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Abstract. The directional motion of micro- and nanoparticles
can be induced not only directly due to the effect of forces with a
nonzero average value, which set the direction of the motion, but
also, in the absence of such forces in systems with broken mirror
symmetry, under the effect of nonequilibrium fluctuations of
various natures (the motor or ratchet effect). Unlike other
reviews on nanoparticle transport, we focus on the principles
of nanotransport control by means of the ratchet effect, which
has numerous practical applications and, in particular, is a
promising mechanism for targeted delivery of drugs in living
organisms. We explain in detail various techniques to arrange
directional motion in asymmetric media by means of rectifica-
tion of the nonequilibrium fluctuations that supply energy to the
system and feature a zero average value of applied forces,
whether actual or generalized. We consider in depth the proper-
ties and characteristics of ratchet systems, their dependences on
temperature, load forces, and features of the periodic potential
profile in which nanoparticles move, such as the frequency of
fluctuations of this profile and its spatial and time asymmetry.
A systematic description of factors that determine the direction
of motion of ratchet systems is presented.
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1. Introduction

The directional motion of micro- and nanoscale particles —
molecular and ionic clusters, associates, ensembles—1is an
amazing and at the same time ubiquitous phenomenon: it is
an integral part of the processes occurring in inanimate and
living nature, as well as various areas of human activity [1-5].
For example, almost all biological processes in vitro and in
vivo include the transport of micro- and nanoparticles in
liquid media [6-8]. We consider among an immense number
of examples two phenomena related to the transportation and
segregation of medical preparations and biological materials:
electro- and dielectrophoresis. These two processes are best
known among the so-called electrostatic classifiers — techni-
ques to affect the spatial arrangement of particles in
accordance with their electrical properties [9].

Despite the variety of types of electrostatic classifiers, they
operate based on one common property of charges of the
opposite sign, i.e., their ability to attract each other. Electro-
static classification, in which a charge is imparted to particles,
is called electrophoresis [10]. Medical electrophoresis is widely
known. It is the process in which medical preparations are
transported by an electric field to a lesion site due to
electrolytic dissociation caused by the current, i.e., drugs
disintegrate into ions with opposite charges and advance to
the opposite-polarity electrodes through the organs and tissues
of the human body. In approaching the opposite-charge
electrode, ions undergo electrolysis, i.e., lose a charge from
their shell to become atoms that feature high physical and
chemical activity. Thus, medical electrophoresis is a highly
effective physiotherapeutic procedure in which a medicine is
administered noninvasively (without injection) and instantly
affects the target area; in addition, the activity of drugs is
enhanced by galvanic current. The disadvantages of this
method are that its application is limited (not all drugs can be
administered using the electrophoretic technique), a high
concentration of the drug cannot be attained, and the degree
of its accumulation at the target site cannot be determined.

The separation of materials by means of electrophoresis is
based on the difference in electrical conductivity or the
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triboelectric properties of their particles. In industry, electro-
phoresis (electrodeposition) makes it possible to deposit small
particles onto a surface, providing deep penetration into the
indents and pores, and to create uniform and dense coatings
of objects having a very complex shape. However, a
disadvantage of the method is that the thickness of electro-
phoretic coating applied is 20-25 um, and it cannot be
increased further, since the already deposited layer, being an
insulator, prevents the passage of current [11].

If a particle as a whole remains neutral but is polarized,
i.e., acquires a dipole moment, then it begins to move, if the
electric field is nonuniform. This phenomenon is referred to as
dielectrophoresis [12—14]. Taking into account the effect of a
nonuniform field on opposite ends of the particle and on the
medium in which it is located, it can be shown that particles
whose polarizability is higher than that of the medium are
drawn into the region of higher electric field strength (positive
dielectrophoresis), while those with a lower polarizability are
pushed into the region of a weaker field (negative dielectro-
phoresis). The strength of the effect is determined by the
gradient of the time-averaged field squared and does not
depend on the direction of the field. The separation of
particles is in this case based on the difference between their
polarizabilities and, consequently, on the difference between
the dipole moments they acquire, which depend on the
dielectric properties and structure of the material, as well as
on the size and shape of the particles.

Typically, this separation is carried out in a liquid. Since
the field direction does not affect the motion of particles, the
field may be created using alternating current with frequen-
cies of 10 MHz and higher. The effect of the interaction
between the particles and the field, which is proportional to
their volume, is exhibited much more strongly in separating
relatively large particles (more than 2 um in size). Dielec-
trophoresis as a classification method requires a strongly
nonuniform electrostatic field with a relatively high strength
(much higher than that used in electrophoresis). In media
with a low dielectric constant (¢ ~2-—7), it is usually
10* V. m~!, but if permittivity is high (for example, 80, as
that of water), the field strength may be decreased to
500 V m~!. Furthermore, for dielectrophoresis to be used,
the difference between the dielectric constant of the particles
and the medium in which the separation occurs should be
significant (Ae ~ 2—100). It has also been noticed that the
dielectrophoretic effect is more pronounced in liquids with
low viscosity.

H Pohl [14, 15], who laid the foundations of the theory of
dielectrophoresis, was the first to apply this mechanism to
microbiological objects [16]. Having applied a high-frequency
electric field (2.55 MHz) and a moderate voltage (tens of
volts) and using a medium with a low ion content (deeply
desalinated water) and electrodes whose shapes were signifi-
cantly different (to create field nonuniformity), Pohl observed
that living yeast cells separated from dead ones. He also
availed himself of the significant difference between the
polarizabilities of water and microorganism cells that was
found by H Schwan [17]. The dielectric constant of water and
very dilute aqueous solutions is 80, while that of living cells is
102 — 10%; specific electrical conductivity varies accordingly in
a range of 3x107°-2 Q' ecm™! for water and 107—
10 Q! ecm™! for microorganisms.

The segregation of biomaterial is ensured in this case by
the following main factors: (1) a high-frequency (HF)
alternating field is used, (2) the process is carried out in a

medium with very low electrical conductivity, (3) a nonuni-
form electric field is applied, and (4) there is a significant
difference between the dielectric constants of microorganisms
and that of the environment. Owing to significant differences
among the dielectric properties of biological objects, dielec-
trophoresis has been actively used for several decades in
medicine and biological research to transport and sort
various types of cells, for example, to separate cancer cells
from healthy cells or extract certain types of blood cells from
the blood [18-22]. On the other hand, this method can also be
used to characterize particles, in particular, to determine their
dielectric characteristics and geometric parameters, as has
been done, for example, in [23].

Although dielectrophoresis is widely employed to trans-
port and segregate large (micrometer-sized) particles and
cells, the use of electric fields to affect individual nanomole-
cules and nanoparticles remains completely undeveloped [12].
For small particles, to obtain forces that dominate over the
Brownian effect, large, not yet realized field gradients are
needed. Therefore, in operating facilities that use electric and
optical fields (in devices such as laser tweezers), particles
smaller than 100 nm still cannot be retained or separated.
Experimentalists are now quite successfully handling micro-
meter-sized particles. However, according to estimates [12],
there is a conceptual possibility that a nanotube tip with a
radius of curvature of about 1 nm subjected to a voltage of
50 mV may create at a distance of 100 nm around a 1-nm-
sized particle dielectrophoresis forces that exceed the thermal
effect; should this be case, it would enable nanoparticles to be
retained and sorted. The same estimates show that the
dielectrophoresis forces in the vicinity of a nanotip can prove
to be so large that they will be able not only to affect individual
molecules and stretch them, but even to exceed the strength of
the chemical bonds in molecules and lead to their breaking,
thereby opening a way to new chemical transformations.

