomalous behavior of supercooled
water [81]. It may be hypothesized that it is precisely the
‘force-free’ fluctuations of polarization near the FPT that
cause the anomalous behavior of the water density.

We consider the HBPL at 7 < 1, T > T.. The expression
for the total free energy in the region where the fluctuations
are small takes at s < 1 the form

- J d3rd2n’(r) [%(vms,;)2 +§ 32} + J dVg(n’)z. (64)

Here, the difference n’(r) = n(r) — ny describes density
fluctuations, f = mc2/ny is an approximate expression for
the adiabatic compressibility of liquid, m is the mass of its
molecule, and ¢; is the adiabatic speed of sound in the liquid.
Since fluctuations of G with a large wavelength make the main
contribution to s, the vector field s can be considered a slow
variable. Owing to this, we can apply the approximation
similar to the Born—Oppenheimer one, well known in the
quantum mechanics of molecules, i.e., separate fast and slow
variables to find the density for a given polarization s(r) by
minimizing the free energy with respect to n’(r) and obtain

P2

') ==t

O [C(Vasp)® + As® +2Bs%]. (65)



May 2020

Effects of action at a distance in water 451

Averaging this quantity over polarization field fluctuations
with a weight exp [-G(s(r))/T], as in (59), we find [29]

(n')y = const +nyD/T . (66)
Here, D = £Q, Q = BT *kmaxt2 [ (mc2PER]) ~ 1, and kmax ~
1/Ry. As mentioned earlier, the parameter Ry is of the order
of the size of a domain of strongly correlated molecular
dipoles. The factor ¢ = 5(2n)>/v/3 < 1, so the quantity D
seems at first glance small. The smallness of ¢ is actually a
consequence of the incompleteness of the mean field theory.
In the complete theory that takes into account scale-invariant
fluctuations of the order parameter, £ ~ 1 [75, 82] (for the
same reason it should be assumed that B ~ 1 in formula (30)).
We conclude from Eqn (66) that the density of the liquid
initially increases as the temperature grows and deviates from
the FPT point. This increase in density is subsequently
suppressed by thermal expansion of the liquid. It is seen that
the density should have a maximum at a certain temperature.

3.3 Calculation of the equilibrium free energy
of polar liquid with hydrogen bonds
in the ring-diagram approximation
The analysis carried out in Section 3.2 is not perfect, because
it is based on the mean-field approximation that does not
explicitly take into account the requirement that ‘spins’ must
be equal to one, |S,| = 1. We now calculate the free energy
accurately taking this requirement into account and show
that, nevertheless, the mean field approximation reliably
predicts both the very existence of the FPT and the value
of T..

We consider the potential energy (13) of a system of
dipoles (molecules) with numbers a,b,...=1,2,....N
located at points r,:

U:l Z Uah -

a,b(a#b)

(67)

Pair interactions u,, between molecules ¢« and » may be
approximately represented as

S(rap) d(%

&0

Ugp =

Z (Sa)a(sh)ﬁ[axﬁ - 3(nab)x(nab)ﬁ] , (68)

2 fmxy, 2

where it is taken into account that d, = dyS,. The f(ru)
function describes the spatial dependence of the strength of
the interaction between the molecules. We have at large
distances f(rg) &~ 1/r3, which corresponds to the dipole—
dipole interaction. This approximation fails at short dis-
tances. To take into account at these distances hydrogen
bonds and other short-range forces, we use the following
approximation:

1
flra) =14 18"

0 ) Tah <10 -

Tap > 10,
(69)

Here, ry ~ R4 is a microscopic scale that characterizes the
short-range part of interaction between molecules. This
approximation is sometimes used in MD (see, e.g., [54]).
Similar to plasma physics, we calculate the equilibrium
free energy of HBPL by means of thermodynamic integra-
tion. We gradually ‘turn on’ interaction (67) between
molecules, U — AU, by increasing the scale factor 1 from 0

to 1. The free energy then becomes a function of Ai:
G(1) = =T In Z, where

AU
Z= J dIexp (fﬂ—> , (70)
T
d*r, dQg
I = Vo= —
ar=]ldn. dn="p" "7
The sought equilibrium free energy has the form
boaG) (!
G=| dAi——==| dA{U(J)). 71
|, a2 5= | axtwen )

The symbol (.. .) denotes here and below the thermodynamic
averaging over the Gibbs distribution:

(U()y=2z" J dIr'Uexp (f )—;j> . (72)

Integration over the directions of the molecule ‘spin’ vectors
dQsg, is carried out in (70) and (72) keeping all the time
|S.| = 1. Such a calculation is in this sense exact, with the
exception of approximation (69) regarding intermolecular
interaction at small distances. However, we show below that
the properties of the liquid on a large scale, which determine
the FPT nature and origin, do not depend on the choice of ry.

Expanding the exponential function in (72) in a Taylor
series, we obtain

0G oG

iRyt (73)

The term 3G ") /d/. in the summand consists of the integral
over the product of n 4+ 1 pairwise interactions u,, between
the molecules with numbers @ and b; summation is performed
in accordance with (67) over all the numbers. We consider an
interaction term u, included in this product. In plasma
physics, uu = qags/ras- Due to quasineutrality, > g, =0
and ), g, = 0; therefore, a contribution to aG<">/ax is
nonzero only if the number « in the interaction u,, under
consideration coincides with the number in some other
interaction in the specified product of pairwise interactions.
The same applies to the number b in u,,. Such coincidences,
‘pairings,” are shown in Fig. 2 by dashed closed loops.
Suchlike pairings in the case of the dipole—dipole interaction
of interest to us occur because integrals like

J d-QSI, UgbUed

T
"\ I’\\ // // \\ \\
\
L R )+
! v/
M > ——
N

Figure 2. Ring-diagram approximation for free energy of a system with
interaction (67): bold straight lines correspond to the energy of dipole—
dipole interaction u, from (68), where a #b=1,2,...,N are the
numbers of molecules. The dashed closed loops indicate the same
numbers, i.e., coincident molecules. Summation is carried out over the
molecule numbers, and integration over dy, for the variables that pertain
to these molecules (see text).
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are equal to zero if a # ¢ or a # d. The terms in which the
numbers of more than two molecules coincide make a
negligible contribution to the free energy (~ 1/N). The
factor Z~! in (72) eliminates the contributions of discon-
nected diagrams, i.e., those that consist of separate ‘islands’.
Connected diagrams alone make a nonzero contribution, as
can be seen in Fig. 2.

In an ideal plasma, the number of particles in a sphere
with a Debye radius rp is large (Np ~ nrd > 1); therefore,
due to Coulomb long-range action, the free energy may be
calculated with an accuracy of ~ 1/Np in the ring-diagram
approximation [83, 84]. This is also true for HBPL, but a
dipole—dipole interaction between molecules operates there
instead of the Coulomb interaction (see Fig. 2). The
corresponding error in calculating the energy is in this
approximation ~ 1/Nr, where Ny ~ noL% 1s the number of
molecules in a superdomain. It should be recalled that for
water at room temperature Ny ~ 100.

In accordance with the rule of constructing ring diagrams
shown in Fig. 2,

oG™ 1 2"
3 :E(_?) > Jd”/al &, -- - dva,,,

ajy...dn+1

1
X UgyayUayas - - - Uayans Ua,a {1 +0 (_N .
T

The contribution from nonring connected diagrams in
plasma is less than that from ring diagrams by a factor of
~ Np. Similarly, the contribution to the polarization part of
free energy from nonring connected diagrams in water is less
than that from ring diagrams by a factor of ~ Nr.

Formula (74) refers to the class of convolutions that are
calculated using Fourier transform. We need for subsequent
analysis the following relation:

(74)

&k .

W F(k)M,p(k)exp (ikr),  (75)

£10) (B 3 = |
where
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Flky = TR ET S,

3 Z:kro.
73

Upon integration over the directions dQg of molecule dipole
moments using Eqn (75), we obtain

oG™W v/ IN\"/ AN\ [ &Pk "
oG _ Vi A\ 4 J [F]" 0.,
ol 2 T) \Bexu V) (2m)

where Q,, = 2[1 — 2"(—1)"] and the relation ny ¥} = N is taken
into account. Using this formula and taking into account (71)
and (73), we finally arrive at

G= TJ Ié:;f‘ {m (1 +M>

3¢ T

1 2nodg F(k)
+ 5 In (1 30T .

(76)
If krg < 1, the quantity F(k) ~ —4n/3 + 2r(krg)> /15 and the
first term of interest to us on the right-hand side of (76), which
contains a singularity at the FPT point, given Eqn (33), takes

the form

3
G = mTJ(d /i In {1 7£+}'(kr0)2} , (77)

2n) T

where y = 1/10. The parameter y depends on the choice of the
model and the structure of short-range forces acting between
the molecules. Although the values of y for specific liquids are
not known, it can be expected from comparison with (61) that
y~ 1.

Coulomb-interacting particles cause Debye screening of
each other’s electric fields. As a result, the free energy of an
ideal plasma, in addition to the principal term arising in the
approximation of a mixture of two ideal gases, electronic and
ionic, has an additional term — the correlation free energy
Gorr that generates an addition to the heat capacity:

Ccorr = E

1 d*k 1
lJ(zn)3 (1 +r3k2)? (78)

The correlation contribution to energy originates from the
motion of particles separated by the distance < rp being
correlated rather than independent. A comparison of
Eqns (62) and (78) shows that a role similar to that of the
Debye radius is played in HBPL by size Leor = Rav/3/7 ~ Lt
(definition (43) is taken into account here).

Since (61) and (77) have the same form, it can be assumed
that the ring-diagram approximation is equivalent to aver-
aging over fluctuations in the mean-field approximation. We
conclude from here that the ring-diagram approximation is
applicable to water at 72 — 20°C.

3.4 Observation of the ferroelectric phase transition

in water contained in mesopores

The freezing temperature may be significantly decreased if
water is contained in mesopores (see [6, 10, 43, 85]). Water
may stay liquid in pores with radius R < 2 nm if temperatures
decrease to ~ —100 °C [85]; therefore, the phase transition at
T = T, predicted above may be observed and explored in the
liquid water filling such pores.

To observe the FPT in supercooled water, the behavior of
dielectric response was studied in [41, 42] in samples of water
in pores of polymerized silicate MCM-41 with pore diameter
D ~ 3—10 nm [85] (following the conventional terminology
[87, 88], we call them mesopores). The dielectric spectroscopy
method was used in the low-frequency range, 25 Hz— 1 MHz.
The measured permittivity of water is displayed in Fig. 3. A
well-pronounced behavior is seen that is characteristic of the
A transition at the temperature 72 ~ —38°C, in complete
agreement with the physical picture of the second-order
transition presented in Section 3.3. The permittivity of liquid
water contained in pores was found to exhibit a steep jump
from a typical value of &y ~ 107 to gy ~ 2 x 10* in the narrow
temperature range AT ~ 5 K. The jump in permittivity is
unambiguous evidence of the FPT [89]. The recent observa-
tion in [16] of the Barkhausen effect in liquid water contained
in pores is also a confirmation of this conclusion.

The increase in g with temperature growth at 7' > T,
which may be detected in Fig. 3, disagrees with both the
results of earlier experiments [33, 71] and the prediction of
theory (44). This increase should be attributed to rather large
errors inherent in the dielectric spectroscopy method.

The pore size in MCM-41 is large in comparison with that
of the molecules; therefore, as shown in Section 3.5, the
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Figure 3. Measured temperature dependence of the low-frequency real
part of the dielectric constant of liquid water (solid curve) and ice (dashed
curve) for porous material MCM-41 with a pore diameter of 3.5 nm.

microscopic properties of water in mesopores are almost the
same as in large volumes. The equilibrium freezing point of
water in MCM-41 with D = 3.5 nm is —49 °C [10]; therefore,
the water was in a liquid state in the experiments under
consideration at 7'~ T$*P. The liquid and solid states of
water were distinguished by means of the hysteresis effect
[10, 90, 91]: the solid curve in Fig. 3 corresponds to the
supercooled liquid state obtained upon gradual cooling of the
sample. The dashed curve corresponds to superheated ice that
is obtained by the reverse process, i.e., the process of
subsequent heating of the sample until it melts. A weak
dependence of the shape of the curves on the rate of heating
and cooling was observed; this behavior is not surprising for
hysteresis phenomena that depend on the kinetics of the
processes. The singularity of the dashed curve shows that
the ferroelectric state inherited from the liquid persists in a
substantial part of the ice.

Hard evidence that the singular behavior of the dielectric
constant is associated with a phase transition precisely in
liquid water was obtained in [16], where water was studied in
pores of SBA-15 material. The pore diameter in this material
(~ 10 nm) is much larger than that in MCM-41; therefore, the
water at T ~ TS was obviously in a solid state. No specific
behavior has been observed at 7'~ T¢*. Consequently, the
FPT either does not occur in ice at such temperatures or is
extremely slowed down due to the long relaxation time. This
implies at the same time that the pores in the above
experiments with MCM-41 contained at T ~ TS liquid
water rather than ice.

We add in conclusion that some signs of the FPT may be
found in experimental data [6]. The existence of the ferro-
electric state of water in beryl nanochannels has been
confirmed recently in [92, 93].

3.5 Identity of the microscopic properties

of bulk water and water contained

in the mesopores of MCM-41 material

This section presents an analysis of the thermodynamics of
water contained in small volumes such as mesopores. We
prove that, although the freezing temperature in mesopores
can be significantly below zero degrees Celsius, the suppres-
sion of nucleation that leads to a decrease in the freezing
temperature is a macroscopic and collective effect rather than
a consequence of the difference between the microscopic

structures of water contained in pores and bulk water. The
thermodynamic properties of the liquid in pores and bulk
liquids are described by macroscopic thermodynamics with
the same physical parameters. The freezing temperature of
water in pores is shown to be determined by a simple balance
of free energy that takes into account the contribution of
surface tension of the solid/liquid phase interface. This
implies that the microscopic properties of water in pores, at
least in pores whose diameter is sufficiently large, as is the case
in experiments [16, 41, 42], are virtually the same as those of
bulk water.

The generalization of the conclusions made in Section 3.4
for the case of bulk water may cause natural criticism, since
there is no clear answer to the question: in what way are the
microscopic properties of water in pores related to those of
bulk liquid? In particular, how similar or different are the
phase transitions and thermodynamic properties of liquid in
pores and bulk liquid?

The history of the question is rather long. A detailed
discussion of existing opinions can be found in [94]. On the
one hand, the water contained in a mesoscale pore features
several differences from bulk water:

(1) the freezing temperature of such water is much lower
(the so-called freezing suppression phenomenon) and can
decrease to a value of the order of —100°C;

(2) a hysteresis appears in the cooling/freezing cycle of
water in pores, i.e., there is a difference between the melting
point and the freezing point in the same experiment, as
described, e.g., in [6, 10, 42, 43, 85, 95];

(3) the results of neutron scattering experiments processed
using molecular dynamics calculations [96-105] indicate that
water inside mesoscale volumes can be rather heterogeneous;

(4) experiments using infrared (IR) spectroscopy indicate
a slight difference between the vibrational frequencies of the
OH groups of some molecules in the pores and those in bulk
water.

On the other hand, as emphasized in the same review [94],
according to calculations [106, 107], hydrophilic surfaces,
such as those in the used MCM-41 silicate material [41, 42], do
not significantly affect the microscopic properties of water
except for a significant reduction in freezing temperature. The
same conclusions may be drawn from studies [43, 85, 108], in
which only a slight hysteresis was observed in calorimetric
measurements and X-ray scattering experiments in the
MCM-41 system. For example, it was found in [43] that the
difference between the melting and freezing temperatures in
MCM-41 with a pore diameter of 3.5 nm was only
(AT), ~ 1K.

Thus, we have an enigmatic phenomenon: the micro-
scopic properties of water in pores and bulk water are very
similar, but their freezing temperatures differ significantly.

To get closer to the solution, it should be recalled that
there is a so-called nonfreezing water layer with a thickness of
t =~ 0.4nm [6, 43, 85] near a surface of any kind. It was shown
in [17, 109, 110] that the microstructure of water at distances
2 t ~ 0.4 nm from the wall barely differs from that for bulk
water, and, according to [106, 107, 111], for hydrophilic
surfaces, which are walls of MCM-41, this is also true for
water in the nonfreezing layer.

It is also helpful to look at the well-known calculations of
lowered freezing temperature ATy (see, e.g., [43, 112]) from a
new perspective. We derive below an expression for ATy only
using macroscopic arguments. It should be noted that the
pores in MSM-41 are almost identical and parallel to each
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Figure 4. (a) Idealized model of a cylindrical pore. Schematic representa-
tion of the cross section of a water sample enclosed in a pore at two
temperatures: (b) above and (c) below the freezing point. The ice phase
area is shadowed. The nonfreezing layer is located next to the pore wall.

other, so it is sufficient to consider only one of the pores. To
simplify the analysis, we consider, following [43, 112], a
simple cylindrical pore of length L and radius R filled with
liquid water at a temperature above the freezing point
(Fig. 4a). A generalization for the case of pores with an
arbitrary cross-sectional shape shown in Fig. 4b,c is pre-
sented at the end of this section.

As temperature decreases, ice emerges in the pore. To
describe in this model the existence of a nonfreezing layer
adjacent to the pore walls, we assume that ice fills a coaxial
cylinder with height L and radius Ry = R — 1, where
t =~ 0.4 nm is the thickness of this liquid layer. Without loss
of generality, we can disregard the difference between the
particle number densities of molecules in the liquid (1) and
solid (s) phases and assume that ns = n). Each of the liquid
phases can be characterized for any given pressure p by the
corresponding chemical potentials (i.e., Gibbs energy per
molecule) y(p, T) and uy(p, T'). The Gibbs energies of the
solid and liquid phases with the number of molecules Ny and
N they contain are equal then to Gy = Nyu,(p,T) and
Gy = Niyy(p, T'), respectively. The Gibbs energy of the entire
system consists for a certain intermediate value of the ice
radius Ry of three terms [69]:

G(Rs) = G5+ G + Gy . (79)
Here, G,_| = fos_ is the surface contribution to the energy
due to the ice/liquid interface, f'= 2nR L is the area of this
interface, and o,_; = 32 erg cm 2 is the surface tension
coefficient [113]. The Gibbs energy of ice formation is given
accordingly by the formula

AG(Rs) = G(R;) — G(0) = AungnRZL + fos i, (80)

where Ay = pg — . Using the equilibrium condition AG = 0
for R, = R — t, we can find the equilibrium freezing tempera-
ture, Ty = Ty, + ATy, where T, is the freezing temperature of
bulk liquid (273 K for water at normal pressure) that satisfies
the equation Ap, = pu(p, Too) — i(p, To) = 0. Using the
Gibbs—Duhem equation,

d d
duS:—ssdT—&——p7 dulz—sldT+—p,

ng n
where dp = 0 (note that freezing occurs under a constant
pressure, p = const), and s; and s are the entropy per
molecule values in the solid and liquid states, we conclude
that Au =~ Ap, + ATi(s) — s5) = ATy Ah/ T, where Al is the
specific melting heat per molecule; therefore,

Co
81

Tt (81)

where Cy = 20517 /AHy, = 52.4 nm K and AH,, = nsAh =
3.3 x 10° erg cm~3. This result agrees well with most
published values, e.g., Cp=524+0.6 nm K [10] or
Co=52+2 nm K [85]. It should be noted that Eqn (81),
which is well known, is used, for instance, in cryoporo-
metry [43].

The fact that formula (81) for lowering the freezing
temperature, which was reliably substantiated by experi-
ments, can be derived on the basis of macroscopic thermo-
dynamics alone is an indication of the macroscopic nature of
the freezing of water in sufficiently wide pores (R > 7).

Further analysis of the above calculations enables a
number of conclusions to be drawn. First, the hysteresis
phenomenon noted in review [94] to emphasize the difference
between the liquid retained in pores and macroscopic liquid is
fully explained in terms of the macroscopic thermodynamics
presented here as a consequence of the metastability of the
liquid and solid phases in the process of supercooling and/or
overheating of the liquid [6, 43, 114]. Similar to the hysteresis
phenomena known in ferromagnets, the observed difference
between the freezing and melting temperatures (AT), (a
measure of hysteresis) is determined by the value of the
Gibbs free energy barrier AGy, that separates the molten and
frozen states of water in pores, and as such depends on the
heat removal rate and a specific way to overcome this barrier.
It follows from Eqn (80) that the barrier height

ATy = —

AGy =Z 6, \L(R—1)

5 (82)

corresponds to the Gibbs energy of a half-frozen pore with the
ice-particle radius Ry = (R — ¢)/2. It should be noted that,
due to the linear dependence of the barrier height on the pore
length L, ice begins emerging in experiments in the form of
short segments ~ R in length that gradually occupy the entire
pore.

