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Abstract. We discuss the experimental conditions responsible
for a drastic decrease in the power threshold of parametric
decay instabilities under auxiliary electron cyclotron reso-
nance heating (ECRH) in toroidal magnetic fusion devices
when the upper hybrid (UH) resonance for the pump wave is
absent. We show that for a finite-width pump in the presence of
a nonmonotonic (hollow) density profile occurring due to plas-
ma equilibrium in the magnetic islands or anomalous particle
fluxes from the ECR layer, 3D localization of one or both
daughter waves is possible. This localization leads to the full
suppression of daughter wave energy losses from the decay layer
and a substantial increase in the nonlinear pumping efficiency.
This decreases the power threshold of nonlinear excitation,
which can be easily overcome in current ECRH experiments
utilizing 1 MW microwave beams. Different scenarios of extra-
ordinary and ordinary wave decays are investigated. The sec-
ondary decays of primary daughter waves and pump wave
depletion are considered as the most effective mechanisms
leading to the transition of primary instability to the saturation
regime. The proposed theoretical model was shown to be able to
describe the anomalous phenomena discovered in ECRH
experiments in different toroidal fusion devices all over the
world.
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1. Introduction

1.1 Parametric decay instabilities

of inhomogeneous plasma

Powerful microwave beams are currently widely used both in
ionospheric experiments and in controlled thermonuclear
fusion facilities with magnetic confinement. At the micro-
wave energy flow densities achieved in these experiments, the
plasma behaves like a nonlinear electrodynamic medium.
This behavior, in particular, manifests itself in parametric
excitation of plasma eigenmodes, whose frequencies and
wavevectors are related by the decay resonance condition
when the pump wave field exceeds a certain threshold. The
factors that most strongly stabilize the development of
parametric decay instabilities are the spatial inhomogeneity
of the plasma and the finite size of the interaction region in the
presence of a microwave beam.

We discuss the instability of coupled modes in an
inhomogeneous infinite plasma in more detail. We consider
the parametric decay of a pump wave with a frequency wy
and a wavenumber ko, (o, x), which propagates along the
direction of inhomogeneity x, into two daughter waves that
also propagate along the direction of inhomogeneity. The so-
called reduced equations for coupled mode amplitudes, which
describe their nonlinear interaction with the effect of weak
inhomogeneity taken into account, can be easily derived
within the Wentzel-Kramers—Brillouin (WKB) approxima-
tion [1-4]:
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where AK(x) = kox(x) — q1x(x) — g2x(x) is the mismatch of
decay resonance conditions, ¢;, and ¢,, are the projections of
the wavevectors of the excited waves on the direction of
inhomogeneity, w; and w; = wy — w; are the frequencies of
the daughter waves, u; and u, are the daughter wave group
velocities in the direction of inhomogeneity x, v, is the linear
amplification coefficient, and vy is the coefficient, propor-
tional to the pump wave amplitude, that describes nonlinear
amplification and whose absolute value coincides with the
maximum growth rate of the decay instability in the theory of
homogeneous plasma. It was assumed in deriving Eqns (1)
that the plane pump wave propagates along the direction of
inhomogeneity x.

If the decay resonance condition mismatch is a linear
function of the coordinate, parametric decay is only possible
in the vicinity of the point x; where the conditions of space
synchronism or a three-wave resonance are satisfied, i.e.,
AK(x,) = 0. Solutions of system (1) can then be expressed
in terms of parabolic cylinder functions. These solutions
describe spatial amplification of the daughter waves, i.e., a
change in their amplitudes as they pass through the resonant
layer. This process can be described using the amplification
matrix elements that relate the amplitudes of the waves
incident on the resonant layer and escaping from it:

out __ in
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where I'(...) is the Euler gamma function, Z = |v0|2ld2/
(jur|juz]), and I; = [0AK(xy)/0x|""/? is the size of the
resonance layer. Amplification matrix (3) was obtained in
[1-4] by ignoring changes in the pump wave amplitude that
result from nonlinear interaction. The pump wave depletion
effect was later taken into account in [5, 6], where the
amplification matrix was obtained using the methods of
inverse scattering theory [7]. However, in describing the
initial (linear in the daughter wave amplitudes) stage of the
development of the nonlinear process, pump wave depletion
does not play a significant role. The amplification matrix is
described by formulas (3) sufficiently well in this case.

An analysis of Eqns (2) and (3) shows that the loss of the
daughter wave energy in the interaction region fully sup-
presses the instability if the characteristic size of the resonance
region is significantly less than the characteristic amplifica-
tion length. The condition is satisfied if the inequality Z < 1
holds. In the case of the inverse inequality, Z > 1, parametric
excitation of plasma oscillations occurs in a resonant layer of
a finite size /;. However, the exponential increase in their
amplitudes a(7) with time is already saturated in the linear
approximation, within system (1), at the level a(4+o00)
a(0) exp (nZ) [1]. From a mathematical standpoint, this is a
consequence of the absence of poles in the dependence of the
amplification matrix elements on the excited wave frequen-
cies. Strictly speaking, the plasma is not unstable in this case,
and decay interaction reduces to spatial amplification of a
wide frequency spectrum of noise in the region of three-wave
resonance, often referred to as convective. The parametric
processes evolve in this case relatively sluggishly, and the
excited waves are not coherent.

According to theoretical concepts of an inhomogeneous
plasma, an absolute parametric decay instability can also be
excited, which is saturated due to higher-order nonlinear

Si1,22 = exp (nZ),

effects. Such instability is usually excited due to spatial
amplification if conditions are satisfied for at least part of
the convective energy loss to be recuperated back to the decay
region. The development of the theory of parametric instabil-
ity of an inhomogeneous plasma made it possible to identify
the conditions under which such feedback loops can emerge.
The simplest option is realized if the spatial synchronism
conditions are satisfied not at one but at two points and the
daughter wave group velocities are oriented in opposite
directions [3, 8]. The resonance decay condition mismatch is
in this case a quadratic function of the coordinate, i.e.,
AK = AK"(x? — x3)/2, where AK" is the second derivative
of the resonance condition mismatch with respect to the
coordinate x, and parametric decay is possible in the vicinity
of the two points x = +x,, where the spatial synchronism
conditions AK(+x,) = 0 are satisfied.

If the distance between the resonance layers is much larger
than the size of the coherence regions, i.e., 2|x,| > |AK ”|;l\,(/l 3. the
nonlinear amplification of daughter waves in each of the
resonance layers can be considered independently. If the
directions of the daughter wave group velocities are oppo-
site, i.e., ujur < 0, a feedback loop can be excited between the
points +x, under the condition that [8]

S12.57) exp (i®) = exp [2xdvd(|ul|71 + |u2|71)} , 4)

where @ = J"j\’[ AK(x)dx + /2 is the phase gained by the
daughter waves in the feedback loop. Condition (4) deter-
mines characteristics of the absolute parametric decay
instability such as its growth rate, eigenfrequency spectrum,
and power threshold. In particular, the instability power
threshold is determined by the balance between amplifica-
tion and losses during the propagation of waves in the
feedback loop. The absolute instability growth rate is in this
case of the order of the inverse time of wave energy circulation
in the loop.

Another option for the emergence of a feedback loop is
the excitation of daughter waves localized in one way or
another in the vicinity of the parametric interaction region.
The convective outflow of the excited wave energy from the
decay region is not very important here because a significant
part of the energy comes back due to the localization of
one or both daughter waves [9, 10]. The parametric decay
instability can be described in this case using a perturbative
procedure [10]. At the first step, we can disregard the
attenuation of daughter waves and their nonlinear amplifica-
tion, assuming these effects to be small. This enables deter-
mination of the eigenfunctions ¢, (x) and ¢,,(x) that describe
the confined oscillations. Taking the attenuation and non-
linear coupling of daughter waves in the presence of a pump
wave into account at the next step of the perturbative
procedure, we arrive at equations for the amplitudes a; and
a, of the eigenfunctions ¢, (x) and ¢,,(x):

aal

T (varyar = (vo)az, )

aaz

B + (vr)ar = (v)a

where (vo) and (vg 2) are the coefficients averaged over the
region in which the confined daughter waves are localized,
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System of equations (5) describes the excitation of absolute
parametric decay instability with the growth rate

2y =—(var) — (var) + \/(<le> — (v)) + 4 (o) [ (6)

We note that excitation of parametric decay instability was
analyzed in [1-10] under the assumption of a plane pump
wave. This approximation disregards the effect of the
transverse outflow of the daughter wave energy from the
nonlinear interaction region on the threshold and the nature
of the emerging decay instability in the realistic case of a wave
beam.

The parametric decay of a spatially bounded pump (i.e.,
wave beam) propagating in a homogeneous plasma was
studied in [11] under the assumption that the daughter
waves propagate with the same velocity in opposite direc-
tions along the direction of the field distribution inhomo-
geneity in the wave beam, u; = —up = u. System of equa-
tions (1) was analyzed that describes the interaction between
coupled modes,

aal 6a1

E u g +vea; = V()(X)Clz ) (7)
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where vo(x) = vy for —d < x < d and v (x) = 0 otherwise. A
solution of system (7) that exponentially increases with time,
a2 (x, 1) o< exp (yt), is continuous at x = +d, and exponen-
tially decreases at infinity (as x — do0) must satisfy the
condition

Qx tan (2Qxd) = kx ) (8)

where O, = (|v|* — (7 + vd)2)1/2 and ky = (y+vg)/u are
solutions of the dispersion equation within the beam,
—d < x <d, and outside it at x < —d and x > d. In the
vicinity of the parametric instability threshold, condition (8)
reduces to a simpler relation:

T
Qxd = Z ) (9)

which enables determining the absolute instability growth
rate in the form

2
% =2 |v0|2+<@) v (10)

4

As shown in [12], absolute instability also occurs if a bounded
wave beam propagates in a spatially inhomogeneous plasma
across the inhomogeneity gradient.

Thus, the possibility of exciting absolute parametric
instability has been demonstrated in some situations, both in
the case of a spatially inhomogeneous plasma and a plane
pump wave, and in the presence of wave beams. We note that
in the situation of absolute instability, at least at its initial
stage, only a discrete spectrum of plasma oscillations is
excited, which enables regarding such an instability as a
coherent wave process.

The picture of the parametric decay instability of an
inhomogeneous plasma developed in pioneering studies [1—
4] was confirmed in model experiments especially conducted
with linear plasma devices [13—18]. Parametric phenomena
observed in these experiments were unambiguously inter-
preted as a result of spatial parametric amplification of
waves in an inhomogeneous plasma. Notably, the character-
istic structure of plasma noise in the region of spatial
amplification was visualized [13]. The experiments also
demonstrated the excitation of absolute parametric instabil-
ity of an inhomogeneous plasma that develops as a result of
spatial amplification in the presence of a feedback loop due to
the complex spatial structure of the pump wave [14, 15]. Also
observed in [16, 17] was the excitation of the absolute
parametric instability of an inhomogeneous plasma in the
presence of two decay points predicted in [3]. In particular, it
was shown experimentally that absolute parametric instabil-
ities of a nonuniform plasma occur as coherent parametric
phenomena [16-18], as predicted theoretically.

Based on the three-wave resonance interaction model
proposed in pioneering studies [1-4], the most dangerous
scenarios of parametric decays of electromagnetic waves of
various frequency ranges were studied in the late 1970s and
the early 1980s. In particular, various scenarios of parametric
decay of a pump wave [19-32] in a laser plasma were analyzed
in detail. The experimental results, which can be found in [33—
35], are in reasonable agreement with theoretical dependences
and predictions. In addition, wave decay thresholds have
been found in the lower hybrid frequency range [36-38]. The
results of this analysis are discussed in detail, with reference
to publications, in reviews [39, 40]. The experimental data
obtained using various toroidal installations [41, 42] con-
firmed the basic patterns predicted by the theory.

