
Abstract. The preparation of nanocrystalline powders of non-
stoichiometric compounds such as carbides and oxides by high-
energymilling is considered. Themodern state ofmillingmodels
for nonstoichiometric compounds is described. The influence of
nonstoichiometry on the particle size of the produced nanopow-
ders is discussed. The model dependences of the size of nano-
powder particles on the duration of milling and the composition
of nonstoichiometric compounds are compared with the litera-
ture experimental results on the milling of nonstoichiometric
carbides and oxides. Diffraction methods for the certification of
nanopowders according to the size of the nanoparticles, the
magnitude of microstrains, and the uniformity of the micro-
structure are considered in detail. The importance of taking
into account the anisotropy of microstrains in milled nanopow-
ders is shown.

Keywords: high-energy ball milling, nanopowders, nonstoichio-
metry, carbides, oxides, nanoparticle size, anisotropy of micro-
strains, X-ray and neutron diffraction

1. Introduction

Production of nanocrystalline substances and materials has
been an extensively developing field of material science in the
past decade due to the possibility of radically modifying the
properties of solids in the nanocrystalline state [1±5]. For
example, powders with different characteristics are needed to
produce ceramics intended for different purposes. The size

and shape as well as the specific surface area and chemical
composition of particles are of paramount importance in the
context of powder applications.

Disintegration of a solid under the effect of prolonged
compressive, shearing, and bending strains leads to its
gradual dispersion into a powder-like state. The powder
particle size falls into the micrometer or nanometer range,
depending on the energy applied. Mechanical fragmentation
of powders proved amost efficient and productivemethod for
producing various substances and materials in the nanocrys-
talline state; it is widely used in modern physical materials
science [1±6].

Ball milling is a simple and efficient method for making
nanocrystalline powders of various metals and alloys, oxides,
carbides, sulfides, borides, and other compounds [1, 7±21]
with particles up to 20 nm in size intended for superconduct-
ing ceramic materials, materials with magnetic anisotropy,
superhard metal-cutting materials, nanocomposites, and
superplastic ceramics. High-energy planetary, vibratory,
whirlwind, and other mills, as well as attritors of different
types, are used for grinding.

In the USSR, a large amount of research on the
mechanical treatment of inorganic substances (with special
reference to mechanochemistry) was performed based at the
Institute of Solid State Chemistry and Processing of Mineral
Raw Materials, Siberian Branch of the Russian Academy of
Sciences (presently, Institute of Solid State Chemistry and
Mechanochemistry, Siberian Branch of RAS) [6, 22].

The strength and the stress rupture of solids are the
subjects of many original and generalizing studies focused
on the description and analysis of the theory of strength and
disintegration mechanisms (the interatomic bond breakage
kinetics under elastic deformation, crack formation and
growth, stress relaxation, etc.) (see, e.g., [6, 7, 23±27]). Some
papers [6, 7, 28] present a qualitative description of milling
and mechanochemical transformations using the term
`energo tension' to define the power consumed in a milling
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device per unit mass of the substance being treated. As to the
ball milling of powders and its final result, i.e., the particle
size, studies of this kind have until recently been performed at
the empirical level due to a lack of models relating the size of
particles in prepared nanocrystalline powders to the milling
energy.

A fewmilling models were proposed in the late 20th±early
21th centuries [29±31]. According to [29], deformation during
the mechanical abrasion of powders is localized in shear
bands with high dislocation density. Dislocation model [30]
is based on the assumption that any material (substance) is
characterized by a certain minimal particle size Dmin attain-
able by milling [32, 33]. According to [32, 33], size Dmin is
determined by equilibrium between the generation of a
dislocation structure during milling and its relaxation upon
reaching some stress level due to annihilation and recombina-
tion of dislocations into low-angle grain boundaries. Model
[30] also takes into account the empirical data [32, 33]
indicating that the size of metallic particles formed during
milling under the identical conditions is inversely propor-
tional to melting temperature Tm, shear G, and bulk Kc

moduli. However, this model describes only experimental
results and postulates the dependence of Dmin on selected
properties of materials (hardness, shear modulus, activation
energy of vacancy migration) but does not establish the
relationship between the milling energy or time and the
post-milling particle size. The authors of [31] described,
based on X-ray diffraction data, the size distribution of
powder particles and estimated the degree of grinding but
did not try to propose a predictive model. The dependence of
particle size in nanocrystalline powders on milling character-
istics was briefly considered for the first time in Ref. [34]. The
milling model [34] was further developed in subsequent
publications [35±37] with regard for the physical properties
of a treated substance. Later authors [38, 39] improved the
high-energy ball milling model [34±37] and elucidated the
relationship between the particle size of the nanocrystalline
powders obtained on the one hand and the milling energy,
particle size, and mass of the initial powder, on the other
hand.

Consideration of high-energy ball milling should be
preceded by a brief discussion of the influence of the particle
size on the physical properties of substances and materials.
This issue has been addressed in detail in several reviews and
monographs [1±5] with special reference to modification of
the characteristics of solids associated with the diminishing
size of their particles (crystallites).

The effect of particle size on the mechanical properties of
metals, alloys, oxides, carbides, and other compounds has
been most thoroughly investigated by testing microhardness
HV.A rise inHV with decreasing particle size was documented
in nanocrystalline Ag, Pd, Cu, Fe, Ni [40±44], Fe- and Ni-
based alloys [45], andMgO [44]. Reducing grain size was also
shown to lead to a significant (by a factor of 2±3) increase in
the yield stress of nanocrystalline copper Cu and palladium
Pd [40].

The importance of considering the powder granulometric
composition is exemplified by the application of silicon
carbide powder with a given particle size to ensure saturated
vapor pressure for the sublimation growth of large SiC
crystals [46]. According to [47], to increase the sublimation
rate the initial SiC powder containing equal amounts of two
fractions with 50- and 60±110-mm particles, respectively,
should be used.

An example of the considerable improvement in powder
properties by grain size manipulation is provided by hard
WCÿCo alloys, the properties of which are in many respects
determined by the particle size of the initial tungsten carbide
powder [48]. It was shown in [49] that the use of a WC
nanopowder with a particle size of 50±60 nm allowed the
optimal sintering temperature of a hard WCÿCo alloy to be
decreased by roughly 100K and a denser alloy to be obtained.
It was shown in [50, 51] that the use ofWC nanopowders with
a particle size of 35±40 nm allows obtaining WCÿCo alloys
having a denser fine-grained structure and enhanced hardness
and fracture toughness than those of standard hard alloys.

The particle size influences the variation in the shape and
boundaries of the phonon spectrum [5], as well as all the
related properties, including heat capacity, thermal expan-
sion, and Debye temperatures. It was shown in [52] that a
decrease in the Ni powder particle size to 10±15 nm was
accompanied by an increase in phonon state density in
comparison with that in a coarse-grained powder. According
to [53, 54], the heat capacity of Pb and Ag nanoparticles
� 10 nm in size is 25±75% higher than these metals have in a
coarse-grained state. A 15±25% rise in the thermal expansion
coefficient of nanocrystalline lead sulfide compared with that
in coarse-crystalline PbS is reported in [55±59]. The increased
heat capacity and thermal expansion coefficient with a
simultaneous decrease in the bulk modulus in nanocrystal-
line silver sulfide in comparison with the same characteristics
of coarse-grained Ag2S were demonstrated in Refs [58±66].

One-dimensional ZnS nanowires and their arrays are
characterized by enhanced emission properties compared
with coarse-crystalline zinc sulfide [67, 68].

In other words, the size of particles (grains, crystallites)
exerts a considerable influence on the properties of substances
and materials. That is why it is so important to produce
substances and materials with controllable predetermined
particle size. High-energy ball milling provides an efficient
tool for this purpose.

2. Milling model

Let us consider in brief a model of mechanical powder milling
to a smaller particle size [34±39] and its applicability to
estimating the powder particle size as a function of the
milling energy Emill, massM of the initial powder and particle
size Din of the initial powder.

The particle volume and surface area in an initial powder
are equal to Vin � fvD

3
in and Sin � fsD

2
in, respectively, where

fv and fs are the form factors of the volume and surface area
(i.e., coefficients of proportionality depending on the solid
body shape). For spherical particles with diameter Din, the
form factors are fv � p=6 and fs � p, whence fs=fv � 6. For
cubic particles with edge length Din, the form factors fv � 1
and fs � 6; therefore, fs=fv � 6, too. For particles shaped like
thin plates, fs=fv � 2. If, in the first approximation, the
particles of the initial and ball milled powders have the same
shape (or the particle shape distribution in the initial and ball
milled powders is the same), the ratio of the volume and
surface area form factors fs=fv is constant.

Let an initial powder have density dd and mass M. Then,
the number of particles in the initial powder is M=ddVin �
M=�dd fvD 3

in�. According to [25], the energy is consumed
during powder milling to rupture interatomic bonds in the
crystal and form an additional surface upon cleaving the
crystal particles. Therefore, the milling energy Emill can be
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written in the form

Emill � M

dd fvD
3
in

�Erupt � Esurf� ; �1�

where Erupt is the energy consumed to break intreratomic
bonds in a single particle of the initial powder, Esurf is the
energy consumed to form the additional surface upon
cleaving one particle of the initial powder.

Crushing a single particle of the initial powder produces n
smaller particles with average linear dimensionD; the volume
and the surface area are fvD

3 and fsD
2, respectively. Since

Vin � n fvD
3, then n � D 3

in=D
3. In this case, the surface area

of all the particles formed by grinding equals S � n fsD
2 �

fsD
3
in=D and the surface area increment is

DS � Sÿ Sin � fsD
2
in�Din ÿD�

D
: �2�

A crystal cleavage occurs along slip planes. Let the slip
plane area per unit cell of a crystal be sf; then, the number of
planes along which cleavage proceeds is DS=sf. If q inter-
atomic bonds with energy u pass through every slip plane per
unit cell, the energy consumed for the rupture of bonds during
grinding of one particle of the initial powder is

Erupt � qu fsD
2
in�Din ÿD�
sfD

: �3�

The increment of the surface energy related to an increase
in the particle surface area by DS is DEs � gDS, where g is the
specific (per unit interface area) excess energy generated by
the disordered network of edge dislocations. According to
[69], the energy Esurf consumed to create the additional
surface upon cleavage of crystalline particles is hundreds of
times higher than the surface energy increment DEs, i.e.,
Esurf � bDEs � bgDS, where b is the proportionality coeffi-
cient. Therefore,

Esurf � bgDS � bg fsD 2
in�Din ÿD�
D

: �4�

In ball milling, as in other mechanical deformation
techniques, the grain or particle boundaries (i.e., interfaces)
are nonequilibrium. The authors of [70] proposed a none-
quilibrium grain boundary model taking account of chaotic
arrays of introduced grain boundary dislocations. It allowed
deriving the expression for the root mean square elastic strain
and estimating the excess energy of interfaces directly related
to the appearance of elastic stress fields. For example, an
expression was obtained for the specific interfacial excess
energy g generated by the chaotic network of edge disloca-
tions with the Burgers vector b � ��b; 0; 0�:

g � Gb 2r ln �Din=2b�
4p�1ÿ n� : �5�

Quantities G and n in (5) are the shear modulus and the
Poisson coefficient of the substance, b � jbj is the Burgers
vector modulus, and r � rVD=3 and rV are linear and bulk
dislocation densities, respectively.

In accordance with [71], the bulk density of dislocations
chaotically distributed in the grain body equals the geometric
mean of dislocations density rD � 3=D 2, related to the grain

size D, and dislocation density rs � Ce 2=b 2, related to
microstrains e, i.e.,

rV � �rDrs�1=2 : �6�

Taking into account (6), the linear density of dislocations r
equals

r � rVD
3
�

����������������
3

D 2

Ce 2

b 2

r
D

3
�

������
3C
p e

3b
; �7�

where C is constant for a given substance assuming a value
from 2 to 25 [71].