Thus, for the selective dielectrophoretic effect on indivi-
dual nanoparticles (nanomolecules) to be realized, high field
gradients are needed, i.e., very thin (nanometer in diameter)
electrodes with nanometer distances between adjacent pro-
trusions are required. However, the lithography methods tested
so far, as well as the use of nanofibers to create electrodes, have
failed to overcome the aforementioned difficulties and to
produce working setups for nanodielectrophoresis [12, 24].

Conceptually new methods of directional particle trans-
port have emerged in recent decades and are now actively
being developed. They not only are competitors with
standard techniques but in some cases may be combined
with them. Particular attention is now being focused on
theoretical studies and the practical application of so-called
molecular, or Brownian, motors (ratchets), which play a
crucial role in the directional motion of nanoparticles. These
nanomachines, first discovered in living nature, are devices
that, under the effect of nonequilibrium fluctuations of
various nature, transform chaotic Brownian motion into
directional translational, reciprocal, or rotational motion.
Brownian protein motors provide contractile activity of
tissues (muscle function), cell mobility (motion of bacteria
flagella), and intracellular and intercellular transport of
organelles and relatively large particles of matter (cell
nutrition and disposal of waste emerging from cell activity).
These processes feature surprisingly high efficiency,
approaching 100%. These systems operate based on the
ratchet effect: the Brownian motion is rectified due to
nonequilibrium fluctuations that supply energy to the system
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and are characterized by a zero average value of applied
actual or generalized forces.

The control of nanotransport using the ratchet effect is
based on external processes of various nature [25-29]. These
processes in human-made ratchets usually have a determinis-
tic character, are cyclically repeated in time, and are described
by periodic functions [26, 27, 29-33]. On the other hand, in
ratchets of natural origin (operating in living and nonliving
objects), stochastic processes usually occur [25, 29, 34-39]. It
is of importance that the average value of the forces that affect
a particle during such processes is zero (the case of unbiased
fluctuations); however, the asymmetry of the system and the
nonlinearity of the potential-energy fluctuations generated by
these processes result in the emergence of directional motion.
One of the first examples of this kind is the emergence of a
direct electric current under the effect of a high-frequency
electromagnetic field in media without a center of symmetry
(photovoltaic effect) [40].

Ratchets that operate due to deterministic fluctuations can
be most simply designed if the fluctuations are harmonic in time
[41, 42]. The deterministic dichotomous process, which can be
represented as a model with two alternating states with constant
characteristics [43-46], is also often used to implement the
ratchet effect. At the same time, there exist ratchets with a
relaxation retarded response to the deterministic dichotomous
process. Periodic laser pulses are used, for example, as such a
process: they cause a periodic delayed response of the electron
subsystem in a nanoparticle [47]. This case is described by a
theory that considers arbitrary periodic processes [44, 47, 48].

The emergence of stochastic fluctuations in a Brownian
ratchet usually implies that there is a set of discrete states, for
example, conformational states of proteins, between which
transitions occur with certain rate constants [25]. Since the
interaction of protein with the environment depends on the
conformational state, the potential energy of the particle is a
function of the state, and its dynamics are described by kinetic
equations that contain the rate constants of transitions
between the states. If the states are well defined and the
times of transitions between them are significantly shorter
than their lifetimes, it may be assumed that the transition rate
constants are independent of the history of the process, i.e.,
the process is classified as a Markov process. For convenience
of description, only a small number of states [49-51] are
considered, most often two [43, 44, 51-61]; the process is
referred to in this case as stochastic dichotomous. Along with
the Markov processes that control the ratchet effect, models
of anomalous molecular motors are considered for a number
of systems that are characterized by non-Markov diffusion
[28, 62-70]. In most studies of the ratchet effect, the particle
mass is not taken into account, since the Brownian motion is
considered in the overdamped regime, when friction prevails
over inertia. This approximation is well substantiated for
many biological applications [25, 71].

Since the motion of Brownian (molecular) ratchets can be
controlled—and if energy is supplied to them, they can
perform some work —the use of such machines as nanor-
obots seems very promising. The practical potential of
molecular motors has won the highest international recogni-
tion: the 2016 Nobel Prize in Chemistry was awarded to
J-P Sauvage, J F Stoddart, and B L Feringa “for their design
and production of molecular machines” [72, 73]. The most
straightforward ways to use them in biology and medicine are
targeted drug delivery and segregation of biological products
(in living and nonliving objects).

It is expected that Brownian ratchets will be able in the
near future to enhance, supplement, and in some cases replace
standard methods of transportation and segregation of
medical preparations and biological materials, such as the
electro-and dielectrophoresis techniques considered above.

Ratchets with a fluctuating force [25] can operate inside
the body when there is a spatially periodic static potential
(electrostatic or entropic in its nature [74]), and the electro-
phoretic effect in an alternating field is the force that drives
charged particles. From the theoretical viewpoint, there are
no restrictions for attaining with the help of such ratchets any,
and in addition accurately measurable, concentration of
medicinal substances on the target site. This would expand
the scope of medical electrophoresis.

The use of Brownian ratchets under dielectrophoretic
conditions could provide selectivity for the motion of nano-
objects and thereby create an alternative or supplement to the
dielectrophoretic effect. The list of advantages of ‘dielectro-
phoretic ratchets’ includes a larger number of parameters to
control motion, including temperature, frequency, and pulse
shape of the applied field, viscosity of the medium, etc. An
experiment of this kind, however, with micrometer-sized
particles (latex beads) was carried out by L Gorre-Talini
et al. [75].

The effect of a spatially asymmetric potential on particles
combined with their diffusion resulted in the emergence of
directional motion of the particles. The required potentials
were generated in a dielectrophoretic cell, i.e., electrodes of a
special shape were immersed in a suspension of particles to
create nonuniform alternating electric fields. Two modes of
the ratchet effect were used: with and without a diffusion
stage. In the first case, two states alternated, in one of which
the Brownian particle was at the minimum of the sawtooth
potential, while in the second it freely diffused. In the regime
without a diffusion stage, two potentials with similar char-
acteristics, shifted with respect to each other by a fraction of
the period, were alternately used, and the Brownian particle,
consequently, moved between the minima of these potentials.
In both modes, good agreement was observed with theoretical
estimates of the characteristics of particle motion. In parti-
cular, particles of different sizes moved with different
macroscopic velocities, providing a conceptual opportunity
to develop an effective separation technique and the selective
transport of particles in a given direction.