1.2 Parametric decay instabilities

in electron cyclotron resonant plasma heating

In the mid-1970s, the use of microwaves in the electron
cyclotron (EC) frequency range [43—45] for auxiliary plasma
heating of toroidal installations commenced (Tuman-2,
TM-3, FT-1). The first experiments on high-power electron
cyclotron resonance heating (ECRH) of plasma in toroidal
installations of controlled thermonuclear fusion were carried
out in the early to mid-1980s using the T-10 tokamak [46—49]
using efficient and relatively compact generators (‘gyrotrons’)
developed at the Institute of Applied Physics (IAP) of the
Russian Academy of Sciences. Since then, this heating
method has been successfully used and is now widely
employed in most toroidal installations worldwide (for
example, DIII-D, ASDEX (Axially Symmetric Divertor
EXperiment) Upgrade, Wendelstein-7AS, LHD (Large Heli-
cal Device), T-10, and Wendelstein-7X) [50-59]. Over the
years, a large amount of physical research has been carried
out on stabilizing the plasma column and suppressing its
instabilities by means of local energy deposition, pre-ioniza-
tion, and pre-heating of the tokamak plasma, and control of
the current and electron temperature profiles.

Propagation of microwaves in an inhomogeneous high-
temperature plasma has also been analyzed theoretically. In
particular, the possibility of exciting nonlinear processes,
such as parametric decay instabilities of a pump wave [60—
62], has been studied using the model developed in [1-4]. The
estimated thresholds of these nonlinear phenomena (at the
level of 1 GW for the induced scattering instability and
10 MW for the parametric decay instability) seemed to make
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these phenomena experimentally unobservable. An excep-
tion was ECRH experiments that used electron Bernstein
(EB) waves (short-wave electrostatic oscillations whose
frequency is close to the EC frequency or its harmonics),
where the upper hybrid (UH) resonance for the pump wave is
excited [63—66].

The accumulated experimental data confirmed the princi-
pal theoretical estimates and predictions. As a result, the
following understanding of this auxiliary plasma heating
method has taken shape: ECRH is technically reliable, the
pump wave energy profile can be predicted with reasonable
accuracy, and microwaves in plasma do not experience
losses due to nonlinear decay processes during propaga-
tion. Owing to this, it was recommended to use ECRH in
the newly created International Experimental Tokamak
Reactor (IETR) to heat plasma and control neoclassical
tearing instability.

However, over the past few years, a wealth of data has
been obtained that indicate the presence of anomalous
phenomena during the propagation of microwaves in the
toroidal installation plasma. In particular, abnormal radia-
tion from the plasma was recorded during ECRH in various
tokamaks and stellarators in the frequency range shifted
downward relative to the heating radiation frequency. The
discovered effect exhibited a pronounced threshold and
nonlinear character (in terms of the heating power). As a
result, the recorded signal was interpreted as anomalous
scattering of heating radiation [67—72]. The most impressive
results were obtained in detailed measurements on a
TEXTOR tokamak (Torus EXperiment for Technology
Oriented Research) [67, 70]. Auxiliary electron heating in
the region of a magnetic island was used in this setup to
control the development of neoclassical tearing instability.

The TEXTOR Tokamak is a facility for magnetic
confinement of high-temperature plasma with circular mag-
netic surfaces and the following characteristics: Ry = 1.75 m
is the major installation radius, ¢ = 0.46 m is the minor radius,
and T, = 600 eV and H =2 T are the electron temperature
and magnetic field in the magnetic island region. An extra-
ordinary-polarization pump wave at the frequency fy=
140 GHz was launched into the plasma in the equatorial
plane of the setup from the outer side of the torus (from the
side of a low magnetic field). The second harmonic of the EC
resonance 2mq(xgcr) = @y was located on the side of a
strong magnetic field, approximately at the radius xgcr =
Rgcr — Rp = —28 cm in the region where a poloidally
rotating magnetic island crossed the equatorial plane of the
setup (Fig. 1). We note that the anomalous scattering of
microwave beams was also observed in ECRH experiments at
the fundamental harmonic of the EC resonance. In particular,
this effect was revealed in the FTU (Frascati Tokamak
Upgrade) [72] (Rp = 0.935m, a = 0.31 m, T, = 350 eV, and
H = 4.6 T in the decay region, with fy = 140 GHz).

In addition, the generation of fast ions was detected in
ECRH experiments [73-76]. Because there are no linear
mechanisms for the effective interaction between micro-
waves and plasma ions, this phenomenon indicated the
nonlinear nature of their behavior in plasma. Thus, the
experimental data proved to strongly disagree with the
theoretical concepts developed in [60—62]. This disagree-
ment, on the one hand, was an important scientific problem,
solving which required a theory of nonlinear wave interac-
tions in an inhomogeneous magnetized plasma to be devel-
oped, and, on the other hand, was an applied problem that

Collective
Thomson
scattering

Figure 1. Schematic of an ECRH experiment using the TEXTOR tokamak
[67, 70]. ECR(wy) is the electron cyclotron resonance at the frequency wy.
E(wy) is the electric field of the pump wave at g, E(w, ) is the electric field
of the plasma radiation at the frequency w, at which the plasma radiation
is measured, ¢(r) = rB;/(RoB,) is the safety factor, where r is the current
small radius of the magnetic surface, B, and B, are the current values of the
toroidal and poloidal magnetic fields, and Ry = 175 cm is the large radius
of the installation. The poloidal section of the installation is shown. A
beam of extraordinary-polarization pump waves is shown in the equator-
ial plane of the setup, which at a radius of 28 cm crosses the magnetic
island O-point (schematically represented by a shaded oval, the O-point
coinciding with its center), which rotates in the poloidal direction. The
second harmonic of the EC resonance for the pump wave is located on the
side of a strong magnetic field. Radiation from plasma is detected by an
antenna shifted from the equatorial plane by 20 cm; @ = 46 cm is the small
radius of the installation. The electron temperature in the magnetic island
region is 7. = 600 eV and the magnetic field is H =2 T.

involved assessing the possibility of correctly predicting the
nature of propagation and the location where microwaves are
absorbed in thermonuclear installations.

In response to the problems encountered in explaining the
experimental data, efforts were made to clarify the nature of
these phenomena. It was noted that all the anomalous
phenomena were discovered in the discharges where the
observed plasma density profile was nonmonotonic (or
hollow, i.e., with a minimum at the discharge center). In
particular, a nonmonotonic density profile was detected in
discharges where tearing instability developed and a magnetic
island was formed. The local density maximum corresponded
to the magnetic island O-point. These data were obtained in
the TEXTOR tokamak using a RADAR reflectometer [77]
and Thomson laser scattering [78]. A nonmonotonic plasma
density profile in the presence of a magnetic island was also
recorded in the Tore-Supra tokamak using a sweeping
reflectometer [79] and in the Tuman-3M tokamak using
interferometric diagnostics [80]. A hollow density profile was
observed and the mechanism of its formation was studied
with a powerful central ECRH of plasma in the TCV
(Tokamak a configuration variable), TJ-II [73-76], and T-10
tokamak [58]. According to the results of the analysis, such a
profile is formed as a consequence of anomalous convective
pump-out of plasma from the intense heating region (electron
pump-out effect).

It was suggested based on the experimental data, which
confirm the presence of a nonmonotonic plasma density
profile, that the parametric instability thresholds are signifi-
cantly reduced with such a profile [81]. This suppression can
be caused by the excitation of daughter waves localized along
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the direction of inhomogeneity in the vicinity of a local
maximum of the density profile. Then the convective energy
losses in the nonlinear interaction region turn out to be
completely suppressed, which ensures intense nonlinear
amplification of these oscillations.

Several scenarios of low-threshold decay of an extra-
ordinary pump wave have been considered. The first of
these is the reflective parametric decay instability of induced
scattering. As this instability develops, the pump wave excites
the ion Bernstein (IB) wave confined in the direction of
inhomogeneity, which is a short-wavelength electrostatic
oscillation with a frequency close to the ion cyclotron (IC)
frequency or its harmonics, and a fast extraordinary wave at
a frequency lower than that of the pump wave by the IB
wave frequency. The extraordinary daughter wave propa-
gates in the direction opposite to that of the pump wave [§1—
84]. The second scenario is the parametric decay [§5-87], which
results in the generation of an EB wave confined in the
direction of inhomogeneity and an IB wave, which can leave
the nonlinear interaction region, propagating in the direction
toward the nearest harmonic of IC resonance. Confined along
the direction of inhomogeneity, the slow IB and EB waves are
also localized in the poloidal direction due to the specific
inhomogeneity of the toroidal magnetic field excited by
external coils [81, 83, 85].

Although beam dimensions in the toroidal direction are
usually much larger than the resonance region size in the
direction of inhomogeneity, both 2D confined daughter
waves undergo significant energy losses in the toroidal
direction from the decay region that coincides with the
microwave beam ‘spot’ on the magnetic surface. However, it
was shown in [84, 85] that due to the toroidal symmetry of the
setups, the daughter wave, which is 2D localized in radius and
poloidal angle, returns to the decay region along the outer
circumference of the torus, which can be interpreted as the
excitation of a 3D resonator for both the daughter IB wave
and the daughter EB wave in both decay scenarios. The
absolute instability can be excited in this case at a microwave
beam power that is several orders of magnitude lower than
that predicted in [60—62]. However, the growth rate of these
instabilities is small, because it is proportional to the ratio of
the transverse size of the microwave beam (i.e., the nonlinear
interaction region) to the major radius. Due to this factor, the
indicated nonlinear processes do not play a significant role in
the anomalous reflection or absorption of the pump wave
power.

The scenario of two-plasmon decay of an extraordinary
wave into two UH waves (mainly electrostatic oscillations in
the vicinity of a UH resonance) was later analyzed in [88, 89].
It was shown as a result that in the case under consideration,
both daughter UH waves can be trapped in the decay
region both in the direction of inhomogeneity, due to the
nonmonotonic plasma density profile, and within the
microwave beam. Such 3D localization enables effective
nonlinear amplification of both daughter waves. The
excitation threshold of this instability (up to 100 kW) is
significantly lower than that predicted in [60-62] (5-6 MW).
The growth rate (up to 10% s7!) indicates the exceptional
danger of such instability and the possibility of strong
amplification of UH wave noise from the thermal level.

An analysis of various saturation mechanisms of the
primary decay [90-93] revealed the main mechanism respon-
sible for the relaxation of the nonlinear system to a quasi-
stationary state: the secondary parametric decay instability of

daughter waves, which leads to the excitation of secondary
(tertiary, etc.) UH waves confined in plasma and IB waves.
The cascade of secondary decays can continue as long as the
generated high-frequency wave remains confined in the
vicinity of the local maximum of the plasma density. As
shown in Refs [60-62], the threshold of parametric instabil-
ity excitation whose development generates nonlocalized
UH waves cannot be exceeded for currently available
generators (gyrotrons) even if they are combined into a
group. This prevents subsequent decays in a natural way.
The nonlinear merging of various daughter UH waves can
further lead to the generation of radiation in the frequency
range shifted downward relative to the pump wave fre-
quency [93].

The proposed model made it possible to accurately
reproduce both the spectrum and the radiative temperature of
the electromagnetic radiation measured in experiments, in
particular, using the TEXTOR tokamak [67, 70]. Moreover,
this model predicts a high level of abnormal absorption of the
pump wave (up to 25% power) by daughter UH and IB
waves. We note that the low-frequency daughter IB waves
generated during secondary instability can effectively interact
with ions, leading to the generation of accelerated particle
groups observed in experiments [73-76]. The frequency of
nonlinearly excited UH waves significantly differs from that
of the pump wave, and these waves are absorbed by the
electrons at locations essentially different from those pre-
dicted under the assumption of the linear behavior of the
pump wave. The difference between the power deposition
profile and that predicted in the linear approximation can be
at least partially responsible for the phenomenon of nonlocal
heat transfer in the electron channel observed in many ECRH
experiments [58].

The model developed in Refs [88-93] has a significant
limitation: it requires the presence of conditions (discharge
parameters) under which both daughter waves can be
simultaneously localized along the direction of inhomogene-
ity. However, this combination of parameters is the exception
rather than the rule. In the general case, in a pump wave of
extraordinary and ordinary polarization decays, only one
localized daughter UH wave can be excited. The second
daughter wave quickly leaves the decay region along the
direction of inhomogeneity, and its localization is therefore
impossible. The authors of [94-97] successfully showed that a
UH wave confined in the direction of inhomogeneity can be
additionally localized within the microwave beam limits.
Thus, a universal scenario of low-threshold parametric
decay instability becomes possible: the decay of a pump
wave (with ordinary and extraordinary polarization) into
two daughter waves, one of which is a 3D localized UH wave
whose excitation threshold is substantially (two orders of
magnitude) lower than that predicted for a monotonic plasma
density profile [60—62]. An analysis of the saturation of these
instabilities in [98—100], taking mechanisms such as pump
wave depletion and the cascade of secondary decays of
primary daughter waves into account, enabled determining
the saturation level and the power anomalously absorbed by
daughter waves.