Thus, the freezing temperature of the entire sample is only
determined by the balance of the total Gibbs energy of the
system:

AG=0. (83)

Based on the meaning of Eqn (83), we can conclude that the
phase transition occurs in the system as a whole, including the
ice/liquid interface, rather than just in the water contained in
the pore volume. Therefore, suppression of ice crystallization
in mesopores is not a microscopic, but rather a macroscopic
and collective phenomenon: liquid in the pore volume ‘feels’
the molecules at the interface. This conclusion is a rigorous
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consequence of thermodynamics. It is worth quoting in this
regard the famous statement by A S Eddington [115]: “But if
your theory is found to be against the Second Law of
Thermodynamics, I can give you no hope; there is nothing
for it but to collapse in deepest humiliation.” The task for a
more detailed theory is to derive the effect of suppression of
ice formation in mesopores in a microscopic approach. There
are two promising avenues here.

(1) A possible explanation for the effect, which does not
require a change in the microscopic properties of the liquid, is
given in [116].

(2) Another reason for lowering the freezing point in
microscopic samples of liquids may be the enhancement of
the role of fluctuations in such systems, namely, in the ice pre-
melting phenomenon [117, 118]. It is owing to the fluctuations
that barrier (82) is overcome more easily if the system size
decreases. This issue is worth a dedicated exploration.

For the sake of completeness, we present an alternative
derivation of Eqn (79). In contrast to (79), the Gibbs energy
in this approach (see, e.g., [69]) only consists of two terms:
G and G). To be more general, we consider the case of an
arbitrary shape of the formed piece of ice, as shown in
Fig. 4b, c. An additional Laplace pressure emerges in the ice
particle, which is associated with the interface curvature
Ap = 265 1heury, Where heyry 1s the average curvature of the
solid/liquid phase interface. Thus, the pressure in the ice
particle is equal to p + Ap, where p is the pressure in the
liquid. We conclude from the mechanical equilibrium
condition p + Ap = const that /A, = const at all interface
points. If the ice particle volume increases by dV;, the
number of molecules in the solid phase increases by
dN = ngdV5. Its surface area increases at the same time by
df. Consequently, the change in the Gibbs energy of the
system is dG = dG, + dG). Here, dGs = u(p + Ap, T) dN,
dG) = —dNw(p, T) are the changes in the Gibbs energy in
each of the phases. Using the Gibbs—Duhem equation and the
mathematical relation d Viligyy = df/2, we find that

us(p+Ap, T) ~ pu(p, T) + dus
dGs ~ [ug(p, T) + 8us) AN = pgdN + o5 df,

where du, = Ap/ns. The Gibbs energy of the pore G is found
by integrating dG. The result obtained coincides with
Eqn (79).

A useful conclusion also follows from the analysis above:
Eqn (81) is valid for pores with an arbitrary cross-sectional
shape if the value //(2r), where /is the perimeter of this cross
section, is substituted into this equation instead of R.

Thus, in this section we presented arguments in favor of
the collective nature of the liquid-solid phase transition in the
pores filled with water and a deep relationship between the
properties of bulk water and water inside pores with a
sufficiently large radius R > ¢ ~ 0.4 nm.

3.6 Two-liquid model of supercooled water in mesopores

3.6.1 Key assumptions. It should be recalled that the specific
heat, compressibility, coefficient of thermal expansion, and
dielectric constant of strongly supercooled bulk water have
been measured in [33, 35, 36]. Based on the extrapolation of
the measurement data to lower temperatures, the authors of
these studies hypothesized that these quantities have a
singularity at a temperature of 75 = 228 K. This singularity
looks rather weak, and it was assumed, therefore, in[119, 120]
that different states of water continuously replace each other

in the vicinity of the A point as temperature changes. The
observed A anomaly is explained in this approach by a first-
order phase transition between two liquid-water phases that
differ in their spatial packing of molecules: a low-density
(LD) and a high-density (HD) phase. The LD/HD phase at
mesoscopic scales is characterized by a cubic/hexagonal
lattice, respectively. The possible existence of such structures
was noted in [121, 122]. The two-phase liquid-water model
proposed in [119, 120] predicts the existence of a second
critical point at a temperature of 7., ~ 200 K and a pressure
of ~ 1 kbar[9, 123-127]. The known anomalous properties of
water, including the A anomaly observed in the vicinity of T,
are widely thought to be related to the existence of the Widom
line originating from this critical point in the pressure—
temperature diagram [128], near which density and entropy
fluctuations are large [129]. The enhancement of fluctuations
is due to a sharp increase in the derivatives of thermodynamic
quantities (coefficient of thermal expansion, heat capacity at
constant pressure, etc.) with respect to temperature near the
Widom line.

The hypothesized important role of these fluctuations is
confirmed by a number of MD calculations made in realistic
water models [103, 123, 130-139], simplified analytical
models [140—-144], and a number of experiments [125, 145—
148]. It was found in [128, 149, 150] that, when the Widom line
is crossed, the Arrhenius temperature dependence of the
molecule self-diffusion coefficient is replaced with a power
law, i.e., enhanced fluctuations near the Widom line affect not
only the thermodynamic but also the kinetic characteristics of
the liquid.

MD calculations [149, 151] indicate that the Einstein
relation between diffusion and mobility coefficients is
violated, which brings us back to the issue of whether the
equilibrium state of strongly supercooled water may be
attained in the MD calculations. As indicated in reviews [7,
94, 125, 152—-156], the metastability of the bulk liquid phase at
temperatures significantly lower than the freezing point
greatly complicates the experimental study and MD simula-
tion of the properties of a strongly supercooled liquid. Other
approaches to the explanation of the anomalous properties of
water are described in [157—162]. Thus, this area of research is
far from fully explored.

In our opinion, each of the above assumptions regarding
the nature of the A anomaly encounters an obvious difficulty
in explaining the observed singularity of the dielectric
constant &(7). The collection of these facts and observa-
tions indicates the existence of a richer physical picture that,
in our opinion, far from being limited by the first-order
liquid-liquid phase transition alone, gives a second wind to
the old idea [33] that relates the weak singular behavior of the
dielectric constant in bulk water to the FPT.

The FPT temperature (29) is surprisingly close to 7).
Nevertheless, the HBPL vector model fails to reproduce in
detail the behavior &y (T) observed in [15, 41, 42], which is not
surprising, since the model is extremely simplified. It over-
looks, for example, the fact that the tetrahedral geometry of
the electronic orbitals in the water molecule leads to the
aforementioned polymorphism, i.e., to the coexistence of two
or more liquid phases with molecule packing patterns that
differ on mesometer scales— phases of the liquid with cubic
and hexagonal lattices [125, 153, 165].

A theoretical description is developed in this section
wherein the FPT is combined with a first-order phase
transition between two liquid phases: LD and HD. The
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VMPL is combined to this end with the analytical model of
the liquid—liquid phase transition proposed in [164—166].

We assume that the equilibrium state of supercooled
water is a mixture of macroscopic clusters of two types: a
liquid with low and high densities, which corresponds to the
well-known model [103, 125] and is confirmed by experiments
[146, 147, 167]. We also assume that the FPT only occurs in
the LD liquid, while a ferroelectric state cannot exist in the
HD phase. There are two reasons for this assumption. First,
the LD liquid is locally ‘softer’ than the HD liquid, since the
density of the latter is approximately 20% higher [125, 168—
172]. Tt seems natural for this reason to assume that the
molecules can rotate in the LD phase more or less freely, while
the molecule rotation in the HD phase is hindered. Thus, the
nature of the LD phase is closer to that of the liquid with
pairwise and isotropic interactions, for which Eqn (29) is
derived. The feasibility of the FPT in the LD phase is also
indicated by the similarity between the local structure of the
latter and the crystal lattice of the stable (paraelectric) phase
of Th ice [173, 174]. According to [3, 5, 175, 176], Ih ice
transforms under normal pressure and at temperatures below
T ~ 70 K to the ferroelectric state, which is referred to as
XTI ice. Since the LD liquid density is lower than that of the
Ih ice, the assumption that the FPT exists in the liquid LD
phase does not seem to be surprising. It should be noted,
however, that the existence of the FPT in the Ih ice is not a
firmly established fact. The possibility of such a transition is
confirmed by MD calculations (see, e.g., [177, 178]), but the
results are sensitive to the choice of a specific water model
[178]. Arguments pro and con regarding the existence of such
a transition in ice are presented in review [179]. Recent MD
calculations also lend support to the existence of the FPT in
the Thice [8, 180]. The main reason that hinders detecting this
transition is the long time of ice transition to the ferroelectric
state [181]: this time is so long that it was suggested in [182]
that bulk samples of ferroelectric ice are only available on
planets located far away from stars. However, we note that,
according to [183], the FPT in ice was probably observed in
experiments with neutrons.

The assumption of freely rotating molecules of the LD
phase seems at first glance doubtful, since it is usually believed
that the properties of water are primarily determined by a
rigid network of hydrogen bonds [184] that hinder the
rotation of molecules. We now compare the values of three
parameters: the enthalpy of water dimer formation
AH = 12—15 kJ mol~! [185, 186], the dipole—dipole interac-
tion energy wugq = 2d/7* ~ 20 kJ mol~!' for neighboring
molecules with parallel dipoles, and the energy of a single
hydrogen bond breaking of ~ 20 kJ mol~!. Thus, in reality, at
a typical distance between the nearest molecules in water
7 ~ 0.3 nm, it is not possible to clearly distinguish in the total
intermolecular interaction, which is mainly of an electrostatic
nature, between the effect of hydrogen bonds and dipole—
dipole interactions, ugq. The magnitudes of these energies are
comparable.

As a result of the combined action of the hydrogen bonds
and the dipole-dipole interaction, a short-range order is
realized in water, such that, at small distances, the molecules
are assembled into lattice-like structures [126, 184]. The Gibbs
free energy of LD clusters G pL at a given pressure p is a sum
of the contributions of the polar (rotational), GE]")IL, and
lattice, G\, , degrees of freedom:

GipL = GEBIL + GI%L ~ _DTZG(_T) + Gﬂa]t)L(Pv T). (84)

Here, D ~ Vongdg ~ 150 calmol™!, Vy = Na/ng ~ 22 cm? is
the molar volume of the LD cluster, and N4 is the Avogadro
number. The equilibrium state of the LD cluster corresponds
at high temperatures, T > T, to a disordered paraelectric
phase, while at low temperatures, T’ < T, the LD cluster is in
a long-range order ferroelectric state. Therefore, the term
Gf]")lL in (84) is presented in the form characteristic of the
Landau theory [69] (see Section 3.1).

The question arises as to which density ny should be
substituted into (29): either total density ny or density of the
LD phase alone nypr, = cng. Here and below, ¢ = ¢ py is the
molar fraction of the LD phase, i.e., the proportion of
molecules contained in LD clusters. According to estimates
made in the analysis below, the difference in the FPT
temperature T is in this case ~ 5 K, which is less than the
spread due to inaccurate determination of ¢,,. We use for this
reason definition (29) with full density #,.

Model [164—166] enables an analytical description of the
first-order phase transition between two liquid phases and the
second critical point. According to this model, the non-
equilibrium Gibbs energy of water has the form

G(c,p, T) = GupL(p, T) + AG(c,p,T). (85)
Here,
AG(c, p, T) = cAG(p, T) +£(c), (86)
S(&) = pe(1 —¢) + NaT [elne + (1 - o)l (1 —¢)],
AG(p,T)=GpL(p, T) — GupL(p, T)
=AU’ — TAS® 4 pAV?, (87)

where Gupy (p, T) is the free energy of the HD component,
GLpL(p, T) is the free energy of the LD component, ¢ is the
energy of mixing of the LD and HD phases, and AU (p, T') =
UL — UupL, AS°(p,T) = SipL — SupL, AV°(p, T) =
VipL — VuapL are the differences between the molar internal
energies, entropies, and volumes of the LD and HD phases,
respectively. Similar to [164-166], we focus on the singular
behavior of thermodynamic quantities and, for this reason,
we further omit the smoothly varying term Gupr(p,T) in
(85), and simply refer to quantity (86) as the Gibbs energy.
The LD phase fraction ¢(p, T') in equilibrium and the free
energy of the equilibrium state AG[c(p, T'), p, T] are found
from the condition of the minimum G(c, p, T') with respect to
¢: G'(c) = [0AG(c, p, T)/0c|, 7 = 0, i.e., from the equation

AG(p,T)+ (1 —2¢) + NaTln (ﬁ) =0. (88)

Following [164, 166, 187], we assume that the expansion
coefficients do not depend on temperature or pressure:

AE°(p,T), AS°(p, T), AV®(p, T) ~ const. (89)
This assumption, which works well in the theory of binary
alloys [187], enables a description of the properties of water
near the second critical point [164, 166]. It is indicated by the
letter K in Fig. 5 that displays the phase diagram of water
described by formulas (85) and (88) in the model under
consideration.

The Gibbs potential (86) has a single minimum in the
region above the AKB spinodal (see Fig. 5) and two minima
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Figure 5. Phase diagram of bulk water in our model (see details in the text).
LDA (Low Density Amorphous ice) and HDA (High Density Amorphous
ice) are the amorphous ice phases with low and high density, respectively.
HDL and LDL are the liquid phases with high and low density, respec-
tively.

in the region below this curve. The LD phase concentrations
at these minima ¢ = ¢;,», which are found from the condition
G'(c1,2) =0, are the roots of implicit equation (88). Stable
equilibrium corresponds to the root with the smaller Gibbs
energy (86). The KC line is the curve of a first-order liquid-
liquid phase transition that corresponds to the equilibrium of
the LD and HD phases:

AG(cl> P T) = AG(C2a D, T) . (90)
The function f(c) in (86) is even with respect to the middle
point of the interval, i.e., f(0.5+ x) = f(0.5 — x). The first
term on the right-hand side of Eqn (86) violates this
symmetry; therefore, if AG(p,T) # 0, phase equilibrium
condition (90) cannot be satisfied: one of the energy minima
(86) is necessarily deeper than the other. Therefore, the
equilibrium condition (90) has the form

AG(p,T)=0. 91)
According to (87) and (91), KC, the equilibrium phase curve
in the model [164—166], is a straight line, and the LD phase
concentration is found from the equation

@(1 —2¢)

T= " NThn [c/0=0o)] "

(92)

The joint solution of Eqns (91) and (92) enables the
determination of the LD phase temperature and concentra-
tion on the equilibrium curve for the given pressure.

The local minimum of the function AG(c, p, T) that
corresponds to the LD phase disappears on the KB segment
of the AKB spinodal, so that the LD phase loses its
thermodynamic stability on it. Consequently, the KA curve
is a spinodal curve of the HD phase. We conclude from this
observation that the spinodal curve AKB is found from the
simultaneous fulfillment of the conditions G'(¢) =0 and
G"(c) = [0*AG(c, p, T)/ac2]ﬂ =0.

The difference between the LD and HD phases disappears
at the critical point K; therefore, here, ¢ipL = cgpL = 1/2

[188, 189]. We obtain then from Eqn (92) the temperature at
this point: Ter = ¢ /(2N4).

Amorphous phases of ice with low and high density are
labeled in Fig. 5, similar to Ref. [7], as LDA and HDA,
respectively. Approximation (89) is violated at low tempera-
tures, and the liquid-liquid equilibrium curve should bend
downward here, like KD, which corresponds according to the
third law of thermodynamics to the limit AS — 0 at 7 — 0.

The molar entropy of water S(p, T') and the heat capacity
C, under a constant water pressure are expressed as

S(p.T) = {aAG[c(,gTT), p,T] }p

:cASOfNA[c Inc+(1—¢)ln(l1-0¢)],

(93)
= 1[S) g
p

Here, C ]'f“ is the Debye heat capacity of the lattice,

lat _ oo (T/@)3
P P 1+(T/@)3’

€2 =18 cal mol™! K~! [35], and @ ~ 150 K is the Debye
temperature for the water lattice. The contribution C[?o' of the
polar degree of freedom to the heat capacity of the liquid has
the form

PAAS" — Naln [e/(1 — )]}

Crol
p G”(C) ?

where G"(¢) = =20 + NaT/[c(1 — ¢)].

The contribution C;’Ol is by definition maximal on the
Widom line, i.e., G”(c) = min; therefore, the relations
G'(¢)=0 and G"(c) =0 hold on this line, which are
equivalent in our model to ¢ = 1/2. Using this result and
taking into account (88), we arrive at Eqn (91). Thus, the
WK Widom line (see Fig. 5), which is a continuation of the
straight line CK, is determined by the equation T =
(AU 4 pAV)/AS® = Ty. Given that near the Widom
curve ¢ &~ 1/2, we obtain

2

;01 ~ % , (94)
(T— Tw) +9

where AT = Ty — Ty and 6 = 2NAAT/AT/Tw/|AS®|. The

value of CP° exhibits a pronounced peak at T = Ty in

accordance with the results of experiment [7, 152], qualitative

analysis [128], and MD calculations [139].

Equation (94) may be compared with the formula for the
specific heat calculated, for example, in [139] using the MD
method. It is possible to ignore pressure in this case and set
Tw = AU"/AS" = TY,. We obtain from here the following
estimates for the parameters of our model:

AU = —860 cal mol ™",
AS® = —3.5cal mol ' K7,
¢ = 880 cal mol '

(95)

This set of parameters corresponds to T& =245 K,
T =220 K, and p,=1 kbar, where the value
AV? ~ 3.8 cm® mol~! taken from [164, 166] was used to find
Per- According to [164, 166], values similar to (95) are as



458 L I Menshikov, P L Menshikov, P O Fedichev

Physics— Uspekhi 63 (5)

12
o
°
10 |- i
°
°
g | °
®eec®®
Y o6 +
= +
o)
4L + + -
°
2 -
| | | | |
220 240 260 280 300
T,.K

Figure 6. Heat capacity of water according to Eqns (93)—(95) (solid curve),
results of MD calculations [139] (dots), and measurement data [35]
(crosses).
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Figure 7. Theoretical dependence of the LD phase fraction on tempera-
ture. Curve / corresponds to the theory with parameters (95), while curve 2
corresponds to the theory with parameters (96) found by the least squares
method from comparison with experimental data [147] that are shown by
squares.

follows: U =~ 900 cal mol~!, AE® = —250 cal mol~!, and
AS® = —1 cal mol~! K~!. The temperature dependence of
the specific heat C, calculated using Eqns (93)—(95) is
displayed in Fig. 6, where experimental data [35] and results
of MD calculations [139] are also shown. Both our and MD-
based calculations correctly reproduce on a qualitative level
the characteristic features of these dependences and, thus,
describe the same physics.

According to [152], the LD phase entropy turns out to be
less than that of the HD phase, AS? < 0. This is another
argument in favor of the conclusion that the LD phase is more
ordered than the HD phase [139]; it also implies that the FPT
is present and implicitly taken into account in the MD
calculations.

The consistency of the model can be checked after
determining parameters (95) using the results for the LD
phase fraction ¢(7) found from Eqn (88), which are
represented by curve / in Fig. 7. The figure shows that there
is a quantitative agreement between the predictions of the
model and experimental data [147] (squares) at temperatures

above 200 K. It should be noted that AG(p, T =0) < 0;
therefore, at low temperatures the entire liquid must
inevitably consist of the LD phase, i.e., the property ¢ — 1
should be satisfied at 7 — 0. This implies that the equilibrium
state of water at low temperatures has not been achieved in
experiments [147]. It can be asserted with certainty that the
reason is the increased relaxation time [162, 190].

We now compare the model predictions for the molar
fraction of the LD phase with the experimental data at
temperatures of 220-300 K, at which the agreement between
theory and observations may be considered satisfactory. We
find here that the agreement with the experiment is better for a
slightly modified set of parameters:

0 -1

AE” = —920 cal mol ", (96)

AS" = —4 cal mol ' K,

to which curve 2 in Fig. 7 corresponds.

It should be noted that, according to the model presented
in this section, the LD phase fraction tends at high
temperatures to a nonvanishing constant, which does not
agree with measurements. This is due to the linear approx-
imation used in (89). Nevertheless, the LD phase fraction
remains small, even at high temperatures, for the set of
parameters (96).

Based on the arguments above, we can conclude that the
presented model is in reasonable agreement with the measure-
ments.

3.6.2 Permittivity of water in the two-liquid model. The
permittivity of water considered as a mixture of LD and HD
clusters is approximately expressed as

S(T) = C(T)SLDL(T) + [1 — C(T)}SHDL(T) y

where e pr. and egpy are the permittivity of the LD phase (see
(58)) and HD phase, respectively,

2nngdg

2
oT (800 +2)°.

eLpL(T) = eo(T),

EHDL = €xo

It is taken into account here that the HD phase is a
paraclectric substance; therefore, the expression for eypr
can be found from the Debye—Onsager model [191]:

27m0d02
oT

(6 +2)°.
(97)

The measurement results and predictions of the theory
that correspond to the set of model parameters (95), e, = 4.7
and T, = T$* = 236 K, are displayed in Fig. 8. The value of
T3® is taken from [16, 41, 42]. Our model is in good
agreement with experiments at temperatures above the
transition point, 7> T., T, [16, 41, 42]. Due to the rapid
decrease in the LD phase proportion with an increase in
temperature (see Fig. 7), the temperature dependence of the
dielectric constant for 7' > T, exhibits a more pronounced
singular behavior than that predicted by the simple single-
component liquid model (58) of Ref. [30]. Thus, the two-
liquid nature of water being taken into account significantly
improves the agreement between the theory and measure-
ments.