Unlike the existing reviews and monographs on Brownian
motors [25-29, 76], the goal of this review is to present the
principles of nanotransport control by means of the ratchet
effect that could be used in various practical areas, including
drug delivery in animals and humans. The presentation is
organized as follows. Section 2 contains the most common
classification of Brownian motors to date and a discussion of
the basic principles of their functioning. Conditions for the
emergence of the ratchet effect and its parameters and
characteristics are presented in Section 3. The issue of most
interest and importance for practice, which arises when
discussing the ratchet effect, is to elucidate the factors that
determine the direction in which a Brownian particle drifts.
Section 4 contains an overview of such factors based on the
results of recent publications; it outlines the advantages of the
ratchet effect in controlling the motion of nanoobjects over
simple methods, which are reduced to the effect of gradients
of concentration or forces with nonzero average values. These
advantages are discussed in more detail in the final section of
the review.
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2. Classification and principles
of operation of Brownian motors

The directional movement of nanoparticles that is induced by
the ratchet effect may be due to various factors and,
accordingly, described by various models. The classification
of these models that has been developed to date reflects the
various principles under which Brownian motors operate.
This classification is based on belonging to a particular
mathematical model; it is determined by the specific equa-
tions that are used to find the average velocity of the
directional motion and the way of introducing nonequili-
brium fluctuations that bring energy into the system. There-
fore, this section presents to the reader the information
needed to classify the phenomena under consideration.
Examples of actual experimental setups that illustrate the
principles of ratchets operation are also given. For clarity, we
primarily consider one-dimensional systems in which friction
prevails over inertia, i.e., the so-called overdamped regime is
implemented. At the same time, the most impressive examples
of going beyond the limits of the one-dimensional description
in the overdamped regime that take into account inertial,
entropic, collective, and quantum effects are also given.

The basic equation of the theory of Brownian motors is
the Smoluchowski equation for the distribution function

p(x, 1) [77]:
%p(x, 1) 1d

@p%‘: 1) -D o _|__—,U’(x, 1) p(x, 1), (1)

where D = kgT/( is the diffusion coefficient (kg is the
Boltzmann constant, 7 is the absolute temperature, and ( is
the friction coefficient), and the applied force —U’(x, ?) is
spatially periodic, U'(x+ L, t) = U'(x, t), where L is the
period. This equation describes the inertialess motion of a
nanoparticle with a time-dependent potential energy U(x, 1),
when friction prevails over inertia (the overdamped regime).
A description based on the Smoluchowski equation corre-
sponds to a situation where the time for the establishment of
the equilibrium Maxwell distribution in the phase space of
velocities 1, = m/{ (m is the mass of the particle, { is the
friction coefficient) is the smallest characteristic time of the
system.

Given the spatial periodicity of the applied force, to
simplify the calculations of the characteristics of Brownian
motors, it is reasonable to assume that each spatial period L
contains on average one particle. It is convenient then to
introduce the reduced distribution function p(x, t) =
Yoo P(x+nL, t) normalized to unity, foLp(x, f)dx =1,

that satisfies the Smoluchowski equation (1), and the flow [25]

o0

J(x,1)= Y J(x+nL, 1) =—Dexp (- pU(x))

n=—00

B=(ksT)" (2

X aax [exp (BU(x)) p(x, 1)],

(for notational brevity, the tilde sign above these symbols will
be omitted below). An advantage of using the reduced
quantities p(x, 7) and J(x, ¢) is that it is now possible to
supplement the Smoluchowski equation with periodic bound-
ary conditions and simplify (in the case of steady-state
processes) the calculation of the main characteristic of a
Brownian motor, viz., the average velocity of directional
motion. A rigorous definition of this quantity, applicable to

both stochastic and deterministic fluctuations of potential
energy, is given by the following formula:

(vy = lim lJT dtJL dxJ(x, 1). (3)

T—oo 1 Jgo 0

An indicator that the motor effect emerges is a nonzero value
of the velocity (v). Definition (3) may be simplified for steady-
state deterministic processes that are periodic both in space
and in time (with a period t) when the functions p(x, ) and
J(x, t) also become periodic in time:

(o) zljr dzJL dxJ(x, 1). @)

0 0

Various approaches to the classification of Brownian
motors have been developed. One of the most general
classification criteria is the source of nonequilibrium (the
type of fluctuations) in the Smoluchowski equation. Conse-
quently, ratchets with a fluctuating temperature, a fluctuating
coefficient of friction, and a fluctuating potential energy are
distinguished. The nature of fluctuations, in turn, enables
smaller subclasses to be distinguished [25].

The first important class of theoretical models includes
Brownian motors in which nonequilibrium is introduced
through the coordinate and/or time dependence of the
temperature that enters the expression for the intensity
2(kgT (x, t) of Gaussian white noise ¢(¢) (normalized by the
condition (&(2)&(t')) = 2LkgTH(t — t')). This class of motors
is referred to as thermal (temperature) ratchets, thermal
motors, or Seebeck motors. If the friction coefficient {(x, 7)
that varies with the coordinate and/or over time and also
determines the intensity of Gaussian white noise is used, a
second class of Brownian motors, referred to as friction
ratchets, may be introduced. It should be noted that, strictly
speaking, the noise £(7) in these two classes of motors is no
longer equilibrium, since it is a product of truly equilibrium
white noise and a factor that introduces nonequilibrium into
the system (due to its dependence on x and 7).

The third class of Brownian motors includes systems with
fluctuating potential energy (7 and { are assumed to be
constant). Subclasses are distinguished within this class that
differ in how space and time asymmetries of potential energy
are manifested in the characteristics of the directional motion
of motors. For convenience of discussion, we present the total
potential energy of the particle U(x, ) as a sum of the
spatially periodic contribution Vix, f(7)] = Vix + L, f(?)]
and the contribution of a uniform fluctuating external
(deflecting) force F(¢) (the so-called tilting force):

Ulx, t) = V[x, f(1)] — F(t) x. (5)

The first subclass of ratchets with potential energy of the
form (5) consists of models in which f(#) = 0, and directional
motion is induced by time fluctuations of the external force
F (1) with a zero average value in the presence of a stationary
spatially periodic potential (x). Such ratchets are referred to
as tilting. Fluctuating force ratchets, for which F(#) changes
stochastically, and rocking ratchets with periodic driving
force F(¢) are distinguished in this subclass. It is the rocking
ratchets that are the most significant for controlling in
practice the potential energy of the system. The ‘rocking
ratchet’ term in many studies implies both stochastic and
deterministic fluctuations of the external force, i.e., it
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Figure 1. Three states of an on-off ratchet that explain how directional
motion of nanoparticles emerges. The shaded bell-shaped contours
display the distribution functions (probability densities) for a nanoparti-
cle in each state before switching the potentials.

combines both types of ratchets and is used as a synonym for
the ‘tilted ratchet’ term. Ratchets with stochastic changes in
the external force F(z) are often referred to as correlation
ratchets [25, 78, 79].