Furthermore, a low-threshold decay of an extraordin-
ary wave was analyzed in the case where a 3D localized EB
wave and an IB wave that leaves the decay region in the
direction of inhomogeneity is excited in the vicinity of the
local maximum of the density profile and within the
microwave beam [102]. This scenario, which is an alter-
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native to the scenario of two-plasmon decay into two UH
waves, may be relevant for installations with relatively low
magnetic fields [73].

The results obtained advance theoretical ideas about a
three-wave resonance interaction in 3D inhomogeneous plasma
and contribute to the theory of nonlinear wave transforma-
tions; they also enable a theoretical explanation, and some-
times a detailed description, of the anomalous phenomena
observed experimentally during ECRH in toroidal installa-
tions. They are also of great practical importance for predict-
ing the energy release region of a pump wave in the ITER.

In this review, we consider the mechanisms of low-
threshold nonlinear excitation of a localized UH wave(s) in
detail. We show that the scenarios proposed can explain the
anomalous phenomena that were observed in ECRH experi-
ments both at the second harmonic of the EC resonance
(extraordinary pump wave) and at the fundamental harmonic
of the resonance (ordinary pump wave). To illustrate the
obtained analytic relations, we use the parameters and
experimental conditions available at the TEXTOR [67, 70]
and FTU [72] tokamaks, where the most detailed measure-
ments of the anomalous effects have been carried out and
various dependences have been obtained.

2. Low-threshold decay of an extraordinary wave
into two localized upper hybrid plasmons

2.1. Primary instability

In an inhomogeneous plasma in a toroidal setup, parametric
decay of a microwave beam occurs in the vicinity of the point
where the decay resonance conditions are satisfied. Because
the characteristic dimensions of the resonance layer are much
smaller than those of the inhomogeneous distributions of the
temperature, density, and magnetic field, it is reasonable to
use a Cartesian coordinate system (x, y, z) centered at a point
that corresponds to a local maximum of the density profile,
with the coordinate x oriented along the direction of
inhomogeneity and z directed along the magnetic field vector
H = (0,0, H). The field of an extraordinary electromagnetic
wave that is incident on the decay resonance layer quasi-
perpendicularly to the external magnetic field and propagates
into the plasma along the x axis has the following form in the
WKB approximation:

(2]
E 1) =
ot 1) =\ o)
E; [ . .
X {eoz exp (1J koy(x") dx' + iko,z — 1wot) +c.c.] , (11)
where
e = e(wo, ) = —i e, +e, (12)

&

is the polarization vector, E; is the field amplitude distribution
in the beam incident on the interaction region,

8t Py y2+ 22
Ei(x,y,z) N P (—7 ; (13)
Py is the beam power, d is the beam size,
2,2
g () = 20 20— 80 (14)
& &0

is the wavevector component along the direction of inhomo-
geneity, kox > ko, ¢ and go are the components of the
dielectric permeability tensor transverse to the magnetic
field of the ‘cold’ plasma at the frequency wy,

U)2 [ON w2
T e
¢ = |Wee|, Wee and wpe are the EC and plasma frequency,
and c.c. indicates the term obtained from the first term in
the right-hand side of Eqn (11) by complex conjugation.

We only consider the case where the pump wave
propagation direction is strictly perpendicular to the external
magnetic field, ko, = 0, and the wave decays into daughter
quasi-electrostatic UH waves whose frequencies are approxi-
mately equal to half the pump wave frequency, w; = wy/2,
w, = wo — ;. This decay is described by the system of
equations [99]

*E,, % 190)
ax;’} + k2 (x)Epy = —i - O J(w),
(15)
ﬁ(<f)1) =dnp,, D(¢2) = 4mp,,

where the first equation describes attenuation of the pump
wave when it propagates through the parametric decay
region, diffraction being disregarded, and the second and
third equations describe parametric excitation of UH waves.
In a weakly inhomogeneous plasma, the integral operators in
the left-hand side of the two equations have the form

D(¢,,)

— J% exp [iq(r —r")| Dun (M,L%%)‘ﬁl,z(l‘/) .
(16)

The integral operator kernel Dyy coincides with the local
expression for the longitudinal dielectric permittivity of a
magnetoactive plasma [103] with a small electromagnetic
additive. In the vicinity of the UH resonances of daughter
waves, oyn = (02 + cn)ge)1 % and, under the assumption that
the Larmor radius is small but finite, the function Dyy has the
form
2

)
Dun(e12) = Irql +eq +* 3 +nq?, (17)
where
3 o’ v2
2 2 2 2 pe te
= + ) l = -3 B
T ! 2wf, — 0 of ) —40f

v 1s the thermal velocity of electrons, and n(w; ) =
I —wp./wf , is the longitudinal component of the dielectric
permeability tensor of the ‘cold’ plasma [103]. In the case of
quasitransverse propagation of daughter UH waves along the
direction of inhomogeneity, the nonlinear charge densities p,
and p, and the current density J(wo) = j, +1(go/¢0) jx in the
right-hand side of Eqns (15) can be represented in the WKB
approximation as (see the Appendix)

. o n *
J(wo) =1 — Xe]¢l¢27

4nH (18)
_ 1 0y nlx _ 1 EO,V ., nl
P = 4t H /fe ¢27 Py = 4t H /fe ¢1 9
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where 160
w2 — 3.
¢ T wy (0@ —wz)(w0 4?2 )? - 120 e
A g - 25
o, , A -
x<7+3@—°f—;>. (19) K L
& W W - 80 | S
é 4202
We regard the right-hand sides of Eqns (15) as small perturba- ‘_, <
tions and use a perturbative procedure suggested in [9]. At the S 40 - . 415
first stage of the procedure, we disregard the nonlinear T
amplification, the pump wave depletion, and the propaga- | |
tion of UH waves along the magnetic field and take into 024 > » 321-0

account that the UH resonance for daughter waves is located
in the vicinity of a local maximum of the density profile. The
WKB solutions for two uncoupled integral equations
D(¢,) = 0 and D(¢,) = 0 have the form [89]

_1 P (X) eXp (lq1y - iwl t) +c.c.,

¢ = > (20)

C . .
= = (p”(x) eXp (1(1_\:)/ + 1602f) +c.c.,

9=

where C; , = const,

X

1 . n .
oul) = e (1] armae—if)

7 (],

m Xim

Gz riy) e

is an eigenfunction (the mth mode), and LE(x) is the
geometric-optic length of the wave path between two turning

points (x;f . x5,

X 1 1
+ d .
KZ J : (D,:q(é) ’ D,;q@)

The wavevector components in the direction of inhomogene-
ity

Ly (x) =

—q}>q (22)

N —&(x) F \/82()(,‘) —4w2g2(x)I2/c?
9. = 22

are solutions of the dispersion equation Dyy = 0 at ¢, = 0.
Away from the UH resonance, they describe the ‘warm’ (+)
and ‘cold’ (—) branches of the UH wave dispersion curve. The
frequencies of the daughter UH waves w; = »™ and
w; = wg — w™ and their poloidal wavenumbers ¢;"" satisfy
the quantization conditions

NG

Xim

qi:(8))dé=n(2m + 1),

J (45(8) — (&) dE = n(2n + 1).

X

The pre-exponential factors qu( x)~ 2 in (21), where

D, = 0Dyn(® o™, qF (x))/0qy|, ensure the conservation of
the energy flux of UH waves along the direction of
inhomogeneity. Thus, the eigenfunctions ¢,,(x) and ¢,(x)
in (21) describe noninteracting UH waves localized in the

Figure 2. Dispersion curve of the first UH wave shifted downward by the
pump-wave wavenumber, ¢, — ko (f;""" = 70 GHz, dashed line) and the
dispersion curve of the second UH wave g2, (f,"" = 70 GHz, solid line) at
lg;-" =0.2 cm~!, ¢. =0, m = 6, n = 6. The density profile n. (solid bold
curve) in the presence of a magnetic island [78].

vicinity of a local maximum of the density profile and the UH
resonance surface, which propagate strictly perpendicularly
to the magnetic field in opposite directions. The normal-
ization of the potential amplitudes was chosen such that
[ loa(x)Fdx=1.

Figure 2, which shows an example of the density
distribution in a magnetic island (solid bold curve) [78],
displays the behavior of the dispersion curves ¢ and ¢5- of
two UH waves with poloidal ¢, = 0.2 cm™! and toroidal
¢. = 0 wavenumbers and frequencies equal to half the
pump wave frequency, f; = f> = 70 GHz. The dashed line
is the dispersion curve of the first daughter wave, which
is shifted downward by the radial wavenumber of the
extraordinary wave, i.e., ¢i» — koy; the solid closed line is
the dispersion curve of the second daughter UH wave.
Both dispersion curves correspond to the oscillation eigen-
mode m,n = 6. At the points x, » where the solid and
dashed curves intersect, the decay resonance conditions for
the wavenumbers of the interacting waves are satisfied:
A(xa1,2) = kox — q1x + q2x = 0. The parametric decay of the
pump wave occurs in the vicinity of these pomts in narrow
layers of the width Iy » = |d4(xa, 2)/dx|

At the second step of the perturbative procedure, we
include both the energy loss of the daughter UH waves
across the direction of the plasma inhomogeneity x and their
nonlinear interaction in the presence of a pump wave, whose
depletion we initially ignored, assuming its amplitude to be
constant. As a result, the amplitudes of the excited daughter
UH waves are no longer constant: Cj , — Cj»(t,,z). We
substitute formula (20) in the second and third equations of
system (15). We multiply both sides of the second of these
equations by ¢, (x), and the third by ¢,;(x). Next, we
integrate both equations for UH waves along the x coordi-
nate and expand the functions (Dyy) in the neighborhood of

", q;"", g- =0, where the averaging procedure (...) is
deﬁned as
Koo Dun (g, x)
Dyn(w1,)) = dx Dunldi ), ¥)
< ' > Xnn |Lm n( )|
Dyn (41 24(X) )
T (24)
1L, (%)
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As a result, we obtain a system of equations for the
amplitudes of nonlinearly coupled UH oscillations [89],

Oa, Oa; o%ay W)
— tupy = — 1 = = /—vo(y,2)az,
ot ) oy 0z2 (O)) ( ) (25)
da» day .. O )
~.  Uny =— A): a5 — —v, B )
o0 gy T 5z T g, 00D
where
Ei(X,y, Z)
VO(y7 Z) = - e

i 2/ (D10) (D20} H

XJ dx

is the nonlinear coupling coefficient, D; » = Dyn(®i,2),
Dl,2(u = |aDl,2/aw|a Um,ny = <aD1A2/aqy>/<Dl,2w> are the
group velocities averaged over the region of localization
of plasmons, which describe convective losses (the mth
and nth modes) in the poloidal direction, and A4, ,. =
(62D1‘2/(26q_,2)>/(D1,2w> are the coefficients, averaged over
the UH plasmon localization region, of the mth and nth
modes, which describe their ‘diffraction’ losses along the
magnetic field. In Eqns (25), we normalized the daughter
UH wave amplitudes as

o m e e (it ax)
(26)

w1,2<D172w>d2

2
16T 27)

a2 =Ci

which means that the absolute value squared of the
corresponding wave amplitude is equal to its energy density
in the decay region measured in local temperature units. We
note that for the decay illustrated in Fig. 2, w; = wy = o™,
Upy = Upy = Uy, Ay = A,z = A-. We focus on this particular
case in what follows.

System of equations (25) describes the nonlinear coupling
of UH waves in the presence of a pump wave with a constant
amplitude and provides a suitable description of the early
(linear) stage of parametric instability. With sufficient daughter
wave amplification described by the right-hand side of
Eqns (25), even weak feedback that ensures recuperation to
the nonlinear interaction region of part of the energy lost by
these daughter oscillations due to convection or diffraction
in the decay region results in an exponential growth of the
decay wave amplitudes with time. This phenomenon is
equivalent to the excitation of the absolute instability of the
pump wave.

