
Abstract. A review and analysis of studies concerning the nature
of Poisson's ratio l of glassy systems are presented. The value
of l is a more pronounced structure-sensitive property than are
elasticity moduli. The unique relation of l to the Gr�uneisen
parameter is substantiated. In this connection, the interrelation
of harmonic (linear) and anharmonic (nonlinear) characteristics
is discussed. Poisson's ratio is a single-valued function of para-
meters characterizing dynamic properties and critical processes
and is sensitive to the lattice dynamics and the atomic±molecu-
lar structure of glasses. The structural features of isotropic
solids with the negative Poisson's ratio (transverse deforma-
tion coefficient) are discussed.

Keywords: transverse deformation coefficient, interatomic
interaction potential, anharmonicity, elastic constants, auxe-
tics, amorphous organic polymers, inorganic glasses

1. Introduction

Poisson's coefficient m, which is sometimes called the
transverse deformation coefficient, is equal to the ratio of
the relative transverse deformation ez � Dr=r of a body to its
relative longitudinal elongation ex � Dl=l under uniaxial
stretching:

m � ÿDr=r
Dl=l

: �1�

According to Landau and Lifshitz [1], the range of the
allowed values of m for isotropic solids is determined from
the known expression of the elasticity theory (B5 0; G5 0)

m � 1

2

3Bÿ 2G

3B� G
: �2�

According to this relation, when the volume compression
modulus is B � 0, Poisson's ratio is equal to the lower limit
m � ÿ1, and when the shear modulus is G � 0, we obtain
the upper limit m � 0:5. Thus, m can range the interval [1]

ÿ14m4 0:5 :

We see that theoretically a solid with a negative transverse
deformation coefficient m < 0 can exist. This means that
under uniaxial stretching of a rod made of such a material,
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instead of transverse compression (Dr < 0), transverse expan-
sion occurs (Dr > 0), which generally speaking contradicts
common sense. However, recent publications (see review [2])
convincingly demonstrate the existence of isotropic solids
with negative Poisson's ratio [2±7]. In 1987, a polymeric
isotropic foam material with the transverse deformation
coefficient m � ÿ0:7 [3, 4] was synthesized probably for the
first time. Such materials were called auxetic or auxetics [2, 7]
(from Greek auxetos, swelling).

Along with this unusual phenomenon, other `anomalies'
were found, for example, a one-to-one relation of Poisson's
ratio to the Gr�uneisen parameter gD characterizing the
nonlinearity of the interatomic interaction force (anharmo-
nicity) [8, 9] and to the inelastic deformation of solids [10, 11].
Poisson's ratio (1) is defined for `quiet' static elastic deforma-
tions; however, m is a single-valued function of parameters
characterizing dynamic, critical processes.

We note that unlike the elastic moduli, m reflects the
properties of not only a direct deformation along the
external force action but also a transverse deformation in a
direction different from the force action direction. The direct
deformation ex is determined by the direct resistance of a
body along the deforming force, while the transverse
deformation ez depends on the way this body transfers the
external action in other directions. This depends on the
properties of the atomic±molecular structure of the body
and the lattice dynamics. For these and other reasons,
Poisson's ratio proves to be a more distinct structure-
sensitive property than elastic moduli, although it varies in
a small range.

In this review, studies of the nature of Poisson's ratio of
glassy solids are analyzed. Themain focus is on the relation of
m to the dynamic properties of these systems and its
theoretical interpretation.

In Sections 2±7, the relation between the transverse
deformation coefficient m and structure-sensitive and ther-
mal properties of inorganic glasses and amorphous organic
polymers, as well as some crystalline solids, is considered. In
Sections 8±14, which can be conditionally called theoretical,
the nature of Poisson's ratio for glassy solids is discussed
based mainly on Kuz'menko's and Pineda's theories and the
model by Berlin, Rotenburg, and Baserst.

2. Relation between Poisson's ratio
and the lattice dynamics

Static elastic loading of solids changes their external dimen-
sions and produces `invisible' internal dynamic changes, for
example, changing the frequency of atomic vibrations in a
loaded body [12].

Mikitishin [13] found that the lattice dynamics depend on
Poisson's ratio via the dependence of the latter on the
interatomic-potential parameters. The quantity 1±2m, closely
related to the relative volume deformation (see Section 8), is
dependent on thermal vibrations of the lattice and (to some
degree or another) on the Debye temperature yD. For
isotropic face-centered and volume-centered cubic struc-
tures, the dependence of 1±2m on the ratio yD

����
m
p

=Tev (where
Tev is the evaporation temperature and m is the atomic mass)
is linear, experimental points lie on straight lines (see Fig. 2
in [13]):

yD
����
m
p
Tev

� 1ÿ2 m :

Because the product yD
����
m
p

is determined by the root-
mean-square displacement hDr 2i of an atom from the
equilibrium position, it can be considered a peculiar analog
of the atomic displacement Drm and therefore of the
elementary delocalization volume Dve � pd 2Drm of the atom
in a glassy solid [14]:

Dve � RTg

fgB
;

where pd 2 is the effective atomic cross section, Drm is the
maximum displacement of an atom from the local equili-
brium position, R is the gas constant, fg is the proportion of
the fluctuation volume frozen at the glass-forming tempera-
ture Tg, and B is the compression modulus. Therefore,
similarly to the linear dependence mentioned above, a certain
correlation between the delocalization volume Dve of the
atom and the function 1±2m of Poisson's ratio can be
expected:

Dve � 1ÿ2 m :

Indeed, a number of inorganic glasses and amorphous
polymers exhibit a linear correlation between 1±2m and the
elementary volume Dve required for the displacement of an
atom from the equilibrium position (Figs 1, 2) [15]. Thus,
Poisson's ratio is related to the lattice dynamics, the
displacement of a particle from the equilibrium position
(within the amplitude of particle vibrations).
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Figure 1.Dependence of the function 1ÿ 2m of Poisson's ratio on the atom
delocalization volume Dve for phosphate NaPO3±Li2SO4 and NaPO3±

Na2SO4 glasses. The content of Li2SO4 (mol %): (1) 0.2, (2) 10, (3) 20,

(4) 30; Na2SO4 (mol %): (5) 19, (6) 20, (7) 30.
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Figure 2. Dependence of 1ÿ 2m on Dve for amorphous polymers:

(1) polyvinyl chloride; (2) polystyrene; (3) polymethyl acrylate.
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3. Transverse deformation coefficient
and the nonlinearity
of the interatomic interaction force
(Poisson's ratio and the Gr�uneisen parameter)

We consider the relation between the transverse deformation
coefficient m and the Gr�uneisen parameter gD entering the
equation of state of solids and characterizing the anharmoni-
city of lattice vibrations and the nonlinearity of the intera-
tomic interaction force. The parameter gD is determined by
the change in the frequency n of normal vibrational modes of
the lattice, depending on the change in the volume of the
system:

gD � ÿ
V

n
qn
qV
� ÿ q ln n

q lnV
: �3�

Avoiding difficulties caused by a change in the vibrational
frequency of the lattice in passing from one vibrational mode
to another, Gr�uneisen used the equation of state to derive the
expression

gD �
bBV
CV

; �4�

which can be used to calculate gD from experimental values of
the volume thermal expansion coefficient b, the isothermal
volume compressionmodulusB, the molar volumeV, and the
molar heat capacity CV.