Writing the specific excess energy g (5) with regard for (7)
and substituting it into (4) we find yield energyEsurf consumed
to create an additional surface upon cleaving a crystalline
particle [34±37]:

Esurf � bg fsD 2
in�Din ÿD�
D

�
������
3C
p

b fs
12p

GbD 2
in�Din ÿD� ln �Din=2b�

1ÿ n
e
D
: �8�

Substituting (3) and (8) into (1) yields the formula relating
the milling energy Emill to the mean size of particles D
produced by grinding:

Emill �Mfs
dd fv

Din ÿD

DDin

12p�1ÿ n�qu� ������
3C
p

bGbsfe ln �Din=2b�
12p�1ÿ n�sf :

�9�
It follows from (9) that milling introduces microdeformations
into resulting particles, besides reducing their mean size.

For a concrete substance, dd, fs, fv, q, u, C, b, G, n, b, sf
values are fixed, the energy of milling is proportional to its
duration t, and the particle size andmicrostrains are functions
of milling time t and powder mass M. Therefore, expression
(9) was transformed in [38, 39] into

Emill�t� �
M
�
Din ÿD�t;M���A� Be�t;M� ln �Din=2b�

�
D�t;M�Din

;

�10�

whence

D�t;M� � M
�
A� Be�t;M� ln �Din=2b�

�
Emill�t� �M

�
A� Be�t;M� ln �Din=2b�

�
=Din

; �11�

where

A � fs
fv

qu

sfdd
; B � fs

fv

bGb
������
3C
p

12p�1ÿ n�dd

are certain constants characteristic of a given substance.
Obviously, formula (11) satisfies the edge condition
D�0;M� � Din, since the milling energy Emill�0� � 0 and
microstrains e�0;M� � 0 at the initial time point t � 0. It
follows from (11) that the appearance of microstrains e slows
down powder fragmentation. Formula (11) is the basic
expression in the milling model defining the mean particle
size as a function of the applied milling energy Emill�t� � kt.
The milling time t is the most important parameter. Usually,
time t is chosen so as to enable the achievement of a stable
equilibrium between destruction and cold welding of the
powder particle. The time needed for the purpose varies
depending of the mill type, the ratio of the ball mass to the
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powder mass, and the milling temperature. Coefficient k in
the milling energy Emill�t� assumes different forms, depending
on the design of the milling machine (high-energy planetary,
ball, or vibratory) and the mechanics of the milling body
movement.

Initial particle size Din and fixed milling time t being
known, the dependence of particle sizeD of themilled powder
on mass M (load) of the initial substance is described by the
function

D�t � const;M� � DinM

KDin �M
; �12�

where

K � E�t � const�
A� B

�
ln �Din=2b�

�
e�t � const;M�

is constant for a given time t. In other words, the smaller the
mass of the loaded substance at the same milling time, the
smaller the particle size in the powder produced.

The value of microstrains e � Dl=l � Dd=d characterizes
the uniform deformation averaged over the crystal volume,
i.e., the relative change Dd in interplanar spacing d compared
to its change in a perfect crystal. According to the Hooke law
in the general case, Dl=l � s=E. The fracture begins when a
critical value of stress, smax, equal to the strength of the
substance at a given deformation type, is attained; therefore,
emax � smax=E, where E is the respective elasticity modulus.
Microstrains e vary from zero at t � 0 to some limiting value
emax above which the crystal lattice of the ball-milled
substance is destroyed. When milling time t is constant, the
value of microstrains decreases with the growth of themass of
the ball-milled substance. With this in mind, in [39] the
dependence of microstrains e on milling time t and mass M
of a given substance was proposed to be described by the
empirical function

e�t;M� � emax
t

t� t
M

M� p
� smax

E

t

t� t
M

M� p
;

where t and p are the normalizing parameters.

To obtain nanocrystalline powders of different substances
and compounds for the purpose of research, planetary ball
mills are most frequently used.

The milling energy Emill depends on the design specs of
the mill and movement of the milling bodies in the milling
chamber; it is also a function of milling time t. The theore-
tical time dependence of the milling energy Emill was
elucidated in Ref. [36] by an example of using a PM-200
Retsch planetary ball mill. It was shown (see (11)) that the
energy Emill�t� consumed to mill a powder is a basic
parameter of the model [34±39]. It is easy to demonstrate
that the expression derived in [36] for the milling energy
Emill�t� can be used to describe milling in RITSCH
Pulverisette planetary ball mills.

2.1 Mechanics of grinding ball motion
PM-200 Retsch and RITSCH Pulverisette-7 Premium line
planetary ball mills each contain two grinding bowls with a
volume of 50 or 45 ml, respectively, positioned symmetric
with respect to each other at the periphery of the bearing disk.
Materials of different hardness (from soft to extremely hard)
are milled in steel grinding bowls with a layer of agate SiO2,
sintered corundum Al2O3, silicon nitride Si3N4, or zirconium
oxide ZrO2 lining the inner wall. Superhard materials like
carbides are milled in bowls intended for work in extreme
conditions (long-term grinding at a maximum rotational
speed and mechanical stress) and having the inner wall
coated with a hard WCÿ6 weight%Co alloy with a cobalt
binder. In this case, grinding balls 3 mm in diameter from the
same alloy are used.

Directions of rotation of bearing disk and grinding bowls
in the PM-200Retsch andRITSCHPulverisette-7 are similar,
with the disks rotating in one direction and the bowls in the
opposite one. To analytically estimate the energy Emill�t�
consumed to grind a powder in the mills, the authors of [36]
introduced in the general form basic equations of motion
describing ball movements in the grinding bowls. A schematic
of bearing disk and grinding bowl motion is presented in
Fig. 1a. The powder and milling balls in the rotating bowl are
subjected to the action of centrifugal force; therefore, the balls
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Figure 1. (a) The motion of a bearing disk and grinding bowl in a Retsch PM-200 mill and (b) the elliptic trajectory of the motion of milling balls at k � 1

[36]. Rc � 0:075 m is the radius of the circle along which the grinding bowl axis moves, r � 0:0225 m is the internal radius of the bowl, o is the angular

velocity of rotation of the bearing disk, k is the ratio of the bowl angular velocity to the bearing disk angular velocity, j � 2pot and jbowl � ÿ2pkot are
the angles through which the bearing disk and the grinding bowl rotate over time t, respectively, and F1 and F2 are the foci of the elliptic trajectory.
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come into contact with powder particles at the inner wall of
the bowl.

Let Rc be the radius of the circle described by the bowl
axis, r the internal radius of the bowl, o the angular rotation
speed of the bearing disk, j � 2pot the angle of bearing disk
rotation for time t,oc � ÿko the angular velocity of rotation
of the bowl, and k the coefficient characterizing the difference
between the angular rotation velocities of the disk and the
bowl. Because themilling balls in the rotating bowl experience
the action of centrifugal force, each ball is in contact with the
inner wall of the bowl. Assume that a certain ball happens to
be at point A0 inside the bowl at the initial moment of time
t0 � 0. Then, the position of the bowl axis Ot at an arbitrary
time point t is determined by the coordinates

x0 � Rc cos �2pot�
y0 � Rc sin �2pot�

�
: �13�

For the same time t, the ball coordinates with respect to
the bowl rotation axis will change as a result of bowl rotation
in the opposite direction with the angular speed ÿko and
become

x � r cos �ÿ2pkot� � r cos �2pkot�
y � r sin �ÿ2pkot� � ÿr sin �2pkot�

�
: �14�

It can be supposed taking into account (13) and (14) that the
ball initially located at the position A0 after time t will be in
the position At with coordinates

X � x0 � x � Rc cos �2pot� � r cos �2pkot�
Y � y0 � y � Rc sin �2pot� ÿ r sin �2pkot�

�
: �15�

The distance between the center of the trajectory (the disk
rotation center) and its arbitrary point at which a ball
happened to be at time t is

R�t� � �X 2 � Y 2
�1=2

� �R 2
c � r 2 � 2Rcr cos

�
2p�k� 1�ot�	1=2 : �16�

At the initial instant of mill rotation, the balls are in
contact with the bowl inner wall and displaced with respect to
a given ball through an arbitrary angle a. Clearly, the motion
trajectory of a ball whose position is displaced by angle awith
respect to that of the former ball will be turned at the same
angle a relative the trajectory of the first ball. The coordinates
of this ball can be represented as

X � Rc cos �2pot� � r cos �2pkotÿ a�
Y � Rc sin �2pot� ÿ r sin �2pkotÿ a�

�
: �17�

As a result, the collective motion of all balls in the
approximation of their independent movements is a set of
the same-type trajectories turned with respect to each other.

The design of the PM-200 Retsch and RITSCH Pulveri-
sette-7 mills ensures angular rotation rates of the disk and
the bowl of the same absolute value, i.e., coefficient k � 1.
At k � 1, the motion trajectory of a milling ball is an
ellipse (Fig. 1b) with axes 2�Rc � r� and 2�Rc ÿ r� described
in a parametric form as X � �Rc � r� cos �2pot�, Y �
�Rc ÿ r� sin �2pot�. The instantaneous radius of the ball's
elliptical path isR�t� � R�j�, i.e., the distance between any of
its points and the center equals

R�t� � �X 2 � Y 2
�1=2 � �R 2

c � r 2 � 2Rcr cos �4pot�
�1=2

� �R 2
c � r 2 � 2Rcr cos �2j�

�1=2
: �18�

To determine the kinetic energy of the ball motion
transferred at impact to the particles of the powder being
milled, one should know the ball velocity V. Given that the
ball coordinates at time t are described by a set of equations
(15), velocity V in the scalar form can be found as

V�t� �
��

dX

dt

�2

�
�
dY

dt

�2�1=2
� 2po

�
R 2

c � r 2 ÿ 2Rcr cos �4pot�
�1=2

� 2po
�
R 2

c � r 2 ÿ 2Rcr cos �2j�
�1=2

; �19�

where the angular velocityo is expressed through the number
of revolutions per unit time and j � 2pot. It follows from
(19) that ball velocityV�t� is a periodic variable depending on
the rotation angle j. Velocity V�t� is directed tangentially to
the motion path and changes in value and direction; it
accounts for the appearance of two acceleration compo-
nents, i.e., tangential at and normal an. The former char-
acterizes the rate of velocity changes during motion and
equals at � dV�t�=dt � dV�j�=dj, while the latter is perpen-
dicular to the velocity vector and equals an�t� � V 2�t�=R�t� in
absolute value if expressions (18) and (19) are taken into
account:

an�t� � V 2�t�
R�t� � 4p2o2 R 2

c � r 2 ÿ 2Rcr cos �2j��
R 2

c � r 2 � 2Rcr cos �2j�
�1=2 : �20�

Amilling ball ofmassmmoves with velocityV�t� along an
elliptic trajectory with the instantaneous radius R�t�; taking
account of expressions (18) and (19), it exerts the force

f �t� � man�t� � mV 2�t�
R�t�

� 4p2mo2 R 2
c � r 2 ÿ 2Rcr cos �2j��

R 2
c � r 2 � 2Rcr cos �2j�

�1=2 �21�

on the bowl wall or a powder particle.
The maximum, mean, and minimal values of the force

f �t� exerted by a ball with mass m � 0:00025 kg at the
maximum angular rotation rate (10 rps in a PM-200 Retsch
mill) are 0.179, 0.089, and 0.028 N, respectively. The
maximum angular rotation rate in a RITSCH Pulverisette-7
mill is 18.33 rps. Therefore, the maximum, mean, and
minimal values of force f �t� exerted by a ball with mass
m � 0:00022 kg and diameter d � 0:003 m are 0.526, 0.239,
and 0.057 N, respectively. As the ball collides with a particle
of the initial powder having amean linear sizeDin, the particle
experiences pressure P � f �t�=D 2

in. In such a case, the mean
and maximum values of pressure P exerted on a particle with
linear size Din � 10 mm during ball milling in the PM-200
Retsch mill at a rotation speed of 10 rps are � 0:9 and
� 1:8 GPa, respectively. In the RITSCH Pulverisette-7 mill
with a rotation velocity of 18.33 rps, the mean and maximum
values of pressure P exerted on a particle with linear size
Din � 10 mm are � 2:4 and� 5:3 GPa, respectively, if milling
balls with mass m1 � 0:00022 kg and diameter d1 � 0:003 m
are used. The impact application of calculated pressures is
sufficient for grinding hard particles. As the powder under-
goes fragmentation, both the number of particles in the region
of point impact contact with a milling ball and the area of this
region increase, which leads to a decrease in pressure P and
gradual cessation of the milling.
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During a single disk revolution, a milling ball covers a
path equaling the ellipse perimeter length p � 4�Rc � r�E�e�,
where E�e� is the complete elliptic integral of the second kind
for an ellipse with eccentricity e � 2

��������
Rcr
p

=�Rc � r�. Taking
into account the series expansion of E�e� yields

p � 2p�Rc � r�
�
1ÿ

�
1

2

�2

e 2 ÿ
�
1 � 3
2 � 4

�2
e 4

3

ÿ
�
1 � 3 � 5
2 � 4 � 6

�2
e 6

5
ÿ . . .