In the case of convective energy loss by daughter waves in
opposite directions from the nonlinear interaction region to
the exterior of the one-dimensional wave beam, such absolute
instability was first discovered by Kroll [104] in analyzing
stimulated Mandelstam—Brillouin scattering at the laser
focus; it was explored later in detail in the one-dimensional
case, in particular, by Gorbunov [11]. These studies showed
that for a certain transverse size of the wave beam, the energy
losses of daughter waves do not compensate their growth in
the strong-field region, and parametric instability can become
absolute when the growing waves are captured by the strong
field region of the pump wave.

Next, we generalize the results in[11, 104] to the physically
realistic case of a 2D wave beam. Because the equations of

system (25) are linear in the interacting wave amplitude, we
seek a solution in the geometric-optic approximation
ox exp (yt +1S(y, z)), which leads us to the equation for the

eikonal:
2
0 A (BY| Z o) 92 =0
, | — — |V z = .
Uy ay \ oz ol Y

An analysis of partial differential equation (28) using the ray
tracing method showed the presence of additional 2D
localization of the UH wave trajectories on a magnetic
surface within the microwave beam ‘spot’. Figure 3 shows
the trajectory of a daughter wave when it is nonlinearly
coupled to the second daughter wave in the presence of
Gaussian microwave beam (13) with the power Py = 600 kW
for various ratios between the parameters u,d and A..
Equation (28) can also be solved in two limit cases where the
wave energy losses from the interaction region prevail in one
of the directions (Fig. 3a, ¢). The partial differential equation
can be reduced in these cases to an ordinary differential
equation, and the excitation threshold and the absolute
instability growth rate can be estimated.

We begin the analysis with the case where diffraction
along the magnetic field prevails over other losses (Fig. 3a),
and the UH wave energy loss across the magnetic field can be
disregarded, and hence Eqn (28) with nonseparable variables
reduces to the equation

(28)

2
A2q! = w2 +97 =0, (29)
where ¢, = 0S/0z. Assuming that w,' [vo (0 )\, we expand
[vo(2)]* in a Taylor series: |vo(z)|* = |[vo(0)]*(1 — z2/d?).
Using the quantization procedure, we obtain the instability
growth rate for the most dangerous fundamental mode in the

form [89]

> 9f|v<>|\/A—zr<3/4> Y3
V_\/‘” )

and the equation that determines its excitation threshold [89]

7 [vo(0, P |V 31(3/4)\ 3
\vo(o,Péh)\=(§‘°( ;)|\/_ r((1//4))) . (31

If convective losses across the magnetic field dominate
(Fig. 3¢), Eqn (28) acquires the form

uyq; — [vo(y) (32)
where g, = 0S/0y. Similarly to the previous case, we assume
that y < |vo( )|. Therefore, |vo(y)|” can be expanded in a
Taylor series: |vo(y)|” & [v(0)| (1 — y2/d?). Using the quan-
tization procedure, we obtain the instability growth rate for
the most dangerous fundamental mode [89]:

2 V() u
= /o) - o0k

and the equation that determines its excitation threshold [89]

(33)

1/2
v (0, P)| = (|v0(O,P6h) %) . (34)
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Figure 3. Trajectory of a UH wave that is a solution of Eqn (28):
(@) uyd < A, (b) uyd = A, and (c) u,d > A..

For the parameters used in the numerical solution of Eqn (28),
the instability excitation threshold is P{" = 28 kW (Fig. 3a)
and P{" = 37 kW (Fig. 3c).

We note that anomalous scattering of heating radiation
under an auxiliary ECRH of plasma in the TEXTOR tokamak
was observed whenever the magnetic island O-point passed,
in the process of its poloidal rotation, through a microwave
beam [67]. The plasma density profile in the nonlinear interac-
tion region evolved in this case, which resulted in a change in
the relation between the u,d and A. parameters for the UH
waves confined in the direction of plasma inhomogeneity.
However, the UH waves remained localized in all these cases
within the microwave beam (see Fig. 3). Only the instability
growth rate value changed.

For the parameters we have chosen in finding the
dispersion curves of the interacting waves in Fig. 2, when
the island O-point crosses the microwave beam, the daughter
wave energy losses from the decay region along the magnetic
field dominate (Fig. 3a). The growth rate can be described in
this case by analytic formula (30). Furthermore, when the
island rotates, the losses along and across the magnetic field
become of the same order of magnitude (Fig. 3b). It is not
possible in this case to obtain an analytic expression for
the instability growth rate. During further poloidal rota-
tion, the ‘potential’ well parameters change such that the
convective losses of the confined UH waves begin to
dominate (Fig. 3c¢). The growth rate is given in this case by
formula (33).

As a result of further rotation, the UH waves are no
longer confined, and this leads to a loss of instability.
Because the instability growth rate is in all cases much
larger than the island rotation frequency, 1/, = 103 s71,
but much smaller than the inverse time of the electro-
magnetic pump wave passage through the decay region,
1/te < 10057 ie., 1/7, < 7 < 1/14, we can, first, disregard
the time evolution of the pump waves and, second, regard the
change in the growth rate in the process of island rotation as
an adiabatic process.

Figure 4 displays the time evolution of the instability
growth rate for the microwave beam power Py= 600 kW and
d=1 cm. This dependence is plotted as follows. Unfilled
circles correspond to formula (30), which is suitable for
describing the case of dominating longitudinal losses, while
the filled circles correspond to formula (33), which is suitable
for the case of dominating transverse losses. The initial
moment 7 = 0 corresponds to the passage of the magnetic
island O-point through the beam (equatorial plane). At those
moments of time when the losses in the longitudinal and
transverse directions are of the same order of magnitude, the
analytic formulas are, strictly speaking, inapplicable. It can be
seen, however, that there is a substantial overlap between
these dependences, owing to which the y(7) behavior can be
interpolated through the entire period, until y(z) > 0. The
obtained dependence can be used to estimate the power
amplification factor: InS=2I'=2[(1)dr ~ 0.74 x 10°, a
value that is too large even for amplification from the thermal
level of fluctuations at the UH frequency. We can expect that
the instability is saturated at a much lower level owing to
nonlinear effects and, primarily, to the excitation of second-
ary low-threshold decay instabilities related to the generation
of the UH waves confined in plasma.

2.2 Saturation of instability

We consider the saturation of the two-plasmon decay
instability with a cascade of decays of daughter UH waves
into secondary UH and IB waves, taking the pump wave
depletion due to the initial instability into consideration. To
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Figure 4. Time dependence of the absolute instability growth rate during
the rotation of a magnetic island in ECRH experiments [67, 70].

describe the pump wave depletion, we recall that its amplitude
changes as the wave passes through the resonant layer, i.e.,
E; — E;(x). We substitute solutions (20), (21) in the first of
Eqns (15). Because the characteristic size of the nonlinear
interaction region is much larger than its wavelength, but
much smaller than the Rayleigh length, the equation for the
Ei(x) amplitude can be obtained using the envelope
method in the WKB approximation in the form [99]

0 ) a)02 c

Ei:—l—

& - nl(x) QD,N(X)([)Z(X) .

; - (35)

a)()kox (X)

We integrate Eqn (35) with boundary condition (13) to obtain
the amplitude of the pump wave as it passes through the
nonlinear interaction region:

. a)02 « o 7ol 7 ¢
SRS IR R e
AP YW, X!
X % exp <—iJ Kox(x") dx”) : (36)

where C; and C; are the daughter wave amplitudes.

Next, we obtain the equations for the secondary instabil-
ity of daughter waves (20). In this section, we discuss only a
cascade consisting of two pump wave decays as a result of
which the primary and secondary daughter waves are excited.
We focus on the secondary instability with the lowest
threshold: the parametric decay of primary longitudinal
oscillations that results in the generation of low- and high-
frequency longitudinal waves confined in the plasma [90, 91].

We begin with a description of the decay of a daughter
UH wave with an amplitude ¢, into secondary UH waves
with an amplitude ¢| and IB waves with an amplitude ¢;.
This process is described by the system of equations

D(¢)) = 4npy,

D(d)l) = 41.[:01 )

(37)

where the integral operators D(¢}) and D(¢;) are defined
according to formula (16), but in the first equation the UH
wave dispersion function (17) serves as the integral transfor-
mation kernel and in the second equation, it is the dispersion
function of the longitudinal wave of the intermediate

frequency range (IB wave):

Dig = q* + z(o1) + zi(o1) (38)
where
2w2- w
1) = ”'{ -
/ Utzj |q:|'Utj
I~ 2.2 2.2
a)fma)c‘,) ( ‘h%;‘) (ﬁ%‘)}
X Z|— Jexp | — 1 39
> ( o Jeww (=52 in(52) | 9

is the electron and ion susceptibilities [103], with ¢? = ¢2 + ¢2
and j=e, i.

To describe the interaction of three potential oscillations,
we use the kinetic description and represent nonlinear charge
densities in the form [102]

(p{):_ le] <x£’l*¢i¢1>
P1 4nT. Xrllld)l(b,l 7

[o.¢]
XEI = wﬁewc ZJ dvy fm

n,m

x (g1 an,;Hn(qlva/wc)Jn(ql’va/wc)Jm(quvL/a)C)
: (of — moe)(w] — noc)

n(m + n)Jn1+n(qlxvi/wc)']"(q{va/wC)']z;q (qu’UL/wC)

+qi.
ix (0] + no) [w1 —(m+ n)wc}

o m(m + n)Jr11+n(ql.xUL/wc)Jy,,(qfxvi/wc)t]m(qI.x‘vL/wc)>
I (0] — ma)[w) — (m+ n)o.] ’

where J;, is the derivative of the Bessel function with respect
to its argument. A detailed derivation of y! is presented in
the Appendix. Similarly to the case of the primary instabil-
ity, we analyze the secondary decay using a perturbative
procedure [9]. At the first step, we ignore the nonlinear
amplification and seek a solution of the homogeneous
equations D(¢}) = 0 and D(¢;) = 0 in the WK B approxima-
tion in the form

/

C . .
ol = 7‘ @,(x) exp (ig)""y —imjt) +c.c.,
(41)

G exp (1J g1, (x")dx" +i(w; — w{)t) +c.c.,

o /Di (x)

where C| = constand C = const. The eigenfunction ¢, (x) in
the first of expressions (41), which is defined in accordance
with formula (21), describes a UH wave localized in the
direction of inhomogeneity. The eigenfrequency of this UH
wave o = w? satisfies a quantization condition similar to
(23). The IB wave wavenumber is a solution of the local
dispersion equation Dig(w; — w{, g1y) = 0. The pre-exponen-
tial factor that contains the expression Dy, = |0Dig/0qi| in
the denominator ensures the energy flux conservation.

At the second step of the perturbative procedure, we take
the effect of nonlinear interaction between UH and IB waves
in the presence of a primary UH wave into account, as a result
of which the amplitudes of the excited waves change. The
possibility of this secondary nonlinear interaction is illu-
strated in Fig. 5, where the dashed line shows the dispersion
curve of the secondary IB wave ¢, at the zero longitudinal
component of the wavevector ¢y., f = 0.52 GHz, and the
solid lines show the sum of the wavenumbers of the primary

b1
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Figure 5. Dependence of the secondary IB wave wavenumber ¢,
(fi = 0.52 GHz) (dotted curve) and the sum of the wavenumbers of the
primary and secondary UH waves ¢ +g¢{, (/i =70 GHz, f/=
69.4 GHz) (solid curves). The density profile z. is shown with the solid
bold curve.

and secondary UH waves, ¢y +¢q{,, fi =70 GHz, f/ =
69.47 GHz. The decay conditions are satisfied at the points
where the dispersion curves intersect, owing to which the
secondary decay instability of the primary wave becomes
possible in their vicinity. We also note that the daughter IB
wave leaves the interaction region along the direction of
inhomogeneity. For the selected parameters, the convective
energy losses by the IB wave along the x axis are dominant.
Because the IB wave wavevector is much larger than the
inverse size of the decay layer, we can use the ‘abridging’
procedure to derive an equation for the envelope that
describes the slow variation of the IB wave amplitude Ci(r)
from the second equation of system (41) [91]:

. 0 81‘[/)] ( -JX / r /
i —Cl=———=cexp|—-i| gu(x)dx' —i(w) —w])t].
Ox \% Diy(x) :

We integrate this equation and substitute Cj in the right-hand

side of the first equation of system (41), which we multiply by

¢,* and integrate over x. Using a normalization similar

to (27), we obtain the equation for the amplitude of the

secondary UH wave localized in the radial direction [99]
Oa{ Oa 0%aj

. _ w? 2 4
_—&-upya—&-l — =V W|a1\a1, (42)

ot 7% 9z
where u,, and 4,. are the averaged group velocity and
diffraction coefficient, the averaging procedure being
defined in (24), and v; is the coefficient that describes the
nonlinear interaction between the primary and secondary
localized UH waves:
1|2

- i lef? J“ iy En (025 ()
' 4Ywrom (D) (D],) PTe) Dy ()

X J\DO dx’w exp (i J:/ gie(x’) dx ’) .