The second subclass includes ratchets for which F (z) = 0,
and directional motion is induced by time fluctuations of the
spatially periodic potential energy Vx, f(#)]. In Reimann’s
terminology [25], such ratchets are referred to as pulsating.
This subclass includes fluctuating potential ratchets, whose
potential energy V[x, f(¢)] may be represented in a multi-
plicative form Vx, f()]=V(x)[1+f(¢)], i.e., temporary
(periodic or stochastic) changes in potential energy occur
due to changes in its amplitude. It is often assumed that the
function f(¢) takes only two values (dichotomous process).
Then the motor effect is possible only for the asymmetric
function ¥(x) and in the presence of thermal noise. A special
case of this type of ratchets with a fluctuating periodic profile
of potential energy is so-called on-off ratchets, or flashing
ratchets, that are now under intense theoretical end experi-
mental exploration. For these ratchets, f(¢) = +1 (a value of
+1 corresponds to the ‘on’ state, while a value of —I1
corresponds to the ‘off” state). Flashing ratchets mean in a
number of studies the entire second subclass of models with
F(t) =0in Eqn (5).

Let the nanoparticle be in a periodic piecewise linear
(sawtooth) asymmetric potential (Fig. 1) that cyclically
switches from the ‘on’ state to the ‘off” state. If the potential
is turned on, the coordinate of the maximum probability
density of the particle coincides with the minimum of the
potential well. If the potential is switched off, the particle
diffuses with equal probability to the left and to the right (the
probability density distribution broadens), and, if an addi-
tional load force is present, it also simultaneously moves in
the direction set by that force (in graphical terms, the
introduction of this force is equivalent to tilting the potential
contour by a certain angle). Since the potential is asymmetric,
and each minimum is shifted to the right with respect to the
middle of the distance between two neighboring maxima, the
next time the potential is switched on, the particle is more
likely to be in the right well than in the left one, relative to its
initial position. Thus, periodic alternations of the on- and off-
potential combined with the diffusion process result in the
motion of the nanoparticle to the right, including the motion
in the direction opposite to the load force in effect [80]. The
presence of thermal noise is in this case of crucial importance:
it enables diffusion in the off state of the motor process.

Energy is supplied to the system by switching between
potentials, and part of it is converted into the useful work
performed by the particle against the load force. If the
asymmetry of the potential is reversed (the sign of the ‘saw’
tooth tilt changed to the opposite), the direction of the induced
motion of the particle also changes to the opposite one.

It should be noted that the considered ratchet effect with a
deterministic on-off potential has many practical applica-
tions. For example, it underlies the diffusion separation of
particles, in particular, the separation of particles by size that
occurs in dielectrophoretic ratchets [81]. At the same time, the
ratchet effect with random (stochastic) switching of the
potential provides directional motion of KIF1A single-
headed kinesins [82]. The fluorescent labeling method was
used to show that the characteristic values of the effective
diffusion coefficient and average directional velocity are of
the order of 10,000 nm? s~! and 300 nm s~!, respectively.

The two subclasses of ratchets considered above exhibit
different analytical dependences of the average velocity on the
coefficients of spatial (x) and time (¢) asymmetries, which are
defined in such a way that the spatial symmetry is character-
ized by the value k = 0 and time symmetry by the value ¢ = 0.
Consequently, (v) = k®,, + ¢®,, for rocking ratchets and
(v) = k(®Py + Py,) for fluctuating-potential ratchets, where
@ are certain functions of the motor parameters [83]. In
addition, the average velocity in the adiabatic limit T — oo is
nonzero for the first subclass and tends to zero for the second
subclass.

Figure 2 shows functional diagrams of Brownian motors in
these two subclasses. The potential energy has the form
U(x, t) = V(x) — Fxs(t) for ratchets with a fluctuating uni-
form force (Fig. 2a) and U(x, 1) = V(x)[u+ wa(t)] for
ratchets with a fluctuating periodic potential energy (Fig. 2b),
where ¢ (1) = ¢ + s(¢) = £1 with (s(z)) = 0, and w and u are
dimensionless parameters. The s(¢) function takes two values
with the durations 7, and 7_ whose sum is equal to the period of
the cyclic process 7. The asymmetry x of the V(x) function
determines the shift of the minima of this function relative to the
middle of the distance between the nearest maxima. Due to
symmetric force fluctuations (t. =71_ =1/2, ¢=0), the
periodic potential relief is tilted to the right and to the left by
equal angles. In this case, as a result of spatial asymmetry of this
relief (x=#0), when moving to the right, the particle has to
overcome higher potential barriers than when moving to the left
(the left side of Fig. 2a). Due to asymmetric force fluctuations
(¢ # 0), the periodic potential relief is tilted at different angles,
which gives rise to motion in the direction of the larger tilt (the
right side of Fig. 2a). Thus, the direction of motion, which is
determined by the relief asymmetry, may be reversed by
introducing a nonzero coefficient of time asymmetry.

The mechanism of operation of Brownian motors with
fluctuating periodic potential energy is completely different.
In the case of symmetric time fluctuations (¢ = 0), directional
motion emerges due to the fact that in a state with a smaller
amplitude of the asymmetric potential relief, transitions of the
particle are facilitated for the potential barrier which is closer
to the minimum of the potential well (the left side of Fig. 2b).
On the contrary, if time fluctuations are asymmetric (¢ # 0)
and the sign of the potential energy fluctuates (u = 0),
directional motion emerges exclusively due to the different
lifetimes of the states of the dichotomous process, i.e., the
time asymmetry. Particle localization near the minimum of
the potential well is thermodynamically justified in the state
with the longer lifetime, while the kinetic effect of a rapid
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Figure 2. Functional diagrams of two subclasses of Brownian motors:
(a) with a fluctuating uniform force, (b) with a fluctuating periodic
potential energy.

descent of a particle on a steep section of the potential profile
prevails in the state with a shorter lifetime (the right side of
Fig. 2b). The direction of motion in this case is opposite to
that realized in the case ¢ = 0 and u # 0.

For pulsating ratchets of a general kind, in which not only
the amplitude but also the shape of the potential profile
changes, the presence of thermal noise and the asymmetry of
fluctuating potential profiles are no longer the necessary
conditions for the existence of the motor effect. Pulsating
ratchets also include so called traveling potential ratchets
with the potential of the form V[x, f(¢)] = V[x — f(¢)]. It is
assumed in the simplest case that f(7) = uz, where u is the
constant drift velocity of the potential relief itself. Such
‘genuine traveling potential ratchets’ describe the Stokes
shift of particles placed in a drifting periodic potential. As a
second example, we present ratchets that operate due to the
dichotomous process of cyclic switching between the poten-
tials shifted by half a period; in this case, the periodic function
f(t) defined on the interval 0 < ¢ < 7 has the form f(z) =
(L/2)0(t, — t), where 7, and 1, = T — 1, are the lifetimes of
the states a and b (0(r) = 1 if t > 0 and 0(r) = —1 if t < 0).
Both of these ratchet models are characterized by high
efficiency under certain conditions.

A prototype of such models is presented by two-headed
kinesins, whose motion along a microtubule consists of
periodically repeating cycles. The energy needed by these
motor proteins to move against viscous friction forces is
supplied by the reaction of binding and hydrolytic decom-
position of ATP (adenosine triphosphate) into ADP
(adenosine diphosphate) and inorganic phosphate P;
(ATP + H,O — ADP + P; 4+ 20kg T, where T = 300 K), so

that each cycle provides an energy output of 20kg 7 [84, 85].
Kinesin heads are alternately in states when one of them is in
contact with the microtubule tubulin, while the second,
bound to the ADP molecule, is remote from the micro-
tubule and does not contact it. In one step of the motor
protein along the microtubule, each head moves a distance
of 2 tubulin dimers (8 nm) and can reach a velocity of about
800 nm s~!, performing work against a load force of up to
5 pN [86, 87].