Along with Gr�uneisen equation (4), other methods of
calculating gD have been proposed. Based on the elasticity
theory, molecular acoustics, and thermodynamics, Leont'ev
[16] averaged the lattice vibrational frequency and, directly
from (3), derived the relation

gD �
3

2

BA

rv 2q
; �5�

where BA is the adiabatic volume compression modulus, r is
the density, and vq is the average quadratic velocity of
deformation waves, whose square is the invariant of the sum
of squares of the propagation velocities of longitudinal (vl)
and transverse (vs) elastic waves

v 2
q �

v 2
l � 2v 2

s

3
: �6�

The values of gD calculated from Gr�uneisen (4) and Leont'ev
(5) equations are compared for a number of solids in Table 1
[17]. We can see that these relations are in good agreement in
the first approximation. Deviations from this correlation for
some solids are probably mainly explained by a spread in the
values of gD obtained by different researchers. For example,
the Gr�uneisen parameter obtained in three different papers
was 2.1, 2.3, and 2.4 [18].

Using the expression G � rv 2
s for the shear modulus and

formula (6), we transform Leont'ev equation (5) into

gD �
3

2

BA

rv 2s

v 2
s

v 2
q

� 3

2

�
BA

G

�
3

�vl=vs�2 � 2
:

Then, using the known expressions of elasticity theory [1],

B

G
� 2

3

1� m
1ÿ 2m

;

�
vl
vs

�2

� 2ÿ 2m
1ÿ 2m

;

and the approximation BA � B, we obtain the Belomest-
nykh±Tesleva expression [8],

gD �
3

2

1� m
2ÿ 3m

; �7�

derived in [8] from different initial assumptions.
Thus, from this standpoint, Poisson's ratio m and the

Gr�uneisen parameter gD are uniquely related.
Expression (7) is attractive because gD is calculated based

only on Poisson's ratio m. The estimate of gD from (7) for
many metals and ions and molecular crystals is in good
agreement with calculations from Gr�uneisen equation (4)
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Figure 3. Comparison of Gr�uneisen parameters gD calculated from

Gr�uneisen equation (4) and Leont'ev expression (5) for different crystals.

The numbers of points correspond to the numbers of solids in Table 1.

Table 1. Comparison of Gr�uneisen parameter gD values calculated by
Gr�uneisen (4), Leont'ev (5), and Belomestynykh±Teseleva (7) equations
[8, 17, 18].

No. Elements
and com-
pounds

m gD

Gr�uneisen
(4)

Leont'ev
(5)

Belomestnyhkhë
Teseleva (7)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

LiF
NaCl
LiCl
KCl
NaF
NaBr
LiBr
KBr
Fe
KI
Co
Al
Ag
Be
Y

NaNO3

NaClO3

Th
Mg
RbBr
Ta

AgBr
Pd
Au

0.214
0.243
0.245
0.259
0.234
0.270
0.256
0.283
0.292
0.265
0.357
0.340
0.379
0.034
0.245
0.257
0.270
0.254
0.270
0.267
0.337
0.396
0.374
0.420

1.34
1.46
1.52
1.60
1.57
1.56
1.70
1.68
1.68
1.63
2.10
2.11
2.40
0.83
1.25
1.31
1.37
1.40
1.41
1.50
1.73
2.33
2.40
2.80

1.35
1.53
1.47
1.60
1.44
1.65
1.53
1.67
1.68
1.60
1.85
2.16
2.24
0.83
1.40
1.27
1.61
1.61
1.64
1.76
2.05
2.65
2.44
2.90

1.34
1.47
1.48
1.54
1.43
1.60
1.53
1.67
1.72
1.57
2.19
2.05
2.40
0.82
1.48
1.53
1.60
1.52
1.60
1.59
2.03
2.58
2.35
2.88
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(see Table 1 and Fig. 4) [8, 17]. Figure 5 shows the dependence
of the Gr�uneisen parameter gD calculated from expression (5)
on the function of Poisson's ratio �3=2��1� m�=�2ÿ3 m�
(Belomestnykh±Tesleva) for sodium aluminosilicate glasses
with different amounts of oxides (Table 2) [19]. We can see
that Leont'ev (5) and Belomestnykh±Tesleva (7) equations
are in good agreement. The same results were obtained for
other glasses.

4. Relation between harmonic
and anharmonic quantities.
Thermodynamic
and lattice Gr�uneisen parameters

Noting the agreement between expression (7) and Gr�uneisen
equation (4), it must be kept in mind that expression (7)
uniquely relates the linear (harmonic) quantity m and a
nonlinear (anharmonic) quantity gD. Other similar correla-
tions also exist [20±24], for example, the known empirical
Barker rule [22] expressing a unique relation between the
elasticity modulus E and the thermal expansion coefficient

squared: b 2E � const. At the same time, the nature of this
phenomenon remains unclear and attempts have been made
[20, 21, 23] only to explain it qualitatively.

In a series expansion of the interatomic interaction energy
U�r�, the harmonic a and anharmonic b coefficients are
determined by the second and third derivatives of U�r� at
the equilibrium interatomic distance r � r0 (see Section 5).
Using the Mie potential U �ÿArÿm � Brÿn in these deriva-
tives, Kontorova [20] found the relation

b � m� n� 3

2r0
a

between these coefficients. Kontorova explains the phenom-
enon discussed here by the existence of a relation between a
and b of the type presented above and the dependence of
linear and nonlinear properties of solids on these coefficients.

Thus, Kontorova's approach [20, 21] and Pineda's theory
[23] (see Section 10) demonstrate the fundamental possibility
of correlations to exist between apparently totally different
physical properties of solids, including correlations between
harmonic and anharmonic quantities.
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Figure 4. Comparison of Gr�uneisen parameters gD calculated from

Gr�uneisen equation (4) and expression (7) for various crystals. The

numbers of points correspond to the numbers of solids in Table 1.
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Figure 5. Comparison Gr�uneisen parameters gD calculated from expres-

sions (5) and (7) for sodium aluminosilicate glasses. The numbers of points

correspond to the numbers of solids in Table 2.

Table 2. Elastic properties and the Gr�uneisen parameter of sodium aluminosilicate glasses [19].

No.
Synthesis composition, mol% r,

10ÿ3 kg mÿ3 vl, m sÿ1 vs, m sÿ1 B� 10ÿ8, Pa m gD
Na2O Al2O3 SiO2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

15
15
15
15
15
15
25
25
25
25
25
25
25
35
30
20
17.5

0
5
10
15
20
25
0
5
10
15
20
25
30
0
5
15
17.5

85
80
75
70
65
60
75
70
65
60
55
50
45
65
65
65
65

2.339
2.358
2.410
2.465
2.428
2.472
2.439
2.455
2.461
2.480
2.470
2.499
2.519
2.497
2.486
2.450
2.447

5430
5570
5697
5737
5850
6000
5280
5480
5610
5640
5680
5790
6026
5340
5500
5670
5746

3340
3390
3510
3469
3540
3568
3140
3240
3330
3350
3450
3490
3556
3070
3200
3490
3458

342
370
386
416
425
470
359
394
411
418
405
432
490
398
413
390
418

0.196
0.206
0.194
0.212
0.211
0.226
0.226
0.231
0.228
0.227
0.208
0.215
0.233
0.253
0.244
0.195
0.216

1.28
1.31
1.26
1.34
1.34
1.40
1.40
1.41
1.40
1.39
1.32
1.35
1.43
1.52
1.47
1.28
1.35
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The values of gD are usually calculated by expressions like
Gr�uneisen equation (4) containing thermal and mechanical
characteristics of solids. For crystals of the same structural
type with one system of interatomic bonds, relations obtained
by different methods lead to the same values, for example,
gD � 1:5ÿ2:0 for ionic cubic crystals (see Table 1).