The reason for the difference at T'< T, between the
experimental data for MSM-41 and the predictions of the

&(T) = e + 0cc(T) f(x) + [1 — ¢(T)]
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Figure 8. Dielectric constant of 3D water as a function of temperature. The
solid curve shows the values of ¢ obtained in the two-liquid model using
Eqn (97) with parameters (95); the dots correspond to the results of the
experiment with porous material MCM-41 [15, 41], and the crosses
represent the measurement results [33].

two-liquid model presented here can be traced to the
following circumstance. As described in Sections 3.1-3.5
and above in this section, the temperature T, depends on the
size and shape of ferroelectric clusters in the LD phase. For
this reason, as temperature decreases, a ‘continuous sequence’
of FPTs may occur in LD clusters. This leads to large
observable values of ¢(T") for T’ < T.

So, according to the predictions of the model presented
here, the FPT in the LD component leads to a strong increase
in the dielectric constant in the vicinity of T.. Equation (84)
shows at the same time that at low pressures in the vicinity of
the FPT, i.e., at |t| < 1, the contribution of the dipole—dipole
interaction to the Gibbs energy of the liquid is small,
|AGpot| < |AGly|. Thus, the FPT at T'~ T, occurs as if
against the background of a ‘stronger’ liquid—liquid transi-
tion caused by rearrangements in the lattice. Consequently,
the FPT effect on the properties of water at temperatures near
and above the Widom curve seems at first glance negligible.
The FPT curve may in this case look like the KF line in Fig. 5.
Another point of view seems more natural. As shown in
Section 3.2, the polarization degree of freedom of the liquid is
‘weakened’ near the FPT. Polarization fluctuations increase
as a result, which in turn gives rise to density fluctuations.
Enhanced fluctuations are precisely the main characteristic
feature of the region in the (p, T) plane adjacent to the
Widom line. Thus, it can be assumed that the FPT is one of
the reasons, and perhaps the primary one, for the emergence
of the Widom line in water. The lines KF and KW (see Fig. 5)
should in this case coincide.

3.7 Discussion of the results

Water is an example of a polar liquid which is of most
importance and interest for practice. The high density of
water, the significant magnitude of the dipole moments of its
molecules, and the tetrahedral geometry of electronic orbitals
are the main reasons for the complexity of the phase diagram
and the ‘anomalous’ properties of water [3—8, 10]. A clear
understanding of how a liquid behaves under the effect of an
external electric field is of utmost importance for many
applications of computational chemistry and biophysics, in
the development of new drugs [12, 192], etc. The problem of

the temperature dependence of the dielectric constant, the
role of fluctuations, and the feasibility of the FPT in a bulk
polar liquid is rather old [193], but interest in it has been
rekindled after the thermodynamic characteristics of super-
cooled water as it approaches temperature 7 ~ 228 K from
above was discovered [33, 35, 36] (according to [37],
T). = 231 K). The behavior of isothermal compressibility,
density, diffusion coefficient, viscosity, static dielectric con-
stant ¢, and some other quantities when approaching 7;
appears as singular.

The phase diagram of metastable supercooled water has
been studied in detail, and a large number of seemingly
different but apparently related theories have been proposed
to explain this A anomaly. According to one rather popular
approach, the anomalous behavior of thermodynamic quan-
tities is associated with the limit of mechanical stability
(spinodal curve) that emerges in the vicinity of the critical
gas—liquid transition point [36, 161]. Another approach based
on MD calculations involves an assumption that A anomalies
can be associated with a new critical point, such that, if the
critical-point temperature is exceeded, two phases of the
liquid, hexagonal and cubic, are no longer distinguishable
[123]. The A anomalies are explained in Ref. [194] by the
properties of a network of hydrogen bonds.

On the other hand, the singularity in the behavior of ¢y is
known to be a characteristic FPT feature [89, 193, 194]. The
ferroelectric nature of A anomalies is also supported by MD
calculations performed for various model polar liquids (see,
e.g., [195-197]). A ferroelectric liquid phase was observed in
the model of so-called soft spheres with static finite-size
dipoles located inside the spheres [195, 197-200], in models
with hard spheres [198, 201], and in a Stockmayer liquid [202,
203]. The existence of a ferroelectric liquid phase apparently
does not depend on the choice of a specific model, since this
phase was also observed in the calculations based on the
models of rigid spheres with point dipoles [198, 201] or soft
spheres with finite-size dipoles [200]. There are unfortunately
anumber of reasons due to which it is difficult to confirm with
certainty the relationship between the FPT and the A point in
water in MD models with a finite number of particles. First of
all, due to the long-range nature of dipole—dipole interactions
between molecules, the simulated liquid tends to form
strongly correlated domains, and its calculated properties
heavily depend on the boundary conditions in any system of a
reasonable size [197]. Due to low temperatures, relaxation
processes take a very long time [204]. These circumstances
necessitate calculating large and strongly interacting molecu-
lar systems for a very long time, which may cast doubt on the
reliability of the findings.

The mean-field approximation underlying the VMPL
provides an explanation for some of the features observed in
supercooled water [33, 35-37]. The ‘gas parameter’ z intro-
duced in Section 3.2 is not too large for water, i.e., our
approach, which is based on the mean-field theory, is not
able to explain in detail the results of measurements or MD
calculations. However, the main conclusion regarding the
existence of the FPT made in the mean-field approximation is
confirmed by a more rigorous calculation of the free energy of
HBPL using the ring-diagram method. Estimates (29) for T,
and (44) for the dielectric constant are in reasonable
agreement with experiments. Nevertheless, the calculation of
quantities such as critical indices near the FPT point requires
the use of a complete theory that describes the formation of a
network of short-range hydrogen bonds [34, 194, 205], as well
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as scale-invariant fluctuations of the order parameter s(r)
near the phase transition [69]. One way or another, the
dipole—dipole interaction between molecules and the long-
range effects it causes play a key role in explaining the
anomalous behavior of supercooled water and interactions
between bodies in liquid media [29, 58].

The divergence of the observed value of ¢/(7") in bulk
supercooled water directly indicates the FPT [89, 193], so it is
surprising that this circumstance has not been fully under-
stood and recognized by the authors of [33]. In our opinion,
this is due to two reasons. First, the FPT temperature 7¢ in the
quoted experiments could not be reached because of the fast
volume nucleation. Bulk water was cooled in experiments [33]
to a temperature of —35°C; only a few degrees remained to
reach the transition point. Second, the weakness of the
observed singular behavior & oc |t| %, where o = 0.13, made
the authors of [33] abandon the assumption of FPT at the
A point since, according to [89, 193] and Eqn (44), in the
mean-field approximation o = 1.

Deeper water cooling and direct observation of the FPT at
TSP ~ —38°C became possible owing to the use of meso-
porous materials [15, 16, 41, 42]. Arguments are given in
Sections 3.1-3.6 in favor of the small difference between the
microscopic structure of water contained in the mesopores of
the MCM-41 material used for measurements and large
volumes of liquids. With this circumstance taken into
account, it may be asserted that the measurements in [15, 16,
41, 42] indicate the real existence of the FPT in bulk liquid
water, which confirms theoretical arguments [29-31].

Order parameter fluctuations should be taken into
account in close proximity to the phase transition point.
Polarization fluctuations s(r) are ‘force-free’ at |t| < 1, and,
as a result, are scale-invariant, because the correlation
radius of the molecule dipole moments L7 becomes infinite
at the FPT point. A corresponding analysis based on the
theory [77] gives for the critical index considered above
a~1+(4—d)/6=7/6~ 1.2, whered = 3is the number of
spatial dimensions. This implies that, in accordance with
Fig. 3, the singularity is stronger than that predicted by the
mean field theory. It should be noted, however, that although
the number of experimental points is rather small, the
divergence &, in experiments [15, 16, 41, 42] looks even
stronger. This should not be a surprise, since the VMPL is
an oversimplified model.

The description can be improved if we take into account
various microscopic states of liquid water, such as hexagonal
and cubic structures. If we associate the FPT with a single
structure, cubic, the critical behavior of the dielectric constant
becomes much sharper due to the strong temperature
dependence of the fraction of this water component [147].

A natural question arises: why is the singularity in &y (7)
weak in [33], while it is strong in [15, 16, 41, 42] (a jump by a
factor of about 200 was observed)? Several hypotheses may be
set forth in this regard.

(1) It is likely that it was the third term in Eqn (97) that
was mainly measured in [33], while to observe the FPT
described by the second term, the temperature should have
been reduced by a few more degrees, as was donein [15, 16, 41,
42]. Itis sometimes argued (see, e.g., [92]) that the ferroelectric
state of water observed in capillaries is due to the orientation
of water molecules being imposed by the forces that act on the
molecules from the side of the walls. This issue is far from
resolved because, as noted in Section 3.1, a number of fairly
realistic MD calculations predict the existence of the FPT

even in bulk water. In addition, as shown in Section 3.1, the
role of the depolarizing field E;, in the pores is much less
significant than in bulk water, which makes the FPT possible
in water in pores.

(2) Finally, and this explanation seems more plausible,
the reason for the existing discrepancy between the data of
experiments with pores and [33] may be due to the difference
between the kinetics of the ferroelectric phase formation in
the pores and that in the volume; namely, within a short time
interval when bulk liquid freezes, a domain structure in which
there is no depolarizing field (see [66, § 44]) does not have time
to form. The ferroelectric state in liquid bulk water may turn
out in this case to be fundamentally unreachable. The issue
may be resolved by experiments with microsamples of water,
e.g., in a setup similar to that used in [40].

4. Manifestations of long-range dipole action
on the interfaces between polar liquid
with hydrogen bonds and immersed bodies

We now discuss the HBPL properties in a layer adjacent to
the surface of a body immersed in a liquid. The phenomena
under discussion occur provided 4 > 0. According to (31)
and (32), this implies that the bulk liquid is in the
paraelectric state. We assume that &, > g; therefore, a
simplified description of the properties of a bulk solid-
liquid structure presented in Section 2.5 is applicable.

4.1 Classification of surfaces by wettability type

4.1.1 Phenomenology of interaction of a liquid with the surface
of immersed bodies. Taking into account the interaction with
the surface of the body, the free HBPL energy may be
represented as

Gs(r)] = Goux + G, (98)
where Gy is the contribution to the energy of the system
from the bulk liquid (47) and G is the free energy of the
surface layer of the liquid contacting the bodies or vacuum or
air.

We consider a layer of water molecules immediately
adjacent to the surface I' of an immersed body. The term of
interest in the energy G, which depends on the polarization of
the liquid, is expressed in the most general form as follows:

Go—1 ﬁpgj df Q(s? cos ). (99)
2 r

Here and below, d f is the area element on the surface I"and ¢
is the angle between the vector s and the unit normal n to the
surface directed into the water. It was taken into account in
Eqn (99) that, as per the definition of the polarization vector
(1), mesoscopic-scale surface inhomogeneities are averaged.
For this reason, almost all surfaces, or rather large, macro-
scopic areas on them, may be considered homogeneous and
isotropic. The specific form of the function Q, which depends
on the properties of the liquid and the body surface, can be
obtained by comparing the VMPL predictions with experi-
mental data or the results of MD calculations.

The polarization vector components perpendicular and
tangent to the surface have the form s; = (ns) = s cos ¢ and
s| =s — s.n, respectively. Equation (99) contains two inde-
pendent parameters: s> and cos ¢. Equivalent quantities SH2
and s; may be used in their stead, i.e., Q(sHZ, s1) substituted



May 2020

Effects of action at a distance in water 461

in (99). The body often bears uncompensated foreign charges
or there are polar groups on its surface. The body surface is in
the latter case a double layer, a capacitor, inside which
molecules of liquid partially penetrate. In both cases, there is
an electric field E! in the surface layer whose thickness is of
the order of the liquid molecule diameter, di,0 ~ 0.3 nm. For
this reason, the layer energy changes if the sign of s, is
reversed, i.e., generally speaking, Q(s? b vl) £ 0(s? Sip> 51).

If the polarization at the boundary is sufﬁmently small,
s < 1, then, taking into account the arguments above, the
surface contribution determined by Eqn (99) can be further
simplified:

Gs = G — Pydu,o [ dfEls,, (100)
JT

G = —% ver? L df (os] + Bost) - (101)

Here, G? is the contribution to the near-surface layer energy,
which is determined by the presence/absence of hydrogen
bonds between HBPL molecules and the surface and by the
electrostatic interaction between the dipoles and the surface
(see Section 5.2), o9 and f, are dimensionless material
constants that characterize the interaction between water
molecules and a particular surface at a given temperature.
The cross term in (101), which is proportional to the product
5|51, is absent due to the indicated surface isotropy on the
mesoscale intervals.

Equation (101) approximately determines the Gibbs
energy of the surface layer of molecules in their most
favorable state, compared with the unfavorable, metastable
state whose energy is taken to be zero. So, the molecule loses
two or three hydrogen bonds near a hydrophobic surface in
the case of an unfavorable orientation and only one in the case
of a favorable orientation [24, 25]. Thus, the parameter «y is
mainly determined by hydrogen bonds. This observation may
be used to evaluate o for water. The energy of a single
hydrogen bond is Ey ~ 5 kcal mol~'. One molecule occupies
the area df, ~ 0.1 nm?* on the surface. Therefore, we have
for the interface with a vacuum at room temperature

2En

oy ~ ~3-5. 102

\@Pzdﬁzo ( )
As shown in Section 5.2, under the same conditions, 5, ~ .
In contrast to the term with ¢, the term 5, in (101) has a
purely electrostatic nature.

In the limiting case, when the surface is completely
covered by polar groups, EI ~ Py, the ratio of the first
term on the right-hand side of (100) to the last one is
~ BoV/'C/dy,0 ~ 5> 1 (although exceptions are possible).
For this reason, we use below expression (101) for the surface
energy.

If the functions Q and V(s?) are known, then by
minimizing the total free energy (98) with respect to the
independent variable s(r) we arrive at the Euler equation in
the volume of liquid, 8G/ds = 0, and at the same time the
boundary conditions for the vector field s(r) on the surface. In
particular, minimization of (98) with respect to s(r) yields, in
addition to (40), the boundary condition

asa
( + Z sz/ss/;> =0,

(103)

where

Oup = 290,p + (00 — Po)nangp .

4.1.2 Flat uniform surface. Simplified form (101) of the energy
of the HBPL layer adjacent to the body surface enables
drawing important conclusions about possible types of
surfaces with respect to their interaction with water.

We first study the case E! = 0.

We consider a semi-infinite volume of water located in the
region z > 0 and in contact with an infinite flat solid surface
located at z = 0. In the absence of E, the total field E = E;, =
(0,0, —4mPys;). The polarization of water can be approxi-
mately found by minimizing free energy (98) using a test
function of the form

S = (sy),O,sZ(l)) exp <— l%) + (siz),O, sz(z)) exp (—Rid> ,

(104)
where sv\(.‘lgz) are four variational parameters. The choice of
exponential functions in this form is natural, since they are
exact solutions of Eqn (40) for small polarization, |s| < 1. The
results of variational optimization with ¥(s?) from (30) for
B = laredisplayed in Fig. 9. Three completely different types
of solutions are found, depending on the properties of the
surface material, which are completely described in our model
by two parameters, oy and f3,.

Region I on the (a9, f,) plane corresponds to suffi-
ciently large values of f,, when water molecules are
polarized perpendicular to the interface, |sY \ ~ 0, which
is a well-known sign of a hydrophilic surface. The
calculation shows that the polarization in the liquid
volume decays in this case exponentially at a short
distance: (V) =0, |s.| ~ exp (—z/Ry).

Water molecules dre polarized along the interface in
region 11, |s{1:2)], |9 | ~ 0, and the pOldI‘lZdthH penetrates
the liquid to a much greater distance: |s\"| ~ exp (—z/L).
This, of course, is exactly what is expected from a hydro-
phobic surface [24-27]. The stability of such a state with
respect to thermal fluctuations is proved in Section 4.2.3. It
should be noted that the liquid/vacuum interface is a special
case of hydrophobic contact, since the molecules lose on it at
least one hydrogen bond.

Finally, region III corresponds to the absence of polariza-
tion in the mean-field approximation under consideration.

The boundaries between the regions of different polar-
ization states, which are displayed in the diagram shown in
Fig. 9, can be found in an analytical form. To do so, we use
a simpler form of the test function instead of (104):

s = {sél exp <f LiT>70,s(§ exp <f Rid)} )

Minimization of the free energy G by varying parameters
s¢! and s shows that the interface is hydrophilic, as in

region I, if ﬁ0>v—\/4n+A at oag < pu=+A4 and if
Bo > v+ (g — u)\/u/v = Plog) at op>u. A hydrophobic-

type body surface, as in region II, corresponds in the figure
to the part of the plane oy > p at iy < ff(a), i.e., the part
located below the OB line and to the right of the OC line. The
free energy as a function of polarization has two local
minima: G!= —SrP? \/fv(ﬁo - v)z/(4B) in region I and
G" = —SrPV/Cu(og — 1)?/(4B) in region II. Here, St is
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Figure 9. Polarization of water molecules at the HBPL/body interface
obtained from variational solution (104). The lines with arrows indicate
the direction of polarization (sy, s.) on the surface; the z axis is
perpendicular to the surface, and the x axis is parallel to it. Regions I
and II describe hydrophilic and amphiphilic surfaces, respectively. A
nonzero random polarization emerges in region III due to thermal
fluctuations, but its time average value is at any point zero. An
instantaneous image of the polarization obtained by means of computer
calculation at a certain nonzero temperature is displayed. The oblique
dashed straight line OB shows the line of the first-order phase transition,
amphiphilicity < hydrophilicity, that separates regions I and II. The
meaning of the transition shown by a solid arrow is explained in the text.

the surface area. Corresponding polarization values are

1_ V(By =) n_ (oo — )
W=\ W=\ g

Test functions more accurate than those presented above
may be employed. The previous functions contained expo-
nentials exp (—z/Ly) and exp (—z/Rq4) with fixed character-
istic spatial scales L7 and Ry. To clarify the calculation, these
scales may also be chosen to be an additional variable
parameter. All the presented results vary in this case
insignificantly, within the limits of the VMPL error. For
example, new scales turn out to be close to Ly and Ry if the
parameters o and f3, increase to values at which polarization
becomes significant, s ~ 1.

The equilibrium condition G' = G is satisfied on the OB
line defined by the equation f§, = (), which is displayed in
Fig. 9. The inequalities G < G' and G > G! hold in
‘hydrophobic’ and ‘hydrophilic’ regions II and I, respec-
tively. Thus, a first-order phase transition occurs on the OB
line. Since G o Sr, this transition is sharp for large surfaces
and occurs immediately upon crossing the OB. This circum-
stance explains, for example, experiment [206], in which a
change in the contact angle of water was observed after the
hydrophobic hexane was removed from the surface of TiO,
metal oxide by ultraviolet radiation, and the contact angle
changed abruptly as the radiation dose increased. Therefore,
chemically adsorbed ions O;, O~ [207] and dipole hydroxyl
groups [208] that emerge on the surface as hexane is removed
change the wetting properties of the surface, increasing f§, toa

value sufficient to cross the boundary of regions I and II, as
shown by the arrow in Fig. 9.

Thus, the polarization vector s of the surface layer in the
VMPL, i.e., its time-averaged value at any point on the
surface, can be zero (the ‘neutral surface’ belonging to region
IIT) and directed perpendicular (the hydrophilic surface
belonging to region I) or parallel (the hydrophobic surface
of region IT) to the surface. There are no cases where the angle
¢ between this vector and the normal falls in the interval
(0,m/2) on a large surface (we consider here, of course,
homogeneous surfaces, og(r) = const, f,(r) = const). The
absolute value of the polarization vector on the surface in
cases I and II can take any value within the range 0 < s < 1.
Such a surface could be called in case II partially hydro-
phobic, keeping the name hydrophobic for the surface with
s~ 1. A more common name, which we use below, is the
amphiphilic surface. In the general case, the polarization of
the liquid has for such a surface the form s = s exp (~z/L7),
where s = [s,(x, ), s,(x,¥),0] is a purely 2D polarization
vector.