There are other types of ratchets that are combinations
and generalizations of the two subclasses discussed above. An
example is a model based on synchronous fluctuations of a
symmetric potential and applied uniform force. The principle
of operation of such ratchets is very simple. If the functions
f(¢)and F (¢) in Eqn (5) synchronously fluctuate between two
sets of values, it is possible to create the so-called gating
mechanism, i.e., to make the potential profile be turned off at
positive values of F(¢) and slow down the reverse movement
at negative values of F(¢). As a result, if (F (7)) =0, the
particle will move towards positive values of F(¢) even in the
spatially symmetric potential V]x, f(#)]. Such a mechanism
can be implemented in a 2D near-surface motor that moves
simultaneously in longitudinal and transverse directions
relative to the polar substrate plane due to fluctuations of an
external force tilted with respect to the surface [83, 88, 89].

Going beyond a one-dimensional description provides
new options for implementing the ratchet effect. Directional
motion can occur in a medium with periodically placed
asymmetric scatterers under the effect of an oscillating force
with a zero average value (the ratchet effect in a 2D system
with a fluctuating uniform force) [90].

A separate type of Brownian motor, so-called geometric
or entropic ratchets, is associated with Brownian motion in
tubes and channels, whose cross section periodically changes.
The entropy of a diffusing particle is determined under such
conditions by the space region accessible to it, i.e., depends on
its coordinate along the channel axis. The entropy of the
particle multiplied by its thermal energy can be considered
then as the entropy potential [91] that performs as a
conventional energy potential in the one-dimensional diffu-
sion problem. Based on this analogy, it may be expected that
periodic or random unbiased effects on a particle in
asymmetric tubes and channels may result in the emergence
of the ratchet effect. Entropic ratchets, similar to standard
energy ratchets, operate due to fluctuations in force [92] and
periodic potential [74, 93] (entropic rocking and flashing
ratchets). It is noteworthy that, with the same channel shape,
the space regions available for diffusion of spherical particles
depends on their radius: if the radius is small, these regions
almost coincide with the inner space of the channel, while for
a large radius they can be much smaller. Therefore, not only
the diffusion coefficient but also the entropy potential
depend on the particle radius. Owing to this, an effective
mechanism may be proposed for separating nanoparticles by
size under the effect of a fluctuating force [94]. Furthermore,
if the particle size can be changed using some external
process, the entropic ratchet will operate due to fluctuations
of both the diffusion coefficient and the entropy potential
[74, 93]. Such an external process may be represented by
pulsed ultraviolet (UV) irradiation that creates or destroys
cross links between photochromic groups [95] or by alter-
nating UV and visible-range irradiation that causes a
reversible change in the size of particles in a photosensitive
microgel [96].
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It is of interest that the collective ratchet effect in tubes
and channels with a periodically varying cross section can
also be achieved under the effect of a fluctuating force in the
presence of repulsion between diffusing particles. Indeed,
such repulsive interactions cause particles to be pressed to
the channel walls, and their distribution is subject to spatial
modulation. It is asymmetric for asymmetric channels and as
a result of this, a directional motion initiated by unbiased
fluctuations of the force emerges [26]. Study [97] was the first
to simulate this phenomenon by the molecular dynamics
method using as an example the transport of fluxons in
superconducting devices.

Taking into account quantum-mechanical laws in models
of human-made Brownian motors results in basically new
phenomena that are not possible in the classical description.
The quantum nature of fluctuations and the quantum
evolution laws governed by quantum statistical mechanics
enabled the discovery of unexpected transport mechanisms
that emerge due to sub-barrier tunneling and over-barrier
reflection of a particle, as well as due to explicit consideration
of its inertia [26]. The particle transport mechanism is
determined in this case by the particle mass, medium
temperature, height and shape of the barrier to be over-
come, and fluctuations in the reaction system and molecular
environment [98-101]. The temperature dependence of the
tunneling transport rate constant is affected by the reorgani-
zation of the medium [102], changes in the shape and height of
the potential barrier in intermolecular vibrations [99,100],
and energy dissipation due to various fluctuations (see
reviews [26, 101] and references therein).

The first theoretical description of a quantum ratchet was
provided in the pioneering work of Reimann, Griffoni, and
Hiénggi [103], who discovered a number of impressive
implications of quantum effects. First, the average velocity of
the directional motion of quantum particles was much higher
than that of the same particles in the classical description. This
difference was especially pronounced in the low-temperature
region, where the particle velocity vanished in the classical
description but remained nonzero in the quantum description
due to sub-barrier tunneling. However, the most surprising
implication of taking quantum effects into account was that
the direction of motion reversed with decreasing temperature,
a theoretical result that was soon confirmed in experiments
[104]. At present, the ratchet effect is also studied in systems
that in no way can be described without a quantum-mechanical
theory. These systems include, for instance, electronic ratchets
and cold atoms in optical lattices [105]. Unusual manifestations
of the ratchet effect in purely quantum systems (coupled
Josephson junctions, quantum dots, molecular wires, etc.) are
discussed in detail in review [26].

3. Ratchet effect, its parameters
and characteristics

In studying the ratchet effect, the interest is focused on
measuring or calculating its certain characteristics, which
depend on the parameters of the environment, the spatio-
temporal behavior of the potential energy, and nonequili-
brium fluctuations that supply energy to the system. Depend-
ing on the values of these parameters, various approximations
are chosen that are used in the theoretical description of the
ratchet effect.

The ratchet effect occurs when a number of conditions are
met [25, 106, 107]. The first is the presence of nonequilibrium

fluctuations that provide energy to the system from various
external sources. The fluctuations may originate from
radiation, thermal processes, fast chemical reactions, or
rapidly changing electric fields that cause, e.g., jump-like
changes in the rate constants of chemical reactions asso-
ciated with directional transport of nanoparticles. The second
important condition for directional motion to emerge is the
presence of a preferred direction in the system that arises from
the asymmetry of the potential energy of the nanoparticle in
the medium under consideration. The examples of the
implemented ratchet effect presented in Section 2 clearly
show that these conditions must be fulfilled.

The ratchet effect parameters depend on the type of
nonequilibrium fluctuations and the form of potential
energy that describes the interaction between the nanoparti-
cle and the medium. The temperature of the medium and the
coefficient of friction, which determine the diffusion coeffi-
cient of the particle in the medium, are also the ratchet effect
parameters. For example, in considering deterministic fluc-
tuations described by a periodic function of time, the most
important parameter is its period z. An analog of the period
for a stochastic dichotomous process is the inverse sum
(37" +79=")"" of the inverse frequencies (y, and y_) of
transitions between the two states of this process. Another
parameter, the sum of the transition frequencies, determines
the inverse correlation time I' =7, +y_. All these time
parameters that characterize fluctuations may compete with
the time parameters that describe properties of the space-
periodic potential profile. The latter parameters include, first
of all, the characteristic diffusion time tp on the period L of
the potential profile, tp = L2/D, where D is the diffusion
coefficient. If the potential profile contains narrow segments
whose length is / < L, where it rapidly changes, another
characteristic diffusion time, Tp = /?>/D, emerges for these
segments, which is much shorter than zp. Therefore, as the
fluctuation period 7 (or frequency I') changes, a special
behavior of the ratchet characteristics may be expected if ©
proves to be of the order of 7 and 7 [44, 47, 48, 61, 76, 108].