(43)
We can similarly describe the secondary instability of the
second primary UH wave, as a result of which secondary UH
and IB waves are excited. The equation for the second
secondary UH wave amplitude has the form [99]

daj oay . Oaj w9
o gy e g T glela (“44)

where v, is defined in accordance with formula (43), w; — w,
o] — w}. Not only do the amplitudes of both primary waves
increase as a result of primary instability. These waves also
lose energy as a result of secondary decays. Given the pump
wave depletion and the secondary instability of the primary
daughter waves, we use system of equations (25) and Eqns (42)
and (44) to derive a system of equations that describes a
cascade of the decays that results in the saturation of the
primary instability of the pump wave and takes the pump
wave depletion into account [99]:

6a1 + 6a1 i 62a1
— u,, — — o
ot " 9y " 9z

a)l’ﬂ wnl
=/ (0 2)a = vaofar) - \/;Vllaflzal ;
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5t gy T 5 =\l (45)
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=m0 2ar —valaa) - \/;V2|az’| a,
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| S e i)

X exp (1J kox(x") dx’)

X

(46)

is the coefficient that describes the pump wave depletion. The
first terms in the right-hand sides of the first and third
equations in (45) describe the primary instability with the
pump wave depletion taken into account, while the second
terms in the right-hand sides of the first and third equations
and the right-hand sides of the second and fourth equations
describe the secondary instability. Similar equations describ-
ing the decay cascade of a plane pump wave, i.e., d — oo,
vo(,z) — vo(0,0), were numerically solved in [105, 106]. The
numerical solution showed that the system of nonlinear
equations does not have a stationary solution in the
homogeneous case. Later, it was shown numerically and
analytically [107, 108] that multicomponent cnoidal waves are
a solution of a system of equations similar to (45) in the
homogeneous case. The primary instability is saturated as a
result of switching of the interacting waves from the
exponential growth mode to a strongly nonlinear oscillatory
mode, in which the oscillation frequency depends on the
amplitude of all the oscillations involved in the interaction.
Below, we show numerically and semi-analytically that the
inhomogeneity introduced into the system by the microwave
beam results in the existence of a stationary solution of the
system of nonlinear partial differential equations (45) with
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Figure 6. Evolution of the energy density of daughter primary
<‘(1172(l‘)|2>pdi (solid lines, coinciding) and secondary (\a{vz(t)|2>pdi
(dashed-dotted lines, coinciding) plasmons in the beam ‘spot.” Horizontal
dashed lines indicate saturation levels (49) (bottom line) and (50) (top
line).

variable coefficients, which reflects the transition of the
primary instability to the saturation mode.

We now solve system of equations (45) numerically using
the finite difference method in a 2D integration region
2y X 2zg whose dimensions are much larger than the
microwave beam size (i.e., the nonlinear interaction region),
vB,zp> d. We set periodic boundary conditions at the
boundaries of this region. These conditions, which are in no
way related to the toroidal geometry of the tokamak, are used
to enhance the stability of the numerical scheme. Thus, the
model we are considering is a simplified one and, strictly
speaking, is only applicable in the vicinity of a microwave
beam. It does not take into account, in particular, that the UH
wave propagating inside the magnetic island approaches the
EC resonance region, in which it is completely absorbed.
Therefore, the breakdown of the established stationary state
due to recuperation of the UH wave energy, pumped out as a
result of diffraction back to the decay region, which was
predicted in the model under consideration, turns out to be
impossible. From a mathematical standpoint, in the model
problem under consideration, we are interested only in the
intermediate asymptotic behavior of the solution. In the
calculation, we choose the integration region size such that
the excited UH waves do not reach the boundaries in the
characteristic times during which the solution reaches the
intermediate saturation asymptotic behavior. In addition, we
assume that the distribution of the primary and secondary
daughter plasmons is homogeneous and determined by
thermal fluctuations, ie., ({ja;1|?)) =1, ((|a{'2\2>> =1,
where ((...)) is statistical averaging over the ensemble of
fluctuations [103]. The results of a numerical solution of
system of equations (45) for a microwave beam with the
power Py = 600 kW are displayed in Fig. 6, where the time
dependences of the UH plasmon energy averaged over the
beam (parametric decay region) are shown. The averaging
procedure is defined as

” J dydz

.. md?

—zp

D= | ro2e0 (-55-2). @)

—VB

It can be seen that the energy of primary plasmons
increases exponentially at the beginning. This is shown on a
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Figure 7. Amplification factor of the primary waves. The dashed-dotted
lines (coinciding) show the numerical solution, and the solid line the
analytic formula 2y7, where 2y is growth rate (30).
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Figure 8. Amplification factor of secondary waves. The solid curve shows
the numerical solution, and the dots are asymptotic expression (48).

larger scale in Fig. 7, which shows the amplification of
primary UH waves (dashed-dotted line) within the micro-
wave beam and the analytic expression 2y¢ (solid line). The
primary instability growth rate 2y is given by Eqn (30). As
soon as the primary plasmon energy exceeds the secondary
decay threshold, a rapid increase in the secondary UH
plasmon energy can be observed (see Fig. 6). We estimate
the amplification of the secondary wave:

2 2 v

2I5(1) = In (<]a1/(t)} >pdi> ~ (la(0)] >pdi% :

In Fig. 8, we compare analytic expression (48) with the
numerical solution. A reasonable agreement between these
dependences can be seen. The dependences in Fig. 6 show that
at a certain moment the secondary plasmon energy within the
pump wave ‘spot’ increases to the extent that it can drastically
reduce the primary plasmon energy and diminish it to a level
that is less than the secondary instability threshold. The
secondary plasmon energy, in turn, begins to decrease, and
the primary plasmon energy again increases. As a result, the
system relaxes to the stationary state, and the saturation levels
of corresponding plasmons can be qualitatively estimated
using the following arguments. The primary plasmon energy
must be such that it can compensate the losses of the
secondary plasmons from the pump wave beam ‘spot’ and

(48)
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Figure 9. Evolution of the total energy of daughter plasmons in the 2D
integration region 2y x 2zg.

Figure 10. Fraction of the pump wave power transferred to daughter waves
as a function of beam power. The dots show the result of numerical
calculations (51). The dashed curve displays the dependence o 1/+/Py.

drive the secondary instability to virtually the excitation
threshold,

1

!/

s 2
‘01,2’ N'Clwz\)l,z’

(49)

where t{ , = nd?/A,.. Therefore, the secondary plasmon
energy in the saturation regime must be such that the primary
instability can be kept near the excitation threshold owing to
nonlinear dissipation, i.e.,

15‘2 ~ ‘V()HCISl

|a 5‘2 ~ |v0||af|
: villag]”

— hallas]

(50)

a3

The estimated saturation levels displayed in Fig. 6 by
horizontal dashed lines agree well with the calculation
results. Thus, the interacting wave amplitudes are non-
linearly maintained at a constant level within the beam, i.e.,
in the parametric decay region. However, due to the losses of
the daughter wave energy from the microwave beam ‘spot’,
their energy increases in the 2D volume where the numerical
solution was obtained. We can calculate the anomalously
absorbed power by analyzing the computation results.

Figure 9 displays the evolution of energy of all daughter
plasmons in the 2D volume (in dimensionless units). It can be
seen that as the saturation is reached, the daughter plasmon
energy in the volume continues to grow, which is related to the
losses of the daughter waves from the decay region. The
relative pump wave power transferred to the daughter waves
can be found using the numerical simulation results:

AT
Py _Po ot - nd?

(lar|* + lao* + |af [ + las ) -

(51)

The obtained analytic estimate predicts the dependence of the
anomalous absorption of the pump wave AP/ Py on its power
in the form AP/ Py < 1/4/Py, which is confirmed by simula-
tion results.

Figure 10 shows the dependence obtained by processing
the numerical solution of system (51). The numerical
simulation results (dots) are reproduced with good accuracy
by the dependence 1/ PO1 2 (dashed curve). This allows
estimating the fraction of power lost by the extraordinary
wave beam due to nonlinear effects. For the discharge

parameters used in the calculation and the microwave beam
power 600 kW, up to 10% of the power is absorbed
abnormally, i.e., transferred to various daughter UH and IB
waves.

2.3 Calculation of the detected signal power and spectrum
Nonlinear interaction (merging) of various daughter UH
waves excited as a result of cascade saturation of the primary
low-threshold two-plasmon instability of an extraordinary
wave may result in the generation of electromagnetic waves
whose frequencies are shifted down relative to that of the
pump wave. This mechanism allows explaining the anom-
alous scattering effect, which has been observed in many
installations [67-72]. We now discuss this effect in more
detail. In analyzing instability saturation in Section 2.2, we
considered a cascade consisting of two sequential decays of a
pump wave. In fact, the decay cascade can continue at a
relatively small amplitude of the UH waves, as long as the
‘depth’ of the local maximum of the density profile allows the
excited secondary UH wave to be localized in the direction of
inhomogeneity.

Figure 11 shows the behavior of the absolute value of the
radial wavenumber of daughter UH waves excited as a result
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Figure 11. Dispersion curves of the primary UH wave (solid closed curve,
the m = 6 mode), secondary UH waves (dashed curves, modes m’ = 16,
m” =33, and m"” = 57), and the secondary nonlocalized UH wave
(dashed-dotted curve). The density profile (right vertical axis) is shown
by the bold solid line.
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of'a decay cascade. The first three decays of the primary wave
(solid line) are seen to lead to the excitation of localized UH
waves (dashed lines). In the fourth decay, only a nonlocalized
UH wave (dashed-dotted line) can be excited. However, its
excitation threshold cannot be exceeded at a technologically
available pump wave power, which breaks the chain of
sequential decays.