�
: �22�

Confining oneself to the first terms of the expansion leads to

p � 2pRc
64ÿ 3�r=Rc�4
64ÿ 16�r=Rc�2

: �23�

For the PM-200 Retsch mill,Rc � 0:075 m and r � 0:0225 m;
hence, perimeter p of the elliptic trajectory equals 0.482 m.
For the RITSCH Pulverisette-7 mill with Rc � 0:065 m and
r � 0:023 m, the perimeter of the elliptic trajectory is 0.422 m.
The total path covered by a milling ball for time t is pot.

Force f �t� acting on a milling ball is a periodic function
(21). The kinetic energy of a single ball can be written as

E1�t� �
�
f �t�V�t� dt �

�
mV 2�t�
R�t� V�t� dt

� 8p3mo3

� �
R 2

c � r 2 ÿ 2Rcr cos �4pot�
�3=2�

R 2
c � r 2 � 2Rcr cos �4pot�

�1=2 dt : �24�

The integral expression in function (24) cannot be
represented in the explicit analytical form; therefore, the
kinetic energy of a single ball was approximately presented
in Ref. [36] taking into account Eqn (23):

E1�t� � favpot ; �25�

where fav � mV 2
av=Rav � 4p2mo2�R 2

c � r 2�1=2 is the mean
centrifugal force f acting on a single ball with mass m,
Vav � 2po�R 2

c � r 2�1=2, and Rav � �R 2
c � r 2�1=2. Assuming

the kinetic energy E�t� of all Nb balls to be the sum of kinetic
energies of individual balls yields

E�t� � Nb f �t�pot � 8p3Nbmo3Rc
64ÿ 3�r=Rc�4
64ÿ 16�r=Rc�2

R�t�t ;
�26�

where o is the angular rotation rate (rps) and t is the milling
time. Replacement of the instantaneous radius of trajectory
R�t� with the mean value R�t� � Rav � �R 2

c � r 2�1=2 in [36]
resulted in

E�t� � 8p3Nbmo3�R 2
c � r 2�1=2Rc

64ÿ 3�r=Rc�4
64ÿ 16�r=Rc�2

t : �27�

Amajor part of the energy is consumed during fragmenta-
tion and milling to cause elastic deformation of the milling
system, i.e., to the interaction of milling bodies with the walls
of the milling chamber; less than 3±5% of the total kinetic
energy is spent for powder grinding [28, 29, 35, 36], making it
possible to define the milling energy Emill as Emill � akE�t�
[34±37], where ak 5 1 is the coefficient indicating what part of
the energy is consumed to grind the powder. It follows from

(27) that the energy spent on powder grinding under identical
conditions is proportional to the cube of the rotation angular
velocity o3 and the duration of milling t, i.e.,

Emill � ko3t ; �28�

where

k � 8p3akNbm�R 2
c � r 2�1=2Rc

64ÿ 3�r=Rc�4
64ÿ 16�r=Rc�2

is a constant parameter characteristic of a given mill with
dimensions Rc and r, o is the angular speed of mill rotation
(rps), Rc is the radius of the circle around which the grinding
bowl axis moves, r is the internal radius of the bowl,Nb is the
number of milling balls, m is the mass of each ball, and ak is
the efficiency coefficient defining the part of the energy
consumed to grind the powder. For the PM-200 Retsch mill,
Rc � 0:075 m, r � 0:0225 m, and the total mass of the milling
balls Nbm � 0:1 kg. Studies on the milling of niobium and
tantalum carbides identified the efficiency coefficient
ak � 0:009 [72]; taking it into consideration gave
k � 0:00135 kg m2. For the RITSCH Pulverisette-7 plane-
tary ball mill, Rc � 0:065 m and r � 0:023 m; for the same
mass of the milling balls Nbm � 0:1 kg at ak � 0:009,
coefficient k � 0:001032 kg m2, i.e., somewhat smaller than
k for the PM-200 Retsch mill. Although the grinding
mechanics in PM-200 Retsch and RITSCH Pulverisette-7
are virtually identical, the use of these mills revealed a
difference arising from the heating of powder-containing
bowls during milling. The design of the PM-200 Retsch mill
ensures excellent heat removal, due to which the bowl
temperature does not exceed 340±350 K even after prolonged
(10±15 h) milling at an angular rotation speed of 8.33 rps. The
removal of heat in the RITSCH Pulverisette-7 mill is much
less efficient, which accounts for the rapid heating of the
bowls within 15±20 min at the same loaded mass and rotation
speed.

The theoretical dependence of the mean particle sizeD on
the milling time t and the mass of the ball-milled substance
was obtained in [35±36] as exemplified by tungsten carbide
WC. To compare the model with experiment, the authors
investigated the ball milling of coarse-grained WC with the
mean particle size Din � 6 mm.

2.2 Comparison of the milling model
and experiment with tungsten carbide (WC)
Hexagonal (space groupP�6m2) tungsten carbide with the unit
cell constants a � 0:29060 and c � 0:28375 nm has density
dd � 15:8 g cmÿ3, bulk modulus Kc � 630 GPa, shear
modulus G � 274 GPa, ultimate compressive strength
sc � 2:7 GPa, and Poisson coefficient n � 0:31 [73, 74]. A
fracture begins after the maximummicrostrain emax�smax=E,
equalling the ratio of the critical stress smax to the substance
strength at a given deformation form is attained (E is the
respective elastic modulus). Taking this into account, the
limiting value of microstrains for WC lies within the
0:0045 < emax < 0:01 range. An electron microscopic study
of dislocation formation in the case of WC plastic deforma-
tion [75] showed that its main slip system is f1 0 ÿ1 0gh0001i,
i.e., deformation along the plane f1 0 ÿ1 0g in the h0001i
direction. For hexagonal tungsten carbide, the area of this
sliding plane sf � ac � 0:0825 nm2, where a and c are WC
unit cell constants. Moreover, sliding in the same f1 0 ÿ1 0g
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plane is possible in the h11ÿ23i and h2 ÿ1 ÿ10i directions.
Burgers vectors corresponding to the sliding in these directions
equal b � h0001i, �1=3�h11ÿ23i, and �1=3�h2 ÿ1 ÿ10i, the
absolute values for hexagonal WC being b � 0:26ÿ0:29 nm
[75].

The value of quwas estimated in [35] from the atomization
energy Eat. The WC unit cell contains one WC formula unit
and six paired WÿC bonds; therefore, the energy of a single
bond q � Eat=6NA (NA is the Avogadro number). Four
paired WÿC bonds (u � 4) cross the f1 0 ÿ1 0g plane. This
means that qu � 2Eat=3NA. The atomization energy of
hexagonal WC found from thermodynamic data [73, 76±78]
is Eat � 1600� 50 kJ molÿ1; hence, qu � 1:77� 10ÿ18 J.
Taking into consideration the values of sf, qu, G, b, n, dd and
fs=fv � 6, C � 18, and b � 100, the constants

A � fs
fv

qu

sfdd
; B � fs

fv

bGb
������
3C
p

12p�1ÿ n�dd

in formula (11) for hexagonal WC equal A � 0:008 and
B � 0:85 J m kgÿ1.

In accordance with [39], taking into account Emill�t� �
ko3t (28), and the dependence of microstrains e on milling
time t and substance massM, formula (11) can be written as

D�t;M�
� MfA� B�ln �Din=2b��emax�t=�t� t���M=�M� p��g

ko3t�MfA� B�ln �Din=2b��emax�t=�t� t���M=�M� p�g=Din
:

�29�

At a similar rotation angular velocity o, relation (29)
assumes the form

D�t;M� � M
�
aD � bDe�t;M�

�
t�M

�
aD � bDe�t;M�

�
=Din

; �30�

where

aD � A

ko3
� fs

fv

qu

sfddko3
;

bD � B ln �Din=2b�
ko3

� fs
������
3C
p

fv

bGb ln �Din=2b�
12p�1ÿ n�ddko3

;

e�t;M� � emax
t

t� t
M

M� p
:

For a PM-200 Retsch mill at k � 0:00135 kg m2, angular
velocity of rotation o � 8:33 rps, and initial particle size
Din � 6� 10ÿ6 m, it follows from calculations ofA andB that
aD � 0:01037 m s kgÿ1 and bD � 10:0999 m s kgÿ1.

The Dtheor�t;M� dependence found in [39, 79] from
formulas (29) or (30), taking into consideration the theore-
tical values of parameters A and B (or aD and bD) at
emax � 0:0078, angular velocity of rotation o � 8:33 rps,
and initial WC particle size Din � 6000 nm, is illustrated in
Fig. 2. Evidently, the longer the milling time t, the lower the
massM of the ground powder, and the smaller the size Din of
the initial powder particles the smaller the size D of the
particles after milling. The rapid reduction in particle size
occurs at the initial stage of the process when milling time t is
shorter than 10,000 s. If the milling is prolonged any further
while mass M remains unaltered, the D�t;M� dependence
asymptotically tends to a certain limiting value.

For comparison of the milling model proposed in [34±36]
with experiment, the authors of [39] studied the milling of a

coarse-grainedWCpowder (mean particle sizeDin � 6 mm) to
the nanocrystalline state with a particle size of up to 10nm.

The milling was carried out in a PM-200 Retsch mill
(Fig. 3) in automatic mode with the angular velocity of
rotation o � 8:33 rps and a change of direction every 15 min
with 5 s stops between the changes. The total mass of
Nb � 450 milling balls was � 100 g. The duration of milling
varied from 10 min to 15 h. 5 ml of isopropyl alcohol
CH3CH�OH�CH3 was added as a milling fluid for every 10 g
of the powder being ground. Compared with other suitable
fluids (isobutanol, butanol, hexane, etc.), isopropyl alcohol
has a higher self-ignition temperature, 729 K, and does not
react with ring gaskets of the grinding bowls. The ball-milled
powders were dried up. The mass of the loaded powder M
taken for milling in different experiments was 10, 20, 25, and
33.3 g.

The mean size of the particles andmicrostrain values were
determined by the diffraction method.
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Figure 2. Theoretical three-dimensional dependence of WC particle sizeD

on mass M of the initial tungsten carbide powder and milling time t [39,

79]. The dependence D�t;M� is calculated by the formula (29) using

theoretical values ofA andB at emax � 0:0078, angular velocity of rotation
o � 8:33 rps, and initial particle size Din � 6000 nm.