Figure 3 shows the frequency dependences of the average
velocity in dimensionless units calculated using relations from
[61] for two main subclasses of ratchets that operate due to the
asymmetry of the sawtooth potential (V(x) = Vox// for
x €10,/] and V(x) = Vo(L — x)/(L —1) for x € [/, L]), viz.,
ratchets with a fluctuating force (the upper part of the figure)
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Figure 3. Families of the frequency dependences of the average velocity (in
dimensionless units) for a ratchet with a fluctuating force (the upper part
of the figure) and a pulsating on-off ratchet (the lower part of the figure)
calculated using Eqns (7) for the same sawtooth potential with various
ratios of the linear segment length / to the period L, & = //L.
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and pulsating on-off ratchets (the lower part of the figure)
(similar frequency dependences were discussed in [53, 76]).
Given the same asymmetry of the potential profile V(x), the
directions of motion for these two subclasses of ratchets are
opposite. The low-frequency (LF) limit of the average
velocity of a pulsating ratchet is zero, whereas for a ratchet
with a fluctuating force, it is nonzero. The tp parameter
identifies the LF region (I" < tp!), in which the velocity barely
depends on frequency for the ratchet with a fluctuating force
and decreases linearly with I for the pulsating ratchet. Due to
the presence of segments / < L and small characteristic times
Tp < 1p for pulsating on-off ratchets, in the region of high
frequencies (HF) t~! that correspond to times 7 of the order
of Tp, the average velocity decreases very slowly with
increasing frequency and tends to a nonzero value in the
case of an extremely asymmetric sawtooth potential with
!/ — 0[60, 61, 109]. As for ratchets with a fluctuating force,
the HF region is characterized by a decrease in the velocity
proportional to 7 for arbitrary smooth potentials, 7=>/2 for
a sawtooth potential with cusps, but without jumps (/ # 0),
and 77! in the presence of jumps (/ = 0) [61, 110]. Thus, the
HF region proves to be very sensitive to the shape of the
potential profile.

In the LF region, an adiabatic mode of motion is realized,
for which the dependences of the average velocity (and energy
characteristics) on the shape of the potential profile may be
represented in an analytical form [76, 106, 111]. For example,
the average velocity for a ratchet with a sawtooth potential
that switches between the states a and b is given by the
relations [112, 113]

(1) = 3o f (@),

flab)=—2 4+ "

N a+b sinh(a—b)
sinh%h

a—b sinhasinhb’ (6)

sinh’a

where a = fV,/2, b= BV;/2, V, and V}, are the heights of
potential barriers in the states @ and b, k = 1 — 2//L is the
asymmetry parameter, and the function f(a, b) is displayed in
Fig. 4.

Another approximation, which is widely used in the
ratchet theory to obtain analytical relations, corresponds to
the small ratios of the potential barrier heights to the thermal
energy kgT; it is referred to as the high-temperature [44] (or
low-energy [83]) approximation. An example is the represen-

f(a, b)

10

Figure 4. Average velocity of motion (in dimensionless units) for an
adiabatic ratchet operating in the dichotomous mode @ 2 » (Eqn (6)) as
a function of the amplitudes V,/2 and V}/2 of the spatial variation of
potential energies scaled to thermal energy kg 7.

tation [61]
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which is valid for stochastic switching between states with
identical frequencies y, =y_ =2/t =1I/2 for an on-off
ratchet pulsating between sawtooth and zero potentials
(indices f') and a ratchet with fluctuating force (indices r), in
which the sawtooth potential undergoes fluctuations =+ Fx.
The dependences plotted in Fig. 3 represent Eqns (7).

The effect of the nature of fluctuations on the frequency
dependence of the average velocity of motion was studied in
[108] using the high-temperature approximation and sinusoi-
dal spatial dependence w(x) of the fluctuation part of the
potential energy that has an additive-multiplicative form
U(x, t) = u(x) + o(t)w(x). It turned out that for an arbitrary
asymmetric form of the stationary part u(x) of the potential
profile, the frequency dependence of the average velocity is
proportional to the functional Y{c(¢)} of the function o(7)
that describes the time dependence of deterministic or
stochastic fluctuations. Figure 5 displays how this functional
depends on the inverse fluctuation period (the inverse average
period in the stochastic case) for fluctuations of various types.
Figure 5 shows that deterministic fluctuations are character-
ized by narrower frequency distributions than are stochastic
ones, and, in the case of deterministic fluctuations, the
stepwise dichotomous change in the function o(¢) yields a
larger effect than the sinusoidal change. On the other hand,
the LF asymptotics of the average velocity show the same
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Figure 5. Frequency dependence of the average velocity of motion for
various types of deterministic or stochastic fluctuations, namely, for
deterministic stepwise and sinusoidal time dependences o(f) (solid (/)
and dashed-dotted (2) curves) and the stochastic dichotomous process
with the same average period (dashed curve (3)).
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linear behavior for deterministic and stochastic dichotomous
fluctuations and quadratic behavior for sinusoidal fluctua-
tions.

A more efficient but at the same time more complex
approximation, which requires employment of the Green’s
function technique, is the small-fluctuation approximation. It
assumes an arbitrary amplitude of variation of the space-
periodic function u(x) in the formula U(x, t) = u(x)+
a(t)w(x), the o(7) function of order of one, and a small ratio
of the amplitude of variation of the w(x) function to the
thermal energy kg7. The average ratchet velocity may be
represented in this approximation using a unified formula
[114]:

L

(v) = LB*D? L dxp,(x) w'(x)J dx’ S(x, x')

0

X 2w () () + O(w?),
x ®)

S(x, x') = Jo
P (Epu(x)
pa(x) JF dxexp (+pu(x))

where g(x, x’, 1) is the retarded Green’s function
(g(x, x’, 1) =0 if 1< 0) for diffusion in the stationary
potential u(x), and K(¢) = (6(ty + t)o (1)) is the correlation
function. Equation (8) is valid for both deterministic and
stochastic time dependences ¢(7). Moreover, this equation
provides all known analytical formulas for (v) obtained in
various approximations and additionally expanded in the
small parameter w(x) [76]. If w(x) is a periodic function
(w(x+ L) = w(x)), the obtained results relate to pulsating
ratchets, while the substitution w(x) = Fx (F = const,
(a(1)) = 0) corresponds to ratchets with a fluctuating force.
For example, in the case of an on-off ratchet with smooth u(x)
and w(x) functions and with stochastic switching between the
states, the average velocity in the HF region is inversely
proportional to frequency I' and is determined by the
formula [112, 115] (see also [25, 76])

Jo dx (' () ,
J dxexp (Bu(x)) fi dxexp (—pu(x))