We note that both primary daughter waves (41) decay, the
only difference being that after the decay of one of them, UH
and IB waves are excited that propagate in the direction
opposite to the secondary waves generated as a result of the
decay of the other. The merging of various UH waves during
a three-stage cascade saturation of the primary instability
results in the excitation of various extraordinary polarization
waves. However, only nonlinearly generated electromagnetic
waves with the frequencies

!
@2 D1 _ 138 96 GHz,
2n
"
D2F DU _ 138 44 GHz, (52)
2n
n
D2F O _ 137,92 GHz
2n

can propagate outward and be detected by sensors for
diagnosing collective Thomson scattering; the frequency
values reproduce the measured radiation spectrum with a
reasonable accuracy (see Fig. 9 in [70]). We next focus on the
first frequency line (w,+ w{)/(2n) =138.96 GHz and
calculate the amplitude of the signal recorded by the
receiving antenna. According to [109], this amplitude can be
represented as

) (53)

A(w,) = l‘[js(wa17 rE*(w,,r)dr.
Formula (53) has a transparent physical meaning: it serves as
one of the possible statements of the reciprocity theorem. It
relates the contribution of a given point r to forming the
radiation signal described by the current density j,(w,) and
the capacity of the same antenna, if it operates in the radiation
mode (E™ is the field of the antenna beam of unit power), to
illuminate this point r in the plasma with the inverted
direction of the external magnetic field. Integration is
performed in Eqn (53) over the entire plasma volume. In the
nonlinear interaction region, the field E* can be represented
in the WKB approximation as [93]

E+ — Wa e+(wa)E;»(y7Z)
chkay(x) 2

X
X eXp <i(ual — iJ kay(x', Ky) dx' — iKay) +cc., (54)

where the initial distribution has the Gaussian shape

| 8n (=)’ 422
Eo+(y72): WGXP {—#7

where y, = asin 0 is the vertical shift of the receiving antenna
with respect to the equatorial plane (see Fig. 1), d, is the
receiving antenna size, w,/(2n) is the signal frequency,
et(w,) =e*(w,) is the polarization vector (see (12)),
kax(x, Ky) = (k3 (x) — Kf)l/2 is the wavevector component

along the direction of inhomogeneity, ko(x) is the transverse
component of the wavevector (see (14)), K, = w, sinf/c, and
0 is the angle of inclination of the receiving antenna. The
convolution of the current density j (wi, r) excited as a result
of the nonlinear interaction of the primary ¢,(r) and
secondary ¢ (r) UH waves (which describes the generation
of an extraordinary wave propagating outward) with the
polarization vector e*(w,) can be represented as (see
Eqns (18) and (19))

(OF
4dnH

e/j—(wa)jsk(wa) =—i Xe“l*¢§¢/1 ) (55)

where the coefficient ! is defined in (19). We substitute (54)

€
and (55) in (53) and integrate over the plasma volume. As a
result, we first obtain the amplitude A of the recorded signal
at a frequency of 138.96 GHz and then its power [93]:

2 Te
= 0,0¢ s

ps(w,) = |A((Ua)| T

(56)

where 1 /7o = 402 T,/ (cd?>H?),

* dydz
ro= || a2l
G-y +:f
X exp {—iKay - #]
a

is the angular resolution of the receiving antenna, and

J ¥ gy [ 73 (x)

- Cka":(x) V L;(x) L,;;L(X)

1

Oc =———F——V 7
¢ w2<D2w>wl/<Dl/m>

)

X exp (in(q;’(M, &) —qy (n,8) — kax (¢, Ky)) df) 2

where m and n are the number of the radial modes of localized
UH waves, describes the efficiency of nonlinear interaction
(merging) between UH waves. Next, to estimate the radiative
temperature, we calculate the integrals in Eqn (56) using the
distributions a»(y, z) and a{(y, z) obtained from the solution
of the system of equations that describe cascade saturation of
the primary absolute instability with the pump wave deple-
tion taken into account. As a result of numerical integration,
we obtain the following estimate for the radiation tempera-
ture:

ps(@a)
Av

=0.8 MeV, (57)
where Av = 0.15 GHz is the spectral width of the frequency
line, whose value was obtained by analyzing the experimental
spectra. Estimate (57) is close to the measured radiative
temperature ps(w,)/Av = 1 MeV (see Figs 9 and 11 in [70]).
It can be noted in analyzing formula (56) that ps(w, ) /Av < P¢
[93]. As shown in Fig. 12, this dependence is in reasonable
agreement with the experimental data obtained in [67].

Thus, the developed theoretical model describes low-
threshold excitation in the vicinity of a local maximum of
the nonmonotonic density profile of two confined UH waves.
This model enables the reproduction with reasonable accu-
racy of both the spectrum of anomalous radiation and its
radiation temperature, which were measured in [67, 70].



April 2020

Low-power-threshold parametric decay instabilities of powerful microwave beams in toroidal fusion devices 379

1.0 - o)
0.8 - L
>
= 0.6
<
~ 4 o
04 - .
0
02 e
")
0 | | | | |
200 300 400 500 600

Figure 12. Radiation temperature measured in the experiment (unfilled
circles) [67] and predicted by the analytical model (56) (filled circles) as a
function of microwave beam power.

Driven by this agreement between theory and experimental
data, we have to give full attention to the predicted significant
anomalous absorption of microwave power due to the excita-
tion of daughter waves. (For the decay cascade illustrated in
Fig. 11, up to 25% of the pump wave power is ‘input’ into the
generated UH waves.)

The low-frequency IB waves excited in the decay process
leave the nonlinear interaction region to be subsequently
absorbed by ions near the nearest harmonic of the ion
cyclotron resonance. This may result in a distortion of the ion
distribution function, which provides a qualitative explana-
tion of the generation of a high-energy ion group observed
under auxiliary ECRH of plasma in various installations [73—
76].

The propagation paths of the generated daughter UH
waves differ significantly from those of the microwave pump
beam. They are absorbed by electrons far from the plasma
column areas that were predicted in the approach based on
the linear behavior of the pump wave. The difference between
the energy release profile and that predicted in the linear
approximation may be at least partially responsible for the
nonlocal heat transfer in the electron channel observed in
many experiments [58].

3. Parametric decay
of an extraordinary wave with excitation
of a single localized upper hybrid plasmon

3.1 Primary instability

We note that the concurrent parametric excitation of two UH
waves confined in the direction of a plasma inhomogeneity,
which is considered in Section 2, is a relatively rare event
because it not only requires the existence of a nonmonotonic
density profile but also imposes stringent conditions on the
density in the local maximum and minimum. In this section,
we consider two-plasmon decay in a more frequent case where
only one of the parametrically excited UH waves is confined
in the vicinity of a local maximum density. We assume in this
case that the pump wave propagates at an angle to the
external magnetic field. In the vicinity of the decay region,
we can ignore the effects of the magnetic field shear and the
magnetic surface curvature and, as in Section 2, use a

Cartesian coordinate system (x,y,z). In the chosen coordi-
nate system, the pump wave field can be represented in the
WKB approximation in form (11) where

802_g02<1 +k(i.c2 @) |
&0 2w02 go2

oy () =~ % (58)

We consider parametric excitation of the longitudinal UH
waves ¢, o exp (—iw;t) and ¢, x exp [i(wo — w;)?] by pump
wave (11). If the density profile is not monotonic, one of these
UH waves can be confined in the direction of inhomogeneity.
Its potential in the absence of a pump wave is given by
Eqn (20), and its eigenfrequency w; = o™ satisfies a
quantization condition similar to (23). The potential of the
second daughter wave, whose frequency is wy = wy — »™,
can be represented in the WK B approximation in the absence
of the pump wave as

C [ . .
¢y = \/D2— exp (IJ Qox(x', qaz) dx" 4 igo.z + lwzt> +cc.,
2q
(59)
where ¢y, =ko., Co=const, Dy, = |6D2/6q2X|qY, and ¢, =

¢2x(g2-,x) is a solution of the local dispersion relation
D, = Dyn(wa, g2y, q2:) = 0. The explicit form of ¢,y is given
by a formula similar to (22).

Figure 13 displays the dispersion curves of the waves
involved in nonlinear interaction under the conditions of
ECRH experiments [67, 70]: the solid curve shows the
localized UH-wave wavenumber shifted upward by the
pump-wave wavenumber ¢, + koy, while the dashed line
shows the wavenumber of the second daughter wave. It can
be seen that as a result of the parametric decay of the pump
wave in the vicinity of the intersection points of these curves, a
UH wave and a slow UH wave that leaves the nonlinear
interaction region along the direction of inhomogeneity are
excited in the vicinity of the local maximum of the density
profile. Due to the nonlinear interaction, the daughter wave
amplitudes are no longer constant, i.e., C; — C,(r, ) and
Cyy — Cy(y, z, t). Their behavior is described by the system of
two partial differential equations [94]

) o . @ 0 G EW,2)
(& + U2y & + 14y, 32 + V- &> Cy = —Cuxe H

Pm (x) oDy (x) : Jx no_ W /
x DZ(u Ck()x(x) €Xp |1 (kO\(x ) q2x(«\ )) dx ,
0 . 62 ) 62 an* EX (y Z)
~: Ay = Az = m = < 7 6
(az+1 Y 32 +i aZ2>C D g (60)
00 o
X dx, [—————Cr(x)0} (x
J—x CkOX(X)D2q(x) 2( )q)/n( )

X exp {ijx(qu(x') — kox(x")) dx’} :

In deriving Eqns (60), we used the averaging procedure in (24)
and adopted the following notation: v, and v, are the group
velocity components, A5, is the diffraction coefficient of the
second daughter wave, 4, and A4, are the diffraction
coefficients of the UH wave confined along the direction of
inhomogeneity, and the nonlinear coupling coefficient y is
given by formula (19). In addition, because we can disregard
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Figure 13. Unconfined UH wave dispersion curve ¢,, (dashed line) and the
localized UH wave dispersion curve (m =9, f; = 70.47 GHz) shifted
upward by the wave wavenumber ¢, + koy (fo = 140 GHz, ko, =
2.55 cm™!) (solid line). The solid bold curve shows the density profile in
the presence of a magnetic island.

the pump wave depletion in describing the primary instability,
we assume that its amplitude depends only on the transverse
coordinates and is determined by the boundary conditions,
ie., Ei(x,y,z) = Ei(y,2) = Ei(%,7,2)| 10 _oo-

Furthermore, we assume that the instability growth rate y
is much smaller than the inverse time t of the convective and
diffraction losses by the second daughter wave in the decay
region:

yr<l. (61)

We use this inequality below to check the validity of our
assumption after clarifying the possibility of exciting absolute
instability and determining its growth rate. For the para-
metric decay shown in Fig. 13, the main energy loss of the
nonconfined daughter wave is its loss along the direction of
inhomogeneity. In this case, in the left-hand side of the first
equation in (60), we can keep only the term that describes the
wave convection in the direction x,

oDy (x)
Ck()x (X)

0 _ nl Ei(yvz) (,Dm(X)
Vox & G = 7CmXe H Doy

x exp [ijx<k0x<x') ~ ) dx/] @

We integrate Eqn (62), taking the boundary condition
(s, = 0 into account. We thus obtain the amplitude of
the second daughter wave as

_Eb.2) J” o A T
C2 = H Cm N d.x ckox(x’)qu(x') /{e (x )

!

x @,,(x") exp [in (kox(x") = qax(x")) dx”} .

Substituting Eqn (63) in the right-hand side of the second
equation in (60), we arrive at the following equation for the
amplitude of the UH wave confined in the direction of
inhomogeneity in the vicinity of a local maximum of the
plasma density profile [94]:

(63)

d o?

. o
(_ + IAmy W + 1Amz @)al = Vo(% Z)al 5

o (64)

where the nonlinear amplification factor is

|EG.zm R

BT LI x‘/iﬂ)o )M (x
v _4H2<Dl(u(w/n)>Jm d: Ckox(x)ng(x) (pm( ))(e ( )

0
OC / o ol 1
x j e o) ol )

’

X exp {ir (kox(x") = qax(x")) dx "} :

X

(65)

In Eqn (65), we used the normalization of the amplitude
similar to normalization (27).

Itis noteworthy that in contrast to the parametric decay of
a pump wave into two localized UH waves, the parametric
instability under consideration is described by a single partial
differential equation with variable coefficients. We show in
what follows that this equation has particular solutions that
grow exponentially in time, i.e., that it describes absolute
instability. We represent the sought UH wave amplitude in
the form

a; = ajpexp (y1), (66)
where ajo is a function of coordinates. Substituting (66) in
(64), we obtain an equation for the amplitude a:

2 2

. 0 .
(“/ + 1/1,,1},« W + 1/1,,,: @) ayn = Vo(y, Z)alo . (67)

If the pump wave power is so large that the nonlinear
amplification of the daughter UH wave localized in the
direction of the inhomogeneity is much greater than the
diffraction loss of its energy in the nonlinear interaction
region, i.e., Al},,:/(ndz) < vg, we can expand the coefficient
in the right-hand side of (67) in a series, vy(y,z) =
v0(0,0) — vo(0,0)(y2 + z2)/d?, to obtain the equation [94]

. . o? 2 72
<1Amy ay—2+1/1mz @‘FV — Vo + Vo 2—2+ Vo E)ma =0,
(68)

which has the form of the stationary Schrodinger equation
with a complex-valued parabolic potential. Unless indicated
otherwise, in Eqn (68) and below, v(0,0) — vg. A particular
solution of Eqn (68) is given by the eigenfunctions y,(y) and
¥, (z) expressed in terms of the Hermite polynomials,

(&) = exp G%) ()

with ¢ = s,r, and & = y, z; here, H, is a Hermite polynomial
and

(69)

5 A),{gf‘dl/z exp (—in/8 —iargvy/4)
<= 1/4 :
Yo

Thus, the approximate solution of Eqn (64) describes a UH
wave that is localized along the coordinates y and x (i.e., on a
magnetic surface within a microwave beam) [94]:

ar = exp (7 + iy Y (V)Y (2) - (70)
The growth rate and correction to the frequency of this wave
are found from the quantization condition and can be
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Figure 14. Evolution of the UH wave energy distribution |a;(y,0, t)|2
along the coordinate y found by solving Eqn (64) numerically.
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Figure 15. Comparison of the UH wave energy distribution |a; (1,0, 1o)|?
(solid curve) at the moment f, = 5 x 10~7 s with the analytic solution
[ () \2, s = 0 (see (69)), which is shown by the dashed line.

expressed explicitly as [94]

(g m
(@) (T
dwg, ) \v¢) | .
ws, vy sin (arg o

T
2 4

(2s+1) Auy +(2r+1)

X Vol w2

w2

A} -

The threshold of parametric instability accompanied by the
generation of a 3D-localized UH wave is determined by the
equation [94]

argvo(P") =
vé(Péh):COS (W_Z) |vo(P(§h)|

X (72)

Amf Amz
(254 1) d2} +(2r+1) yE } .