The wetting properties of surfaces are usually character-
ized by only one parameter —the wetting angle. Such a
description is incomplete, in agreement with the conclusions
obtained in MD calculations (see, e.g., [209]). As shown in this
section, a full and fairly accurate description is ensured in
reality using two parameters, oy and f, (for a more accurate
description, a third parameter should be added, namely, E[),
which are temperature-dependent. Each surface at a certain
temperature has a corresponding point on the (g, f§,) plane.
If temperature or any other external parameter changes, this
point describes a certain path in this plane.

We briefly discuss the case E! #0. Repeating the
calculation presented above, we conclude that now, similar
to EI # 0, a liquid at the interface with large homogeneous
surfaces may only have three types of polarization, I, II, and
II1, and they cannot exist concurrently. This implies that the
diagram displayed in Fig. 9 remains qualitatively valid, but
the boundaries OA, OB, and OC that separate different
wettability types become curvilinear. If EI changes, they
move; therefore, an alternative explanation of experiments
[206] is also possible. Due to the removal of hexane, water
comes into contact with the polar surface of TiO,. An
increasing field Eer emerges in this case, which causes the
motion of the OB line of the amphiphilicity < hydrophilicity
phase transition. The point on the diagram marked by a black
dot remains as a result stationary, while the line itself moves
and passes through this point, which leads to a change in the
wettability of the surface.

4.1.3 Curved homogeneous surface. So far, we have only
considered flat surfaces. It is of interest to consider how the
curvature of an immersed body surface affects the polariza-
tion of a liquid it creates.

We consider a body in the form of a cylinder of radius Ry
and height Hy > Rj. As in Section 4.1.2, we select the test
function in the form of a solution to linearized equation (40):
s =a@K,(r/Ly) + brK,(r/Rq) + czKy(r/L7). Here, a, b, and
¢ are the variational parameters, @, ¥, and Z are the unit basis
vectors of the cylindrical coordinate system, and K, are the
MacDonald functions. A calculation similar to that per-
formed for a flat surface shows that the diagram in Fig. 9
remains qualitatively true for a curved surface. The polariza-
tion directed along ¢, which we call the ¢ polarization, is
force-free, i.e., the density of polarization charges is zero for



May 2020

Effects of action at a distance in water 463

/ELO\\ +/J”F'E;éo ﬂ
- |
E=0 __¥ 7

Figure 10. Polarization of liquid near a cylindrical hydrophobic surface:
(a) force-free and (b) force-based configurations. Plus and minus signs
indicate the areas of concentration of polarization charges whose absolute
values are the same, and signs opposite. The meaning of the vectors J and
d, is explained in Section 5.
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Figure 11. Function g(x) that presents the dependence of the critical
parameters of the spontaneous emergence of polarization on the surface of
a cylinder immersed in HBPL.

this polarization (Fig. 10a). There are polarization charges of
equal magnitude and opposite in sign at the ends of the z
polarized cylinder (Fig. 10b). It is shown below that the
energy of the electric field created by these charges is
insignificant for typical biological bodies, ~ 50—100 K < T;
therefore, the z polarization for such bodies can approxi-
mately be considered force-free as well. On the contrary,
r polarization is a force-based polarization.

Itis shown in Section 4.1.2 that polarization vanishes for a
flat surface in case I if the parameter f§, diminishes to " = v,
and, in case II, to «®" = u. The critical parameters for which
the ¢ polarization, r polarization, and z polarization vanish in
the case of a curved cylindrical surface are as follows:
ay = pug(xo), B =vg(Ro/Ra), and off = up(xo). Here,
X = Ro/Lr. g(x) = —K{(x)/Ki(x). p(x) = —Kj(x)/Ko(x).
The function g(x) is plotted in Fig. 11, while the plot of the
function p(x) looks very similar and differs only slightly from
it. Figure 11 shows that, as surface curvature increases,
polarization decreases and finally vanishes. We can clarify
this conclusion using the ¢ polarization as an example. Since

s<1at oy~ o, we obtain from (30), (47), and (101) the
expression for the free energy in the Landau form:
G/Sr x —Aocq,az + Coa®, where Ao, = o9 — pug(xo) and
Cp x B is a positive number. It can be seen that the
polarization exists at o > 0" and vanishes at o < ogf, a
situation which, according to (102) and Fig. 11, occurs at
Ry < 0.15 nm. The diameter of this cylinder is approximately
equal to the size of the water molecule.

In the case of ¢ polarization, the formulas for the
polarization and the free energy, which are determined by
the entropy contribution and deformation of hydrogen
bonds, have the following form:

s(r)=s 7K1(F/LT)
" K (x0)

xosz‘(xo)Aocé

Gl = —nP2CH,
o T TS Ty

2 _ XoK{ (xo)uAa,

= 105
0 4BJ¢ ) ( )

o0
Jp = J dxxKﬁ(x) .
Xo
Similar formulas for z polarization may be obtained from
Eqn (105) by making replacements K; — K, and
Ao, — Ao = 0p — vp(Xo). It may be concluded then that for
typical biological bodies G,' < G!', and the difference
G, — G!' weakly depends on the cylinder radius Ry:

3TCP§ CHyAa,,

U _ ol
Gy — G 4B

~0.5H [eV]> T, (106)

where Hj is measured in nanometers. This result may be easily
obtained in the limiting case Ry > Ly. Result (106) is
confirmed at Ry < Ly by a numerical calculation. The
¢ polarization is seen to be much more advantageous in
terms of energy than the z polarization. For this reason, in the
absence of charges and polar groups on the body, z polarized
bodies should be rare in nature.

4.2 Ferroelectric phase transition on the interfaces
between polar liquid with hydrogen bonds

and amphiphilic bodies

It should be recalled that amphiphilic surfaces are type I1. The
HBPL polarization vector near this surface is parallel to it,
and its absolute value lies in the 0 < s < 1 range.

4.2.1 Free energy of the near-surface layer. Setting E. = 0, we
accurately calculate the free energy of the liquid adjacent to
the amphiphilic surface assuming the latter to be flat and
infinite. For the polarization that vanishes at infinity, the next
to last term in (47) can be represented in this case after
integration by parts as

1 1
- EJ d*rP(r)Ey(r) = EJ d’r Pp®y

L[ s 5 PpD)pp(r)
=_|drdy 22 107
2[ d’r d’°r 1 (107)
Below we mainly consider the scales
—[r—r'|> Ly; (108)

therefore, in consideration of the results of Section 4.1.2, we
transform (107) after integrating by the coordinates z and z’
into the following form:

,pp() p(r')

v )(VS)
v —r'| '

dedf



464 L I Menshikov, P L Menshikov, P O Fedichev

Physics— Uspekhi 63 (5)

Here and below, D = L2P§ ,r = (x, y),andr’ =1 = (x',)’)
are two-dimensional vectors lying in the plane of the surface.
We obtain for the free energy

1 05, Osy
O] =3 M. ,;MJ Ao o

(V|i)r_(fls|)r’ + ROJ df(s2 _ Sg)Z7

(109)

+%Djdfdf’

where the parameters M = P{CL1/2, Ry = P;BLz/4, and
s¢ = p(oo — pt)/B are introduced. The last term takes into
account the results of Section 4.1.2.

4.2.2 Case D = 0. Topological Berezinskii—Kosterlitz—Thou-
less phase transition on an amphiphilic surface. We quote the
information pertaining to the case D =0 from [210-213],
which is necessary for the further investigation of the
phenomena described by free energy (109).

Equation (109) shows that G[s(r)] = min for the ferro-
electric state of the layer: s(r) = const, where s = [s(r)| = so.
If D =0, this state is unstable with respect to long-wave
thermal fluctuations with s & s, in the study of which we can
put s(r) = 5S(r), where S(r) = (cos0,sin0), 0 = 0(r). We
arrive then at the classical XY model [214]:

Glom) =5 | ar (07 =53 Klonf
k

=1 K00+ 07,

K (k,>0)

(110)

where 1= MsZ, Ox = [df0(r)exp (—ikr)/\/Sr, 0, = Re b,
and 6, = Im 6.

It follows from (110) that the distribution of the angle 6
over Fourier components has the form

2
dwo [[ d0{do) exp {— B 1002 + oy } ;
T
k (k,>0)

therefore, (0x0y/) = (|0k]*)8i _i, Where (|0k|*) = 2((0;)) =
T/(Ik?). Hence, we obtain for the correlation function of the
angles at different points

(S(r)S(r")) = (cos AB)
—1/(2n1)
= exp [—%((A9)2>] = (%) . (111)

Here, AO = 0(r) — 0(r'), R=r —r’, and the following rela-
tion is taken into account:

2T 1- kR
(07) =5 3=

T (Koo dk T R

0 k

which is valid at R > L7. Itis also taken into account that A0
is a random Gaussian variable. In addition, our description of
the layer is only valid under condition (108), which corre-
sponds to kyax < 1/L7; therefore, kpax ~ 1/ Ly was chosen as
the upper integration limit.

Equation (111) shows that, similar to the theory of super-
fluidity of a 2D Bose gas [215, 216], for D = 0, the correlations

y/Lt
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—40

—40 -20 0 20 40 x/Lr

Figure 12. Polarization and distribution of total energy density at 7= 0; a
vortex and an antivortex are located at the points (0,+30). Light areas
correspond to regions of high energy density, in which the centers of the
vortices are located. The polarization is uniform at infinity: s = const,
|s| = 1. The angle between the axis of the pair and the polarization at
infinity is /4. The calculation was performed at D # 0 (see Section 4.2.3).

of our order parameter (s(r)s(r’)) ~ s¢(S(r)S(r’)) at low
temperatures decrease slowly, according to a power law, as
R increases. Therefore, there is no long-range order at any
temperature; however, a short range order does exist. In the
case of a Bose gas, this indicates the existence of a collective
effect — two-dimensional superfluidity.

As temperature increases, vortex—antivortex pairs
emerge. The typical polarization pattern created by such a
pair on an infinite flat surface, which is obtained by
calculations, is shown in Fig. 12. If the upper vortex is
compassed in the positive direction, i.e., counterclockwise,
the polarization vector rotates by an angle of 2, so the upper
vortex has a topological charge ¢ = 1. Consequently, the
lower vortex charge is ¢ = —1. The topological charge inside
an arbitrary closed two-dimensional contour C is determined
in general by the formula Q = (2rr)~" Jo d0, where contour C
is compassed in a positive direction.

A vortex—antivortex pair on the surface of a protein-like
body looks as shown in Fig. 13.

We now calculate the pair energy u(R) on a flat surface if
the distance between the vortex cores is R. We consider that
the cores of the vortex and antivortex are located at the points
with coordinates r; = (—R/2,0) and r, = (R/2,0), respec-
tively. By minimizing energy (110), we obtain the Laplace
equation A0 = 0. Its solution, which is valid everywhere
except for the regions inside the vortex cores, where the
approximate formula (110) itself is no longer valid, has the
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Figure 13. Excited state of a liquid with a single vortex—antivortex pair
captured by the surface of a hydrophobic body immersed in the liquid.

form 0(r) = ¢, — ¢,. Here, ¢, , are the angles between the
vectors r —r » and the x axis, respectively. We obtain from
here and from Eqn (110)

R2J dxdy
2 [(x + R/2) + 2] [(x — R/2)* + 7]

R
~ 2nl In <L_T> .

Following [210-213], we include into consideration the pairs
and transform energy (110) into the form

iq; In i) 114
agmn (7). (19

(113)

I
G%EJ df (Vp)? —oml Y

1 <i<j<2N,

Here, y is the fluctuation part of the angle 0 that drives the
vanishing of correlations as R increases at low temperatures
(see (111)), r;j=|ri—rj|, i, j=1,2,...,2N, are the numbers
of the vortices, ¢; are their topological charges, and N, is the
number of pairs. The entire surface is topologically neutral:
>:q: = 0; otherwise, the Gibbs energy of the liquid would be
proportional to the logarithm of the surface area, i.e.,
infinite.

In the case of a Bose gas at low temperatures, the paired
vortices remain in a bound state due to the logarithmic
attraction between the vortex pair components. The number
of pairs is small, so their presence does not destroy the short-
range order in spin directions considered above. The same is
true in our case. This is indicated by the power-law
dependence of the correlation on R (111) due to thermal
fluctuations generated by the first term in (114). This term
does not contain singularities, and it is this feature that was
used to derive Eqn (111). If T > Tgkr, where

nl
Tk = =

: (115)

the existence of unpaired rather than paired vortices
becomes thermodynamically more advantageous. The
pairs dissociate and a ‘plasma’ is formed that consists of
free N, vortices and N, antivortices [210-213]. Indeed,
consider a single vortex or anti-vortex on a surface with a
characteristic size L. In this case, we have § = +¢, where ¢
is the azimuthal angle (see notations in Section 2.8);
therefore, (V0)* = 1/r2, and the internal energy of the

liquid is U = (1/2) [ df/r*. The integral diverges for large
r, so we get with logarithmic accuracy U = nl In(L/L7).
The number of ways to place the vortex on the surface is
I'~ Sr/L3 ~ L*/12, so the entropy and Helmholtz energy
have the form S=In(L?/L%), and F=U-TS=
(nl —2T)In(L/L7), respectively. It can be seen that the
formation of a single vortex is thermodynamically advanta-
geous for 7' > nl/2, from which Eqn (115) follows. In the
‘plasma’ of pairs of vortices and anti-vortices that emerges at
T > Tkt as a result of dissociation, the power-law
dependence on R (111) is replaced by an exponential one.
A topological Berezinskii—Kosterlitz—Thouless (BKT) sec-
ond-order phase transition occurs. In the case of a two-
dimensional Bose gas, the BKT transition destroys its
superfluidity.

It is instructive to derive result (115) using a method that
will be needed later on to analyze a more complicated case
D #0.

Of interest to us is the behavior of the system at

T~ TBKT N (1 16)
when the size of a typical pair is large, i.e., the condition
R > L7 is satisfied. We can ignore in this case the first term
in (114) that describes thermal fluctuations, owing to which
we can represent the energy of the system in the form

2N,
1 <2 1
G=—3 Ei.i qigjurij) =5 Ej 4 ®(r;) . (117)

A ‘topological potential’ was introduced in (117), as is done in
classical electrostatics,

o(r) = — Z qiu(r —1;) = — J“(R)PTP(TI) d’r’. (118)

Here, R=r—1', prp(r) =3, ¢;0 @(r - r;) is the density of
the topological charges of the vortices. Substituting formula
(113) into (118), we obtain

_ r,-_,- _ 1
G = —‘IIIZ q,‘qj 11’1 (L—T> = EZ:C[,@(I‘,) .

i#j

(119)

The potential @(r) in (118) satisfies the Poisson equation,
Ly ®(r) = —4n2Ipp(r), where the notation L, = A, is intro-
duced, and the relation A;In ([r —r'|/Ly) = 26 P (r —t') is
used.

We keep exploiting the analogy with electrostatics.
Since, according to (117), the energy of the charge ¢ in
the external potential @ is equal to G = ¢®, the force that
acts on the charge has the form F = gE, where an analogue
of the electric field vector—the ‘topological’ field
E = —V®—is introduced. The pair energy in this field is
q+P(ry) + g_&(r_) = —dE. The topological dipole moment
of the pair d=g¢;r; +¢g-r_=r, where r=r; —r_, is
introduced here.

Let us put the test charge Q at the coordinate origin. The
equation for the potential @¢(r) of a pointlike charge Q has
the form

Le®y(r) = —4n2106 P (r) — 4n’Ipyp(r) . (120)
We assign the numbers a =1, 2, ..., N, to the pairs and
separate the summation over pairs and over charges in pairs
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in the expression for pp(r):

prp(r) = Z q;0 (2)(" )

J

= Z[é @ —r,) =0 (r—r,)].

The coordinate of the ath pair is p, = (ry +r_)/2, so
r,+ = p, £r,/2. Linear expansion in the small vector r,
yields the standard result: pp(r) = —VP, where P(r) =
> dsP(r—p,) = np(d) is the polarization vector of the
gas of vortex—antivortex pairs, n, is the surface density of the
pairs, and the symbol (...) means averaging over the
microscopic section of the surface that contains a large
number of pairs, as well as averaging over the statistical
ensemble. It should be noted that, after such averaging, the
topological charge inside the contour C,

Ortp = L df pre(r),

is, generally speaking, a fractional number.
The general form of the expression for polarization in the
weak field approximation is as follows:

P(r) = j A7y (r — r'DE)

——[arvie=rpve). (121)
We get for a slowly changing field P(r) = yE(r) = —yV&(r),
where y = [ dfy(r) is the susceptibility of the HBPL surface
layer,

prp(r) = 1A Po(r) . (122)

We transform Eqn (120) with Eqn (122) taken into account

4n’I0

Aolr) = =g,

0 (r).

This formula shows that the phase transition occurs under the
condition

=00, (123)
the physical meaning of which is that pairs start dissociating,
and free charges completely screen the test charge field.

There is only a small number of large-sized pairs in a state
close to dissociation at temperatures slightly lower than Tgk .
Most of the pairs have small dimensions. We divide for this
reason the vortex pairs into two classes: small size pairs (small
pairs, SPs) and large size pairs close to dissociation (large
pairs, LPs). The SP cloud screens the LP field due to which the
potential energy of the LP changes.

First, we calculate the polarizability o, of a single SP. The
SP energy in the external field E is equal to V' (r) = u(r) — rE,
where the pair energy is given by Eqn (113). The average SP
dipole moment in the weak field approximation is

_ Jdrrexp(—V/T) _
© [&rexp(—V/T)

(d) apE.

Here, ap, = I3/(2T1) is SP polarizability. We introduced
integrals of the form

L,:szrr"*lexp 2 :211:JOO arr( )" (124)
T 0 Ly)

where parameter § = 2n//T. The susceptibility being sought
is given by the formula y = apnp,.

The density n, at a temperature close to that of the
transition may be calculated using the following arguments.
The pairs at T ~ Tkt only start dissociating, and the fraction
of LPs is not large. The size of a typical pair is small, and
interaction between the vortices remains unscreened and,
therefore, the energy is approximately equal to u(r). The
statistical sum of a gas consistin%\lof N, pairs on the surface
with area Sp has the form z =z " /N,,! z(zle/Np)Np. Here,
2 = [ d*ry d*r_ exp [~u(r)/T) = [ d®p d*r exp [~u(r)/T],
where p = (r; +r_)/2. To avoid the Gibbs paradox, the
1/N,! factor is introduced in a standard way. Minimizing the
free energy of the pair cloud F,(N,) = —TInz, we find
Np =71, i.e., np = Np/Sr = I], SO
I

=37 (125)

X
Thus, we obtain for the case D = 0 considered in this

section
gee)
5 J dri3F,

L= 55 . (126)

The integrand in Eqn (126) is not valid for small r. However,
there is no singularity for such r, since this region corresponds
to the confluence of the vortex cores, in which all quantities
remain finite. The integral converges for large rif 3 — f < —1,
which corresponds to 7' < Tgkr, and diverges if 7> Tk,
which corresponds to the dissociation of pairs at such
temperatures. The expression for the root-mean-square size
of pairs, which is proportional to 73, as it should be, also
diverges.

4.2.3 Case D # 0. Specific features of the BKT transition in a
two-dimensional dipole gas. Ordering phenomena in two-
dimensional spin systems with dipole—dipole forces acting
between particles were explored in detail in [217-229]. These
studies showed that such interactions between the magnetic
moments of atoms lead to the stability of long-range
ferromagnetic order with respect to thermal fluctuations.
This implies in our case that the HBPL layer adjacent to the
amphiphilic surface at low temperatures in the ferroelectric
state is s(r) = const [217, 218], where s = 59, or has, like a
piece of nonmagnetized soft iron, a domain structure that
consists of polarized domain islands (see [219, 220, 222, 230],
in which 2D spin systems were studied).

We now prove the stability of the ferroelectric state of the
HBPL surface layer. To this end, we consider the case where
the HBPL layer is polarized along the x axis that belongs to
the plane of the surface, as shown in Fig. 14. Let the dipoles
deviate at small angles 6(r), so that s(r) = so(1, 6). We obtain
from (109) instead of (110)

(6,),(6,),
r—r

G[o(r)] = éj ds (vo) % Dsg J drdr’

=5 S sl (127)
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Figure 14. Propagation of a ferroelectric wave with the wave vector k in a
near-surface layer of water (top view of the near-surface layer).

where 0, = 80/0y, g(k) = Ik?* + 2nDsik sin? o, and o is the
angle between the vector k and the y axis. It follows that the
average polarization-vector deviation angle squared is

1 T d’k
07y =—> {(|6x] :—J .
< > Sr;q k|> 41’[2 ksl/LT]k2+2TEDS02k Sil’lzd
(128)

The integral in (128) diverges at D =0, i.e., the uniform
polarization is in this case unstable with respect to thermal
fluctuations, as shown in Section 4.2.2. It should be noted that
due to (108) k < 1/Ly. Therefore, 2nDs¢k/(Ik?) 2 4n/A ~
& =~ 88 > 1, which simplifies the calculation of the integral.
We obtain as a result the estimate

5 T

@)~ e
which indicates the stability of the ferroelectric state at low
temperatures.