In addition to the basic kinematic characteristic of a
Brownian motor, viz., the average directional velocity (v)
(see definitions (3) and (4)), there are also important energy
characteristics, namely, the input energy Ej, and the useful
work (output energy) E,, that the motor performs against
additionally introduced load force F; [56, 111]. For cyclic
processes, the values relate to the period of the process z. The
corresponding power values, power input P, and power
output Py, are defined as Ej,/t and Eoy /7. As a result of
an additional force Fj being introduced, the potential energy
considered earlier (5) is replaced by the total potential energy
U(x, t) = V]x, f(1)] — F(¢)x + Fix. Here, the positive sign of
Fix corresponds to the load force vector oriented against the
direction of motion of the motor, and the magnitude of F
itself is introduced as a magnitude of this vector. The useful
work per unit time is defined as the product of the load force
and the velocity of the motor:

o0

dig(x, x', 1) K(1),

2n3
(0}, = LDFB

©)

Pout = Fi{v) . (10)

The supplied power is defined in the theory of Brownian
motors as the average energy transmitted to a particle per unit
time by means of a change in its potential energy:

T L
P,=1" J dtJ dx
0 0

p(x, 1).
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The dissipative function IT (also referred to as the entropy
production that characterizes the rate of conversion of the
supplied energy to heat) and the efficiency 5 of converting the
supplied energy into useful work are easily calculated using
Eqns (10) and (11) [57, 116]:

nEPin_Pout>

(12)

It should be noted that an accurate definition of the output
power Py, as a scalar product of the force vector and the
velocity vector implies that it is negative for motors, since the
direction of the load force vector is opposite to that of the
average velocity of the motor. Since Fj is defined as the
magnitude of the load force vector, and P, in Eqn (10) as a
positive value, the dissipative function in (12) is represented as
the difference between Py, and P,y. Therefore, the require-
ment IT > 0 that follows from the second law of thermo-
dynamics yields the conditions Py, < P and np < 1.

The average velocity of directional motion (v) is a
monotonically decreasing function of the load force F
(Fig. 6) [117]. Tt assumes the greatest value at F; =0 and
vanishes at a certain value Fj = F; that corresponds to the
motor stopping point. The value of F; is an important
characteristic of the motor, because it shows the ability of
the motor to resist the load. Equations (10) and (11) show that
the efficiency of the Brownian motor is proportional to the
product Fi(v); therefore, it vanishes both for F; = 0, and for
F = F;. This implies that the efficiency is a nonmonotonic
function of the load force, which takes the maximum value
Nmax fOT a certain value of Fj (see Fig. 6). Based on an analysis
of various models of pulsating ratchets [25, 43, 48, 51, 56, 57,
109, 111, 117], which ensure the directional motion of a
nanoparticle in a time-dependent periodic potential, the
necessary and sufficient conditions for their highly efficient
operation (11,,,, — 11) have been formulated [48, 51, 57, 106]:
(1) the adiabatic (slow or fast) process of changing the
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Figure 6. The average velocity (v) (solid lines, left axis) and the efficiency n
(dashed lines, right axis) as functions of the load force F for an extremely
asymmetric sawtooth potential with 7, = 15 that fluctuates by half a
period with the dimensionless frequencies I'L?/2D (y, =y_ = I'/2), the
values of which label the curves.
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potential relief in time, (2) the shift (continuous or jump-like)
of the potential extrema, (3) the presence of an effective
mechanism to rectify nonequilibrium fluctuations at large
amplitudes of the potential profile (exceeding thermal
energy), and, in addition, a certain asymmetric shape of this
profile in the case of an adiabatically fast mode.

4. Factors that determine the direction of motion

As was noted above, the main factor that sets the direction of
motion of a Brownian motor is the asymmetry of the potential
profile. If this profile changes its shape over time, it is very
difficult, and often impossible, to determine in advance,
without specific calculations, the direction of motion
induced by the ratchet effect. The multiplicative form of
potential energy, V[x, f(1)] = V(x)[1 +f(¢)], contains only
one time-independent coordinate function V(x). If an
additive-multiplicative form, U(x, 1) = u(x) 4+ a(£)w(x), is
used, two coordinate functions, u#(x) and w(x), must be
considered. At the same time, the direction of motion can
also be affected by the form of the time dependence of the
potential energy set by the functions f(¢) and o(¢). Inertial
and quantum effects introduce additional factors that can
reverse the direction of motion. This section is devoted to a
consideration of these features.

First, we return to considering the simplest potential
profile with one maximum and one minimum on the spatial
period L (see Fig. 1). It can be easily seen that the on-off
ratchet moves in the direction that corresponds to a shorter
distance from some minimum to the nearest maximum (see
details in Section 2). We now consider the more complex
potential profile shown in Fig. 7a. The potential profile
period contains two minima, the right minimum at x, and
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Figure 7. (a) Schematic presentation of a double-well potential profile in
the on-off ratchet model that allows for reversal of the direction of motion
of the Brownian particle as temperature changes. (b) The family of
temperature dependences of the average ratchet velocity for various pairs
of values of x; and x;.

the left minimum at x;. The right minimum is closer to the
largest maximum located at the point x = L, while the left
minimum is closer to the same maximum at the point x = 0.
However, the right minimum is deeper than the left one by an
energy AV. In the case of low temperatures, if kT < AV
(BAV > 1), the probability of a particle being in the left
minimum tends to zero, so the problem reduces to that of
the single-well potential profile considered above, and the
particle will move to the right due to the ratchet effect.

We now assume that the distance between the left local
minimum and the left barrier is smaller than that between the
right absolute minimum and the right barrier, i.e.,
X1 < L — x;. As temperature increases, the probability of a
particle being localized near the left minimum also increases,
and conditions emerge for the particle to move to the left. The
described example of how the direction of motion is reversed
with an increase in temperature may be described in
quantitative terms [118] using the adiabatic approximation
and kinetic approach:

I [x+xexp(—pAV) L

W = | T ep par) 2

(13)

A family of temperature dependences of the average velocity
for various pairs of values of x; and x; is displayed in Fig. 7b.
It can easily be shown that the stopping point of the Brownian
motor corresponds to the temperature

kg'AV

Y (R ey oy

X1+ x. < L. (14)

Thus, if T < Ts, the Brownian particle moves to the right,
while if T > T, it moves to the left, and the direction of
motion may be controlled by changing temperature.

When considering switching between complex potential
reliefs with several minima and maxima per period, determi-
nation of the direction of motion induced by the ratchet effect
is a challenging problem. On the other hand, if processes are
explored in which diffusion is not a dominant factor and the
directional motion occurs even at zero temperature, the sign
of the average velocity may be determined quite simply.
Similar processes were considered in modeling muscle
contraction: the myosin protein molecule was shifted relative
to the actin fiber directly due to ATP hydrolysis (tight
mechanochemical coupling) [119]. The power stroke of such
a protein motor is not related to the diffusion (or thermally
activated) particle motion [120]; therefore, it was long
believed that this type of motor (power stroke motors)
cannot be described in terms of the theory of Brownian
motors (ratchets). It was found later that the concept of the
Brownian motor is equally well applicable to processes with a
weak and strong mechanochemical coupling that generates
directional motion [51]. It is sufficient to consider fluctuations
of potential energy with constant (in the former case) or
changing (in the latter case) positions of extrema [106].
Variation of extremum positions is also one of the necessary
conditions for the high efficiency of a Brownian motor.