Next, we solve Eqn (64) numerically. The results of the
numerical solution obtained for the parametric decay dis-
played in Fig. 13 are shown in Figs 14-16. Figure 14
represents the spatial distribution of the UH wave energy
along the y direction. It can be seen that the shape of the
|ai(,0,¢)|" distribution does not change in time, which
indicates that an eigenfunction of this equation is excited.
Figure 15 compares the distribution |a; (3,0, 1) (solid curve)
at to=5x 1077 s with the analytic solution [,(y)|* (see
Eqn (69)) for the fundamental mode s = 0, which is shown
by a dashed curve. Similarly, the shape of the wave energy
distribution |a;(0,z,1)|* along the magnetic field does not
change in time either and is described well by the analytic
dependence.

Thus, the numerical solution indicates the excitation of
the UH wave eigenmodes localized within the microwave
beam. The amplitude of these modes increases exponentially
with growth rate given by (71) (see Fig. 16), which indicates
the excitation of absolute decay instability. The instability
threshold determined from the computation is in agreement
with the value P{" = 37 kW that can be obtained analytically
from Eqn (72). Because the characteristic time for which the
second unconfined daughter wave leaves the nonlinear

Py, 10> kW

Figure 16. Instability growth rate as a function of the pump wave power.
The circles show a numerical solution of Eqn (64) for the experimental
conditions [67, 70]. The solid curve corresponds to formula (71).
Pt =37kW.

interaction region is of the order of t ~ 0.5 x (1078—-107%) s
(depending on the parameters), assumption (61) that was used
to describe the convective losses of its energy is valid. At the
same time, the instability growth rate is such that the excited
localized UH waves undergo a significant increase from the
thermal fluctuation level. Most likely, the parametric decay
instability is saturated due to the secondary instability of the
daughter UH wave. We discuss this process in Section 3.2 and
evaluate the saturation levels of daughter waves and the
proportion of power lost by the microwave beam.

3.2 Saturation of the instability

We consider the saturation of the decay instability of the
pump wave as a result of the secondary low-threshold decay
of the primary localized UH wave. If a local density
maximum is sufficiently high, it is natural to expect that
the primary UH wave decays into a secondary UH wave,
localized, like the primary wave, in the direction of
inhomogeneity in the vicinity of the local density max-
imum, and the IB wave that freely propagates along the x
coordinate. To analyze the saturation mechanism from a
conceptual perspective, we explore only the secondary
instability, disregarding higher-order parametric processes.
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The equation for the amplitude a{ of the secondary UH
wave eigenmode p (see Eqn (41)) can be obtained similarly
to Eqn (42) in the form [100]

0 o? o2 ol .,
(6t+1A”} 5 = +id,: 52 )al = m|a1| a,

where 4,, and A, are the diffraction coefficients of the mode
p, and v; is the “nonlinear coupling coefficient defined in
Eqn (43). If the secondary decay of the primary wave is
taken into account in Eqn (64), the system of equations that
describe the two-step cascade decay of the pump wave
becomes [100]

o . 2. 0? [om 5
(a + 1Ay @ + 14,2 @>a1 =v(y,z)a; — v o7 la a1,
0 0 0*

ai
(73)
(at+1/1p‘ ay2+1Apz @)Cl{ =V Wlal‘ ay .

In the case of a plane pump wave, i.e., d — oo, v(y,z) —
vo(0,0), the solution of system of equations (73) is given by
multicomponent cnoidal waves [107, 108]. These solutions
describe the transition of interacting waves from the exponen-
tial growth mode to a strongly nonlinear oscillatory mode, in
which the frequency of their oscillations depends on the
amplitude of all the oscillations involved in the interaction.
The situation is radically different in the realistic case of a
finite-width beam. We demonstrate this below, primarily by
numerically solving system of nonlinear partial differential
equations (73).

As in Section 2, we use the finite difference method and a
2D integration region 2y x 2zg whose dimensions are much
larger than the microwave beam size (i.e., the nonlinear
interaction region), yg, zg > d. In addition, we use periodic
boundary conditions and typical parameters of ECRH
experiments [67, 70]. The obtained solution is shown in
Fig. 17, where the evolution of the energy density of primary
{|ai (1)) )pai (solid curve) and secondary (|a;( ) )pai (dashed
curve) plasmons in the beam ‘spot’ (see the averaging
procedure (47)) is displayed. It can be seen that the primary
instability develops initially. The primary UH wave energy
increases in this case exponentially. This increase is described
well by the linear dependence 2y7 (dashed-dotted line), where
the growth rate y is defined in Eqn (71), s,r = 0. At about
t~23x 1077 s, the primary wave energy exceeds the
secondary instability threshold. This leads to an exponential
increase in the secondary UH wave energy density. As a
result, the system relaxes to a quasistationary state.

Thus, we have shown that system of equations (73) admits
a stationary solution in the case of a spatially bounded pump
wave. We can estimate the saturation levels of the corre-
sponding UH waves based on the following energy considera-
tions. The energy density of the primary plasmons should
compensate the loss of the secondary plasmons from the
microwave beam ‘spot’ and drive the secondary instability to
virtually the excitation threshold

|a1| (74)

where 1] = nd?/ max(A,,, A,.) is the time scale that char-
acterizes the rate of secondary wave energy loss in the decay
region. The secondary plasmon energy density in the decay
region in the saturation mode should be such that the primary
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Figure 17. Evolution of the energy density of daughter primary (|a (¢) |2>pdi
(solid curve) and secondary <\a,’(t)\2>pdi (dashed curve) UH plasmons in
the microwave beam ‘spot’. The dashed-dotted line shows the analytic
expression 2y¢, where the growth rate y is given by Eqn (71). The horizontal
dashed lines are estimates of saturation levels (74) (bottom line) and (75)
(top line).

instability be maintained near the excitation threshold due to
nonlinear dissipation, i.e.,

yvooo\

Vi

laj*|? ~ (75)

The obtained estimates of saturation levels displayed in
Fig. 17 as horizontal dashed lines show good agreement
with the results of numerical calculations.

Thus, we have shown both numerically and analytically
that system of equations (73) admits a stationary solution that
can be interpreted as the saturation mode of parametric decay
instability. The daughter wave energy losses from the
microwave beam ‘spot,” where the interacting wave ampli-
tudes are nonlinearly maintained at a constant level, result in
this case in an increase in their energy in a 2D volume
2yg x 2zg. We can analytically estimate the proportion of
the pump wave power lost in the parametric decay:

<| ik >pdl <|“1 | >pdi7

APy = (76)

where 1| = 1d? /max (Amy, A=) is the time scale that char-
acterizes the rate of primary wave energy loss in the decay
region. If the microwave beam power significantly exceeds the
excitation threshold of the primary instability (see Eqn (72)),
the second term dominates in Eqn (76):

Te

APO <|a1§| >pd1 X PO7 (77)
1

which describes the power input to the secondary UH waves.
Because AP, x Py, the proportion of anomalously absorbed
power does not depend on the pump wave power and is only
determined by the efficiency of the nonlinear coupling
between the interacting waves in the first and second decay,
APy/Py = |v(0,0; Py < T./7{)|/v1, where the microwave
beam power in formula (65) for vy should be replaced with
T./t{, Py — T/t{. The accurate value of the anomalous
absorption efficiency can be obtained from an analysis of
numerical calculations.
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Figure 18. Evolution of the total energy of daughter plasmons (solid
curve). The dashed-dotted line represents the linear behavior of the
numerically obtained increase in total energy of UH waves in the 2D
region, where the solution was sought, in the saturation mode.

Figure 18 shows the evolution of energy of all daughter
plasmons

VB ZB
AW =T, J J dydz
—z Td

(Jar 02 + laf 0 2)7)  (78)
—JB

(in dimensionless units). It follows from the figure that if
saturation is reached, the daughter UH plasmon energy in the
volume continues to increase, which is associated with
pumping out the daughter waves from the decay region.
Figure 18 shows that this increase is approximated well by a
linear dependence (dashed-dotted line), which indicates that
the power transferred from the microwave beam to UH waves
is constant. The proportion of the microwave beam power
transferred to the daughter waves is

AP_ 1 oAW. 79)
Py P, 0Ot

Formula (79) can be used to show that at the pump wave
power Py = (0.6—1) MW, the proportion of anomalously
absorbed power does not change and is AP/ Py ~ 16% in the
extraordinary wave decay (analytic estimate (77) yields
AP/ Py = 15.4%).

In concluding this section, we note that analytic depen-
dences and energy estimates are in agreement with the
numerical solution. This agreement provides confidence that
the numerical solution is correct, and the estimates of the
anomalous absorption of the microwave pump wave are
reasonable.

4. Excitation of a localized upper hybrid plasmon
in the parametric decay of an ordinary wave

The x component of the wavevector in formula (11) in the case
of parametric decay of an ordinary polarized wave takes the
form

Voo
e[l —kgc?/Qwd)]

kox ~ (80)

The components of the polarization vector ey are determined
from the Maxwell equations as

;:_i_7 i”‘\/“\/’7’/127 (81)
) e,

where n, = ko.c/wy = sin @ < 1 is the longitudinal refractive
index. The parametric decay of the pump wave may result in

Figure 19. Dispersion curves of the electron plasma wave ¢,, (dashed line)
and the localized UH wave ¢ + ko, (solid line) (m = 8, f; = 138.5 GHz),
which is shifted upward by the pump wave wavenumber (fy = 140 GHz,
ko. = 2.55 cm™!). The upper hybrid frequency profile is shown by a solid
bold curve [72].

the excitation of a localized UH wave and an electron plasma
(EP) wave, which rapidly leaves the decay region. The EP
wave frequency belongs to the intermediate range
¢ € Wp; < Wy <€ W, and the dispersion relation has the
form

[N
Qox = 42z — -
&

Figure 19 shows the possibility of a parametric decay of an
ordinary wave, which leads to the excitation of UH wave
resonances for typical conditions of ECRH experiments at
the first harmonic of EC resonance [72]. The EP wave
dispersion curve is shown in Fig. 19 by the dashed line. The
dispersion curve of the UH wave (n =8, f; = 138.5 GHz)
localized in the vicinity of a local density maximum (bold
solid line), shifted upward by the pump wave wavenumber
fo = 140 GHz, ky. = 2.55 cm™!, is shown by the solid line
(¢1x + kox). The decay resonance conditions are satisfied at
the curve intersection points. It is in the vicinity of these
points that ordinary polarization pump wave decay can
occur. Due to nonlinear interaction, the amplitudes of
daughter waves become coupled. Their interaction in the
presence of a powerful microwave beam is described by
system of equations (60), where the nonlinear coupling
coefficient 3™ can be found, according to [110], in the dipole
approximation:

al_ Ze(@1)zi(@2) [0 koo
Te == — — A\~ 3
q1xq2x CkOx [@h

<1 +ck0x, [ — w§e> .<ck0x, Jod — wge)] -

(82)

X ) p +1 2

— — 2
[ , [ Wée

ce

Coefficient (83) contains a small parameter cko./wg < 1,
which reflects the low efficiency of the nonlinear coupling of
an ordinary wave whose dominant electric field component is
directed along the external magnetic field with the short-wave
oscillations that primarily propagate across it.