Figure 3. PM-200 Retsch planetary ball mill.
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The initial coarse-grained WC powder contained
93.4 weight% of tungsten W and 6.6 weight% of carbon C
in the absence of oxygen. The initial WC-mill powder
contained 91.2 weight% of W, 5.9 weight% of C, and
2.9 weight% of oxygen O adsorbed on the surface of carbide
nanoparticles. The equal relative content of W and C in the
initial coarse-grained and ball-milled nanocrystalline powder
suggested that the powder composition did not change during
milling and remained similar to that of stoichiometric
tungsten carbide WC.

X-ray diffraction patterns of the initial coarse-grained
WC powder and the nanocrystalline WC-mill powder
produced by grinding for 5, 10, and 15 h displayed reflections
of only hexagonal WC, whereas post-milling diffraction
reflections were significantly broadened. The quantitative
analysis of reflection broadening in nanocrystalline WC
powders showed that this was due to both the small particle
size and microstrains. The size broadening was differentiated
from the strain one; the size of coherent scattering regions hDi
and the value of microstrains e were determined by the
Williamson±Hall method [3, 5, 80±82] using the dependence
of reduced broadening b ��2y� � �b�2y� cos y�=l of reflections
�hkl� on the scattering vector s � �2 sin y�=l. The value of
microstrains in relative units was found from the tilt angle
j of the straight line approximating the dependence of b � on
s using the formula e � f�b ��2y��=2sg���tanj�=2�. The value
of microstrains was erroneously determined in [34±37] as
e � f�b ��2y��=4sg � ��tanj�=4�, i.e., underestimated by a
factor of 2.

When 10 g of the initial powder was taken to be ground,
the mean size hDi of coherent scattering regions in WC-mill
nanopowders was 32� 10, 20� 10, and 11� 5 nm after 5, 10,
and 15 h ofmilling, respectively. The value ofmicrostrains e in
the powders after grinding for 5, 10, and 15 h amounted to
0:0066� 0:0003, 0:0070� 0:0003, and 0:0060� 0:0004 (or
0:66� 0:03%, 0:70� 0:03%, and 0:60� 0:04%).

Experimental dependences of the mean particle sizeD and
microstrains e in aWC powder on the milling time t and mass
M of the initial powder [39] are shown in Fig. 4. The rapid
decrease in particle size and growth of microstrains occurred
within the first 100±150 min after the onset of milling. As the
duration of milling continued to increase, dependences D�t�
and e�t� asymptotically approached certain limiting values. A
reduction in the initial substance loadM at an equal duration
of milling was accompanied by a decrease in particle size and
growth of microstrains.

Figure 4 shows that experimental dataDexp�t;M � const�
are fairly well approximated by function (30) with parameters
aD � 0:00199 m s kgÿ1 and bD � 7:6514 m s kgÿ1, e being
measured in relative units. The theoretical parameters aD and
bD are in excellent agreement with experiment. Microstrains e
(in relative units) are described by the empirical dependence
e�t;M� � emax�t=�t� t���M=�M�p��, where emax � 0:007842,
t � 7335 s, and p� ÿ0:00164 kg.

The dependence Dtheor�t;M � const� (dashed line in
Fig. 4a) found from (30) taking account of theoretical values
of parameters aD and bD lies somewhat above the experi-
mental dependence. The discrepancy between theory and
experiment is attributed to the tentative estimation of
quantity qu and empirical coefficients ak, fs=fv, C, and b.

It can be concluded that investigations with the use of a
coarse-grained WC powder demonstrated good agreement
between theoretical and experimental dependences of the
particle size on the powder mass and milling time. In accord-

ance with the model described in [35±37], grinding of 10 g of
coarse-grained WC powder for 15 h produces a nanocrystal-
line WC-mill powder with a mean particle size of 15 nm, the
respective experimental value being hDi � 11� 5 nm.

3. Peculiarities of ball milling
of nonstoichiometric compounds

The overwhelming majority of solids lack homogeneity
regions and a significant deviation of the composition from
stoichiometry. Therefore, themodel discussed in [35±37, 39] is
applicable to them without corrections or additions. How-
ever, there is a group of strongly nonstoichiometric com-
pounds with broad homogeneity regions [83±86]. They are,
inter alia, cubic and hexagonal carbides, nitrides, and oxides
of group IV±VI transition metals. Of special interest are
carbides having extremely high hardness and refractoriness
among all other solids. Nonstoichiometric carbides, espe-
cially VCy and NbCy, used to inhibit grain growth in hard
alloys are important elements of the doped steel structure.

The influence of nonstoichiometry on the particle size in
nanocrystalline powders, such as those obtained by means of
ball milling, is considered in [72, 87±92].

All properties of nonstoichiometric compoundsMXy and
M2Xy (M � Ti, Zr, Hf, V, Nb, Ta; X � C, N, O) depend on
their composition [83±85]. Therefore, characteristics of non-
stoichiometric compounds used in milling models need to be
presented as a function of their composition (relative content
of a nonmetal) y � X=M.
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Figure 4.Dependences of (a) mean particle sizeD and (b) microstrains e on
the milling time t of the initial coarse-grained WC powder in a PM-200

Retsch planetary ball mill (the ball mass is 100 g, the powder mass is 10 g,

the angular velocity of rotation is 8.33 rps) [39]. Calculated dependence

Dtheor�t� is shown as the dashed line.
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The influence of nonstoichiometry on the particle size in
nanocrystalline powders obtained by high energy ball milling
was considered in [72, 87±92] as exemplified by nonstoichio-
metric titanium, niobium, and vanadium carbides MCy

having the cubic crystalline structure B1 and homogeneity
regions of different widths. The cubic titanium and niobium
carbides possess the widest homogeneity regions, ranging
from TiC0:48ÿ0:50 to TiC1:00 and from NbC0:70 to NbC1:00,
respectively [84±86]. The upper boundary of the homogeneity
region in cubic carbides, except vanadium carbide, is repre-
sented by stoichiometric MC1:00 carbides. Cubic vanadium
carbide has a homogeneity interval fromVC0:65 to VC0:88 [84±
86].

The main relation (11) of the high-energy ball milling
model includes the coefficients

A � fs
fv

qu

sfdd
; B � fs

fv

bGb
������
3C
p

12p�1ÿ n�dd ;

characterizing a given substance and depending on its proper-
ties, where b � jbj is the Burgers vector magnitude, dd,G, and
n are the density, shear modulus, and Poisson coefficient,
respectively of the substance being ground, q=sf is the number
of interatomic bonds through every slip plane with area sf per
unit cell of the crystal being considered, u is the energy of a
single interatomic bond of the ground substance, fs=fv � 6 is
the ratio of the form factor of the volume of a particle to that
of its surface area, C � 18 is the coefficient relating disloca-
tion density to the microstrain value [71], and b � 100 is the
coefficient taking account of the additional loss of energy for
deformation of grinding bowls and milling bodies.

Formula (11) and the explicit form of coefficientsA and B
give evidence that the grinding of a substance with higher
density dd makes it possible, other conditions being equal, to
prepare a powder with particles of a smaller size. Indeed, a
high-density substance has a smaller volume V, which
accounts for a higher specific milling energy Emill=V. There-
fore, the powder thus obtained must consist of smaller
particles at the same mass M and energy Emill. It is
appropriate to compare the results of different studies using
coarse-grained powders of different substances, such as
tungsten and vanadium carbides (WC and VC0:875) and
vanadium monoxide (VO1:00), ground in PM-200 Retsch
mills under identical conditions (the angular velocity of
rotation o � 8:33 rps, powder mass M � 0:01 kg, total mass
of milling balls � 0:1 kg). Densities of WC, VC0:875, and
VO1:00 are 15.8, 5.36, and 5.49 g cmÿ3, respectively. For
example, the grinding of hexagonal tungsten carbide WC for
1, 3, and 10 h produced a nanopowder with a mean particle
size of 70� 10, 40� 10, and 20� 5 nm, respectively [35, 39].
Scanning electron microscopy showed that the mean particle
size in the nanopowder of cubic vanadium monoxide VO
�V0:82O0:82� obtained after 4 h of grinding was� 100ÿ120 nm
[93]. The nanocrystalline powder of cubic vanadium carbide
VC0:875 obtained by ball milling for 3 and 10 h consisted of
particles with a mean size of � 100� 10 and � 60� 10 nm,
respectively [94]. These data indicate that ball milling under
comparable conditions allows producing a powder with
smaller particles than those in the initial high-density sub-
stance.

3.1 Properties of nonstoichiometric compounds
as a function of their composition
Because all the properties of nonstoichiometric compounds
MXy depend on their composition, the influence of non-

stoichiometry on particle size in ball-milled powders has to be
estimated based on the characteristics of MXy entering in an
explicit or implicit form formula (11) as functions of the
relative nonmetal content y � X=M. These are such major
characteristics as lattice constant aB1, atomization energy Eat,
shear modulus G, and Poisson coefficient n. The length of the
Burgers vector b and density dd are related to lattice constant
aB1; the number of interatomic bonds q through the slip
surface in the crystal of interest and the energy u of a single
interatomic bond can be expressed based on the crystalline
structure and the atomization energy of the substance under
consideration. As a result, formula (11) can be represented in
the form

D�y; t;M�

� M
�
A�y� � B�y�e�y; t;M� ln �Din=2b�y�

�	
Emill�t� �M

�
A�y� � B�y�e�y; t;M� ln �Din=2b�y�

�	
=Din

:

�31�

Let us turn to considering nonstoichiometry taking cubic
carbides MCy as an example.

According to [35±37, 39], the energy u of a single inter-
atomic bond can be evaluated based on the atomization
energy Eat. In the case of cubic carbides MCy with the B1-
type structure, a unit cell includes 4 formula units MCy.
Therefore, the energy 4Eat=NA, where Eat�y� is the atomiza-
tion energy and NA is the Avogadro number, corresponds to
one unit cell. One unit cell of cubic carbides with the B1
structure includes 24 paired MÿC bonds, with the distance
between M and C atoms equaling aB1=2. Taking this into
account, the energy u of a single interatomic bond is equal to
Eat�y�=6NA.

In cubic carbides, the movement of dislocations occurs
mainly in the slip system f111gh110i [95±97], i.e., f111g planes
in the h110i direction. The sliding of close-packed atomic
planes in the h110i direction corresponds to the Burgers vector
bwith the length b � aB1

���
2
p

=2. Itwas shown in [97] that the slip
plane f111g, passing through the middle ofMÿC interatomic
bonds within a cubic unit cell, has the area sf � �3

���
3
p

=4�a 2
B1

and crosses nineMÿC bonds (Fig. 5). Therefore, in the case of
deformation distortion on this plane, q=sf � 4

���
3
p

=a 2
B1�y�. This

means that qu=sf � 2
���
3
p

Eat�y�=�3NAa
2
B1�y��. The density of a

cubic carbideMCy is dd�y� � 4MMCy
=NAa

3
B1�y�, whereMMCy

is its molecular mass. Because fs=fv � 6, constant A in
formula (11) can be represented as

A � � fs=fv�qu
sfdd

�
���
3
p

EataB1�y�
MMCy

: �32�

According to [85, 99], the atomization energy of non-
stoichiometric carbides

Eat�y; 298� � DsH
o
M�298� � yDsH

o
C�298� ÿ DfH

o
MCy
�y; 298� ;

�33�
where DsH

o�298� are the enthalpies (heats) of component
vaporization and DfH

o
MCy
�y; 298� is the enthalpy of carbide

MCy formation at 298 K.
It was shown in [100] that the enthalpy of carbon (C)

vaporization at 298 K DsH
o
C graphite�298�� DsH

o
C gas�298��

716:7 kJ molÿ1. In addition, enthalpies of vaporization
DsH

o
M�298� were calculated in [101] for transition metals Ti,

Zr, Hf, V, Nb, and Ta at 298 K. This dependences of
enthalpies (heats) DfH

o
MCy
�y; 298� of formation of cubic

titanium, zirconium, hafnium, vanadium, niobium, and
tantalum MCy on their composition were calculated by the
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authors of [83] and reported in [84, 85]. Based on these data,
the dependences of atomization energies Eat MCy

�y; 298� of
cubic carbides MCy on carbon content y were calculated
using formula (33) in Ref. [87].