Thus, the ferroelectric ordering does not disagree with
the Peierls-Mermin theorem [215, 216] regarding the
absence of a long-range order in 2D systems. It is due to a
new phenomenon: the long-range dipole—dipole interaction
between molecules in a near-surface layer, which is described
by the term with coefficient D in (109). This is another
manifestation of long-range action characteristic of HBPL.

Equation (128) also shows that the long-range dipole—
dipole interaction and the short-range interaction associated
with the formation of hydrogen bonds are equally important
for stabilizing ferroelectric ordering in the film, in full
agreement with [227, 228]. The long-range order does not
exist if any of these terms is missing: the integral diverges if
D = 0 (no dipole—dipole interaction) or if 7 = 0 (no hydrogen
bonds). This conclusion is consistent with Earnshaw’s
theorem on the instability of a classical dipole system, which
is stabilized in our case by hydrogen bonds. It also implies
that short-range intermolecular forces determine in the 2D
case the structure of dipole ordering at large distances. The
same observations have been made in studies [231-234] that
explored classical two-dimensional systems of magnetic
dipoles located at the nodes of lattices of various types. The
ground state of a 2D lattice system of magnetic moments was
shown to be ferromagnetic or antiferromagnetic, depending
on the lattice type.

Attempts to elucidate the nature of the phase transition in
a two-dimensional dipole gas have to date mainly relied on
renormalization group methods [218, 220, 227, 235] and MD
calculations [221, 223-225, 236, 237]. It was shown in [218,

~25%x1073 <1,

223, 227] and in Section 4.2 that the thermal excitations
predominant for short-range, contact interactions, i.e., at
D =0, are the polarization states s(r) that correspond to the
gas of vortex—antivortex pairs. This property is also valid at
D # 0. According to [227], the energy of interaction between
the vortex and the antivortex linearly increases when D # 0 as
the distance R between their cores grows. As stated in [227], it
is for this reason that the nature of the phase transition that
occurs as temperature increases is fundamentally different
from the BKT transition. The physical mechanism of the
transition considered in [227] is not discussed in that study,
since it cannot be established within the renormalization
group procedure.

We critically analyze in this section a statement in [227]
about the different natures between the BKT transition and
the phase transition in the HBPL film adjacent to the
amphiphilic surface using to this end a combination of
numerical calculations and a simple analytical model. We
show that, similar to what occurs in plasma, a key role is
played by the screening of attraction inside large pairs close to
dissociation, which is due to the presence of small vortex
pairs. This screening qualitatively changes the character of
the dependence of the interaction energy between the vortex
and the antivortex on the distance R between their cores: this
dependence remains linear at small distances R < Lyrg, where
ro ~ 5 (see below), and becomes logarithmic at R = Lyry.
Therefore, the phase transition occurs following the standard
BKT mechanism associated with the dissociation of pairs.

This conclusion is consistent with the results of Monte
Carlo calculations in the Heisenberg anisotropic XY model
containing long-range dipole—dipole interactions [237, 238].
Of course, numerical calculations per se cannot establish the
physical mechanism of the phase transition. This can only be
done on the basis of the analytical calculations presented in
this section. In particular, the dependence of the second-order
transition temperature on the dipole—dipole coupling con-
stant D is established below. The agreement of this depen-
dence with calculations [237, 238] is an additional confirma-
tion of the conclusion made here regarding the BKT
mechanism of the transition. We show that the only
manifestation of the influence of the dipole—dipole interac-
tion on the character of the BKT transition is a small increase
in the transition temperature compared to the value that
follows from (115).

We make calculations for the case D # 0 applying the
method developed in Section 4.2.2. We first introduce
dimensionless variables G = G/I, ¥ = r/Ly and dimension-
less parameters Ay = RoLzsy /1 = Bs3/(24),

DsiLr 2

A= —

7 R (129)

and replace the polarization vector with the vector s = s/s.
We omit for notational simplicity the tilde symbol above all
these quantities.

The free energy reduced to the dimensionless form is
expressed as follows:

Gs(r)] = Go + Gaa, .
1 0s, 08y 2

ot o ¥ S o] o
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Owing to the last term in (131), the state of the dipole gas is
stable with respect to Earnshaw’s instability, i.e., the collapse
caused by dipole—dipole forces (132).

It should be noted that model (130) may be widely used,
for example, for such 2D systems as magnets [236], ferro-
electrics [239], quantum gases [240], and water molecules on
the surface of proteins in biology [25].

Of interest to us is the behavior of the system at 7'~ Tgkr,
when the size of a typical pair is large, as in Section 4.2.2, i.e.,
the condition R > 1 holds. We have for large vortex pairs
Vs ~ 1/R and, consequently, Gyo ~ In R, G44 ~ R. Thus, the
pair energy grows linearly as the distance R between the
vortex and the antivortex increases, implying that the force of
their attraction is constant [226, 227]. This behavior is very
different from that observed in the model considered in
Section 4.2.2 with only contact interactions, i.e., at D =0,
where the force that operates between the vortex and the
antivortex decreases with an increase in the pair size R in
inverse proportion to this size. This observation, as well as the
results of [31, 227], enable representing the energy of the
system in the form (117), (118), where now

u(r) = 2nln (1 + ar) + Kor (133)
and o ~ 1. It was taken into account in (133) that, as r — 0,
the vortices in the pairs annihilate, which corresponds to the
condition u(0) =0. The logarithmic contribution to u(r),
which arises due to the presence of the Gy term, describes
interaction between vortices in the limit 4 — 0 [213];
Ky = Ky(A) is the tension coefficient of the effective ‘string’
connecting the vortex-antivortex pair that depends on the
interaction ‘strength’ A (we note, however, that the term
‘string’ used here is conventional, since there is no string, i.e.,
no polarization bunch near the axis connecting the vortices is
formed).

We note in this regard that the transition from Eqns (130)—
(132) to the gas model of vortex-antivortex pairs is described
by effective interaction (117), whose parameters at D # 0
must be selected from a comparison with the results of
numerical calculations. The procedure for choosing the
values of the parameters « and K; included in (133) is
explained below. Moreover, formula (117) itself is approx-
imate and also subject to verification.

We briefly describe the essence of subsequent calculations
carried out in this section. Numerical calculations showed
that all quantities of significance for establishing the nature of
the phase transition depend on the parameter Ay in (131) very
weakly. This is due to the existence in our problem of a small
parameter 1/1In gy, where ¢ is static dielectric constant (44).
The calculations were performed for this reason for Ap = 1. It
should be noted that, according to (129), the parameter A is
rather large: A ~ 10. It turns out that, as 4 increases, the main
physical quantities become saturated to reach asymptotic
constants as early as at A4 ~ 1; therefore, there is no need for
laborious calculations with such large A.

Equation (117) with u(r) from (133) is, in studying the case
D # 0, a basis for a phenomenological model that describes
the properties of the HBPL layer adjacent to the amphiphilic
surface. To verify Eqn (117), namely the additivity property
of the HBPL layer energy with respect to vortices and
antivortices, which follows from this equation, a series of ab
initio computer calculations was performed in the molecular
dynamics using the Langevin equation [241]. A mesh with
nodes i =1,2,..., N, was introduced on the plane (x,y). A
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Figure 15. Polarization of the HBPL layer adjacent to the amphiphilic
surface at a temperature close to Tpgr, Which is calculated using the
molecular dynamics method. A large number of vortex—antivortex pairs
that emerge due thermal fluctuations are simultaneously present in this
case. Their mutual influence creates a screening, as a result of which the
linear nature of the interaction inside each pair is replaced with a
logarithmic one. Owing to this, a BKT transition occurs.
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discrete representation of Hamiltonian (131) and (132) on this
mesh was used to calculate the Langevin dynamics of the
system at a fixed temperature for long time intervals, which
made it possible to find statistical average values of the
systems with the required accuracy.

To calculate the thermodynamically equilibrium polariza-
tion states taking fluctuations into account, the Langevin
equations for polarization vectors at the mesh nodes were
numerically solved:

dS,‘

@

o (Go + Gaa) + (1)

%, (134)

The constant y determines the model time of the liquid layer
relaxation to the equilibrium state. The term {, with
o = (x, y) that describes random Gaussian noise satisfies the
conditions (§;(¢)) = 0and ({,;(£)Cg;(t")) = 2T93.p8;;0(t — t').
The second-order Runge—Kutta algorithm was used to solve
Eqns (134). The equations were integrated numerically with a
sufficiently small time step, the optimal value of which was
found to be Ar = 0.005. To determine the term (132) that
describes the dipole—dipole interaction, we used the fast
Fourier transform procedures in the NumPy package [242],
which enabled calculation of this term in O(N,In Ng) steps.
Examples of typical polarization patterns of a two-dimen-
sional gas of dipole molecules at zero and nonzero tempera-
tures, which were obtained in this way, are displayed in Figs 12
and 15.
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Figure 16. Free energy of a uniformly polarized 2D spin system with a
small vortex pair located in the center of the configuration that describes
the large vortex—antivortex pair (a) and a small pair slightly shifted with
respect to the configuration center (b) as a function of the angle (in units
n/12) between the small-pair axis and the x axis. The curves labeled N
correspond to numerical calculations that use the Langevin equation, and
those labeled A, to analytical approximation (135). Free energy is
measured in units 7 (see the definition of dimensionless units used in this
section before Eqn (129)).

An algorithm designed to find the state of the system was
used to verify the assumptions based on which formula (117)
was derived. First, we considered the zero temperature case,
T = 0, for which vortex additivity rule (117) was verified. We
applied to this end the imaginary relaxation time method that
can be used to find local minima of the free energy functional
in the configuration space of 2D vectors s; = (sy;, 5y;) at the
nodesi=1,2,..., N, of a dense square mesh.

Following [243], we chose as the initial state, from which
the solution of (134) started, the approximation s (r) =
(SAX(‘O) (x,2), S}@) (x,)) such that

2W
0) 4 500 — ="
se sy = , 135
’ ! 1+ |w)? (135)
where
2N,
W= | I(Z—zj)qf,

=1

z =Xx+1y, and z; = x; + iy, is the complex coordinate of the
Jjth vortex with the topological charge g;. For a topologically
neutral gas of pairs, Zj g; = 0; therefore, W — 1 at z — oo,
which is consistent with the physical boundary condition
s — (1,0) at r — oo adopted in calculations. We observed at
the first stage of the imaginary-time dynamics at 7=0 a
deformation of the initial polarization configuration that
included a transition to an almost stable vortex pair. At the
next stage the vortex pair cores approached each other much

more slowly and eventually annihilated. Any initial config-
uration containing pairs undergoes at 7'= 0 a transition to
the ground state, s, = 1, s, = 0. To ensure the stability of the
pair, vortex pinning was introduced by adding the term
Gpin=_; G}, Gy = [df V;(r)[s(r) —so(r)]” to the free energy,
where V;(r) = —Vyexp [—(r — 1f,-)2/a2], a ~ 1. Pair produc-
tion was observed at 7' > 0 along with annihilation; therefore,
the gas as a whole turned out to be at equilibrium.

To verify formula (117), numerous diverse configura-
tions differing in the number of vortex pairs were studied.
Total energy values (117) and (133) were numerically
reproduced for each of the configurations with an accuracy
of ~ 5% (examples of typical verified vortex configurations
are presented in Fig. 16). The accuracy that we were able to
achieve is naturally limited by the magnitude of the
perturbation associated with the pinning potential. This
accuracy turned out to be quite sufficient to prove the
approximate expression (117) for the multi-vortex config-
uration energy.

Numerical calculations made it possible to determine the
functional dependence Ky(A). It turns out that the physical
configuration corresponding to a single pair loses stability at
A2 Agx=04: a new small-sized vortex—antivortex pair
emerges in the center between the large pair of vortices. If A
increases further, the initial vortices turn out to be immersed
in the polarization cloud of small pairs, which reduces the
effective topological charges of the initial vortices. According
to Eqns (117), (118), and (133), a decrease in the topological
charge is equivalent to a decrease in the constant Ky, which
implies that, as A increases, the value of Ky(A) stabilizes;
therefore, Ky(A) = Ko(Aer) = Ko(o0) = 3.1 for A > Ag.
Thus, a saturation effect takes place: Ko(A) — Koy(oo) = 3.1
at /1 — oo (see the inset in Fig. 17). The spontaneous pair
production also follows from formula (117): if A > A, the
energy of a large pair decreases due to the emergence of a new
small pair in the center of the configuration.

The parameter « in formula (133) is selected based on the
condition of its consistency with the conclusion made in the
previous paragraph: if & = Ky(o0)/(2m) is chosen, a new pair
emerges at A = A, as it should.
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Figure 17. Transition temperature Tkt as a function of the ‘strength’ of
the dipole—dipole interaction A found from Eqn (139) (solid curve) and the
numerical estimate Tgkt (diamonds) independent of the additive approx-
imation (117), which is obtained ab initio from the MD calculation. The
BKT result of [244, 245] that corresponds to A = 0 is indicated by a black
dot. The inset shows the saturation effect of the pair tension coefficient Ky
as the dipole—dipole interaction strength A increases. The dependence
Ky = Ky(A) is used to find the critical temperature from Eqn (138).
Temperature is measured in units of 1.




470 L I Menshikov, P L Menshikov, P O Fedichev

Physics— Uspekhi 63 (5)

After formula (117) for energy has been verified in
numerical calculations, it may be used to establish the nature
of the phase transition and derive an analytical expression
for the transition temperature. We apply to this end
the method developed in Section 4.2.2. The potential @(r)
satisfies by definition the Poisson equation, L, ®(r) = pp(r).
The linear operator L, is defined here in such a way that
Leu(r —r') = =@ (r —r’) or, in the Fourier representation,
L = —1/u= {2nKok 3 + 4n2a /[l (k + )]} .

The equation for the potential @y(r) of a test point
topological charge Q located at the coordinate origin has the
form L,®y(r) = Q5 @) (r) + pyp(r). Repeating the operations
performed in Section 4.2.2, we obtain the expression

d*k exp (ikr)
(2n)? Li + xk?’

Po(r) = QJ' (136)

where y is the susceptibility of the near-surface HBPL layer
defined in Section 4.2.2.

The main contribution to the integral comes at large
distances, r > rg = (21‘EK()}()71, from the region of small k,
for which the term in the denominator proportional to &
can be disregarded. Thus, since (Inr), = —2n/k?, the test
charge potential behaves like a logarithm: @y(r) =
—(Q/2ny)In (r/Cy), r > 1y, where C; ~ro. In the inverse
limit, i.e., at r < ro, the potential is linear: ®o(r) ~ —QKor,
r < rg. Based on these properties, we use the following
interpolation expression for the potential: @y(r) ~
—(Q/2ny)In (1 +r/rg). This formula shows that the effec-
tive energy of a pair of size r is equal to u(r) = U(r), where

Ulr) = — g1 (r) = 217% In (1 + r’—0> . (137)

The scale rg is similar to the Debye screening radius of 2D
interactions between topological charges. To demonstrate
this fact, we consider for simplicity the case « = 0. We obtain
from (122) and (136) for the total charge located inside a circle
of radius r centered on the test charge

r

0.1 =0 +j 2’ dr' prp(r)

0

—0 °°dx xexp(—x) 0 .
L \/xz‘i'("/"o)2 \/1‘1'("/70)2

This formula shows that the test charge is screened, Q; = 0, at
distances greater than ry.

This conclusion is of importance for establishing the
mechanism of the phase transition in the HBPL layer
adjacent to the amphiphilic surface. The polarization of
the small-pair gas results in the suppression of linear
attraction between the vortices at large distances and its
transformation into a logarithmic one. Thus, the phase
transition associated with the dissociation of pairs has the
same qualitative character as the BKT transition in the
system with D =0, i.e., with only contact interaction
between molecules.

Comparing formula (137) with (113) and (115), we find
the temperature of phase transition in the near-surface HBPL
layer:

1
Tkt =g — - (138)

8my

We obtain from this equation and from (124), (125), and (133)
an implicit equation for Tggr:

2T[[3 :1,

or, in a more detailed form,

00 3 _
SnJ ar X0 Ko Tocr) (139)
0 (1 + ar) ™/ Toxr

Formula (139) enables the results of model predictions for
Tkt to be compared with those of a numerical experiment,
which is discussed below.

To avoid misunderstanding, we note that there is no
disagreement between relations (123) and (138). Parameter y
in (138) is an intermediate quantity that arises in the process
of calculations related to the case D # 0. The logarithmic
dependence of the effective energy of interaction between
large pairs (137) corresponds, according to Section 4.2.2, to
the infinite value of physical susceptibility (123).

The weak field approximation, which requires (d) ~ o, E
and needs an additional substantiation, was used in the
arguments presented here and in Section 4.2.2. To confirm
that this approximation is realistic, we use Eqn (137) to find
the average energy of interaction between the vortices at a
temperature slightly less than Tggr:

(U(n) =z, JOC drU(r)go(r) = Tkt o4 (140)

0 —1(1-21)°

Here, z, = [[“drgo(r), go(r) =rexp[-U(r)/T], and ©=
(T — Tgkr)/ Tkt It follows from (137), (138), and (140)
that near the phase transition, at |t| < 1, the characteristic
size of a pair close to dissociation is large, rpp ~
roexp [1/(4]t])] > ro, and the topological ‘electric’ field is
small, E = —VU(r)  exp [—1/(4|])]. The smallness of the
parameter exp [—1/(4|t])] < 1 underlies the above calcula-
tion. Indeed, the ratio of the characteristic topological
‘electric” field (~ |[VU(r)|) and the value of the field
~ |Vu(r)| inside small-size pairs (see Section 4.2.2) is of the
order of the specified small parameter. Thus, the weak-field
approximation is applicable in the vicinity of the phase
transition point.

The above analysis made it possible to establish the nature
of the phase transition. This analysis was based on approx-
imation (117), which, however, when verified, turned out to
be quite accurate. Without resorting to the described
approximation, we now provide a rigorous proof of the FPT
existence in the surface liquid layer and compare its
quantitative conclusions with the previous approximate
calculation.

The Binder method was used for the numerical analysis
of the critical behavior of the model, depending on the
dipole—dipole interaction constant A [246]. The parameter
U, =1— (s*)/3/(s®)? (‘Binder cumulant’) was calculated as
a function of temperature. Here, s =S/N,, S = Zgilsk.
According to one of the main theorems of statistical
mechanics, statistical averaging (...) over ensembles is
equivalent to averaging over time in calculating molecular
Langevin dynamics based on Eqn (134). The calculations
used periodic boundary conditions and square meshes L x L
with the number of independent nodes Ny = L?. According
to [246], the point where the Binder cumulants for various
sizes of the system L intersect determines the actual
temperature of the phase transition, as shown in Fig. 18.
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Figure 18. Explanation of the method applied to calculate the temperature
of the ferroelectric phase transition Tgxr in molecular Langevin dynamics
based on the Binder approach [246] and independent of approximations
(117) and (118). The Binder parameter is calculated at A = 0.2. The
calculation was carried out on a square surface divided into L x L
identical cells. The values of L corresponding to each calculation are
displayed. Temperature is measured in units of 1.

In the absence of interaction, Ky = 0 (or A4 = 0), and we
find from Eqn (139) Tkt ~ 0.7, a value that is fairly close to
the results of Monte Carlo calculations: Tgxt ~ 0.89 [244]
and Tkt ~ 0.86 [245] obtained using square and triangular
meshes, respectively. Our computer calculation yields in this
limiting case

Texr(4 =0)=0.85. (141)
If A is large, which, as mentioned above, corresponds to
typical HBPL, the transition temperature asymptotically
approaches a constant value Tggr(00) ~ 1.4. A similar result
follows from Eqn (139): Tgkr(00) = 1.3. It should be noted
that the arguments of [227, 228] based on the renormalization
group analysis yield a significantly higher transition tempera-
ture: T,(oo) = 2n. This implies that in the renormalization
group analysis it is rather difficult to take into account all the
diagrams that are of significance for a description of screen-
ing. A similar conclusion follows from the results for the case
A = 0. Indeed, presenting (115) in a dimensionless form, we
get Tgxt = 1/2 ~ 1.57. The renormalization group approach
that takes into account the logarithmic interaction between
pairs yields Tggt ~ 1.51 [212]. Either value is very different,
both from the above results obtained by the Monte Carlo
method [244, 245] and from our result (141).