In the case of polymer systems, the situation is some-
what different. Atoms along a polymer chain are bound by
strong ±C±C± type covalent bonds, whereas the chains are
bound by weaker intermolecular bonds. The anharmonicity
of these bonds is different and therefore the lattice gL and
thermodynamic gt Gr�uneisen parameters are distinguished in
polymer physics (see, e.g., [24, 25]). The lattice parameter
(gL � 2ÿ4) characterizes the anharmonicity of low-frequency
interchain vibrations related to the intermolecular (van der
Waals) interaction, while the thermodynamic parameter
(gt � 1) determines the anharmonicity averaged over the
intrachain and other vibrational modes. The thermodynamic
Gr�uneisen parameter gt is calculated from Gr�uneisen equa-
tion (4), while the lattice Gr�uneisen parameter gL is calculated
from expressions like (7) relating gD to physical quantities
determined by the intermolecular interaction.

Alkali silicate glasses R2OÿSiO2 (R � Li; Na; K) have
two main bond systems: the ion-covalent ÿSiÿOÿSi bonds
inside a silicon±oxygen network and ion bonds caused by the
Coulomb interaction between alkali-metal ions (R�) located
in lattice voids and nonbridge oxygen ions (SiÿOÿ). The
anharmonicity of ion bond vibrations in SiÿOÿR� com-
plexes is stronger than that for bonds in the silicon±oxygen
(ÿSiÿOÿSiÿ) network. This is typical for germinate, borate,
phosphate, and other inorganic glasses in which, similarly to
polymers, the lattice gL and thermodynamic gt Gr�uneisen
parameters are introduced. The value gL � 1:5ÿ2:0 for alkali
silicate glasses coincides with that for ion cubic crystals, and
gt � 1 coincides with the thermodynamic Gr�uneisen para-
meter for amorphous polymers [24, 25].

5. Microscopic treatment of Gr�uneisen
parameters. Poisson's ratio and the limit elastic
deformation of the interatomic bond

We first consider the diatomic model of a solid [26]. We
assume that the left atom is fixed and the right one is free. If
the latter is displaced from its equilibrium position r � r0, in
the case of small displacements x � rÿ r0, it performs
harmonic oscillations with a parabolic pair interatomic
interaction potential U�x� corresponding to a linear depen-
dence of the interatomic interaction force f �x� on the atomic
displacement x.

However, for considerable atomic displacements x, the
assumption about a linear dependence of the force f �x� is
invalid. An anharmonicity appears and the dependence f �x�
becomes nonlinear. The atom performs anharmonic oscilla-
tions. Up to third-order terms in a Taylor series, the
interatomic interaction energy U�x� is described as

U � a0x
2

2
ÿ b0x

3

3
;

where a0 is the harmonic coefficient (the bond rigidity). The
anharmonicity coefficient b0 takes the asymmetry of theU�r�
and f �r� curves into account,

a0 �
�

d2U

dr 2

�
r�r0

; b0 � ÿ 1

2

�
d3U

dr 3

�
r�r0

:

We consider a linear chain of atoms with the `lattice
period' l (the distance between adjacent atoms). The poten-
tial in which atoms of this chain move can be qualitatively
represented by the sum of potential curves characterizing the
interaction of an atomwith its neighbors on the right and left,
Uÿ and U�. Although each of them has its own minimum (at
r � l0), near which

U � U0 � a0
2
�rÿ l0�2 ÿ b0

6
�rÿ l0�3 � . . . ; �8�

their sum gives the total potentialF � Uÿ �U� symmetric in
the displacement from the equidistant position from both
neighbors [25±27]. The returning force F applied to a given
atom is also the sum of forces acting on it from the left and
right: F � fÿ � f�. Each of these is determined by the same
derivative

f �r� � dU

dr

of the pair potential, which can be estimated by differentiat-
ingU�r�. Using expansion (8), it is easy to obtain relation [27]
for f �r� near a lattice point:

f �r� � a0 �rÿ l0� ÿ b0
2
�rÿ l0�2

� c �lÿ l0� � a �rÿ l � ÿ b

2
�rÿ l �2 ; �9�

where c � a0 ÿ b0 �lÿ l0�=2; b � b0, and

a � a0 ÿ b0 �lÿ l0� : �10�

Generally speaking,Dl � lÿ l0 6� 0 because the lattice can
be in both the compressed and expanded states. The ratio
Dl=l0 is usually so small that the noncoincidence of the
minima of Uÿ and U� does not prevent obtaining the sum
of the potential curves for small displacements in the form of a
parabola inherent in a harmonic potential. It becomes
obvious that relatively weak displacements of atoms in a
solid should represent harmonic oscillations near equilibrium
positions. Debye showed (see, e.g., [26±29]) that the frequency
spectrum of an atomic chain extends from 0 to the maximum
frequency

nm � 1

p

����
a

m

r
; �11�

where m is the atom mass and a is determined by (10).
Omitting a detailed analysis of the lattice dynamics, we

consider a microscopic treatment of the Gr�uneisen para-
meter.

When passing fromone vibrationalmode to another, both
the oscillation frequency and phase change. The relation
between the oscillation frequency and phase is usually
described by the Debye model. In this approximation, the
Gr�uneisen parameter is expressed via the characteristicDebye
temperature yD � hnm [27±29] (h is Planck's constant),

gD � ÿ
q ln yD
q lnV

:

Using relation (11), we obtain

gD � ÿ
q ln yD
q lnV

� ÿ 1

2

q ln a
q lnV

� ÿ V

2a

qa
qV

: �12�
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For isotropic deformations, dV=V � 3�dl=l �. Differentiating
in (12) and taking this equality and relation (10) into account,
we obtain the microscopic interpretation of the Gr�uneisen
parameter [27, 28]

gD � ÿ
l

6a

da

dl
� lb0

6a
:

Because l=a � l0=a0, we obtain

gD �
l0b0
6a0

: �13�

The results obtained for a linear atomic chain remain
valid for a three-dimensional solid [26]. Following [26], we
consider a crystal model consisting of three layers, the
extreme layers being formed by immobile atoms, while
atoms in the middle layer oscillate freely. The three-
dimensional thermal pressure acting from the middle layer
on extreme layers is similar to the thermal pressure of a
usual three-dimensional phonon gas. Assuming that this
pressure is balanced by elastic forces (internal pressure) due
to thermal expansion, we obtain the thermal expansion
coefficient of a three-dimensional solid in the form [26,
p. 171]

b � b0k

2a0l
2
0B

:

Multiplying the right-hand side of this equality by
(3NAl0=3NAl0), we can represent it in the form [30, 31]

b � l0b0
6a0

CV

BV
;

whereCV � 3NAk � 3R is themolar heat capacity,V � NAl
3
0

is the molar volume, and NA is the Avogadro number.
By comparing this relation with Gr�uneisen equation (4),

b � gD
CV

BV
;

we arrive at the approximate derivation of the microscopic
interpretation of the Gr�uneisen parameter [30, 31] presented
above (see expression (13): gD � l0b0=�6a0��. This expression
can be derived rigorously quantum mechanically, including
the low-temperature region (T < yD) [27, 28].