Results of numerous experimental studies of the depen-
dences of lattice constant aB1�y� on the composition of
disordered titanium, zirconium, hafnium, vanadium, and
tantalum carbides indicate that they are adequately
described by quadratic functions aB1�y� � a0 � a1y� a2y

2.
A more complicated composition dependence of the lattice
constant aB1�y� is documented for disordered niobium
carbide NbCy. Functions describing the dependences of
lattice constant aB1�y� on the composition of disordered
titanium carbides (TiCy), vanadium carbides (VCy), and
niobium carbides (NbCy) are presented in [88].

The main slip system f111gh110i [96±98] on which the
movement of dislocations occurs in cubic carbides is char-
acterized by the length of the Burgers vector b � aB1

���
2
p

=2.
Dependences aB1�y� can be used to find out the dependence of
the Burgers vector b�y� and density dd�y� on the composition
ofMCy carbides.

The dependences of the shear modulus G and Poisson
coefficient n on the composition y of TiCy, VCy, and NbCy

carbides were constructed in [88] based on experimental data
borrowed from the literature. The use of the above depen-
dences of the atomization energy Eat�y�, lattice constant
aB1�y�, Burgers vector b�y�, shear modulus G�y�, and
Poisson coefficient n�y� on the composition of disordered
TiCy, VCy, and NbCy carbides enabled the authors of [88] to
calculate analogous dependences for constants A and B in
formula (31). An analysis of formulas (11) and (31) shows
that, all other conditions being equal, the lower the constants
A and B, the smaller the particle size D.

The quantity e�t;M�� emax�t=�t� t���m=�M� p�� in for-
mula (31) represents the dependence of microstrains on time t
andmassM > 0 of a powder being ground (t,m, and p are the
normalizing parameters) [39]. The dependence e�t;M� meets
the boundary conditions, because the microstrain e�t;M� � 0
at t � 0 and e�t;M� ! emax at t!1. In the case of equal
milling duration, the greater the value of microstrains the

smaller the mass of the substance being ground. Microstrain
e � Dl=l � Dd=d is the relative change Dd of the interplane
distance d in comparison with that in a perfect crystal. In the
general case, Dl=l � s=E. The fracture begins when a critical
value of stress, smax, equal to the strength of the substance at a
given deformation form, is attained; therefore, emax� smax=E,
where E is the respective shear modulus. In other words, the
microstrain e changes from zero at t � 0 to the limiting value
emax, above which the crystal lattice of the ground substance
undergoes destruction. At an equal duration of milling, the
greater the mass of the substance being ground, the smaller
the microstrains. The ultimate value of microstrains emax falls
into the sc=Kc < emax < sc=G range [39], where sc is compres-
sive strength or shear strength, and Kc is the bulk modulus.
Thus, the ultimate compressive strength depends on elastic
characteristics of the substance. According to [102], the
ultimate compressive strength sc of carbides is roughly
� G=30 and corresponds to the stress necessary to shift one
atomic plane relative to another. The Poisson coefficient of
carbides ranges from 0.18 to 0.25. Taking this and sc � G=30
into account, the limiting value of microstrains falls into the
0:02 < emax < 0:03 range. The real (actual) strength of any
substance, including carbides, is several times lower than
G=30 due to defects; therefore, destruction begins at a
smaller emax value. For example, emax � 0:008 for tungsten
carbide WC if the dependence of microstrains on milling
duration and powder mass is taken into consideration [39].

The ultimate compressive strength is proportional to the
energy of interatomic bonds, which, in turn, is proportional
to the atomization energy Eat [11, 15, 24], i.e., sc � kEat.
Therefore, sc�TaCy� >sc�NbCy� >sc�HfCy� >sc�ZrCy� >
sc�TiCy� > sc�VCy�, taking into account the value of
Eat�y; 298�, the carbon content and all other conditions
being equal. The atomization energy Eat�y� in the homo-
geneity region of each carbide increases with carbon content;
therefore, sc grows too with increasing y as shown in
experiments [103] designed to measure the yield stress sc of
titanium, zirconium, and niobium carbides. It was demon-
strated in [103] that sc�NbC� > sc�ZrC� > sc�TiC� at the
same temperature.

The literature is lacking data on the influence of carbide
composition on compressive and bending strains. The
authors of [88], based on the analysis of concentration
dependences of the atomization energy and shear modulus
supplemented by the results obtained in [103, 104] on the
ultimate compressive strength and yield stress of niobium
carbide, presented dependences of sc and limiting values
of microstrains emax on NbCy composition as sc�y� �
1:83� 1:87y [GPa] and emax�y� � 0:0362ÿ0:020y [rel. units],
respectively. Similar dependences of sc and emax on the TiCy

and VCy composition were described in [88] by the linear
functions sc�y� � 1:17� 2:08y [GPa] and emax�y� �
0:0132�0:002y for TiCy and sc�y� � 1:26� 1:87y [GPa] and
emax�y� � 0:0209ÿ0:0087y for VCy, respectively.

The use of the found experimental dependences of A�y�,
B�y�, b�y�, and emax�y� in formula (31) enabled the authors of
[88±92] to analyze the influence of nonstoichiometry on the
ball milling of nonstoichiometric NbCy, TiCy, and VCy

carbide powders.

3.2 Nonstoichiometry and particle size
of carbide powders produced by ball milling
The influence of nonstoichiometry on the ball milling of a
coarse-grained niobium carbide powder with a mean particle

M C

b

Figure 5. Slip system f111gh110i in nonstoichiometric carbidesMCy with

the basic B1 cubic structure [88, 98]. Slip on the f111g plane breaks nine
MÿC bonds: Xs indicate intersections of MÿC bonds by the slip plane,

b � h110i=2 is the Burgers vector indicating slip direction on the f111g
plane.
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size Din � 5 mm elucidated in [72] is illustrated by Fig. 6. For
comparison, the results of experimental ball milling of
NbC0:77, NbC0:84, NbC0:93, and NbC0:96 powders are used.
Ten grams of each powder was ground in a PM-200 Retsch
mill at the angular velocity of rotation o � 8:33 rps. Accord-
ing to [72, 88, 90, 91], the milling energy in this mill
Emill�t� � ko3t � kt, where k � 0:00135 kg m2; therefore,
coefficient k � 0:781 J sÿ1 at o � 8:33 rps. In earlier studies
[35, 36, 39, 87, 88, 94, 98], a roughly 10%overrated coefficient
k � 0:0015 kg m2 was used to assess the milling energy. The
results of calculations (see Fig. 6) are in excellent agreement
with the experimental data obtained in the grinding of
NbC0:77, NbC0:84, NbC0:93, and NbC0:96 powders with the
initial particle size Din � 5ÿ7 mm for 5, 10, and 15 h.

The dependence of the particle size in TaCy powders on
nonstoichiometry and milling time is presented in Fig. 7. The
mean size of the particles in initial coarse-grained tantalum
carbide powders Din � 6 mm. Its fast decrease to 100 nm or
less takes 1000±2000 s.A longer duration ofmilling (up to 15 h
or more) is associated with a slow asymptotic decrease in
particle size, in agreement with the results of experiments on
the ball milling of TaC0:81, TaC0:86, TaC0:90, and TaC0:96

powders for 5, 10, and 15 h. Theoretical dependencesD�y� for
TaCy at a fixed milling time t, unlike those for niobium
carbide, are smooth and display no maxima (see Fig. 7). This
difference is attributed to the rather smooth dependences of
the lattice constant aB1�y�, shear modulus G�y�, and coeffi-
cientB�y� of TaCy. The somewhat smaller theoretical particle
sizeD�y; t� of tantalum carbide than the experimental one can
be accounted for by the use of the underestimated TaCy shear
modulus G in calculations, taking into consideration that the
measurements of elastic characteristics described in the
literature were performed on porous samples.

The theoretical dependence of the particle size D of a
nonstoichiometric VCy powder on the milling time t and VCy

composition calculated in [88] is presented in Fig. 8. Calcula-

tions show that the mean particle size is 20±25 nm when
milling lasts 15 h. A change in the VCy composition at the
same milling duration only slightly affects the particle size in
the resulting powder due to the almost linear variation in shift
G�y� and parameter B�y�, depending on carbide composition.
A diffraction experiment showed that the mean size hDi of
coherent scattering regions in a VC0:875 nanopowder obtained
in 10 h of milling varies from 40 to 80 nm at the same
microstrain value. The theoretical estimate of the particle
size in the VC0:875 nanopowder produced by ball milling for
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Figure 6. (Color online.) Influence of niobium carbide NbCy composition

y and milling time t on nanopowder particle size [72]. The dependence

Dtheor�y; t� was calculated on the assumption of powder mass M � 10 g,

initial particle size of 5 mm, and Emill�t� � 0:781t [J]. Dots and squares

indicate the nanoparticle size determined by the X-ray diffraction method

from diffraction reflection broadening and by the Brunauer±Emmett±

Teller method, respectively.

20,000
30,000

40,000
50,000

60,000

0.95

y f
or
Ta
C y

D�y; t� for TaCy

0.90
0.85

0.80

0.75

10,000

100

80

60

40

20

0

D
,n

m

100

80

60

40

20

1.00

D
,n

m

t, s

Figure 7. (Color online.) Influence of tantalum carbide TaCy composition

and milling time t on nanopowder particle size [72]. The dependence
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10 h is lower (32 nm) because calculations in [88] were made
based on the underestimated experimental data from the
literature on vanadium carbide shear modulus G measured
on porous samples. Indeed, it follows from formulas (11) and
(31) that a greater particle size obtained by ball milling
corresponds to a higher shear modulus. Another cause of
theoretical underestimation of the particle size in the VCy

powder is the overrated milling energy Emill�t� � 0:868t [J]
used in [88]. Actually, Emill�t� � 0:781t [J], as was shown in a
later study [72].

3.3 Ball milling of titanium, vanadium,
and niobium monoxides
High-energy ball milling ensures a high concentration of
energy on the particles. The authors of [93, 105±109] used a
Retsch PM-200 mill with grinding bowls and balls made from
yttrium oxide-stabilized zirconium dioxide to disintegrate
nonstoichiometric titanium, vanadium, and niobium oxides
containing tens of percent of structural vacancies in both
oxygen and metal sublattices. The mass ratio of the grinding
bowls and balls was 10:1. Isopropyl alcohol served as the
milling fluid.

Production of a nanocrystalline vanadium monoxide
VO1:0 powder with a type B1 cubic structure is described in
Refs [93, 105, 106]. The duration of milling was 15 min to 4 h,
with a change of rotation direction every 15 min. The ball-
milled vanadium monoxide retained the cubic structure but
experienced broadening of all diffraction reflections. The size
of coherent scattering regions that can be regarded as the
nanoparticle size varied from � 310 to � 20 nm with a rise in
the milling duration from 15 min to 4 h. High-resolution
electron microscopy demonstrated that particles of the VO
nanopowder obtained by 4 h of ball milling were 20±30 nm in
size. In other words, results of the measurement of VO
particle size by electron microscopy and X-ray diffraction
techniques are in good agreement.

The influence of nanoparticle size on the stability of
composition and structural vacancies in nanocrystalline
titanium monoxide was studied in [107, 108]. Nanopowders
of titanium monoxide were prepared by grinding macrocrys-
talline (particle size � 15ÿ25 mm) powders of nonstoichio-
metric TiO0:92, TiO0:97, TiO0:99, and TiO1:23. The initial
TiO0:92 and TiO1:23 powders were disordered and had the
type B1 cubic structure. The initial TiO0:97 and TiO0:99

powders were used in both disordered (hardened) and
ordered (obtained by low-temperature annealing) states.
The ordered TiO0:97 and TiO0:99 monoxides had the Ti5O5

type monoclinic structure (space group C2=m). The duration
of initial powder milling at an angular rotation speed of the
bearing disk of 500 rpm (8.33 rps) was 15, 30, 60, 120, 240, and
480 min, with the rotation direction reversed every 15 min.
The ball-milled titanium monoxides retained the initial
composition and crystalline structure, but diffraction reflec-
tions markedly broadened (Fig. 9).