4.2.4 Interesting observation. An interesting conclusion
may be drawn if the analytical approach developed in
Sections 4.2.1-4.2.3 is applied to the formation of a
quark—gluon plasma. We consider a gas of pairs of
particles (‘pi-mesons’) with a linearly growing interaction
energy u(r) =or in three-dimensional space. If the ‘pi-
meson’ size is sufficiently large, r > a, the formation of a
new pair becomes energetically advantageous. Section 4.2.3
shows that this process is taken into account in our model:
the number of particles is not specified in advance, but is
found from the condition of minimum free energy. The
mass of the newly formed pi-meson, m ~ \/hig/c3, and its
size, a ~ +/hic/o, are found from the energy balance
mc? ~ ga and the uncertainty principle a ~ i/(mc). Carry-
ing out an analytical calculation similar to that in Section
4.2.2, it may be concluded that, due to screening, we get
instead of a linearly increasing interaction u(r) an effective
interaction of the form U(r) = —[20/k*r][1 — exp (—kr)]

that contains a new size 1/x = o%a3/(16nT?) characterizing
this screening. Thus, the polarization of the pion-nucleon gas
leads to two effects: (1) a potential of quark ionization
Iy = 20/Kk emerges in the pi-meson that arises due to the
emergence of correlations between nuclear matter particles;
(2) the linear law of the interaction between colored charges is
replaced at large distances between them (r > 1/x) with the
Coulomb law U(r) = —(2a/k2r).

Similar to an ordinary plasma, there is no abrupt
phase transition in this model to a state with free color
charges. The dissociation degree of ‘pions’ is significant,
~exp(—Iy/T) ~ 0.5 at T ~ mc? ~ 150 MeV, which deter-
mines the characteristic temperature of quark—gluon plasma
formation.

The arguments presented here are naturally not rigorous
and, of course, may be a matter of a critical discussion.

4.3 Some results

The wettability properties of surfaces in contact with HBPL
were quantitatively described above in the VMPL. The
description of these properties in terms of the wetting angle
was shown to be incomplete. A comprehensive description
involves two parameters: oy and f, (in a more precise
description, when polar groups are present on the surface,
three parameters are required). Each surface at a certain
temperature corresponds to a point on the (o, f5y) plane. The
surfaces are divided into three types on the basis of
wettability, these types occupying three nonoverlapping
areas on the plane (o, f;) (see Fig. 9).

The two-dimensional HBPL layer adjacent to the amphi-
philic surface (region Il in Fig. 9) is at low temperatures in the
ferroelectric state. This state features a nonzero order
parameter —the polarization vector, i.e., total dipole
moment of molecules per unit surface area. As temperature
increases in the layer, thermal fluctuations of the vortex-
antivortex pair emerge, the interaction energy between which
linearly grows as the distance between the vortices in the pairs
increases. These excitations determine to a large extent the
physical properties of the HBPL layer. As temperature grows,
the surface density and sizes of pairs increase. The effect of
screening of large pairs by a cloud of small pairs becomes
significant. The linear dependence of the interaction energy of
vortices in large pairs on the distance between them is
replaced as a result with a logarithmic dependence. When a
critical temperature is reached, whose value depends on the
properties of the liquid and the surface, pairs are dissociated a
la the BKT transition. The long-range order in the surface
layer is destroyed as a result, and the layer becomes para-
electric. Thus, the BKT transition mechanism turns out to be
universal and applicable to a much wider class of systems than
was previously assumed.

Phenomenological relations (100) and (101) are presented
in the most general form; therefore, they are applicable to any
surface, including an amphiphilic one in the paraelectric state.
The calculations presented in Sections 4.1 and 4.2 show that
both the paraelectric state of the near-surface layer and the
FPT according to the BKT scenario in this layer can exist.
Consequently, region III in Fig. 9 directly corresponds to the
indicated paraelectric state, while the BKT transition occurs
on the OC line that separates regions II and III, when the
parameters oy and f, change with temperature. On the other
hand, when crossing the OA boundary, the polarization
vector, which is an order parameter, changes in a continuous
way. It clearly shows that the OA boundary must also
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correspond to a second-order phase transition that occurs
when the hydrophilic surface is heated. Molecular dipoles
above the OA line are directed, on average, perpendicular to
the surface. This automatically implies that the surface of the
body maintains a large-scale continuous network of hydrogen
bonds that breaks when heated, i.e., when the OA line is
crossed. Most likely, it was this percolation transition that
was observed in MD calculations in Refs [247-249] that
studied the state of a hydrogen-bond network on weakly
hydrophilic protein-like surfaces, which corresponds in
VMPL tos < 1.

Fluctuation region III should actually have for these
reasons a more complex nature than that presented in
Sections 4.1 and 4.2. Two assumptions may be made here.
The first is that fluctuation region III is subdivided in the case
of a large surface into two subregions, which are separated by
a boundary in the (o, f,) plane: in one subregion, the
fluctuating polarization vector is tangent to the surface,
while in the other, it is perpendicular to it. According to the
second assumption, both components of the fluctuating
vector are simultaneously nonzero. This issue, which has not
been studied yet, is an interesting problem. As for experiments
[206], they only evidence that regions I and II exist.

5. Interaction between bodies immersed
in polar liquid with hydrogen bonds

5.1 Key features of the interaction

We consider the case of a liquid that contains two systems of
foreign charges. We have then p.(r) = p,(r) + p,(r). The
energy of interaction between them is given by the cross
term in Gy, in (50) taken at ¢, = 1 (calculations are carried
out for a simplified form of free energy (47)):

G = [ repy 20
int |l"—l'/|

(D]

The interaction energy for a pair of point charges separated
by distance R has the form that follows from Eqn (142),

(142)

L qqp

Gint(R) = — —+
lnt( ) 8( ) R )

where we introduced a notation for the effective permittivity

¢(R) defined by the relation

(143)

This dependence is consistent for the parameters & ~ 88 and
those in Eqn (56) with MD calculations and with measure-
ments [250-254]. It should be noted that, as can be seen from
(43) and (44), Eqn (143) involves both spatial scales of the
vector model, while the scale Ly is implicitly contained in &.

The interaction between macroscopic bodies, however, is
determined not only by the foreign charges (their definition is
given at the end of Section 2.1.1) that are borne by these
bodies. MD calculations show that uncharged bodies also
polarize the liquid [24-27]. As shown in Section 4.1, this
polarization arises spontaneously in the VMPL for amphi-
philic surfaces if nonlinear terms ~ s* and of a higher order,

Figure 19. Polarization of liquid around a spherical hydrophobic body.
(a) ‘Force-free’ and (b) ‘force-based’ polarization of liquid. In the former
case, Vs = 0, and the polarization charge of the liquid is zero. In the latter
case, it is not zero. The meaning of the vectors J and d,, is explained in the
text.

which are absent in weak-field approximation (22), are taken
into account in V(s?). The electric fields created by the
polarization charges of the force configurations (Figs 10b
and 19b) in linearized approximation (22) and (45) should be
taken into account for this reason as additives to the external
field E., as if the charges were located in vacuum rather than
in liquid. This also follows from Eqn (7). Force-free
polarizations can also be easily taken into account in the
linearized VMPL equations. We conclude from the form of
the polarization fields displayed in Figs 10 and 19, taking into
account the next to last term in (47), that the addition to the
HBPL free energy that comes from spontaneously emerging
polarizations should be linear in the vectors s and rots, and
therefore it can be expressed as

Gin = —Po | r {Ec(r)s(r) + J(r) [V x s(r)] } .

Integrating by parts, we obtain

Gine = —Po

J

d*rE(r)s(r).

Here,

E(r) = Ec(r) + [V x J(r)], (144)
and an axial vector J(r) was introduced, which describes the
force-free polarization of liquid by an immersed body with an
amphiphilic surface (Figs 10a and 19a).

We assign number a =1, 2, ..., Ny to the bodies. Their
sizes are assumed to be sufficiently small, < 2Ly ~ 3—4 nm,
which is most often true in applications to biology. We can
consider then the bodies to be pointlike and set J(r) =
>, J40(r —r,), where r, is the radius vector of the ath body;
E.(r) =), E¢(r), where El(r) is an electric field that would
be created by the external and polarization charges of the
ath particle located in the vacuum.
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We calculate the polarization created by these bodies and
the energy of their mutual interaction. We find to this end the
minimum of initial formula (45) into which E*(r) should be
substituted instead of E(r). We present the Fourier compo-
nent of the polarization of the liquid in the form sy = fi, + &,
where fy is the average value of the polarization vector and &,
is the fluctuation or deviation from this average. If we choose

1 -1 g 1|1 i
Jia = FO%:[F (k)h/;Ef/; =5 |D Eexa +5 (k x Jx),

1 | . )
- P()—\/Vlza: {5 E&4 + 7 (k x J ),} exp (—ikr,), (145)

where D = d+ 4n, d = Ck? + A, the terms linear in fluctua-
tions drop out, and a nonnegative term quadratic in these
quantities remains. We ignore the latter, given the conditions
of the minimum free energy in the mean field approximation,
to obtain

11 47|KEST?
_ (gt _ AR T
G=—5% AU

Eal” 1 2
- L k) =S S . (146)
2 (8ne(k) 2 2 Gat D

a<b

Here, G, = G¢ + G', G¢ is the energy of the ath body in the
liquid,

G: _ |E§k ’ ;
— 8ne(k)

and G is the energy of the liquid in the case of its force-free
polarization by this body (see Section 4.1), which yields in the
point body approximation adopted here an expression that
diverges at large k:

1 w2
—Wzk:\kxﬂ .

It is clear that this divergence should be cut off for wave
vectors of the order of the inverse body size.

Furthermore, u,, in (146) is the sought interaction energy
of the two bodies separated by the distance R =r, — ry:
a#b,

ua(R) = ufy, +ujy , (147)

u:b = ;47.[?(]{) Engf:,‘—k exXp (_lkR) )

1 “ )
ujy = —zk:m(k x J9)(k x J°) exp (—ikR)..

We conclude from (145) that the polarization may be
represented in the coordinate representation as

s(r) =) [ss(r) +57(r)] .

a

L fexp (=R g g
°(r) = E/ d 148
S50 = i | e LB AL (148)
J _ a CXp(—Ra/LT)
100 = gy 1 Ve SRR

where R, =r—r,. We introduce spherical coordinates
(R4, 0, ) whose origin is on the particle and the z axis is
directed along the vector J“. Only the azimuthal component
of the vector s/(r) is different from zero, which at R, < Lris
equal to 54 = —J“sin 0/(4nCPyR}). According to Fig. 19a,
we find from here for a spherical body of radius R, that
J= 4nCP0R§SO, where s is the polarization value at the
equator; this coincides rather accurately with the polarization
for a cylindrical surface with radius Ry (see Section 4.1).

We now take into account the polarization charges
created by amphiphilic bodies in a liquid (Figs 10b and 19b).
According to the discussion above, these charges are
equivalent to foreign ones, i.e., their field can be included in
the E¢(r) field created by the foreign charges borne by the ath
particle. The dipole moment created by polarization charges
is represented by the following integral taken over the volume
of liquid:

d, = J d’r pp(1)r = J d*r (—=VPgs)r = POJ d*rs(r). (149)

Integration by parts was carried out here, and it was taken
into account that the polarization at the amphiphilic body
surface is directed along this surface.

To be specific, we consider a cylinder of height Hy and
radius Ry such that

Ly < Ry < Hy. (150)

The main contribution to integral (149) comes from the large
lateral surface, which, given the relation Ry > Ly, may be
considered flat (we thereby abandon here the approximation
of point bodies). The polarization vector has the form

p_R°)1.
Lt

Here, p is the distance from the observation point r to the
cylinder axis and I is the unit vector directed along the
cylinder axis from the negative polarization charge to the
positive one. We obtain from here and Eqn (149) d,, =~ ¢, Hol,
where g, is the positive polarization charge

S &2 50 €Xp (—

qdp = 2TCR()LTP()S(), (151)

which is primarily concentrated at the edges of the upper
cylinder end (consequently, the charge —g,, is located at the
lower end edges). Indeed, the polarization vector, like the
velocity of a liquid in a laminar flow, smoothly bends in this
region around the front end, which is almost rectilinear at
Ry > Ly. Its value decreases in an approximately exponential
way as the distance from the edge line increases at a
characteristic length of ~ Ly, i.e., polarization is close here
to force-free. The term containing the electric field may be
disregarded in this case in Eqn (40). The polarization charge
density is pp = —PoVs~ Pyso/Lr, and the charge itself is
qp ~ ppL72mRy ~ 2nL1 Ry Poso, thus confirming result (151).

If Ry < L7, only one characteristic scale remains in the
problem of finding ¢,: Ry itself; therefore, we can retain only
the first term on the left-hand side of Eqn (40). Hence,
Vs~ S()/R(), pp ~ P()S()/Ro, and qp ~ COPPRS ~ C()R(%P()So,
where Cy ~ 2rn is a constant, which is estimated from a
comparison with the case Ry > Ly at the boundary of the
region where these results are applicable, Ry ~ Ly. The
‘matching’ of these two limiting cases yields an interpolative
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Figure 20. Polarization of a liquid near a pair of amphiphilic bodies with
foreign charges on the surfaces.

expression for the case Ry < Ry < H that is more general
compared to (150):

2TCP0S0R02LT
Iy —
\/R}+ L3

We obtain in a similar way for a sphere of radius Ry > Ry

- 8TCPOSOR3LT I
3\/RG+ L3

So, at values Ry = 0.5 nm and sy = 0.3 typical of protein
bodies these quantities are d, = 10~!7 (in the CGS units) and
gp ~ dyp/(2Ro) ~ 0.3e, respectively, where e is the elementary
charge. The energy of the electric field G created by these
charges is given by formula (142) divided by 2, in which
p1(r) = p,o(r) = p,(r) should be put, yielding for such spheres
an estimate G¢ ~ 0.5x 107!* erg =50 K < T. Thus, the
electrostatic energy of force-based polarizations can be
ignored for the most common biological bodies.

The polarization of the liquid created by the ath body at a
distance R, > max (Ry, Hyax) from it (here, Hp,x means the
largest dimension of the body) has the form

dp

go—1[ R, 3R,(dR,)—d*
) = 5500+ 5100 = g o+ R
a a
J*x R, R, R,
s Xl (e ~ 2
4nCP0R3< )L

Here, R, = R,/R;,andd? =df + dr‘)’ is the dipole moment of
the ath body, which is the sum of the total dipole moment d?
of the foreign charges and polar groups located on it, as well
as the dipole moment of polarization charges d;j. An example
of the polarization pattern of water created by two bodies is
displayed in Fig. 20. Suchlike effects observed in MD
calculations [28] are called the ‘dipole bridge between
biomolecules’. In addition, the vortex structures of the
polarization vector were observed in the same calculations,
which are associated with the last term in (152).

We now abandon the requirement R > Hp,x. The solu-
tion is given in the case of force-based z polarization, as in
Fig. 10b, by the formula s (r) from (148), where E! is equal to
the sum of the fields of foreign charges and the polar groups
located on the body and two point polarization charges, g,
and —g, (however, as shown in Section 4.1.3, bodies with
z polarization almost never occur).

(152)

We now calculate the force-free ¢-polarization for a thin
(Ry < Hy) cylinder at an arbitrary point. To do so, due to the
additivity of the fields in approximation (22) considered here,
it is sufficient to sum up the formula for s/ (r) from (148) over
r, along the cylinder axis, yielding

sJ(P7Z) = _7SOLT EJHUH Z,iexp (ZRo/L1) )
? 2K (Ro/L7) 0p )ty 2 R,
where R, = /p2+ (z — z')%, z = rl and the radius vector r

originates from the geometric center of the cylinder, and K] is
the MacDonald function.

If the distance between the bodies is R > max (Rq, Hiax),
we obtain for the energy of interaction between them,
introducing the notation R = R/R,

1

e - €
Upgp = —Ugp s

(153)
€0
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uy = InC iy, (154)

_ JIb 3(JR)(I’R) — JI° R

= |"5—+ : exp(——]).
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We conclude from Eqns (153) and (154) that the interac-
tion between two amphiphilic bodies not bearing charges
or polar groups is in the case of force-based polarization a
long range one: u(R) o 1/R3. This interaction in the case
of force-free polarization extends to a distance ~ Ly
u(R) < exp (—R/L7). The last formula is not a surprise
since, as shown in Section 3.3, this dimension is an analog of
the Debye radius in plasma physics. Equations (153) and
(154) also show that, due to the emergence of the polarization
of liquid created by neutral bodies, the interaction between
these bodies becomes a long-range one; moreover, it proves to
be rather strong and dependent on their orientation in space.
This phenomenon may be a basis for a self-assembly
mechanism in biological objects.

We discussed above interactions at distances that are
larger than the dimensions of the bodies. A detailed analysis
is needed for large bodies immersed in liquid. We consider as
an example two thin parallel cylinders with the same radii Ry
and heights Hy > Ry located at a distance Ry € L < Hj from
each other. The superposition principle s(r) ~ s;(r) + s(r)
holds at distances from both cylinders that exceed their
radius. The vectors s;(r) = ¢;s(r;)@; describe the ¢-polariza-
tions created by each single cylinder (Fig. 10a). The
dependence s(r;) is presented in (105); the ‘topological
charges’ ¢; » = £1 set the direction of polarization vector
rotation around the axis of the corresponding cylinder, r; are
the distances from the observation point r to the axis of the
corresponding cylinder, ¢, , are the azimuthal angles
measured with respect to the axes of these cylinders (see
Section 4.2), and @, are the unit vectors directed along the
gradients of these angles. A calculation using Eqn (47) yields a
formula for the energy of interaction between the cylinders
with ¢-polarization:

Lr L\ R}
[TES 20nq1q2P02CHosO2 In (R_o) exp (— L—T) L—% .

Thus, if g;q> > 0, the cylinders repel each other, while if
192 < 0, they attract each other.
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We obtain in a similar way two parallel cylinders with
z-polarization interacting according to the law

_2nCP§iH Ky(L/Lr)
In (L1/Ry)

Here, A = 1 and 2 = —1 for parallel and antiparallel polariza-
tions, respectively, and Kj is the MacDonald function.

5.2 Estimation of the parameter in the expression

for free energy that characterizes interaction

of water molecules with the surface

We now estimate the parameter f, in formula (101) for the
surface free energy.

Water molecules located on the surface of the body
interact with this surface both by means of their hydrogen
bonds, which determine the parameter oy, and in an
electrostatic way, due to the polarization of the body
molecules by the electric field created by the static dipole
moment dy. Given the geometry of the water molecule, we
conclude that its typical distance to the surface is
h~dy,o/2~015 nm. It follows from (143) that the
effective dielectric constant at such distances is &(R) ~
1.5—2. The relatively small dielectric constant is due to the
smallness of & compared to the size of superdomains. The
energy u of interaction between a point dipole and a body with
a typical dielectric constant g, ~ 5—7 may be calculated using
the image method [1, 66]:

I et ) P e
o e(R) [en +e(R)] (20)° (s +3s7).

(155)

The term sH2 here is of no interest, since the contribution from
hydrogen bonds, comparable in magnitude to (155), and the
alignment of dipoles along the surface due to these bonds are
not taken into account [24-27]. It should simply be discarded
for this reason. The number of water molecules per unit
surface area is of the order of nydi,0. A comparison of the
surface energy density unydu,o and (101) at room tempera-
ture yields the estimate f, ~ 3. According to Fig. 9, for
hydrophilic bodies, fi; > v ~ 3.6, which does not disagree
with the estimate obtained above.

5.3 Interaction between two flat parallel surfaces

5.3.1 Measurement data and theoretical models. The forces
that operate between hydrated objects of mesoscopic sizes
play an important role in various chemical, physicochemical,
and biological processes, nanoscale assembly mechanisms,
etc. The interaction between particles in ionic solutions is
described by the theory developed by Deryagin, Landau,
Fairway, and Overbeek (DLFO) [255, 256]. We now consider
the interaction between flat parallel surfaces separated by a
layer of pure water with a thickness

03<L<3nmm. (156)

‘Pure’ water means here a water with a sufficiently low
concentration n; of dissolved ions (n; < 0.02M) (see below).

According to [257-259], there are at least three different
modes of interaction between hydrophobic flat surfaces,
which corresponds to long-range attraction. Electrostatic
forces between oppositely charged sections on surfaces
immersed in water prevail at large distances, L = 10 nm. A
significant contribution to the attraction is made at inter-

mediate distances, 3 < L < 10 nm, by the van der Waals
interaction. It is characterized by a large value of the
Hamaker constant, which is associated with proton jumps
between neighboring water molecules. In addition, other
interaction mechanisms that depend on the properties of the
surfaces are also significant. Such interactions include [260—
264]:

(1) steric effects: wave-like vibrations of the bilayer,
protrusion-induced interaction that arises due to the emer-
gence of mutually contacting protrusions on membrane
surfaces;

(2) interaction between bilayers (in the case of electro-
lytes) [264];

(3) capillary forces that arise as a result of the sponta-
neous emergence of bridges consisting of submicroscopic
bubbles.