We consider the anharmonicity and estimate the limit
elastic deformation of the interatomic bond Dlm � lm ÿ l0. At
l � lm, the interaction force of atoms f �l � passes through a
maximum at the inflection point of the U�l � curve,

q f
qr

����
r�lm
� 0 :

Using expansion (9) for the dependence f �l �, it is easy to see
that themaximum relative elongation of the interatomic bond
has the form [27]

Dlm
l0
� a0

l0b0
� 1

6gD
; �14�

where the Gr�uneisen parameter is interpreted microscopi-
cally, as in (13).

Using relation (7), we see that the relative bond deforma-
tion (14), similarly to gD, is a single-valued function of

Poisson's ratio:

Dlm
l0
� 2ÿ 3m

9�1� m� : �15�

The relative limit deformation of the interatomic bond in
glassy systems calculated by expression (15) changes in a
small range (Tables 3 and 4) [31±33] because m oscillates in a
narrow interval,

Dlm
l0
� 0:07ÿ0:12 ;

which is in good agreement with other methods of estimating
this quantity [24, 29].

Thus, the Poisson ratio of amorphous polymers (Table 3)
and glasses (Table 4) is uniquely related to the limit elastic
deformation of interatomic and intermolecular bonds. The
quantity Dlm=l0 is the critical deformation at which the
interatomic interaction reaches the maximum in passing
from elastic to inelastic deformation.

6. Loss of stability of a solid under shearing
and the transverse deformation coefficient

The relation between Poisson's coefficient and the Gr�uneisen
parameter gD for glasses proposed earlier differs somewhat
from (7) [25] and has the form

gD � A
1� m
1ÿ 2m

;

where the factor A is determined by the fraction fg of the
fluctuation free volume frozen at the glass-forming tempera-
ture and is close to unity:

A � 2

9
ln

1

fg
� const � 1 :

Therefore, assuming that A is close to unity in the first
approximation, we can estimate gD from data on Poisson's

Table 3. Poisson's ratio, the Gr�uneisen parameter, and the limit elastic
deformation of the interatomic (molecular) bond calculated for amor-
phous polymers [52].

No. Polymer Abbreviation m gD
(7)

Dlm=l0

1
2
3
4
5
6
7

8
9

10
11
12
13
14
15
16
17

Polystyrene
Polyvinylchloride
Polyvinyl êuoride
Polymethyl methacrylate
Epoxy (solidiéer)
Polycarbonate
Polyphenyl
isobutylsilsequioxane
Polyoxymethylene
Polypropylene
Polytetraêuorethylene
Polytriêuorochloroethylene
Nylon-6
Nylon-7
Nylon-11
Nylon-12
Poly-4-methylpentene-1
Polyvinylidene êuoride

PS
PVCh
PVF

PMMA
ED-5
PC

PPhSSO

POM
PP

PTFE
PTECE
N-6
N-7
N-11
N-12

P4MP1
PVDF

0.34
0.35
0.35
0.33
0.35
0.37
0.31

0.31
0.34
0.32
0.40
0.41
0.38
0.40
0.40
0.39
0.31

2.1
2.1
2.1
2.0
2.1
2.3
1.8

1.8
2.1
1.9
2.6
2.7
2.4
2.6
2.6
2.5
1.8

0.08
0.08
0.08
0.08
0.08
0.07
0.09

0.09
0.08
0.09
0.06
0.06
0.07
0.06
0.06
0.07
0.09
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ratio [25, 29]:

gD �
1� m
1ÿ 2m

: �16�

Substituting (16) in equality (14), we obtain the limit
deformation of the interatomic bond in a form similar to (15):

Dlm
l0
� 1ÿ 2m

6�1� m� : �17�

The estimate of Dlm=l0 in (17) practically coincides with the
results of calculations with (15).

Equality (17) is of interest because it was found in
experiments [34, 35] that the right-hand side of (17) (the
function of Poisson's ratio) depends only on the product of
parameters m and n of the Mie potential

U � ÿArÿm � Brÿn :

The relation between m and mn for different substances is
described by the following empirical expressions. For metals

with face-centered and volume-centered structures,

1

mn
� 1ÿ 2m

6�1� m� : �18�

For alkali-halide salts with an NaCl structure, beryllium
fluoride, SiO2 and GeO2 oxides, and multicomponent and
binary silicate and chalcogenide glasses,

1

2mn
� 1ÿ 2m

6�1� m� : �18a�

For diamond, substances with a diamond-like structure, and
metals with a hexagonal closely packed structure,

2

mn
� 1ÿ 2m

6�1� m� : �18b�

We can see that the right-hand sides of the last three
relations coincide with the right-hand side of (17). Therefore,
the reciprocal value 1=mn of the product of the Mie potential
parameters for these substances is proportional to the limit
deformation of the interatomic bond (according to expres-
sions (18), (18a), and (18b):

1

mn
� Dlm

l0
;

1

mn
� 2

Dlm
l0

;

1

mn
� 1

2

Dlm
l0

:

Indeed, Lazarev and coauthors [36, p. 100] showed theoreti-
cally that the quantity (1=mn) has the meaning of the critical
deformation ec at which an isotropic polycrystalline solid
loses its stability under shearing,

ec � 1

mn
:

This equality was derived in the approximation of an
elastically isotropic polycrystalline body with a modified
Mie potential, which does not use the concept of the pair
and central interatomic interaction [36, p. 97].

``The loss of stability of a solid under shearing'' means the
critical deformation of the lattice at which the elastic
deformation is transformed into inelastic deformation [36].

7. Poisson's ratio and the frozen reversible
deformation of glasses

Mechanical stress exceeding a certain limit sel at a tempera-
ture of 20 �C produces inelastic deformation in silicate glasses
under certain conditions; the deformation can remain
indefinitely after the lift of the external stress. Notably,
under heating (at a temperature slightly below the softening
point Tg), this deformation relaxes almost to its disappear-
ance. Therefore, it is a frozen reversible deformation.
However, following many authors, we use the term `plastic
deformation' (see the references in [29, 33]).

Similar frozen reversible deformations are observed in
amorphous organic polymers. A polymer glass, for example,
PMMA (polymethyl methacrylate) `plastically' deformed at a
temperature of 20 �C and heated to temperatures slightly

Table 4. Characteristics of inorganic glasses [3, 32].

Glass m gD Dlm=l0

Potassium borate glasses

K2O ëB2O3

K2O, mol%
1.1
2.5
3.9
8.5
13.0
18.0
22.8
28.2
33.5

0.292
0.293
0.293
0.293
0.295
0.301
0.295
0.288
0.303

1.72
1.73
1.73
1.73
1.74
1.78
1.74
1.70
1.79

0.10
0.10
0.10
0.10
0.10
0.09
0.10
0.10
0.09

Sulfate phosphate glasses

NaPO3

NaPO3 ëNa2SO4

Na2SO4, mol%
10
20
30

NaPO3 ëK2SO4

K2SO4, mol%
10
20
30

0:4NaPO3 � 0:6Na2SO4

0.294

0.299
0.292
0.288

0.316
0.316
0.313
0.320

1.74

1.77
1.72
1.70

1.88
1.88
1.86
1.90

0.10

0.09
0.10
0.10

0.09
0.09
0.09
0.09

Alkali silicate glasses

Li2O ë SiO2

Li2O, mol%
10
25

33.3
Na2O ë SiO2

Na2O, mol%
13
26
33.3

K2O ë SiO2

K2O, mol%
13
25
32

0.187
0.223
0.232

0.205
0.245
0.255

0.230
0.270
0.250

1.24
1.38
1.42

1.31
1.48
1.52

1.41
1.60
1.50

0.13
0.12
0.12

0.13
0.11
0.11

0.12
0.10
0.11
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below Tg returns to the initial nondeformed state [37, 38], as
do silicate glasses. It is interesting that massive metal glasses,
in particular, Pd40Cu40P20 glass, reveal a frozen deformation
and its thermally stimulated relaxation [39], these processes
being in fact the same as in inorganic glasses and amorphous
polymers.