The broadening became apparent within 15 min after the
onset of the milling. However, such short-term grinding was
incomplete and the powders contained components of the
initial coarse-crystalline fraction. It took 4 h to obtain
samples composed of nanocrystalline particles alone.

An analysis of broadening of diffraction reflections
showed that the particle size in the nanopowder of annealed
TiO0:99 obtained in 8 h ofmilling was roughly 20 nm,while the
value of microstrains amounted to 0.57%. The dependence of
the mean particle size D on milling time t was approximated

in [107] by the hyperbolic function

D�t� � Din ÿDmin

1� ct
�Dmin ; �34�

where Dmin � 20� 10 nm is the minimal particle size
attainable by milling and c is the coefficient related to the
milling energy and fragility of the material (the totality of
its strength characteristics, to be precise). The particle size
in nanopowders of ordered titanium monoxide is 3±5 nm
smaller than in disordered monoxides. The general depen-
dence of the size of the coherent scattering region (CSR) on
the TiOy nanopowder composition obtained after 8 h
milling is described in [108] by the linear function
D�y� � 69:3yÿ 49:4 [nm]. Electron microscopy revealed
rounded particles 20±30 nm in size in nanopowders
produced by milling for 8 h. Moreover, an aggregation of
nanoparticles with the formation of 40±300 nm polycrystals
was observed.

Cubic (space group Pm�3m) niobium monoxide NbO has
an unusual structure containing 25 at.% vacancies in sub-
lattices of both niobium and oxygen but lacks a homogeneity
region [84±86, 110]. A coarse-crystalline niobium monoxide
powder was synthesized in [109] by solid-phase vacuum
sintering of a mixture of metallic niobium Nb and niobium
oxideNb2O5 at 1673K for 24 h. Then, theNbO thus obtained
was annealed in a vacuum at 1773 and 1873 K. The resulting
single-phase NbO powder with a cubic structure (space group
Pm�3m) had a lattice constant of 0.4212 nm. The macro-
crystalline NbO powder was ground in a Retsch PM-200 mill
for 30, 60, 120, 240, and 480 min [109]. Isopropyl alcohol and
surface active agents (SAAs), such as PEG-400 polyethylene
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Figure 9. Diffraction reflections �220�B1 (1) from initial coarse-crystalline

disordered TiO0:99 powder and (2±7) TiOy nanopowder obtained after 8 h

of milling [108]: (2, 3) disordered hardened and ordered annealed TiO0:99

nanopowders; (4, 5) disordered hardened and ordered annealed TiO0:97

nanopowders; (6, 7) disordered hardened TiO0:92 and TiO1:23 nano-
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glycols and PEG-400 containing diluted tetrabutylammo-
nium iodide �C4H9�4N�Iÿ, were used as the milling fluids.
SAAs served to disengage fragmented particles after milling,
i.e., to create a stable aqueous suspension of niobium
monoxide.

X-ray diffraction patterns of the initial and ball-milled
(8 h) niobium monoxide powders are presented in Fig. 10.
Diffraction reflections of the initial powder are narrow and
split into a1; 2 doublets, which suggests a high degree of NbO
homogeneity. XRD patterns of the ground nanopowders
display the same but markedly broadened diffraction reflec-
tions. Analysis of the dependence of reduced broadening of
diffraction reflections showed that the broadening is attribu-
table to both the small particle size and the presence of
microstrains. Also, the authors of [109] observed anisotropy
of nanocrystal size in directions [100], [110], and [111], with
NbO nanocrystals having a smaller size in direction [100] than
in [110] and [111].

The CSR size of the nanopowder obtained by milling for
8 hr with the use of isopropyl alcohol as the milling fluid
decreased from 200 to 20 nm, while the value of microstrains
amounted to 0.36%. When PEG-400 and PEG-400�
�C4H9�4N�Iÿ were used as the milling fluids, the CSR size
decreased only to 40 nm and the microstrain value increased
to 0.2%. The dependence of the CSR size on milling time t
had a hyperbolic form (Fig. 11). Milling in isopropyl alcohol,
with all other conditions being equal, produced the finest
nanopowder. Electron microscopy revealed rounded and
lamellar NbO nanoparticles 20±30 nm in size coalescing to
form 40±300 nm polycrystals. TiOy and NbO nanopowders
obtained by ball milling under the identical conditions in
[107±109] had a similar microstructure.

4. Microstructure of carbide nanopowders
prepared by high-energy ball milling

Grinding results not only in a decrease in particle size, i.e.,
fragmentation, but also in the appearance of microstrains.
X-ray and neutron diffraction techniques provide a powerful
tool for the study of nanocrystalline substances with special
reference to the particle size (coherent scattering regions) and
microstrains. Electron microscopy and laser diffraction are
used as supplementary methods to confirm findings obtained
by diffraction methods.

P Scherrer was the first to propose the application of
X-rays to determine the particle size. In 1918, he derived a
formula relating the diffraction reflection width at its half-
height to the particle size of the substance under study [111].
An analogous relation was reported in a later paper [112] by
the Soviet researcher N Ya Selyakow.

It readily follows from the Wulff±Bragg condition that
Ddhkl=dhkl � ÿ cot �yhkl�Dy; on the other hand, Ddhkl=dhkl �
Dl=l; therefore, Dl=l � ÿ cot �y�Dy, whence broadening
bhkl�2y��jÿ 2�Dl=l� tan yhklj�2�Dl=l� tan yhkl. This expres-
sion can be used to determine the maximum size of particles
(grains, crystallites) responsible for a measurable broadening
of reflections on the assumption that the minimal width is
equal to the spectral width of reflection Dl=l � 10ÿ3. In this
case, the broadening bhkl � 2� 10ÿ3 tan yhkl and

hDi � l
bhkl cos yhkl

� 103l
2 tan yhkl cos yhkl

� 103l
2 sin yhkl

� 103dhkl � 200 nm :

This means that the diffraction method allows the size of
particles smaller than 200 nm to be determined.

In general, when particles have an arbitrary shape, their
mean size Dav � V 1=3 (V is particle volume) can be found
using the Debye±Scherrer formula [3, 5, 111]:

hDi � Khkll
cos yFWHMexp�2y� �

Khkll
2 cos yFWHMexp�y� ; �35�

where l is the radiation wavelength and Khkl � 1 is the
Scherrer constant (anisotropy coefficient), whose value
depends on the particle (crystallite, domain) shape and
diffraction reflection indices �hkl�.

In a real experiment, the reflection broadens as a result of
finite resolution of the diffractometer and cannot be smaller
than the instrumental linewidth. This implies the necessity to
use in formula (35) broadening b of reflection with respect to
instrumental width FWHMR rather than experimental
reflection width FWHMexp�2y�:

b�2y� � ��FWHMexp�2 ÿ �FWHMR�2
�1=2

: �36�
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Figure 10. X-ray diffraction patterns of niobium monoxide NbO powders

in the initial state (1) and ground for 8 h (2).
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Formula (36) should be used if the physical broadening b
and the instrumental width FWHMR are described by the
Gaussian or pseudo-Voigt functions, with a greater contribu-
tion from the former. As a matter of practice, such a
description of the experimental broadening and the diffracto-
meter resolution function is most widely used. If both the
physical broadening and the instrumental width are described
by the Lorentz (Cauchy) functions, the physical broadening
equals the difference between the total experimental reflection
width and the instrumental reflection width, i.e., b �
FWHMexp ÿ FWHMR.

According to [113], the diffraction reflection broadening
due to the small particle size (size broadening) equals

bs�2y� �
Khkll
hDi cos y �

l
hDi cos y �rad� ; �37�

while broadening caused by deformation distortions of the
crystal lattice (strain broadening) equals

bd�2y� � 4e tan y �rad� : �38�

The mean particle size Dav is determined in a diffraction
experiment by the Warren method [82] taking (37) into
account:

hDi � Khkll
cos y bs�2y�

� Khkll
2 cos y bs�y�

: �39�

Notice that b�2y� � 2b�y�.
The broadening in nanostructured materials is as a rule

due to both the small particle size and microstrains. To
separate these two contributions to the experimental reflec-
tion broadening, the extrapolation Williamson±Hall method
[80] is used. It is based on the construction of the dependence
of the reduced broadening b ��2y���b�2y� cos y�=l of diffrac-
tion reflections �hkl� on the scattering vector s � �2 sin y�=l.
TheWilliamson±Hall method is based on the assumption that
size and strain broadenings are described by the Lorentz
(Cauchy) functions. As a result, the total reflection broad-
ening is the sum of size and strain broadenings, i.e., b�2y� �
bs�2y� � bd�2y� or, taking account of (37) and (38), b�2y��
bs�2y�� bd�2y��l=�hDi cos y� � 4e tan y. Then, the reduced
broadening b ��2y�� �b�2y� cos y�=l as a function of scatter-
ing vector s equals b ��2y� � b ��s� � 1=hDi� 2e�2 sin y�=l �
1=hDi� 2es � 1=hDi � s tanj, where 2e � tanj and j is the
slope angle of the straight line approximating the b ��s�
dependence and a linear function of the scattering vector s.

The mean particle size hDi is determined in the William-
son±Hall method by extrapolating the dependence of the
reduced broadening b ��2y� on the scattering vector s to the
value s � 0, i.e., hDi � 1=b ��2y�js�0, and the mean value of
microstrains eav is found from the slope angle j of the
straight line approximating the dependence b ��s� as eav �
��tanj�=2�100%. The Williamson±Hall method should be
used if reflection broadening b is described by the Lorentz
function or the pseudo-Voigt function with a large (at least
70%) contribution from the Lorentz function.

The physical sense of quantity e � Dd=d is a lattice micro-
strain characterizing uniform deformation averaged over the
entire crystal volume, i.e., a relative change in the interplane
distance in comparison to that in a perfect crystal (d and Dd
are the interplane distance in the perfect crystal and the mean
change in the interplanar distance �hkl� in the crystal bulk,
respectively).

Usually, the broadening bd�2y� caused by deformation
distortions of the lattice is represented in the form (38).
However, microstrain anisotropy needs to be taken into
consideration in strongly deformed substances, such as
nanopowders obtained by high-energy ball milling. Accord-
ing to [82, 114], the broadening bd�2y� caused by anisotropic
deformation distortions of the crystal lattice equals

bd�2y� � 4ehkl tan y �rad� ; �40�

where ehkl � s=Ehkl � krC
1=2
hkl is the effective microstrain

taking into account strain anisotropy of the crystal, s is the
direction-independent full width at half-maximum of the
stress distribution function, Ehkl is the �hkl �-dependent
Young's modulus, and kr is a constant for a given sample
depending on dislocation density and the Burgers vector, i.e.,
on the change in interplanar spacing and atomic displace-
ments. In the theory of elasticity, anisotropic Young's
modulus Ehkl of cubic crystals is defined by elastic constants
c11, c12, and c44 or components s11, s12, and s44 of the elastic
deformation tensor as

Ehkl � 1

s11 ÿ �2s11 ÿ 2s12 ÿ s44�H ; �41�

where H � �h 2k 2 � k 2l 2 � h 2l 2�=�h 2 � k 2 � l 2�2 is the dis-
location anisotropy factor for cubic crystals [115]. Coefficient
Chkl takes account of edge and screw dislocations in a
deformed crystal. According to [115], coefficient Chkl for
cubic crystals is

Chkl � fEChkl;E � �1ÿ fE�Chkl;S �
�
fEAE � �1ÿ fE�AS

�
� � fEBE � �1ÿ fE�BS

�
H � Ad � BdH ; �42�

where fE and fS � 1ÿ fE are the relative content of edge and
screw dislocations, and Ad and Bd are constants for a given
sample depending on dislocation density and relative content.