The main energy loss of the EP wave in the case presented
in Fig. 19 is convective energy transfer along the direction of
inhomogeneity. The EP wave amplitude is described by the
equation obtained from Eqn (63) by replacing the nonlinear
susceptibility with formula (83). As shown in [96, 97], the
evolution of the confined UH wave amplitude is described by
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Eqn (64) with amplification factor (65) in which y is taken in
form (83). A particular solution of Eqn (64) is a localized field
distribution of the UH wave whose amplitude increases
exponentially with time [96, 97]. According to the conclu-
sions in [96, 97], the growth rate and threshold of this
instability are described by formulas similar to (71) and (72).
Because the efficiency of the nonlinear coupling of electro-
static oscillations with an ordinary wave is much lower than
with an extraordinary wave, this instability threshold is
much higher, Pgh = 173 kW, and the growth rate is lower,
2y = 5.88 x 10% s71, than in the case of extraordinary wave
decay. However, for the pump wave power currently in use
(up to 1 MW), this instability can be excited in experiments.

The ordinary wave decay instability is most probably
saturated as a result of a cascade of primary localized UH
wave decays [101]. The description of this mechanism is
similar to that of the saturation mechanism of the primary
decay instability of an extraordinary wave by system of
equations (73). We do not discuss the details of the numerical
solution of these equations or analytic estimates of the
parameters of ECRH experiments at the fundamental
harmonic of the resonance because such calculations are
similar to those described in detail in Section 3. We now
formulate the main results.

The primary instability is saturated as a result of the
secondary instability of the UH wave. Daughter wave
saturation levels are described well by analytic estimates (74)
and (75). As a result of the excitation and saturation of
ordinary wave instability, up to AP/ Py = 4.7% of the micro-
wave beam power is lost in the generation of daughter waves
(the analytic estimate yields AP/ Py ~ 3.4%).

5. Conclusions

We presented the theory of low-threshold parametric decay
instability of microwaves, which is based on the three-wave
interaction model developed in pioneering studies [1-4]. The
theory that goes beyond the well-established concepts
popular in the 1980s—1990s [60—62] provides an explanation
of the anomalous phenomena that have been observed in
many thermonuclear toroidal magnetic traps during the
propagation of high-power microwave beams widely used
for EC plasma heating and the generation of induction-free
drag currents. The theory has allowed reproducing the basic
laws and characteristics of anomalous radiation, including its
spectrum and radiation temperature, with reasonable accu-
racy [67, 70]. This theory makes it possible to qualitatively
explain the effect of ion acceleration, which was observed in
experiments on the ECRH of plasma at various facilities [73—
76]. This agreement between theory and experimental data
strongly substantiates the prediction of a significant anom-
alous absorption of the microwave beam power by daughter
waves (from one tenth to a quarter of the total power) and
shows ways in which the theory should be further developed.

However, although the very existence of a substantial
anomalous absorption has been predicted, its magnitude is
clearly insufficient to explain the significant broadening of the
microwave beam energy profile observed at various installa-
tions [58, 59, 111-117]. Interpretation of experimental data
requires further analysis of the strongly nonlinear mode of
development of the parametric decay process and the search
for scenarios wherein the instability saturation level increases
significantly.

It is also necessary to analyze in detail the possibility of
excitation and saturation scenarios of low-threshold para-
metric decay instabilities of microwave beams for the condi-
tions of the ITER tokamak currently under construction and
the DEMO installation, which need significantly higher
EC plasma heating powers than those available in modern
installations. Of great practical interest is also the study of
options that can affect the anomalous absorption level in the
development of low-threshold parametric decay instabilities
by changing the diameter of the employed microwave beams.

The analysis of the development and saturation of low-
threshold parametric decay instabilities was supported by the
Russian Science Foundation grant 16-12-10043; the calcula-
tion of nonlinear matrix elements given in the Appendix is
supported by a government contract with the Ioffe Institute,
0040-2014-0023.

6. Appendix

We derive an expression for nonlinear susceptibility that
describes the two-plasmon decay of an extraordinary polar-
ization pump wave accompanied by the excitation of two
electrostatic (longitudinal) waves. For this, we consider the
Vlasov equation for a weakly nonequilibrium electron
distribution function in a collisionless magnetized plasma,

0 0 |€| €ijkVj 0 0 .

v — B+ ) — — weeipvi — | £o=0,

TR e < i+ Hi Bu ~ ezt %, Je
(A1)

where e;;; is the totally antisymmetric tensor, we = |Wcel,
H = (0,0, H) is the external magnetic field directed along
the z axis, and E = ), ,_, E; is the superposition of electric
fields, including the electric field of the pump wave that
propagates perpendicularly to the external magnetic field,

1
Ey) = —e, ai d)O - = g Ay x exp (ikox — iwol) s
X

o7 (A.2)

where the scalar and vector potentials are expressed in terms
of the electric field amplitude
E
_ 8oko C Ag=
&oko %

ichey

0

(go and ¢y are the transverse components of the dielectric
permeability tensor of cold plasma at the frequency wg) and
the electric field of daughter electrostatic oscillations

E| = —e, % o exp (ig1x + iw 1) ,
Ox (A.3)
0

E, = —e, ﬁ ox exp (igax — iwyt)
Ox

whose frequencies and wavevectors satisfy the decay reso-
nance conditions wy = w| + w3z, ¢2 = q1 + ko. The pump
wave polarization vector e, defined by the relation
lex|/|es| =1igo/eo is directed across the external magnetic
field. The magnetic field of an extraordinary wave is
expressed through the vector potential: Hy =V x Ag =
(kocEy/wo)e.. The solution of Eqn (A.1) is sought using the
perturbation theory,

fo=apa+ > £V,
i=0-2

k=12

(A4)
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where 7 is the equilibrium density, fy is the Maxwell
distribution function normalized to unity,

JfM('UJ_,UZ)d3U =1,

and fi(l)and fi(z) are corrections to the equilibrium distribu-
tion function of the first and second order in the interacting
wave amplitude i = 0—2. Substituting (A.4) in Eqn (A.1) and
isolating the first- and second-order terms, we first obtain the
equation for the linear correction to the distribution function
at the frequency of the pump wave and the first UH wave

fle x Hy\ 0
(g, )
Mee c ov

wheres = 0,1, 09 = wy/w, 001 = —01 /@, Ao = kovy /o, and
A1 = qivy /. The solution of the last equation can be found
using the Green’s function of this equation

G,(0,7) [A('c)] = exp (io,0 —

0
_ (1)
< iog +mycosé)+ao>/

i/, sin 0)

0
X J drexp (iAgsint —ioT)A(7), s=0,1, (A.5)

in the form
X 2le E . .
£ = _7‘4](0%2 % Go(0,7) (smr —i & cos r)
MewevE &0
 2ilelv. fmEo i exp (inf — i sin 6)
mewevd n—op
8o n‘]n(/IO) /
J (A
* <80 20 T Julo)

(A.6)
2le| fov E,
mewcvtze

fl(1> =— Gi(0,7)cost

. 2ile X exp (im0 — iy sin 0)mJ,, (A
i 27 sviEL Y p( usin O (41)
Al

Mo V2 = Ay (m —ay)

The nonlinear (quadratic) correction to the quasiequilibrium
distribution function at the frequency of the second electro-
static wave is a solution of the equation

. . 2y el afo”
_1w2+1qucosH+wcag f2 7m lav

(1)
+ Eo Kl - ko”"‘)ey + (@ —i @>ex} 0/i } .
wyo wo £ ov

We solve it using Green’s function (A.5) as

o/, ()
NI } .

el

£ = G>(0,7) [El

Me ¢

We integrate the derived expression over velocities and
multiply it by the electron charge —|e| to obtain the nonlinear
charge density at the frequency of the second daughter wave

|2 00 0
J ULdULJ do.

@ _ e
MeW¢ 0 —00

2n 0
XJ dOexp (in0 — i, sin 0) J drexp (—int)F(t), (A7)

where oy = @y /., 22 = qav) /., and the function

) kovy
F(t) = exp (2, sin r){El 5 fo(l) +E [(1 B ;vv )e},
x 0

1
+ (@*i@)ex} afl( : }
wo £0 ov

must be periodic and expandable into a Fourier series. We
substitute linear corrections to distribution function (A.6) in
this formula, integrate (A.7) by parts, and then integrate over
the angular variables and the longitudinal velocity. The
nonlinear susceptibility can be found from the formula

p )
(yEM\e|—+yL'|e 90, = —amp®.

We use this expression and introduce the notation
J), =0J,/04, where J,, is the Bessel function, to finally

obtain

2
wpe o

w2 ¢
Ccko

AEM 9142

J d’ULUL/"L[)fi\/[

X{ 1 me()bl)
(m—o)(p+m—o) 4

% |:(p + m)Jp-t—m(;LZ) pJp(;LO)

p,m

Ip(in)pent)|

22 Jo
+m Iy (20) Ty (22) m‘ftzil(?)
s e EAL) g(j - Jlnfpw)}
+iq192 ?)g %;L dvi vy Z—: Z0/m

" 1 mJ (A1)
(m—op)(p+m-—oa) Al

«0 (P + m)/ip-#m(/lz)) ’ (A8)

where z8, is the part of the nonlinear susceptibility that
describes the interaction between the electromagnetic compo-
nent of the pump wave given by the vector potential and
daughter electrostatic oscillations;

w=ae ZJ dvyividofm

|: (m +p)p Jm-t—p(/b) Jp(;LO) J/ (/t )
(p—ow)m+p—o) A A T
(]7 + m)m Jp+rn(;L2) ’ Jm(ﬂl)
m—o)p+m—om) Il Jp(%0) A
pm Jy(Ao) md(A1)
=) —2) p+m(iz) o | (A9)

where zf! is the part of the nonlinear susceptibility that
describes the interaction between the electrostatic (long-
itudinal) component of the pump wave given by the potential
o = goEo/ (e0ko) with daughter electrostatic oscillations.
Equations (A.8) and (A.9) are symmetric under permuta-
tions of wavevectors and frequencies and satisfy the Manley—
Rowe energy relations. Expressions (A.8) and (A.9), which
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are equal to zero in the case of the decay of homogeneous
oscillations, ky = 0 [110], allow the complete description of
the two-plasmon decay of an extraordinary wave. In addition,
2™ enables a description of the decay of short-wave electro-
static vibrations ¢, that result in the excitation of secondary
electrostatic vibrations (A.3).

Unfortunately, the integrals over the transverse velocity
of electrons in Eqns (A.9) and (A.10) cannot be calculated
analytically. We consider the long-wavelength limit of
wave oscillation vectors involved in nonlinear interac-
tion, Ag, 41,42 < 1. This case corresponds to the decay of the
pump wave into two daughter UH waves in the vicinity of the
upper hybrid resonance. Expanding the Bessel functions in
Eqn (A.6) in a series in their arguments, integrating over the
transverse velocities, and reducing the terms to a common
denominator, we finally obtain the long-wavelength limit of
the nonlinear susceptibility. Expressing the extraordinary
wave potential and the vector potential in terms of the

electric field amplitude for w; = —w; = © = w(/2, we obtain
(bl 72+ e 92) = 220 3
oo q192koc <7 L@ w%) Ey
(@ o) - @) @ g we @) H
(A.10)

Formula (A.10) coincides with the formula that can be
derived from hydrodynamic equations, thus confirming the
validity of Eqns (A.8) and (A.9), which we obtained
previously in the integral form.

Because we are considering the case of the decay of an
extraordinary pump wave into two UH waves in the vicinity
of a UH resonance, we use (A.10) in the analysis of two-
plasmon decay.

In analyzing the secondary instability of the primary
electrostatic UH wave, which is accompanied by the excita-
tion of electrostatic short-wave IB waves and secondary UH
waves, we use the nonlinear susceptibility Xfl that follows
from Eqn (A.9).
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