Here, we do not discuss attempts to explain the nature of
the plasticity effect in glasses [29, 33, 37±42] and show that the
frozen reversible deformation of glassy materials is in fact
uniquely related to Poisson's ratio.

The `plasticity' of fragile inorganic glasses is suitable for
studying by the microhardness method. The indentation of a
diamond Vickers pyramidal indenter and other sharpened
indenters into a silicate glass produces a `plastic' microprint
(hole). The Vickers microhardness HV of silicate, germanate,
and other inorganic glasses coincides with the limit stress sel
above which the `plastic' deformation is observed: HV � sel
[33, 43]. Therefore, the frozen deformation eel for these glasses
can be represented in the first approximation by the ratio of

the microhardness to the elasticity modulus E:

e � sel
E
� HV

E
: �19�

In turn, the ratio HV=E is a function of Poisson's ratio only
[29, pp. 52, 227] (Table 5),

HV

E
� 1ÿ 2m

6�1� m� : �20�

Taking equality (20) and relation (19) into account, we see
that the frozen (`plastic') deformation of glasses is a single-
valued function of Poisson's ratio m,

eel � 1ÿ 2m
6�1� m� : �21�

According to (21), the frozen deformation eel of a number of
glasses linearly depends on the function �1ÿ 2m�=�1� m� of
Poisson's ratio, as is confirmed in experiments (Figs 6 and 7).

Experimental data on Poisson's ratio were analyzed by
Koster and Franz [44] (mainly for metals) and other
researchers [2, 4, 13, 45, 46]. At the same time, we must
admit that the physical meaning of the transverse deforma-
tion coefficient of noncrystalline solids is not completely clear
so far. Theoretical studies of Poisson's ratio are discussed in
Sections 8±10 [4, 23, 45, 47].

8. Transverse deformation coefficient
as a characteristic of a change
in the deformed-body volume

The transverse deformation coefficient m characterizes, first
of all, a change in the deformed-body volume [45, 46].

The change in the volume V � V�r; l � of a rectangular
parallelepiped with length l and a square cross section with
side r can be written in the form [46]

dV � qV
qr

dr� qV
ql

dl : �22�

1

5

6
3

7

8

4

2

eel

�1ÿ 2m�=�1� m�

0.09

0.07

0.05
0.35 0.43 0.51

Figure 6. Dependence of the frozen reversible deformation eel of sodium
silicate (squares) and sodium germanate (circles) glasses on

�1ÿ 2m�=�1� m�. (1) SiO2; (2±4) Na2O±SiO2 glasses containing Na2O in

amounts (mol %): (2) 16, (3) 20, (4) 33.5; (5) GeO2; (6±8) Na2O ±GeO2

glasses containing Na2O in amounts (mol %): (6) 5.7, (7) 20, and (8) 30.

Table 5. Elastic constants m, E and microhardnessHV of inorganic glasses.

Glass m E, kg s mmÿ2 HV, kg s mmÿ2
HV

E

1ÿ 2m
6�1� m� HV, kg s mmÿ2

Experiment Calculation by expression (20)

SiO2 0.17 7450 692 0.093 0.094 700

Na2O ë SiO2

Na2O, mol%
16
20
33.3

0.218
0.235
0.255

6144
5756
5993

442
405
364

0.072
0.071
0.061

0.077
0.071
0.065

473
409
376

GeO2 0.197 4333 360 0.083 0.082 373

Na2O ëGeO2

Na2O, mol%
5
20
30

0.226
0.250
0.265

5042
6722
5529

370
450
350

0.073
0.067
0.063

0.074
0.067
0.065

383
456
349

K8 �

BK10 �

TF3 �

TF1 �

0.225
0.250
0.219
0.225

7920
7516
5469
5355

578
553
424
392

0.073
0.075
0.075
0.077

0.074
0.067
0.077
0.074

586
505
420
395

� Optical multicomponent glass.
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Taking into account that V � r 2l, we find derivatives
qV=qr � 2rl and qV=ql � r 2 to express (22) in the form

dV � 2rl dr� r 2 dl :

Transforming this equality using Poisson's ratio (1) in the
differential form

m � ÿ l

r

dr

dl
;

we obtain the dependence of the body volume change on m:

dV � ÿm2r 2 dl� r 2 dl :

Multiplying the right-hand side of this relation by l=l and
taking into account that r 2l � V and dl=l � ex, we finally
obtain the relative change in the volume dV=V for the
uniaxial stretching of a parallelepiped in the form [46]

dV

V
� ex�1ÿ 2m� : �23�

Thus, the function 1ÿ2m of the transverse deformation
coefficient and therefore Poisson's ratio m itself are mainly
related to the change in the body volume caused by its
uniaxial deformation.

9. Kuz'menko's theory

According to Kuz'menko's approach [45], the Poisson ratio
of solids characterizes their ability to resist volume change.
The larger m, the smaller the volume change of a solid under
deformation. The upper bound m � 0:5 follows from the
condition that the volume change caused by the deformation
is completely compensated by the counteraction of the
substance (DV � 0). This condition concerns liquids,
whereas in solids a complete compensation of the volume
change does not occur, and therefore m < 0:5.

Indeed, it follows from equality (23) that the greater
Poisson's ratio for a given solid, the smaller is its relative
volume deformation DV=V. For m � 0:5, the deformation is
DV=V � 0. Similar properties are also observed for relative
linear deformations [see (13), (17), (18), and (21)]. For
example, as m increases, the critical deformation 1=�mn� of
materials at which they lose stability under shearing

decreases (18). The greater the value of m for a given glass,
the smaller is the relative stretching Dlm=l0 at which the
interatomic interaction force reaches its maximum and the
smaller the ratio Dlm=l0 at which the transition from elastic to
inelastic deformation occurs (13).

According to Kuz'menko's theory [45], Poisson's ratio
characterizes, along with the properties mentioned above, the
proportion of the shear energy Ws in the total deformation
energyW:

Ws

W
� 1ÿ 3m 2 ÿ 3m 3

1� m
: �24�

The greater m is, the smaller the relative shear deformation
energy, the smaller the resistance to the shear produced by the
given material, and the closer this material is to liquid in this
respect. This means that Poisson's ratio should be related, for
example, to the characteristic of the inelasticity of a solid such
as the fluidity limit.

Indeed, materials with low fluidity limits, i.e., with a high
softness and plasticity (gold, silver, and copper) have large
values of m close to 0.5, while brittle solids with a high fluidity
limit, like silica, have small Poisson's ratios m.

10. Pineda's theory

Pineda [23] studied the influence of structural changes on the
elastic constants of metal glasses theoretically. Pineda's
theory can qualitatively explain (as in [20, 21]) the relation
between Poisson's ratio and Gr�uneisen parameter (7). We
briefly consider this question.