Taking account of ehkl � krC
1=2
hkl and (42), expression (40)

can be written in the form

bd�2y� � 4krC
1=2
hkl tan y � 4kr�Ad � BdH�1=2 tan y : �43�

It follows from (42) and (43) that the anisotropy of
microstrains is due to the presence of dislocations or
dislocation-like defects rather than to atomic displacements.

According to [116], the value of microstrains eav averaged
over the crystal bulk is expressed as

eav �
P

ehklPhklP
Phkl

; �44�

where Phkl is the repetition factor.
The use of the Williamson±Hall method and taking into

consideration (37) and (43) allow describing broadening as
b�2y� � l=�D cos y�� 4kr�Ad� BdH�1=2 tan y and reduced
broadening as b ��2y� � 1=D� 2kr�Ad � BdH�1=2s.

The influence of milling time and the nonstoichiometry of
cubic tantalum carbide TaCy �0:814 y4 0:96� on anisotro-
pic deformation of crystals and particle size in nanocrystalline
powders was studied inX-ray diffraction experiments [91, 92].
A rise in milling duration t and energy Emill was accompanied
by a significant broadening of diffraction reflections due to
the reduction in the particle size and growth of microstrains.
As an example, Fig. 12 shows a change in microstrain value
eav determined without regard to the anisotropy of TaCy
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nanopowders obtained by different durations of milling t.
Prolongation of milling caused a gradual growth of eav.

Experimental dependences of reduced broadening b ��2y�
of diffraction reflections in a TaC0:90 powder formed in the
course of 15 h of milling are presented in Fig. 13 [92].
Experimental data points of the dependence of b ��2y� on
the scattering vector s constructed without regard to micro-
strain anisotropy are spread with respect to the approximat-
ing linear dependence b ��s� (Fig. 13a). Approximation of
the same experimental data by function b ��2y� � 1=D�
2kr�Ad � BdH�1=2s as the dependence on s�Ad � BdH�1=2
(Fig. 13b) taking account of microstrain anisotropy yields a
better agreement between experiment and approximating
linear dependence.

According to [91, 92], the lowest value of microstrains ehkl
for all TaCy nanopowders is observed in [200] and equivalent
directions, while the highest value is recorded in direction

[111]. Figure 14 shows the distribution of microstrains ehkl in
nonequivalent directions �hkl � in TaC0:81 powders obtained
after milling for 5 and 15 h with energy Emill � 14:1 and
42.2 kJ, respectively. The radius of the spheres is proportional
to microstrain eav averaged over all crystallographic direc-
tions, and the vector length to ehkl. Evidently, in both
powders, microstrains e111, e220, e331, and e422 in [111], [220],
[331], and [422] directions exceed the averaged microstrain eav
equaling 0.51% and 0.79% for milling energies of 14.1 and
42.2 kJ, respectively.

Neutronography provides an optimal tool for simulta-
neous investigation of nanostructuring and possible ordering
of nonstoichiometric carbides and oxides. On the one hand,
comparable intensities of neutron scattering from atomic
nuclei of transition metals and carbon or oxygen make it
possible to detect ordering in these substances. On the other
hand, the diffraction of short-wavelength neutron radiation
provides an opportunity to determine the grain size in
microstrains and other defects in the lattice of nanocrystal-
line substances.

The most promising of the tools for neutron diffraction
research are time-of-flight (TOF) diffractometers on pulsed
neutron sources. The use of a continuous neutron wavelength
spectrum allows covering a wide range of interplane distances
dhkl more accurately than in a standard diffractometer with a
monochromatic neutron beam, evaluating the influence of
various crystal defects (small particle size, microstrains,
vacancy-related nonstoichiometry) on the reflection profile
and width, and detecting fractions with particles of different
sizes in the sample.

Earlier studies on the influence of nonstoichiometry and
small particle size on the structure of nanocrystalline
substances were performed by the TOF-neutronography
technique in 2014±2018 with the use of MCy carbides [116±
123].

When diffraction reflections are described by the pseudo-
Voigt function with a large contribution of the Gaussian
function, their broadening is the superposition of size and
strain broadenings:

b 2�2y� � b 2
s �2y� � b 2

d �2y� : �45�
Differentiation of theWulff±Bragg equation d�l=�2 sin y�

yields either Dd=Dy � jd= tan yj or jDyj � �Dd=d � tan y.
Reflection broadening on both sides of the maximum
corresponding to interplanar spacing d is twice that, b�2y� �
2jDyj, which means that the angular broadening b�2y� can be
represented as the interplane distance d in the form

b�2y� � 2jDyj � 2
Dd
d

tan y : �46�

The mean size of the coherent scattering region is related
to strain broadening bs�2y� (37). Taking into consideration
the Wulff±Bragg conditions and substituting l by 2d sin y
in (37) allow the strain broadening to be written as

bs�2y� �
2d sin y
D cos y

� 2
d

D
tan y : �47�

Substituting (43), (46), and (47) into (45) yields �Dd=d �2 �
d 2=D 2 � 4e 2hkl or

�Dd �2 � 4d 2e 2hkl �
d 4

D 2
� �2kr�2�Ad � BdH�d 2 � d 4

D 2

� c3�Ad � BdH�d 2 � c4d
4 : �48�

0.9

e a
v
,%

0.8

0.7

0.6

0.5

0 5 10 15
t, h

TaC0:96

TaC0:90

TaC0:86

TaC0:81

Figure 12. Mean microstrain value eav versus TaCy powder milling time t.
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The dependence of the diffraction reflection width Dd on
interplanar distance d in a polycrystal measured with an
HRFD diffractometer includes the contribution from the
diffractometer resolution functionWR and has the form

�Dd �2 � c1 � c2d
2 � c3�Ad � BdH�d 2 � c4d

4 ; �49�

where coefficients c1 and c2 are related to the diffractometer
resolution function and parameters (flight distance, scatter-
ing angle), c3 � �2e�2, and c4 � �1=D�2. The experimental
broadening is related to Dd as W � KDd, where for the
HRFD diffractometer constant K � 25912:7 if Dd is mea-
sured in nanometers. Substituting Dd byW in (49) yields

W 2 � C1 � C2d
2 � C3�Ad � BdH�d 2 � C4d

4 ; �50�

where Ci � ciK
2, C1 � C2d

2 �W 2
R is the square of the

diffractometer resolution function WR, and the third and
the fourth items are the contributions from strain and size
broadenings, respectively.

If the resolution function is taken into consideration, the
square of the broadening

b 2
hkl �W 2 ÿW 2

R � C3�Ad � BdH�d 2
hkl � C4d

4
hkl : �51�

Dependence (51) constructed as a function of d 2 is either a
concave curve or a straight line because, by definition,
C4 � K 2�1=D 2�5 0 and C3 � K 2�2e�2 5 0. Taking account
of anisotropy, the microstrain ehkl has the form ehkl �
1=2�C3�Ad � BdH��1=2.

As ismentioned in a preceding paragraph, themain causes
of diffraction reflection broadening are the small size D of
particle or crystallite coherent scattering regions and micro-
strains e in the crystal lattice due to its deformation
distortions and atomic displacements associated with the
presence of dislocations [124]. Taking account of the micro-
strain value and anisotropy is of special importance as far as
strongly deformed substances and materials such as ball-
milled carbide nanopowders are concerned [125±128].

TOF neutron diffraction was used in [119, 122] to study
the evolution of the microstructure of nonstoichiometric
vanadium carbide V8C7 �VC0:875� prepared by high-energy
ball milling.

Neutron diffraction patterns of coarse-crystalline and
nanocrystalline vanadium carbide powders V8C7 �VC0:875�

are presented in Fig. 15. The large dhkl spectral region of the
coarse-crystalline� V8C7 powder (Fig. 15a) contains weaker
superstructure reflections of the V8C7 cubic (space group
P4332) ordered phase. Considerable broadening accounts for
less apparent superstructure reflection in the spectrum of a
nanopowder obtained after 10 h of milling (Fig. 15b). The
wide peak visible in the d � 0:185ÿ0:190 nm region of the
V8C7 nanopowder neutronogram (Fig. 15b) is the reflection
of (011) impurity nanocrystalline hexagonal (space group
P�6m2) tungsten carbideWC. The admixture ofWC appeared
as a result of rubbing the milling balls and bowls made from a
hard WCÿ6 mass% Co alloy.

A quantitative analysis showed that two-phase coarse-
crystalline and nanocrystalline vanadium carbide powders
contain � 21 and � 45 mass% of disordered VC0:875,
respectively. The inset in Fig. 15a presents, as an example, a
description of the (222) reflection profile of the V8C7 ordered
phase and the �111�B1 reflection profile of the VC0:875

disordered phase. The peak of the disordered phase is
roughly three times as wide as that of the ordered phase
V8C7. Peak broadening in the disordered phase suggests that
in the nanopowder obtained by 10 h milling this phase
consists of small (� 15ÿ20 nm) particles in the matrix of the
ordered V8C7 phase. The microinhomogeneity of V8C7

nanoparticles is confirmed by the results of high-resolution
transmission electron microscopy (HRTEM). Figure 16
presents an HRTEM image showing inclusions of disordered
vanadium carbide VC0:875 particles � 8ÿ10 nm in size within
the matrix of the V8C7 ordered phase.

Detailed studies of the microstructure of nanocrystalline
niobium carbideNbCy powders (y � 0:77, 0.84, 0.93, 0.96) by
TOF neutronography are reported in [116, 118, 120±123].

High-resolution neutronographic spectra of all NbCy

samples were obtained at 293 K with the use of a high-
resolution HRFDTOF diffractometer operating at channel 5
of the IBR-2 pulsed reactor (JINR, Dubna, Russia). The
powders of interest were placed in vanadium containers. The
correlation technique ensuring very high resolution power
(Dd=d � 0:0013 at d � 0:2 nm) was employed for data
acquisition and collection. The resolving power Dd=d of the
diffractometer in the interplane distance range dhkl from
� 0:05 to � 0:5 nm was virtually independent of dhkl, which
made it possible to detect microstrains in domains (crystal-
lites) at the e5 5� 10ÿ4 level and the mean CSR below
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Figure 14.Distribution of microstrains ehkl in nonequivalent directions �hkl � in TaC0:81 nanopowder produced in (a) 5 and (b) 15 h ofmilling with energies

Emill � 14:1 and 42.2 kJ, respectively. The radius of the sphere is proportional to eav, and the vector length in directions �hkl � to the value of microstrains

ehkl [92].
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350 nm. A reference NIST SRM 676 �Al2O3� sample was
used to determine the diffractometer resolution function.
Analyses of neutronograms by the Rietveld method was
performed using FullProf [130] and WPPM [131, 132]
software.

X-ray diffraction showed that initial coarse-crystalline
niobium carbide powders had a single-phase cubic (space
group Fm�3m) B1 structure.

The neutron diffraction patterns of initial coarse-crystal-
line NbC0:77, NbC0:84, NbC0:93, and NbC0:966 and nanopow-
ders obtained from them by ball-milling for 5, 10, and 15 h
were measured using an HRFD diffractometer; they are
presented in Fig. 17. Diffraction reflections from nanopow-
ders are markedly broadened as a result of milling, and the
diffuse background is enhanced. Reflections of the expected
ordered monoclinic phase of Nb6C5 were not observed in
NbC0:84 powders. The narrow peaks on neutron diffraction
patterns near d � 0:123, � 0:152, and � 0:214 nm represent
reflections from vanadium containers. Broad peaks on
neutron diffraction patterns of NbCy nanopowders close to

d � 0:185ÿ0:190 nm are (011) reflections of nanocrystalline
hexagonal (space group P�6m2) tungsten carbide impurity.