These diverse mechanisms of interaction between bodies
in a polar liquid, which are manifested at L = 3 nm, and the
ultra-long-range interaction associated with nonequilibrium
(see Section 5.3.6) have no relation whatsoever to the range
of distances between the flat surfaces under consideration
(156). Numerous experiments show that all the mechanisms
listed above are insignificant at such distances, and the
interaction prevails whose character seems to be universal
and only depends on the wettability of surfaces. Such
interaction is referred to as the non-DLFO mechanism. An
unambiguous explanation of its nature is lacking in the
literature [257].

The goal of this section is to provide a theoretical analysis
of region (156) on the basis of VMPL. We assume, following
the results of Section 3.5, that the microscopic properties of a
layer of the liquid sandwiched between surfaces are virtually
the same as those of bulk water.

The so-called disjoint force, which is short-range but
strong, operates between two hydrophilic surfaces Sp in
pure water at distances of (156) between them. It is described
by an empirical formula,

dG(L) L
~—dL = STDexp €Xp <_E>’

where pexp ~ 5 x (10°—10'%) dincm =2, 2 ~ 0.2 nm [257, 265~
271], and G(L) is the free Gibbs energy of the system. This
repulsion, whose nature is electrostatic, is well explained in a
number of phenomenological models [50, 51, 53, 257, 272].

Measurements [273-280] show that two hydrophobic
surfaces attract each other with the force

F=

(157)

L
F= _Sfpéxp €eXp <— 7) s (158)

where the pre-exponential factor is about the same as in the
case of hydrophilic surfaces, pe,, ~ pexp, but the quantity in
the exponent is quite different: A’ ~ 1.2 nm.

5.3.2 Interaction between amphiphilic flat parallel surfaces. We
consider two amphiphilic surfaces located at a distance L
from each other. The polarization of liquid is in this case
parallel to the surfaces, s = [s(z), 0,0], and only depends on
the coordinate z; therefore, there is no electric field:
E,=E.=0.

We assume first that there is a simplified linearized version
of boundary condition (101). We obtain from this boundary
condition and Eqns (47) and (98) a formula for the free energy
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of the liquid:

GI5(2)] = —5 SrVCPa(s? +5)

L2 rC (ds\?
2 2
+ SrP; J_m dz [—2 (_dz> + V(s )] , (159)

where s, = s(+L/2) is the water molecule polarization on the
surfaces. The minimum free energy corresponds to 6G = 0,
which gives the boundary conditions

(ocos — \/Z’s’> =0, (acos + \/Z’s’)

z=L/2

=0
z=—L/2
and the Euler equation for polarization in the volume of
liquid

—Cs"(z) +2V'(s})s = 0.

Taking this equation into account and integrating by parts in
(159), we derive a formula for the equilibrium interaction
energy:
L2

dz [V(s?) — s2V'(s7)] .
—L/2

Gmin:SFP()ZJ (160)

This equation shows that the interaction completely vanishes,
G =0, if the quadratic approximation for the equation of
state V(s?) = As?/2is used in the description of the liquid.

Therefore, the quadratic approximation is not applicable
to the analysis of interaction between bodies. This is not a
surprise, since, for the interaction between surfaces belonging
to regions I and II (see Fig. 9) to occur, a spontaneous
polarization of the near-surface liquid layers needs to
emerge. As shown in Sections 4.1.2 and 4.1.3, this is not
possible without nonlinearity. Thus, a nonzero interaction
between surfaces only emerges if at least one more term is
retained in Taylor’s expansion ¥(s?) (30), yielding

L2
dzs*,
—L/2

G(L) ~ —srprJ (161)

which is expressed in its final form through elliptic integrals
and looks rather cumbersome. It can be seen that this energy
is determined by the constant B, i.e., the orientational entropy
of liquid. We find from here for sufficiently large distances
between surfaces, exp (—L/Lr) < 1, the interaction force:

L L
F(L) = —Sr6P¢Bs, o, &P <— —) : (162)

Lt

Here, s) = \/ v/ A(2tg — \/A)/Bis the polarization of the liquid

on an isolated surface (see Section 4.1.2) that corresponds to
the limit L — oo. The main contribution to integral (161)
comes at L > Ly from the region where s < 1; therefore,

z+ L

/2 z—L/J2
o) Teen (=)

and the contribution from the cross term 6s?s7 in the formula
for s* prevails.

Comparing (162) with (158), we obtain, under the
assumption sy ~ 1, the above estimate B ~ 0.15—1.5. Thus,
we can speak of a reasonable agreement between this VMPL
prediction and experiments.

s~ 81(z) + 52(2) = soexp <—

It should be noted that attractive force (162) is the result of
the joint action described by the Oseen, entropy, and dipole—
dipole contributions to free energy. These contributions are
comparable in magnitude. This implies that the full interac-
tion is a combined action of molecular forces naturally
described by two characteristic distance scales: Rq and L. It
was assumed in the calculation that the molecules of liquid on
the surfaces are polarized in parallel and in the same direction
with respect not only to the surfaces, but also to each other.
The free energy of interaction between the plates is in this case
negative, which corresponds to the ground state of the system.
If the polarizations are oriented in the direction opposite to
that of the surface polarization, this energy is positive, and
therefore this state of the liquid between the surfaces is
metastable. It should be noted that dependence (162) can
become more complicated if second-order phase transitions
described in Section 4 occur in near-surface hydrated water
layers.

Formula (162) was derived under the assumption of weak
polarization (22). We now consider the opposite case of a
‘hard’ boundary condition on an amphiphilic surface:

Sle =30 (163)
The formula for the free energy of a liquid between two
hydrophobic surfaces takes in this case the form

L/2 2
G=0Gp= S,—POZJ dz E (?) + V(sz)} , (164)
—~L/)2 zZ

where the contribution from the bulk liquid alone is retained,
while the contribution associated with the surface is ignored
(99). The point is that condition (163) is by its nature
fundamentally nonlinear: no matter what occurs in the
volume, it always holds on surfaces. In other words, the
surface energy does not change for any dependence s(z) that
satisfies condition (163): Gs[s(z)] = const. Indeed, since the
free energy is minimal in equilibrium, condition (163) is
obtained in the limiting case:

Ry — 0, (165)
where parameter Ry is defined in (109).

We consider an isolated flat surface immersed in a liquid
and located at z = 0. To prove formula (164), we take G in
the form of the last term in Eqn (109). We obtain from here
and from Eqns (47) and (98) a formula for the energy of the
liquid:

© JC(ds\* 4
—§.p2 cras a4 2
G SFOJO dZ|:2(dZ> +2é:|+Gsa

where

Gy = SrR[s*(z=0) —s]*. (166)

We find the lowest value G for the trial function

It follows from here and Eqn (166), with Eqn (43) taken into
account,
G(Sl)

Sr

1
= Ro(s? —53)* + 3 P3N/ CAs? . (167)
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Expression (167) has the smallest value at

P2
sf:s§—4—£0 VvVCA.

Using this value of parameter s; in (167) for the surface
contribution to the free energy, we arrive at the expression

In the limiting case (165), which corresponds to the ‘rigid’
boundary condition (163), Gy — 0, which had to be proved.
The statement regarding the nonlinear character of condition
(163) follows from the form of the dependence of (167) on s;:
this dependence contains terms with s

Variation of Eqn (164) with respect to s(z) yields the Euler
equation, a solution of which for the polarization of liquid

s(z) is presented by an implicit equation,
C (%@ ds’
Here, Ve = V(s2), and sc = 5(0) is the polarization in the

middle liquid layer, as shown in Fig. 21. The value of s¢ may
be found from the equation

So ds
L—@J/ﬁ (168)

The interaction energy takes the form

(0 2V(s?) -V
G= SFPOZ\/ZCJ ds 2P “ Ve SrPF[J(L)+ VL],
Sc V(Sz) — Vc

J(L) = 2@]0 ds\/V(s2) - Ve.

Differentiating J(L), we obtain with Eqn (168) taken into

account
dJ dVe dG
a- tar s Tt

~SrPiVe.

Ifexp (—L/L7) < 1, the main, logarithmically large contribu-
tion to integral (168) comes from the spatial region wherein
s < 1and V(s?) ~ As?/2, yielding

LzZLTln<BSO>, B,

sc
1 L
Ver 3 A/?zso2 exp (— L—T> ,

1 L
F(L) ~ ) SrPZAB*E exp (— L—T> .

The pre-exponential factor in the last formula agrees with
measurements [273-280]; the same is true for the exponential
quantity. We used here a quadratic approximation for ¥(s?)
(the first term in (30)). This does not imply, however, that the
interaction between the surfaces may be obtained in the linear
response theory, since the boundary condition s| = s is
essentially nonlinear. The point is that the quadratic approx-
imation holds in the spatial region that makes the main
contribution to the interaction strength being sought.
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Figure 21. Nonzero components of water molecule polarization between
two interacting flat surfaces. Plots of s. and s, are displayed for
hydrophilic and hydrophobic surfaces, respectively.

5.3.3 Interaction between hydrophilic flat surfaces. The
practical interest in this interaction is associated with
biological membranes that primarily consist of a thin layer
of amphipathic phospholipids which spontaneously orient
themselves in such a way that their hydrophobic ‘tail’ regions
prove to be hidden from the ambient polar liquid, while the
hydrophilic polar groups make contact with water [281], as is
shown in Fig. 22. Owing to the joint action of the effects
described by the electric field EI" and the term with 8, in
Eqns (100) and (101), the molecular water dipoles are oriented
in the direction perpendicular to the membrane planes.

Thus, we consider two membranes separated by a water-
filled layer L in width. The polarization vector now has the
form s = [0,0, 5(z)], and the corresponding boundary condi-
tions are expressed as s(—L/2) = sy and s(L/2) = —s; (see
Fig. 21).

Using the method described in [264], it is easy to consider
the general case when free charges are present on membrane
surfaces and in the volume, which leads to the formation of
double layers. However, the contribution of these charges to
the interaction between the surfaces is negligible at distances
of (156) between the surfaces; therefore, even in this general
case, we can put E. = 0. Taking into account the relation
E, = —4nP = —4nPys, we obtain the following expression
for free energy:

2 L2 C (ds\’ 2 2
Gls(z)] = Gy = SrP; I s dz {5 (E) + V(s®) + 2ns” |,

OV D> 2 0
OOl > < —©°
O-® > o¥e)
> <> >
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o0 |2 2 |00
2
OO0 l—> Q®©%

Figure 22. Typical polarization of water molecules between lipid mem-
branes shown as shaded areas. Both the charges of the lipid polar groups
and polarization of water molecules are schematically represented by
corresponding charge symbols.




478 L I Menshikov, P L Menshikov, P O Fedichev

Physics— Uspekhi 63 (5)

the minimization of which with respect to function s(z) yields
the equation for the polarization of water:
d’s

-C FER (2V'(s*) +4n)s=0.

The solution to this equation shown schematically in Fig. 21
can be obtained in the same way as in Section 5.3.2. The
interaction strength is described by the dependence

L
F = Sr2nPs exp <— —) ,
Ry

which was observed in [257,265-271]. The corresponding pre-
exponential factor F/Sr = 2nPsd ~ 3s¢ x 10! dyn cm~2 is
consistent with the data of these experiments. The force is
positive, i.e., the membranes repel each other. Polarization
charges emerge in the middle of the water layer (see Fig. 22),
which is the physical reason for this repulsion. The force
decreases exponentially at a characteristic distance
L~ Ryqn~.

We note in conclusion that the approach proposed in this
section is a natural generalization of the approaches proposed
in [50, 51, 57-59, 282, 283].

5.3.4 Interaction between hydrophilic and hydrophobic sur-
faces. The interaction between hydrophilic and hydrophobic
surfaces has been studied in a number of experiments [284—
287]. Such systems are referred to as asymmetric.

We consider the case of charge-neutral surfaces. The
hydrophilic and hydrophobic flat surfaces are located at
z=0and z = L, respectively. Thus, the boundary conditions
have the form

S:(O) = Sphi »
(169)

Experiments were primarily focused on studying systems with
weak polarization properties, such as mica. In this case, (see,
e.g., [288]) sphi ~ 0.1 <1 and sppo ~ 0.1 < I; therefore,
s(z) < 1 and V(s?) ~ As?/2. Similar to Sections 5.3.2 and
5.3.3, we obtain E, = —4nP = —4n P[0, 0, 5.(z)] and

C ds. C ds,
ow=srri|-Zom( ), +7om(E) ]

L2

+SFP02J dz (V(s?) — s2V'(s%)) . (170)
2

_L/

The Euler equations have the form s/(z) —s./R} =0,
s"(z) — sy/L? = 0. We obtain from here and Eqn (169) the
polarization, energy, and interaction strength for flat sur-
faces, respectively:

sinh [(L — z)/Rq]
sinh (L/Ry4)

sinh (z/L7)

Sx = Spho m )

§z = Sphi
1 Szh- L Szh L

G(L) == SpP2C |22 coth [ — P10 coth | —

(L) =3 Srkg {Rdco 7)ot ()]

F(L) Ls PZ[ Soi Soho }
=_ + .
2770 [sinh? (L/Rq) ' sinh® (L/Ly)

The force F(L) at distances between the surface given by
(156) describes repulsion in agreement with experiments. The

Ry

Figure 23. Geometry of interacting bodies in experiments where an atomic
force microscope is used.

inequality L > R4 was fulfilled in all experiments, owing to
which the formula for the force may be simplified:

2.2
SFPOSpho

Fro—————. (171)
2sinh” (L/L7)

To measure the force, an atomic force microscope is
usually used, to the cantilevered tip of which a spherical
colloidal particle with the diameter Ry ~ 10—15 pm is
attached. Thus, this device measures the force that acts
between a flat surface and a sphere at distances D < Ry
between their boundaries. Equation (171) in this case yields

J ds
sinh?[L(p)/L7]
_ P&sghojoc 2npdp _ 2nPisyLr

2 Jo sinh?[L(p)/Ly] exp(2D/Ly)—1"

i _ Pgsého
Ry 2

(172)

The geometrical meaning of notations p, D, and L(p) ~
D + p?/(2Ry) is explained in Fig. 23. Formula (172), which
is valid to a distance up to the molecular size, D = Ry, agrees
with measurements [284-287]. It should be noted that,
according to the same measurements, the force at D = 3 nm
strongly depends on experimental conditions, in particular,
on the presence of air dissolved in water (see the discussion in
Section 5.3.1).

5.3.5 Interaction between region-III surfaces. The force of
interaction between such surfaces along with the average
polarization of water molecules is zero in the mean field
approximation: s = 0, G = 0, F = 0. Hence, the energy of the
liquid and this force are determined by thermal fluctuations.
The resulting force is by definition a flow of momentum
transferred between the surfaces through a liquid by means of
dipole—dipole interactions between molecules. The force is in
this case also a long-range interaction.

It is assumed in this section that the surface layer of the
liquid in region III (see Fig. 9) is in the paraelectric state, and
the fluctuating polarization vector is parallel to the surface.
This condition is fulfilled at least near the OC line of the
BKT transition. The liquid transforms into such a state as
temperature increases in the process of motion from ferro-
electric region II to paraelectric region III. The part of the
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free energy of the ‘liquid and two surfaces’ system, which
depends on the distance between the surfaces, leads to an
interaction between these surfaces, similar to the way
electromagnetic field fluctuations lead to the emergence of
Casimir forces [289].

A regularization procedure similar to [290] was used in
[49] to derive an expression for the interaction energy G(L),
which has the following form in the limiting cases of small and
large distances:

T L
GL)~—-Sr ——— - L>»L
( ) 27TLTL eXp ( LT) 9 > T,

T
G(L)~ 0538y —, L<Lr.

It should be noted that in these limiting cases the energy is
independent of the material constants oy and f,. The
corrections depending on the material of the surfaces are
small and can be observed only at intermediate distances
L ~ Ly. Thus, an attractive force emerges between interact-
ing surfaces that belong to region III, which at L < Ly is
inversely proportional to the cube of the distance between
them.

5.3.6 Example of interaction between bodies under nonequili-
brium conditions. An enigmatic ultra-long interaction
between hydrophilic surfaces and bodies immersed in a
polar liquid was discovered in [291-298]. A plate made of a
hydrophilic substance was immersed in water that contained
colloidal particles about 1 um in size. It was found that a zone
several hundred micrometers wide is formed at the plate
surface within a time of the order of 1 min, in which these
particles are absent. Such a surface region was called the
exclusion zone (EZ). Since the exclusion zone exhibits
unusual properties, which distinguish it from bulk water
(birefringence, absorption of electromagnetic waves with a
wavelength near A= /9 =270 nm), it was assumed in
Ref. [298] that water in the EZ is in a new, fourth state that
differs from vapor, liquid, and ice by the presence in it of a
long-range structure.

The most detailed exploration of this phenomenon was
performed using as an example a hydrophilic ion-exchange
membrane made of Nafion [299]. These membranes, which
are widely used in fuel cells, are of great practical importance.
Nafion is a hydrophobic polymer material (Teflon), to the
polymer chains of which sulfo groups are attached, owing to
which its surface has hydrophilic properties. It was also found
that the formation of EZ is characteristic not of Nafion alone,
but also of a wide range of hydrophilic surfaces, including
surfaces of biological materials and metals (zinc, aluminum,
tin, lead, and tungsten). It was also revealed that EZ is absent
on the surfaces of noble metals, a circumstance that led the
authors of [297] to the conclusion that electrochemical
processes occurring on the surface play some role in the
formation of EZ.

It is known [300-302] that a ‘forest’ of polymer chains
sticking out from the Nafion surface is formed in water.
Given all these circumstances, the authors of [303-305]
proposed a model that satisfactorily explains the observa-
tions and does not involve the hypothesis regarding the
fourth state of water. Studies of the luminescence that arises
in the liquid enabled direct observation of the emergence of
a polymer chain ‘forest’ in the EZ region. The existence of
EZ was explained in early studies [303—305] by the direct

ejection of colloidal particles by these chains. Birefringence
is also easily explained in this model: as the chains emerge,
the EZ region becomes anisotropic, which leads to birefrin-
gence.

The absorption of electromagnetic waves also finds an
explanation in this model. Both the Nafion surface and the
polymer chains sticking out from it acquire a negative charge
as a result of electrolytic dissociation of sulfo groups. For
this reason, the chains should form in equilibrium an
approximately periodic 2D structure with a certain period
a. Thus, Nafion in water resembles a brush with periodically
arranged bristles. If a wave is incident on this brush and the
resonance condition Ay ~ 2a is satisfied, a wave reflected
from the bristles emerges (the authors of [303-305] pointed
out the similarity of this phenomenon to a photonic crystal);
therefore, the absorption observed in [293, 294] at a
wavelength of Ay =270 nm is in reality a scattering
phenomenon. Based on this, the authors of [303-305]
concluded that a = 49/2 =~ 135 nm. It should be noted that
the quoted wavelength refers to vacuum. Taking into
account the refractive index of water ny = 1.33, we get
a = 2y/(2ny) ~ 100 nm.

This explanation may be detailed in a mathematical
approach. The wave propagates through a medium with a
periodically changing refractive index n(x)= ny + on(x). We
consider for estimates the one-dimensional Kronig—Penney
model:

on(x) = —a i o(x —sa). (173)

It is reasonable to assume that, due to the large lattice period
a, the parameter « is sufficiently small compared to the
polymer-chain thickness, so that the relation below holds:

klo| <1, (174)
where k = nyw/c = np2n /2 is the wave vector in the medium.
The conclusions that follow do not depend on the sign of o,
s0, to be specific, we assume that « > 0. A monochromatic
wave incident on a medium with a periodically changing
refractive index that depends on its frequency w corresponds
to either the allowed band or the bandgap. In the former
case, it enters the medium, being partially reflected, while in
the latter case, it is reflected (completely, if the medium is
semi-infinite) as is assumed in [303-305]. The widths (in
terms of frequency w) of the bandgaps are small under
condition (174), while absorption was observed in a rather
wide band near the wavelength 1y = 270 nm. Therefore, the
first case, where the wave propagation along the ‘brush’ is
characterized by quasi-momentum g = ne27/ A, seems to be
more plausible. The last relation is a definition of the
observed value of the refractive index ngg. It should be
noted that, as the frequency approaches the bandgaps, the
reflection intensifies; therefore, the maximal absorption
should be observed right there.

We now make an attempt to qualitatively explain in model
(173) the increase in negr observed in [303—305] near the Nafion
surface.