Pineda used three main assumptions: (1) The interatomic
interaction potential consists of harmonic and anharmonic
parts:

U�r� � a�rÿ r0�2 ÿ b�rÿ r0�3 ;

where a is the harmonic coefficient, b is the anharmonic
coefficient, and r0 is the interatomic distance corresponding
to the potential minimum; (2) the distribution of distances
between neighboring atoms is Gaussian; and (3) elastic
properties are determined by the environment of atoms, i.e.,
by the first coordination sphere.

The final (quite cumbersome) expressions for the instan-
taneous volume compression modulus B and shear modulus
G contain dimensionless parameters

s � d
r0
; s � s1

r0
; g1 �

br0
a
;

where d � r1 ÿ r0, and r1 and s1 are the respective mean
radius and width of the first coordination sphere. The
quantities s and s characterize deviations of the interatomic
distance from its equilibrium value r0 and themean dispersion
near r0. The parameter g1 characterizing the potential
anharmonicity is proportional to the Gr�uneisen parameter
gD � br0=�6a� (see (11)).

Pineda used his theory to explain experiments on the
structural relaxation and all-side compression of metal
glasses. Poisson's ratio decreases due to structural relaxation
(the parameter s decreases more strongly) but increases under
compression (here, the decrease in s dominates). As a whole,
the theory qualitatively correctly describes the change in
elastic characteristics in these experiments.

5

2

3

4

6

1

eel

�1ÿ 2m�=�1� m�

0.135

0.055

0.095

0.015
0.17 0.25 0.410.33

Figure 7. Dependence of eel on the function �1ÿ 2m�=�1� m� of Poisson's
ratio for chalcogenide glasses: (1) As10S90, (2) As20S80, (3) As28S72,

(4) Ge13As24S63, (5) Ge26Sb8S66, (6) Ge32As2S66.
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We use Pineda's theory to verify the dependence of the
ratio of elastic moduli B=G and therefore Poisson's ratio m
(see expression (2)) on the anharmonicity parameter g1. The
theory predicts this dependence, which is in fact single-valued.
Indeed, the elastic moduli B and G are proportional to the
harmonic coefficient a, a parameter of the harmonic
potential, and their ratio B=G (and therefore Poisson's ratio
m) is in fact independent of a and is mainly determined by the
anharmonicity parameter g1. This gives the dependence of
Poisson's ratio on the Gr�uneisen parameter gD characterizing
anharmonicity.

Thus, Pineda's theory allows us to calculate theGr�uneisen
parameter gD from data on the coefficient transverse
deformation m (see (7)).

11. Model of randomly packed spheres

Among the studies devoted to the nature of Poisson's ratio, of
special interest are papers [4, 47] considering a model of
randomly packed spheres interacting with each other in the
contact region via two forces: normal to the contact plane
(central forces) and tangential (friction forces) acting along
the tangent to the given plane. We call this model the BRB
(Berlin±Rotenburg±Baserst) model. It is assumed that the
normal, fn, and tangential, ft, forces are proportional to the
corresponding displacements xn and xt of an atom from the
equilibrium position

fn � anxn ; ft � atxt ;

where an and at are the normal and tangential hardnesses. It
follows from the BRB model that Poisson's coefficient is
determined by the ratio of these shear and bend hardnesses,
l � at=an [4]:

m � 1ÿ l
4� l

: �25�

For l � 0, we have m � 0:25, which corresponds to an
ensemble of particles with central forces (an 4 at). As l
increases, the value of m decreases and, for l � 1, we have
m � 0, and in the limit l!1 �at 4 an�, m � ÿ1. We see that
the model of randomly packed spheres predicts the possibility
of the existence of bodies with negative Poisson's ratio, m < 0,
and gives the lower bound m � ÿ1 [1].

According to the model, auxetic materials (with m < 0)
should have a high bend hardness of bonds and a low axial
compression±stretching hardness: at > an �l > 1�. In fact, all
the known interaction potentials of particles are either central
or are considerably more rigid in the normal than in the
tangential direction (l < 1). Because of this, materials with a
negative Poisson's ratio are very rare in nature.

It is important that BRB expression (25) contains the
microscopic parameter l, which can give certain information
on the nature of the transverse deformation coefficient m.
Because the shear hardness at is related to the deformation
energy dissipation (with the friction force), the dependence
of l � at=an on nonlinear effects can be expected, in
particular, on the anharmonicity described by the Gr�uneisen
parameter gD. Indeed, expressions (7) and (25) give a single-
valued relation of l with the Gr�uneisen parameter:

l � 1:5ÿ gD
gD

: �26�

Therefore, BRB equation (25) implicitly contains the depen-
dence of Poisson's ratio on anharmonicity.

The parameter l � at=an, equal to the relative tangential
(shear) interatomic bond hardness, is certainly related to the
relative shear energy Ws=W in expression (24). According to
(24), the greater Poisson's ratio m is, the weaker the resistance
of a given material to the shear and the smaller the relative
tangential hardness l (see expression (25)). This also means
that l is related to the inelastic properties of a solid.

We consider the relation of gD, m, and l to the structural
properties of amorphous polymers and glasses at the atomic±
molecular level.

Poisson's ratio m in amorphous organic polymers strongly
depends on the side branchings of the main chain of a
macromolecule (`side appendages' of the main chain). The
minimal values of m and gD belong to polyethylene, in which
the light hydrogen atom plays the role of a side `appendage'.
The substitution of hydrogen atoms by larger and heavier
fluorine atoms in passing from polyethylene to polytetra-
fluoroethylene results in an increase in m from 0.25 to 0.33
and, respectively, in an increase in gD from 3 to 4. Then the
substitution of fluorine by a chlorine atom in the repeating
connecting polytetrafluoroethylene link under transition to
polytrifluorochloroethylene leads to an even greater increase
in m from 0.33 to 0.37 and gD from 4 to 5 [48]. Here, gD is the
lattice Gr�uneisen parameter (see above) [24, 25].

The substitution of light atoms by larger and heavier
atoms on the side and end sites of chains results in an increase
in the nonlinearity of the interatomic interaction force and the
anharmonicity gD of lattice vibrations, which reduces the
relative shear bond hardness l. In turn, the decrease in l leads
to an increase in Poisson's ratio (see (25) and (26)).

A change in Poisson's ratio in inorganic glasses is caused
by the local deformation of the network of valence bonds
produced by the displacement of a bridge atom (like the
oxygen atom in the ±Si±O±Si± bridge). The bridge atom
displacement is affected to a certain degree by alkali and
alkali-earth metal ions (`side appendages').

As the content of sodium oxide Na2O (sodium ions) in
sodium-silicate glasses Na2O±SiO2 is increased from 0 to
35 mol %, the Gr�uneisen parameter gD increases from 1.2 for
a silica SiO2 glass to 1.5 for Na2O±SiO2 glasses containing
35 mol % of Na2O (Table 6). This, according to (26), reduces
the relative shear hardness l from 0.25 to 0. In turn, according
to (25), the decrease in l leads to an increase in Poisson's ratio
m from 0.17 for a silica SiO2 glass to 0.25 for sodium-silicate
Na2O±SiO2 glasses (see Table 6). Thus, the increase in m in
this case is explained by the decrease in the relative shear bond
hardness l.

The relative tangential hardness l obviously depends on
the density of transverse bonds, defined as the number nn of
valence bonds per cation in some polymers and glasses
(Fig. 8) [49]. For linear structures (polybutylene, selenium,
polyvinylchloride) with coupling 2 (two anions coupled to a
cation along the chain (Fig. 8a)), we have nn � 0 and m � 0:4;

Table 6. Characteristics of sodium silicate glasses [32].