The dependence of the diffraction reflection width Dd on
interplanar spacing d is described by function (49).

A quantitative analysis of neutron diffraction data for
niobium carbide NbCy powders revealed that they contain a
major nanocrystalline powder fraction together with a small
coarse-crystalline one.

Dependences b 2�d 2� (Fig. 18) found fromHRFDneutron
diffraction patterns taking into account the presence of two
fractions in NbCy nanopowders correspond to nanoscale
fractions, because the contribution from the coarse-crystal-
line part is within the measurement error. Dependences
b 2�d 2� for nanosized phases of all nanopowders are convex
curves having different degrees of curvature, which suggests
microstrain anisotropy. An approximation of experimental
data b 2�d 2� for NbCy nanopowders using dependence (51)
taking account of microstrain anisotropy ehkl enabled the
authors of [118, 122, 123] to deduce the ehkl value and sizeD of
coherent scattering regions.
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Figure 15.Neutron diffraction patterns of vanadium carbide V8C7 [119, 122]: (a) initial coarse-crystalline powder, (b) nanopowder obtained by 10 h of
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A quantitative analysis of neutron diffraction data indi-
cates that diffraction reflection profiles are most adequately
described by taking account of two cubic (space group Fm�3m)
fractions in a powder with different lattice constants, composi-

tions, and mean particle sizes. This very important result was
obtained for the first time by TOF neutronography. The
observed diffraction reflections are the sum of two (wide and
narrow) peaks corresponding to nanosized F1 and coarse-
crystalline F2 fractions, respectively. Figure 19 exemplifies the
decomposition of �200�B1 diffraction reflections from NbC0:77

and NbC0:96 powders into peaks corresponding to NbC cubic
fractions F1 and F2 with different lattice constants, composi-
tions, and mean particle sizes [118, 123, 133]. The main
contribution (> 93%) to reflection comes from the broad
peak characteristic of the nanoscale F1 fraction and displaced
to the region of smaller d with respect to the narrow peak. The
same feature is observed for all reflections on neutron
diffraction patterns of NbCy nanopowders. Thus, niobium
carbide nanopowders contain two cubic fractions F1 and F2

having different lattice constants and mean particle sizes. The
content of the coarse-crystalline nanofraction depends on
milling time and decreases from 5±7% to 0 as the duration of
milling increases from 1±5 h to 15 h.

Similar data were reported earlier as regards the micro-
inhomogeneous structure of PbS [134, 135] and Ag2S [136±
139] even though their nonstoichiometry is less pronounced
than in niobium carbide.

Figure 20 presents calculated anisotropic distributions of
ehkl microstrains along nonequivalent directions �hkl � in
NbC0:77 and NbC0:96 nanopowders produced by ball milling
for 10 and 15 h, respectively [118, 123].
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Figure 16. HRTEM images of the microinhomogeneous structure of the

V8C7 powder obtained by 15 h of milling [119]. The matrix of the ordered

V8C7 phase contains well apparent inclusions (1) and (2) of disordered

vanadium carbide VC0:875 � 8ÿ10 nm in size. Area (3) exhibits only the

ordered V8C7 phase.
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Figure 17.Neutron diffraction patterns of initial coarse-crystalline NbC0:77, NbC0:84, NbC0:93, and NbC0:96 powders �t � 0� and nanopowders prepared

from them bymilling for 5, 10, and 15 h [118, 123]. Experimental points and theoretical neutron diffraction patterns are presented. Vertical bars in top and

bottom rows indicate calculated positions of reflections of nanoscale F1 and coarse-crystalline F2 fractions, respectively. Diffraction reflections of the

nanoscale fraction F1 are shifted to the region of smaller d compared with those of the F2 fraction. The peaks on neutronograms near � 0:123, � 0:152,
and � 0:214 nm are reflections from vanadium containers.
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5. Application of carbide and oxide nanopowders
prepared by ball milling

Strongly nonstoichiometric compounds like carbides and
oxides find wide application in modern industry [84, 85].
Their production in the nanocrystalline state with nanometer
grains (particles) opens up new prospects for practical use.

Nonstoichiometric carbides MCy �y4 1:0� are currently
in high demand for a variety of purposes, including the
production of construction, instrumental, and other materi-

als capable of operating under extreme conditions, such as
high temperatures, aggressive media, and heavy workload.
Finely dispersed powders of nonstoichiometric carbides are
used in the production of nanostructured hard alloys [79] for
metal-fabricating industries, mining and boring operations or
as dopants for dispersion hardening of high-temperature and
thermally resistant steels [140, 141].

Nonstoichiometric vanadium and niobium carbides (VCy

and NbCy) find application as inhibitors of grain growth in
hard alloys and dopants in special steels with enhanced
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thermal stability andmechanical strength [142]. Cast iron and
steel dopingwith vanadium and niobium carbides is known to
cause a release of dispersed nanoscale carbide particles in a
metallic matrix in the form of cubic (space group P4332)
M8C7 or monoclinic (space group C2=m) M6C5 ordered
phases [88, 140, 141].

Titanium oxide-based compounds are used as catalysts
for photoelectrochemical water decomposition and photo-
catalysts for the removal of organic impurities. Titanium
dioxide TiO2 is characterized by a wide band gap (> 3:1 eV);
therefore, it absorbs sunlight only in the UV range. To reduce
the width of the band gap and obtain a photocatalyst active
under sunlight, titanium dioxide is produced in the nanocrys-
talline state; also, various ions and vacancies are inserted into
its sublattices or titanium subdioxides, e.g., cubic titanium
monoxide.

An interesting property of titanium and vanadium mon-
oxides is the concentration metal-semiconductor transition:
monoxides MOy with a substoichiometric composition
�y < 1� have metallic conductivity, while monoxides with
the superstoichiometric composition �y > 1� are actually
narrow-gap semiconductors [143]. The metal-semiconductor
phase transition is more pronounced in nanocrystalline
monoxides. This effect can be used to design new micro- and
nanoelectronic devices. Equally deserving of note is the
presence of octahedral clusters in different fractions of
titanium monoxide [144] and the influence of the small size
of its particles on magnetic susceptibility [145, 146].

Niobium monoxide NbO possesses superconductivity
properties [147] and is a potentially suitable candidate for
manufacturing high-capacity condensers [148].

A variety of chemical methods are currently available for
producing nanocrystalline carbides and oxides from suitable
precursors. Specifically, carbothermal vacuum reduction of
niobium oxide Nb2O5 was proposed and implemented to
prepare nanocrystalline carbides, e.g., niobium carbide, at
� 1300 K with the use of melamine C3N3�NH2�3 [149]. Thus
far, however, the precursor-basedmethods allow synthesizing
only stoichiometric but not nonstoichiometric nanocrystal-
line compounds. Therefore, high-energy ball milling of coarse-

crystalline compounds preliminarily synthesized by high-
temperature sintering remains the principal method for the
production of nonstoichiometric nanocrystalline carbides
and oxides.

6. Conclusions

High-energy ball milling is a top-down nanotechnology [150]
based on the grinding of large particles or grains to nanoscale
size.

The main parameter of powder milling in planetary ball
mills is the milling energy, proportional to the milling time t
and the cube of angular velocity of rotation o3, while the size
of resulting particles is a function of milling duration t, mass
M, and particle size Din of the initial powder. The size of the
particles obtained by ball milling depends on the mechanical
properties (elastic moduli, Poison coefficient) of the sub-
stance being treated. All other conditions being equal, the
duration of milling t is the most important parameter.
Usually, t is chosen so as to achieve a stable equilibrium
between destruction and cold welding of powder particles.

The technological parameters of milling are the ratio of
grinding ball mass to powder mass and the use of milling
fluids. The standard ratio of grinding ball mass to powder
mass is 10:1. The milling fluids include, depending on the
composition of the substance to be ground, organic com-
pounds (methanol, ethanol, isobutanol, butanol, hexane,
isopropanol, stearic acid, polyethylene glycol, etc.) acting as
surface active agents. They are adsorbed on the powder
particle surface and reduce to a minimum cold welding of
the particles to one another. The amount of the added milling
fluids varies from 3 to 30% of the total powder mass.

Materials of different hardness (from soft to extremely
hard) are milled in steel grinding bowls with a layer of agate
SiO2, sintered corundum Al2O3, silicon nitride Si3N4,
zirconium oxide ZrO2, or stabilized yttrium oxide Y2O3

lining the inner wall. Superhard materials like carbides are
milled in bowls with the inner wall coated with a hard
WCÿ6 wt% alloy with a cobalt binder. In this case, grinding
balls from the same alloy are used. To prevent oxidation, all
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Figure 20.Distribution of microstrains ehkl in nonequivalent directions �hkl � [118, 123]: (a) NbC0:77 nanopowder prepared by 10 h of milling, eav � 0:0081
(or 0.81%), (b) NbC0:96 nanopowder prepared by 15 h of milling, eav � 0:0127 (or 1.27%). The radii of the spheres are proportional to eav, and the vector

length in �hkl � directions to microstrain ehkl.
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powders except higher oxides are ground in a vacuum or inert
argon atmosphere.

The high-energy ball milling model takes into considera-
tion such properties of the substance chosen for grinding as
density, crystalline structure, Burgers vectors, elasticity
moduli, Poisson coefficient, and atomization energy, which
allows adequately describing the dependence of the particle
size not only on given milling parameters but also on the real
composition of nonstoichiometric carbides, oxides, nitrides,
borides, and ceramic materials based on solid solutions. This
is confirmed by the numerous results obtained in experiments
on high-energy ball milling of tungsten, vanadium, niobium
and tantalum carbides, titanium, vanadium, niobium oxides,
and other compounds.

Nanopowders prepared by high-energy ball milling are
heavily deformed substances with a microstructure contain-
ing very apparent microstrains. The study of such micro-
structures in ball-milled nanopowders by X-ray and neutron
diffraction methods requires taking into account that broad-
ening of diffraction reflections is due to both the small particle
size and anisotropic deformation distortions of the crystal
lattice. Another feature of ball-milled nanopowders is the
inhomogeneous microstructure conditioned by the presence
of a small (3±5%) coarse-crystalline fraction, besides themain
nanocrystalline one. Prolongation of the milling duration
permits reducing to zero the amount of the coarse-crystalline
fraction and maintaining the homogeneous microstructure of
nanopowders.

Generally speaking, high-energy ball milling allows
preparing sufficiently pure carbide and oxide nanopowders
with a controllable crystalline structure, microstructure, and
mean particle size (20±30 nm). To date, this technology has
been the main method for producing nonstoichiometric
carbides and oxides in the nanocrystalline state.

Preparing nanopowders with a narrow particle size
distribution, i.e., improving the selectivity of the process,
remains an unresolved problem. The narrow controlled
distribution of nanoparticles by size is a precondition for
their application in catalysis and microelectronics and
making hard nanostructured alloys. Numerous experiments
have demonstrated that the smallest, largest, and intermedi-
ate size of nanoparticles in a powder obtained by high-energy
ball milling can differ widely (by a factor of 7±10 and even 12±
20), depending on the chemical nature of the material in
question.

Another problem awaiting solution arises from the
enhancement of particle agglomeration with an increase in
milling duration. Investigations into the milling of carbides
and oxides indicate that the particle size decreases most
strikingly at the early milling stages when milling time does
not exceed 3±4 h. Its further increase results in a reduction in
nanoparticle size and simultaneous agglomeration. It necessi-
tates the optimization of high-energy milling duration and a
search for surface active agents used as milling fluids and
most effectively preventing nanoparticle agglomeration.
Optimization of the duration of milling with a view to its
shortening and termination upon achieving the desired size of
nanoparticles will contribute, inter alia, to a reduction in
nanopowder contamination by the material of milling balls
and bowls.

This study was supported by the Russian Science
Foundation (grant No. 19-73-20012) through the Insti-
tute of Solid-State Chemistry of the Ural Branch of the
RAS.
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