The dependence of frequency on quasi-momentum, i.e.,
the dispersion relation @ = w(gq), is found from the equation
[306]

cos (ga) = cos (ka) + ko sin (ka) . (175)
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The lowest bandgap, which corresponds to the above
resonance condition considered in [303—305;, has under
condition (174) the width Aw = 4nac/(any)”. The wave
dispersion law near the bottom of the upper allowed
frequency band and the top of the lower one is, respectively,

On approaching the surface, the thickness of bristles
increases if only because of their rather wide length distribu-
tion, coalescence, etc. This corresponds to an increase in the
parameter o and the band gap width Aw. If the wave
frequency o falls in the upper allowed band, then

2 W ng 2mc
Heff — R~ ——— [Ao(w———Aw | .
A0 a C A0

As Aw increases, ner grows due to the factor in parentheses
under the square root sign, which may explain the observa-
tions. If the frequency falls in the lower band, the dependence
of negr on o is much slower. Thus, the first of these assumptions
is preferable. Additional estimates are required here that
would take into account the degree of wave nonmonochro-
maticity, estimated values of the coefficient o, etc.

Another mechanism for the emergence of EZ was
established as a result of studies [291-298, 303-305, 307-
310]: itis electrophoresis that explains this phenomenon in the
case of metals [297] and surfaces coated with a hydrophilic
monolayer [291]. The force acting on colloidal particles is
generated by a quasi-neutral flow of ions formed on the
surface and on polymer chains. This mechanism works in the
case of Nafion concurrently with the aforementioned expul-
sion of colloidal particles by polymer brushes. It is supported
by the results of study [295], which established that the EZ
width substantially increases upon infrared irradiation of the
Nafion surface. It can be assumed as an explanation that
radiation accelerates electrochemical processes, which is a
plausible option. This leads to an increase in the ion flow that
enhances electrophoresis. Further research is required in this
area.

In Ref. [307] the authors established the presence of HSO5
ions in EZ. It was found in [303] that the concentration of
these ions decreases sharply at the EZ boundary, where the
polymer chains abut against colloidal particles. The authors
of [303] suggested that a brush slows down diffusion of ions
simply because of a lack of space in the gaps between the
polymer chains. This suggestion seems doubtful, since these
gaps are large in comparison with the ion size. An alternative
explanation for the slowdown of ion diffusion by EZ is
plausible. The observed decrease in the concentration of
ions is most likely due to their diffusion over the surface of
chains alternating with penetration into the volume (so-called
bulk mediated surface diffusion) [311, 312]. Adsorption onto
the surface of chains apparently slows down diffusion. The
observed ion diffusion coefficient has in this case the
following form:

Der =D (176)

Npor

Here, h = D, /b s the thickness of the water layer adjacent to
the surfaces of the bristles, in which the nature of the ion
diffusion significantly differs from that in the main volume of
liquid between the bristles, D ~ 107> cm? ¢~ ! is the coefficient
of ion diffusion in bulk water, » ~ 1078 c¢m is the character-
istic size of the jump-like change in the spatial position of the
ion in water in the process of the elementary event of diffusion
in the liquid volume, /ipor = a?/(2nay) is the effective size of
the porous space formed by the chains, and ay ~ 0.5 nm is the
characteristic radius of the chain cross section that takes into
account the ion size itself. The HSO5 ions may be adsorbed
for some time 7, on polymer chains with or without charge
neutralization. Formula (176) is valid provided / < hpor, @
condition which is obviously fulfilled in mesopores between
chains.

The birefringence caused by a lattice of unbraided Nafion
polymer chains is combined with the birefringence due to the
optical reflection of the material at the water/Nafion surface
interface [310]. However, this reflection alone cannot explain
the observed increase in the refractive index in approaching
the surface, which was found in [303].

Thus, the nature of the ultra-long interaction between
hydrophilic surfaces and colloidal particles is gradually
becoming clear, although many phenomena in this area are
not understood yet. Moreover, sometimes new puzzles arise
(see, e.g., [307]).

5.4 Discussion of the results

Based on the VMPL, we have calculated above the forces of
interaction between macroscopic bodies immersed in a liquid.
In particular, the strength of interaction between flat surfaces
in water was determined for distances L < 3 nm between
them. Measurements show that the nature of interaction is in
this case universal and is only determined by the wetting
properties of the surfaces and the dipole long-range action
between HBPL molecules. The lower limit in (156) is due to
the fact that dipole—dipole interaction between molecules is at
such distances comparable to short-range forces. These latter
forces are described in the considered phenomenological
VMPL model by the Oseen term (25), which is similar to the
so-called hydrophobic interaction explored in [67, 68]. Since
the short-range forces vanish at distances of ~ Ry, small
bodies with sizes < R4 are characterized in the VMPL by
hydration energy, which is proportional to their volume, in
agreement with the conclusions of [67, 68]. This type of
interaction has a negligible effect at large distances, such as
(156), which are typical of biology.

If the surfaces are hydrophilic, molecules of liquid are
polarized perpendicular to them, and interaction at meso-
scopic distances L < 3 nm between the surfaces is repulsive,
strong, short-range, and exponentially decreasing at the
characteristic distance A = R4 ~ 0.2—0.3 nm. Numerous
measurements show that this character of interaction
between hydrophilic surfaces of various natures is fairly
universal. However, the last statement is only true in
equilibrium cases, when the properties of the surface
immersed in HBPL do not change with time. Section 5.3.6
presents a review of the studies of the surfaces where the
equilibrium condition is not fulfilled. This results in the
emergence of an interaction acting at ultra-long distances
between the bodies immersed in the liquid, which is
characterized by scale of less than 1 mm.

The interaction between hydrophobic surfaces, which is
significantly more diverse, is explored to a much lesser extent.
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While at L <3 nm this interaction is quite universal, at
L = 3 nm it substantially depends on the method used to
prepare the polar liquid composition, gaseous and solid
impurities it contains, steric properties of surfaces, etc. It
was shown that, in accordance with measurements, the
interaction at L <3 nm is attractive and relatively long-
range (the interaction forces exponentially decrease over a
mesoscopic characteristic length of A = Ly~ 1.2—1.5 nm).
The polarization of water molecules is in this case parallel to
the surfaces.

The forces operating between two hydrophobic or two
hydrophilic surfaces are by their nature entropic or electro-
static.

Hydrophobic and hydrophilic surfaces at L < 3 nm repel
each other. The calculated strength of their interaction is
consistent with experimental results.

Regardless of the surface properties, the hydration forces
are determined by nonlinear effects of liquid polarization in
the volume or a similar nonlinearity of interaction between
water and the immersed body. This implies that the interac-
tion forces cannot be correctly calculated in the linear
response approximation, which is used, for instance, in [52].

An intermediate mode of interaction between surfaces is
predicted to exist if liquid polarization in the layers adjacent
to them is in a chaotic, paraelectric state. The interaction is in
this case much weaker and attractive. The attractive force
between such surfaces decreases at L < Ly according to a
power law; namely, it is inversely proportional to the cube of
the distance between them.

The presented model of hydration forces is applicable in
the case of the complete absence or rather low concentration
of free ions that emerge, for example, as a result of electrolytic
dissociation of salts or surface polar groups. This limitation,
of course, should be taken into account in comparing model
predictions with measurements. The maximum value n; at
which the VMPL is still be applicable can be estimated using
the condition 41'cn1L%/ 3 ~ 1, which yields a limitation
ny < 0.02 mol. For example, hydration forces were measured
in[313]in a 1-molar-KClI solution. The ion concentration was
in this case n; = 1 mol. The forces acting between the ions and
water molecules in this experiment can destroy the molecular
order and hydrophobic attraction in the form described here;
therefore, our model in the presented form is not applicable to
analyze this experiment.

6. Summary discussion

The dipole—dipole interaction between the molecules of polar
liquids with hydrogen bonds features a long range and
determines the main properties of the HBPL at scales larger
than the distance between the nearest molecules. As in
plasma, collective electric fields prevail at such distances.
Short-range forces that ensure the stability of liquids are also
of importance in an HBPL; a special role is played in this case
by hydrogen bonds. We present the results obtained in the
phenomenological vector model of polar liquids, in which the
liquid is described by the order parameter — the polarization
vector s(r), i.e., the average of unit vectors of the directions of
dipole moments of molecules located near point r. We have
shown that the simplest, ‘minimal’ version of a VMPL
already satisfactorily reproduces properties of a liquid at a
spatial scale of = 0.3 nm. The model contains two spatial
scales: Rq and L. The domains of ~ 2Ry ~ 0.4—0.6 nm in
size, which weakly depends on temperature 7, consist of

molecules with strongly correlated dipole moments. Water is
at room temperature in a paraelectric state. Superdomains of
~ 2Lt ~ 2.4—3 nm in size each contain ~ 100 molecules and
consist of domains weakly correlated with respect to dipole
moments.

A large value of the static dielectric constant of water & is
associated with reorientation of superdomains in an external
electric field. The electric field of external charges decreases in
HBPLs by a factor of g at a characteristic size of ~ L.
Thermal fluctuations in plasma are characterized by the
Debye radius rp, and, in the HBPL, by the parameter L.
The parameter L7 is similar in this sense to rp. The VMPL
provides a relatively simple and at the same time detailed
description of the interactions between macroscopic objects
in the HBPL.

The existence of a ferroelectric phase transition (FPT) is
predicted in supercooled liquid water at a temperature of
T. ~ —40°C, which is confirmed in experiments with water-
filled porous materials. Arguments are presented in favor of
the existence of the FPT in bulk water. Long-range order in
the molecular dipole directions spontaneously arises in water
due to the long-range dipole interaction at T < T¢. This order
is destroyed by thermal fluctuations as temperature increases.
The size Ly is the dipole correlation radius. It is infinite at the
FPT point and decreases as temperature increases. In
approaching the FPT, polarization vector fluctuations
increase, which may be, if not the main, then at least one of
the mechanisms underlying the so-called ‘anomalous’ proper-
ties of water.

The wettability properties of bodies are shown to be
satisfactorily characterized by two or, in a more accurate
description, three dimensionless parameters. Based on this
property, surfaces are divided into three types: hydrophilic—
type I, amphiphilic— type II (in the extreme case s — 1 they
are hydrophobic), and type III surface, near which s =0,
(s?) # 0. At sufficiently low temperatures, states I and II
feature a long-range order in the molecule dipole directions,
which is due to the long range of dipole interaction. This order
is destroyed as temperature increases due to the second-order
phase transition, after which the surface layers of the liquid
become state III paraelectric. The II — III conversion is
shown to be a Berezinskii—Kosterlitz—Thouless topological
phase transition. Experiments are discussed that evidence this
idea. The calculated forces of interaction in water between
two flat surfaces that belong to types I-I, II-II, and I-II are
consistent with the measurements. An expression is given for
the force of interaction between surfaces I1I-II1, which can be
verified in experiments. The approaches and the methods
discussed in this review were used to estimate the solvation
energy and protonation states of biomacromolecules and to
calculate the dissociation constants of protein-ligand com-
plexes. The use of VMPL in the calculations of systems that
contain a large number of water molecules significantly
reduces the computer time.

7. Conclusions

We reviewed the results of numerous studies carried out by
various authors, which show that long-range forces and, as a
result, collective effects generated by dipole—dipole interac-
tions between molecules play a key role in polar liquids with
hydrogen bonds. There is in this sense an analogy between
HBPL and plasma, where particles interact according to the
Coulomb law. Short-range forces in HBPLs are of no less
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importance, as they ensure the stability of the liquid. A special
role is played by hydrogen bonds, which determine, along
with dipole—dipole interactions, the basic properties of such
liquids and, in particular, water.

We now summarize the main manifestations of long-
range action effects in HBPLs, meaning, to be more specific,
water.

(1) The large value of the dielectric constant of water at
zero frequency &(w =0) =88 under normal conditions
indicates that water is a paraclectric substance close on a
temperature scale to ferroelectric. The character of the ¢(w)
dependence indicates a two-scale structure with a different
degree of correlation of molecule dipole moments.

(2) The smaller scale Ry ~ 0.2—0.3 nm, which weakly
depends on temperature, characterizes short-range forces. It
is the radius of the domain within which thermal fluctuations
are insignificant, and the directions of the molecule dipole
moments are strongly correlated with each other.

(3) The larger scale Ly, which is generated by dipole—
dipole interactions between molecules, substantially depends
on temperature. Domains form clusters, superdomains, with
a characteristic radius Ly, within which there is a balance
between the onset of a correlation between domain dipole
moments and the destruction of it by thermal fluctuations.
Under normal conditions, the superdomains have character-
istic size ~ 2Ly ~ 3—4 nm and contain ~ 100 molecules
each.

(4) Due to the abovementioned correlation of dipoles, it is
natural to describe the properties of water at spatial scales
exceeding the size of the molecules using the polarization
vector s(r) (1). The very existence of this order parameter is a
direct consequence of the long-range nature of the dipole—
dipole interaction. From this follows in a natural way the
description of HBPL in a phenomenological vector model.
The mathematical structure of the VMPL, which is defini-
tively established in Section 2, is completely similar to that
used in the phenomenological description of ferromagnetism
(see [66, §§39, 43]). The VMPL equations are derived in a
simplified approach by minimizing free energy (47). A more
accurate description requires taking into account polariza-
tion of the electron shells of molecules, which leads to more
general expression (39).

(5) The existence of the order parameter s(r) shows (see
Section 3) that there is a molecular electric field E;, in the
vicinity of each molecule. The ordering effect of this field on
molecular dipoles competes with thermal fluctuations that
destroy the order, i.e., with the tendency of the liquid to
increase orientational entropy.

(6) Parameter Ly characterizes large-scale correlations of
molecular dipoles, the magnitude of thermal fluctuations of
the polarization vector, and the distance at which the dipoles
screen each other. The length L7 is in this sense analogous to
the Debye radius rp in plasma.

(7) As temperature decreases, the correlation radius Ly
increases to infinity, which leads to a ferroelectric phase
transition in bulk liquid water. Thus, the FPT is another
manifestation of long-range action.

(8) The conclusion about the existence of the FPT in
liquid water follows from both the mean-field approxima-
tion (39) (47) and calculations based on the ring-diagram
method, which has no limitation associated with the mean
field approximation.

(9) The singularity in the temperature dependence of the
dielectric constant observed in experiments [33] is a direct

indication of the existence of the FPT in bulk liquid water.
These experiments failed to reach the FPT, although only a
few degrees remained to achieve that temperature.

(10) An obstacle in experiments [33] was rapid bulk
nucleation of the liquid, owing to which it becomes ice.
Another possible reason is the emergence in water of a
depolarizing field E,, which prevents the FPT, as shown in
Section 3. This phase transition occurs under sufficiently
rapid decrease in temperature if a domain structure (see [66,
§44]) with a small or, in the limit, zero depolarizing field has
enough time to be formed before nucleation occurs. If this
requirement is not fulfilled, the FPT will be fundamentally
unattainable in bulk liquid water at any cooling rate. The
issue can be resolved by experiments similar to those carried
out in [40].

(11) The FPT has been directly observed in experiments
[16, 41, 42, 314] with water-filled porous materials MCM-41
and SBA-15 owing to lowering of the freezing temperature in
small water samples. The pore size in these experiments was
much larger than that of water molecules, which indicates the
identity of microscopic properties of bulk liquid and the
liquid investigated in pores (see Section 3.5).

(12) An assertion is known (see, e.g., [92]), that the
orientation of water molecules in mesoscale and nanometer
capillaries is ‘imposed’ by an external force, i.e., their
interaction with pore walls, which leads to the FPT in the
water contained in the pores. This is far from obvious, since a
number of fairly realistic molecular dynamics calculations
predict the existence of the FPT transition even in bulk water.
In our opinion, pore walls contribute to the formation of a
ferroelectric state for another reason (see Section 3.7). If the
polarization vector is perpendicular to the pore walls, a
depolarizing field E, emerges that prevents the phase
transition. This field vanishes if the polarization vector is
directed along the pore. In other words, the free energy of a
liquid reaches its smallest value if its polarization vector is
directed along the pore. The FPT occurs in this case, which
was observed in experiments not only with mesopores [16, 41,
42, 314] but also with nanopores [92, 93].

(13) The existence of the FPT provides an explanation of
the nature of fluctuations that destroy the correlation of
domains on the 2 Ly scale. It follows from Eqns (31), (32),
and (43) that the superdomain size L7 is determined by the
distance to the FPT point on the temperature scale rather
than by the absolute temperature itself. This observation
clearly shows that these fluctuations are ordinary fluctua-
tions of the order parameter. In the case under consideration,
they are fluctuations of the polar liquid polarization vector s
that occur near the second-order phase transition point. If
parameter 4 decreases to zero, the dependence of free energy
(57) on s becomes shallow, and the ‘elasticity’ that returns s to
its equilibrium value vanishes. The thermal fluctuation
amplitude increases as a result of such a ‘weakening’ of the
polarization degree of freedom of the liquid.

It was hypothesized that the fluctuations in water are
related to the proximity to the Widom line, which leads to the
known unusual temperature dependences of its thermody-
namic characteristics [103, 123, 128-139], i.e., to the emer-
gence of water properties that are referred to as abnormal.

The Widom line arises in this approach due to the water
being composed of clusters in which spatial packing of
molecules is different. Their mutual transformation also
leads to increased fluctuation in density, temperature, and
other quantities. Based on a purely cluster model, it is hardly
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possible to explain the observed A singularity of the dielectric
constant. In Section 3.7 we present evidence confirming that it
is the weakening of the polarization degree of freedom that
gives rise to the Widom line in water.

(14) The VMPL model provided a simple way to classify
surfaces of the polar liquid interface with another medium
and a quantitative content of such qualitative characteristics
as hydrophobicity and hydrophilicity (see Section 4.1). The
conclusion is drawn that the description of the wetting
properties of a liquid using the contact angle is incomplete:
at least two parameters, o and f, should be used to this end,
while the most complete description requires three para-
meters. It follows from the VMPL that the surfaces of bodies
are classified into three types based on the wettability
properties: hydrophilic—type I, amphiphilic— type II (in
the extreme case s — 1, hydrophobic), and type III surface,
the liquid layer near which is not polarized. To the best of our
knowledge, the last type has not yet been observed in
experiments, but, apparently, manifested itself in MD
calculations [247-249].

(15) As temperature decreases, the FPT may occur in the
HBPL layer ~ L7 thick adjacent to the amphiphilic surface,
which is due to the long-range nature of dipole interaction
between its molecules (see Section 4.2). This is a IIT — II
transition. It is similar by its nature to the Berezinskii—
Kosterlitz—Thouless phase transition. The key role is played
here by the mutual screening of pairs of vortex-antivortex
polarization configurations. The HBPL volume is in this case
in a paraelectric state.

(16) The polarization of a liquid by the bodies immersed
in it, which is also generated by the dipole—dipole interaction
between molecules, leads to long-range interactions between
the bodies (see Section 5). These interactions, which depend
on the mutual orientation of the bodies, can play an
important role in the self-assembly of micro-objects.

(17) The linearized version of vector model (22) and (45)
reproduces such important effects observed in MD calcula-
tions as spontaneous polarization of a liquid in the vicinity of
macroscopic bodies and the emergence of vortex-like polar-
ization structures on the surface of a body immersed in a
liquid. Force-free polarization configurations with Vs~ 0
and, as a result, with a small polarizing electric field prove to
be energetically advantageous. This, in turn, leads to a strong
long-range interaction between bodies immersed in a liquid.

(18) The existence of two scales, Rq and Ly, is confirmed
by experiments in which the force of interaction between
macroscopic objects at mesoscopic distances between their
surfaces is measured.

Although the vector model of polar liquids under
discussion is quite simple, it can nevertheless describe diverse
properties of polar liquids. The computer resources necessary
for calculations using the VMPL are comparable to those
required for continuous solvation models applied in compu-
tational biophysics (see, e.g., [19, 20]). If a large number of
water molecules are to be taken into account, the time of
numerical calculations is significantly reduced due to the
correct consideration of long-range effects. An example
seems to be relevant in this relation. We plotted Fig. 9 by
minimizing the free energy G in the VMPL using the
variational principle. Only a few parameters were varied in
this case. The development and debugging of the program
took about 1 h. Calculation made using a PC lasted 1 min. As
to Figs 12 and 15, they were obtained using the molecular
dynamics method. Several days were needed to program and

debug the code, this time primarily needed to remove the
instabilities caused by the dipole long-range interaction
between the molecules. The computer calculation per se of
each figure lasted 1 day.

The development of fast solvation models is of the utmost
importance for modeling biomolecules, designing drugs, etc.
The quality of such models is the main limiting factor for
accurate predictions of the binding capacity of protein—ligand
complexes. The approaches and methods discussed above
were used to estimate the solvation energy and biomacromo-
lecule protonation states, and to calculate the dissociation
constants of protein—ligand complexes [315-319].

It is of practical interest to develop a general model that
would describe polarization properties of polar liquids that
contain dissolved free ions. This goal may be achieved by
combining the Deryagin—Landau—Fairway—Overbeek theory
[121, 255, 256], the theory presented in [264], and the vector
model of a polar liquid that we have developed.

The authors are grateful to G S Bordonskii, G D Koposov,
A N Pershin, and L N Shestakov for the useful discussions.
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