Na2O, mol% SiO2, mol% gD m

0
15
25
35

100
85
75
65

1.20
1.28
1.40
1.52

0.170
0.196
0.226
0.253
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for linearly branching structures with the coupling 3 (B2O3,
P2O5, As2O3), nn � 1 (Fig. 8b) and m � 0:3; for structural
networks with coupling 4 (SiO2, GeO2), nn � 2 (Fig. 8c) and
m � 0:15 (i.e., approximately 0.3:2 = 0.15). It is clear that as
the density of transverse valence bonds increases, the
nonlinearity of the interatomic interaction force and anhar-
monicity gD decrease and, according to dependence (26), the
relative shear bond hardness l increases, which, according to
BRB expression (25), reduces the transverse deformation
coefficient m. The density of transverse bridge bonds also
gives a key to explaining strongly different melting points of
oxides with approximately equal bond strengths. Thus, the
melting points of SiO2 and GeO2, 1610 and 1115 �C,
respectively, are much higher than those of P2O5, B2O3, and
As2O3 (580, 450, and 313 �C, respectively) [49]. The same can
be said about the softening point of these systems, because the
melting and softening points Tmelt and Tg are linearly related
as Tg � �2=3�Tmelt.

Thus, Poisson's ratio naturally depends of the properties
of the atomic±molecular structure of glassy systems via l,
closely related to the anharmonicity degree gD.

12. Poisson's ratio
and light scattering from glasses

The nature of m was studied, in particular, in [50], where
experimental temperature dependences of the light scattering
intensity Rc in the glass-forming range were analyzed taking
the contribution of the elastic energy to the thermodynamic
potential into account. This contribution appears in the low-
temperature region: as the melt viscosity increases, Poisson's
ratio begins to deviate from the value m � 0:5 (Fig. 9).

Poisson's coefficient mwas calculated from expression [50]
as

m � 2Ba 2
c ÿ 3jel

4Ba 2
c ÿ 3jel

; �27�

where ac � �1=V��qV=qc� is the concentration expansion
coefficient, V is the volume, c is the molar concentration, jel

is the additional term in the expression for the light scattering
intensity Rc taking the elastic energy contribution into
account, and B is the elastic volume compression modulus.

The term jel in the expression forRc takes the appearance
of shear elastic deformations into account in the calculation
of theminimal fluctuation formation work in solid glasses. As
temperature increases, Poisson's ratio increases to m � 0:5,
where jel vanishes, jel � 0, which corresponds to the glass±
liquid transition.

Figure 9 shows the temperature dependence of Poisson's
ratio m�T � for a sodium borate Na2O±B2O3 glass containing
3 mol % of Na2O. Here, the dependence m�T � is calculated
from (27) based on light scattering data. We can see that
noticeable deviations from m � 0:5 appear at temperatures
below 560 �C (higher than the glass-forming temperature
Tg � 520 �C).

A comparison of the temperature dependences of the
transverse deformation coefficient m�T � obtained for the
same glasses by two independent methods (diffraction and
acoustic) will undoubtedly be of interest in the future.

13. Elastic moduli
and the transverse deformation coefficient

Of interest is the product of the density r and the square of the
root-mean-square velocity of deformation waves v 2q [17]

K � rv 2
q ;

where for cubic crystals v 2q is the invariant of the sum of
squares of propagation velocities of longitudinal (vl) and
transverse (vs) acoustic waves, Eqn (6) (see Section 3).

This section is devoted to the study of the nature of the
quantity K and to finding its relation to elastic moduli and
Poisson's ratio for glasses, which gives information about the
nature of m.

We consider expressions for the volume compression
modulus B of cubic crystals

B � C11 � 2C12

3

a

b

c

1 2

Figure 8. Diagrams of (a) linear, (b) linearly branched, and (c) network

structures of amorphous materials [49]. The arrows show stretching

stresses. (1) anions, (2) cations; Fig. 8a: the density of transverse bonds

nn � 0, m � 0:4; Fig. 8b: nn � 1, m � 0:3; Fig. 8c: nn � 2, m � 0:15.

0.3
300 400 500

0.4

0.5

m

T, �C

Figure 9. Temperature dependence of Poisson's ratio m�T � for a sodium

borate glass melt with the 3Na2O�97B2O composition (mol %) [50].
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and the root-mean-square sound velocity written in the
form [16]

rv 2
q �

C11 � 2C44

3
;

where C11, C12, and C44 are second-order elastic constants. It
follows from the last two expressions that if the Cauchy
conditionC12 � C44 is satisfied and central forces act between
uniformly deformed regions of a cubic lattice, the quantity
K � rv 2

q coincides with the volume compression modulus
K � B. In all other cases, the product rv 2q differs from B.

We show that being the ratios of elastic moduli of
isotropic bodies, in particular, the ratio of the shear modulus
G to the volume compression modulus B [1],

G

B
� 3

2

1ÿ 2m
1� m

; �28�

the quantities G=K and B=K are single-valued functions of
Poisson's ratio m.

By dividing the shear modulus G � rv 2
s by K � rv 2q , we

obtain the relation

G

K
� v

2
s

v 2
q

: �29�

Using expression (6) for v 2q , we express the right-hand side
here in terms of the ratio of squares of the longitudinal and
transverse sound velocities

v 2
s

v 2
q

� 3

�
v 2
l

v 2
s

� 2

�ÿ1
; �30�

where for isotropic bodies v 2
l =v

2
s is a function of Poisson's

ratio m [1],

v 2
l

v 2
s

� 2
1ÿ m
1ÿ 2m

: �31�

Substituting (31) in (30) and then (30) in (29), we see that the
ratio G=K is a function of only Poisson's ratio:

G

K
� 3

2

1ÿ 2m
2ÿ 3m

:

Comparing this expression with equality (28), we see that the
ratio B=K is also a single-valued function of m:

B

K
� 1� m

2ÿ 3m
: �32�

This result was earlier obtained by a different (more complex)
method [17].

Thus, first, like the shearmodulus, the quantityK � rv 2q is
the product of the density and the square of the sound velocity
and, second, when the Cauchy condition is satisfied, it
coincides with the volume compression modulus. Third, as
in the case of elastic moduli, the ratios G=K and B=K are
single-valued functions of Poisson's ratio.

In this connection, the quantity K � rv 2q , having the
characteristic features of elastic moduli, was called the
averaged elastic modulus in [17]. This name is not quite
appropriate, however, because the known elasticity moduli
E, G, and B are also averaged. Therefore, it is reasonable to

call K the effective elasticity modulus (or the `characteristic
elastic modulus').

The dependence of B=K on Poisson's ratio in (32) was
obtained using relations for isotropic crystals with cubic
lattices. Nevertheless, dependence (32) is justified for crystal-
line solids with other lattices and some inorganic glasses [17].
Figure 10 demonstrates the application of expression (32) to
multicomponent industrial optical glasses. The necessary
experimental data are taken from handbook [51].

We can see that the ratio B=K depends linearly on
�1� m�=�2ÿ 3m� and, according to (32), the straight line
passes through the origin with the slope equal to unity,
confirming the validity of (32).

Figure 11 presents a similar dependence for organic
glasses. The scatter of experimental points in Fig. 11 is
caused by the dependence of the mechanical properties of
amorphous polymers on the thermal prehistory of samples
and technological conditions of polymerization. Neverthe-
less, Fig. 11 shows that except for two to three polymers,
dependence (32) agrees well with experimental data.

The characteristic feature of the effective elastic modulus
K is its relation to the Gr�uneisen parameter gD describing the
anharmonicity of lattice vibrations and nonlinearity of the
interatomic interaction force. A close relation between K and
gD follows, for example, from a comparison of (32) and (7):
the effective elastic modulus is determined by the ratio of the
volume compression modulus to the Gr�uneisen parameter

K � 3

2

B

gD
: �33�

When the Cauchy condition B � K is satisfied, the Gr�uneisen
parameter in (33) is gD � 1:5. According to (7), this value of
gD corresponds to Poisson's ratio m � 0:25. The values
gD � 1:5 and m � 0:25 are typical for an ensemble of particles
with central interaction forces.

The anharmonicity of lattice vibrations andnonlinearity of
the interatomic interaction force are manifested, for example,
in the frozen `plastic' deformation of glassy solids [25] (see
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Figure 10. Dependence of the ratio B=K of the volume compression

modulus to the effective elastic modulus on the function

�1� m�=�2ÿ 3m� of Poisson's ratio for multicomponent optical glasses:

(1) LK7, (2) KF6, (3) F6, (4) KF7, (5) K14, (6) LF5, (7) K8, (8) KF4,

(9) F13, (10) K19, (11) F4, (12) TF1, (13) BK6, (14) BF21, (15) BF8,

(16) BK10, (17) TF7, (18) FK14, (19) TK13, (20) TK23, (21) BF11,

(22) TK17, (23) OF2, (24) STK7, (25) STK9, (26) LK4, (27) TBF4 [51].
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Section 7). The fluidity limit sel Ð the threshold stress above
which glass `plasticity' is observedÐ is proportional to the
ratio of the elastic modulus E to the Gr�uneisen parameter
E=gD, similarly to the ratio B=gD in (33) [25]:

sel � 1

6

�
E

gD

�
: �34�

Under plastic deformation of amorphous polymers, the
anharmonicity increases (gD increases) and intermolecular
potential barriers decrease compared to those in the non-
deformed state characterized by the intermolecular interac-
tion determined by the elastic modulus E.

It follows from relations (33) and (34) that the fluidity
limit for glassy solids of the same class with m � const is
proportional to the effective elastic modulus

sel � 1ÿ 2m
3

K :

We see that the function of Poisson's ratio 1ÿ 2m charac-
terizes the `plastic' deformation sel=K.

The Gr�uneisen parameter can be calculated by expres-
sions (7), (33), and (34) using only mechanical test data,
whereas the calculation of gD from the known Gr�uneisen
equation is performed mainly from thermophysical charac-
teristics. These expressions are in good agreement with the
Gr�uneisen equation [8, 17].

Thus, the concept of the effective elastic modulus can be
useful in studying the mechanical properties of glassy solids,
taking their anharmonicity into account.

14. Relation between Poisson's ratio
and the viscosity of glass-forming melts
in the liquid±glass transition region

At present, the factors controlling the temperature depen-
dences of viscosity and the structural relaxation time in the
vitrification region remain not clear enough. In this connec-
tion, it is interesting to note a linear relation between the ratio
B=G of the volume and shear elastic moduli and the so-called
fragilitymÐa fundamental characteristic of the temperature

dependence of the viscosity Z�T � near the glass transition
point [53]:

m � d ln Z�T �
d�Tg=T �

����
T�Tg

:

This linear dependence is found for many glassy systems,
including glasses with covalent, hydrogen, van derWaals, and
ion bonds [54]:

m � 29

�
B

G
ÿ 0:41

�
: �35�

This means that the liquid fragility (the temperature depen-
dence of the viscosity at temperatures close to Tg) is
determined only by Poisson's ratio m because m is a single-
valued function of B=G [1].

It was also found that [54]

Tg

DF1
� 0:037

�
B

G
ÿ 0:41

�
; �36�

where DF1 is the high-temperature limit of the activation
energy of the viscous flow of glass melts corresponding to the
Arrhenius (exponential) dependence Z�T � at high tempera-
tures. Relations (35) and (36) give a simple rule according to
which the better a glass resists shear stresses rather than all-
side compression, the better the usual Arrhenius dependence
is satisfied during structural relaxation [54].

There is also another correlation involving m. We can
see from Fig. 12 that the function of Poisson's ratio
�1� m�=�2ÿ 3m� depends linearly on the fraction of the
fluctuation volume frozen at the glass transition point
fg � �DVe=V�T�Tg

[55]. The fluctuation volume DVe of
amorphous materials is caused by the delocalization of
atoms: by their limit displacement from equilibrium positions
[14] (DVe � NeDve, where Ne is the number of delocalized
atoms and Dve is the elementary fluctuation volume required
for atom delocalization).

15. Conclusions

The data presented above show that Poisson's coefficient,
despite its variation in a small range, is one of the most
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Figure 11. Dependence of the ratio B=K of the volume compression

modulus to the effective elastic modulus on the function

�1� m�=�2ÿ 3m� of Poisson's ratio for amorphous organic polymers at

T � 240 K: 1Ðpolystyrene; 2Ðpolyvinyl chloride; 3Ðpolyvinyl fluor-

ide; 4Ðpolymethyl methacrylate; 5Ðpolycarbonate; 6Ðpolyphenyl

isobutylsilsequioxane; 7ÐED-5 epoxy; 8Ðpolyoxymethylene; 9Ð

High-pressure polyethylene; 10Ðpolypropylene; 11Ðpolytetrafluor-

ethylene; 12Ðpolytrifluorochloroethylene; 13Ðnylon-6; 14Ðnylon-7;

15Ðnylon-11; 16Ðnylon-12; 17Ðpoly-4-methylpentene-1; 18Ðpoly-

vinylidene fluoride [52].
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important structure-sensitive properties of glassy solids. The
quantity m proves to be a single-valued function of the
Gr�uneisen parameter, the limit deformation of the inter-
atomic bond, the frozen reversible deformation, the propor-
tion of the shear energy in the total deformation energy, and
the product mn of the Mie potential parameters. In addition,
the transverse deformation coefficient m is related to the so-
called fractal dimensionality df of structural perturbations of
a three-dimensional lattice [36, 56],

df � 2�1� m� ;

and also to the dimensionality Df of energy localization
regions produced in a deformed body [36, 56],

Df � 2�1ÿ m�
1ÿ 2m

:

At the same time, the physical sense of Poisson's ratio for
glassy solids remains unclear [2±10, 44±50, 57±59].

Among theoretical studies, of interest are the Berlin±
Rotenburg±Baserst model [4, 47, 58] and the Kuz'menko
[45] and Pineda [23] theories. These theories can be used to
attempt to explain qualitatively why Poisson's ratio is
uniquely related to the Gr�uneisen parameter; why glasses
with a high fluidity limit have smaller values of m, whereas soft
materials with a low fluidity limit have higher values of m;
which structural features should be inherent in isotropic
solids with a negative Poisson's ratio; and why m is a single-
valued function of the critical deformation at which the
elastic±inelastic deformation transition occurs.

At this stage, we have to assume a one-to-one relation
between Poisson's ratio and the Gr�uneisen parameter char-
acterizing then anharmonicity, which requires the detailed
substantiation in the future. This concerns the general
problem of the relation between harmonic (linear) and
anharmonic (nonlinear) quantities.
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