We now consider the motion of a Brownian particle whose
potential energy fluctuates between two periodic (with the
same period L) potential reliefs U, (x) (¢ = £1) with lifetimes
so long that thermodynamic equilibrium can be established in
each of them (the adiabatic approximation). The difference
between the stochastic and deterministic switching between
potential reliefs is blurred in the adiabatic approximation [44],
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Figure 8. Mechanism of the emergence of directional motion to the right (a) and to the left (b) under switching of potentials. Motion at low temperatures
becomes possible if the positions of the maxima and minima of the switching potentials alternate.

owing to which the fluctuation process can be considered
cyclic with a period 7=71,+7_;. Let a, and b,
(as, by € (0, L)), respectively, denote the coordinates of the
smallest minimum and the largest maximum of the potential
relief U,(x) (Fig. 8). It can be shown [121] that, in the
adiabatic approximation and at low temperatures (however,
sufficient to overcome small barriers between neighboring
local minima), the average velocity and its sign can be
determined rather straightforwardly by calculating the func-
tion @:

m=L0, 0= Y [0, —a) -0, —a )], 09)

o==*1

where 0(x) is the theta function equal to 1 if x >0, 1/2 if
x =0, and —1 if x < 0. The presence or absence of motion in
the low-temperature limit, as well as the direction of this
motion, are determined by the relative location of the four
extrema a, and b, (¢ = £1). For potentials whose amplitude
fluctuates, the positions of the extrema of the two potentials
coincide, namely, a; = a_;, and b, = b_, if the positions of
the minima and maxima are identical in both potentials, and
ay =b_y, and by = a_; if the minimum of one potential
becomes the maximum of the other and vice versa. It is easy
to check that in these cases @ = 0. The average velocity of
motion is nonzero only if the positions of the minima and
maxima of fluctuating potentials alternate (circular diagram
in Fig. 8). The positive and negative directions of motion
(Fig. 8a, b) correspond to a circling of extrema clockwise and
counterclockwise. An analysis of the motion paths (arrows
along and across the profiles of potential energy) shows that
the resulting direction of motion is determined by the
direction from the maximum to the minimum of some
potential, provided that the maximum of the other potential
is located between them. With this arrangement of extrema,
the particle moves in each potential relief to a minimum point,
escaping the barriers of the other potential due to switching
between the two potentials. It is easy to check that, in the
case of symmetric potentials, when |a, — bs| = L/2, the
positions of the minima and maxima of fluctuating
potentials do not alternate, so that the average velocity is
zero, as it should be.

The direction of motion can be easily reversed in those
cases when the shape of the stationary part of the potential

relief u(x) differs from that of its fluctuating part w(x) in the
additive-multiplicative representation of the potential energy
U(x, t) = u(x) + o(1)w(x). For example, if u(x) is a sawtooth
potential, the asymmetry of which is characterized by the ratio
A =1/L, and w(x) is described by the harmonic w(x) =
wecos 2rn(x/(L — A9))] with a phase shift 4y (Fig. 9a), the
direction of motion depends on the values of the parameters
A and 4y. This dependence may be represented in the high-
temperature approximation using a diagram in the phase
space of the parameters 4 and 4 (Fig. 9b) [108].

Apart from the asymmetry and specific features of the
potential relief, the phenomenon of the emergence of direc-
tional motion due to nonequilibrium fluctuations is also
significantly affected by dynamic effects. The most spectacu-
lar example of such an effect is given in [60]. We consider the
stochastic switching between two symmetric potentials
Ui (x)=Uscos (2nx/L) and U_(x)=U_sin (4nx/L) with
frequencies y, and y_ (see the inset in Fig. 10). It should be
stressed that each of these potentials is symmetrical; there-
fore, the asymmetry of the system arises exclusively due to the
dynamic effect of switching. The high-temperature approx-
imation and the simplest forms of potential profiles restricted
to the first and second spatial harmonics can be used to derive
a simple formula for the average velocity of motion:

1-2(1-3¢)Z
() = o1 -ty z L2201 =39Z
4 (1+42)%(1+2) 16)
_Gutp)L? L _URU D po—y,
(4n)’D (kgT)> L’ v+,

The ratio (v)/v* as a function of the dimensionless frequency
parameter Z for various values of the time asymmetry
parameter ¢ is displayed in Fig. 10. It is noteworthy that the
ratchet effect also occurs if there is no time asymmetry (¢ = 0).
This result agrees well with popular concepts, according to
which space symmetry may be broken by dynamic effects (for
example, the mixing of harmonics [122] or a dynamic
selection of the direction of motion by the ensemble of
interacting particles [123]). In our case, the symmetry is
broken due to the shift of the minima of the switching
potential reliefs.

The stopping points, where the direction of motion is
reversed, also emerge in a broad range of variation of the time
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Figure 9. (a) Sawtooth stationary relief #(x) and harmonic fluctuation
component w(x) of the potential energy of a Brownian motor. (b) Phase
diagram of the parameters A and Ay that sets the range of values
corresponding to the motion to the right or to the left (light and shaded
areas, respectively).
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Figure 11. Average velocity (in units of vy = Vy/{L, where Vj is the
sawtooth potential barrier) as a function of the ratio of the potential
amplitudes o (a) and the time asymmetry parameter ¢ (b) for various values
of the space asymmetry parameter k = | — 2//L and other parameters
(indicated on the corresponding curves and in the plot corners). The
fluctuation frequencies satisfy the relation (y, +y_){L*/Vy = 1.
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Figure 10. Average velocity (in units of the parameter v* defined in
Eqn (16)) as a function of the dimensionless frequency parameter Z for
various values of the time asymmetry parameter ¢&. Symmetric potential
reliefs U, (x) are shown in the inset.

asymmetry parameter ¢ € (—1,1/3) that includes the point
¢ = 0. Also, since the parameter Z depends not only on the
sum of the frequencies y, and y_ of the potential switching
but also on temperature (via the diffusion coefficient D), the
direction of motion may be controlled by means of tempera-
ture. It should be noted that the parameter v*, proportional to
U i U_, vanishes for on-off ratchets (when either U, or U_
tends to zero). This observation corresponds to expectations,

since the on-off ratchet cannot operate with a symmetric
potential profile.

We present another, more general example that shows
how dynamic effects affect the reversal of motion if the
multiplicative potential energy Vx, f(¢)] = V(x)[1 +/(¢)] is
subject to dichotomous changes: U, (x) = V(x), U_(x) =
aV(x), where o € (=1, 1) and V(x) is a sawtooth potential
with the barrier V7, (Fig. 11). If a =1, there are no
fluctuations in the potential, and hence the ratchet effect is
absent. The case o = 0 corresponds to an on-off ratchet that
provides the directional motion due to spatial asymmetry
(k #0). If « = —1, when the sign of the potential energy
fluctuates, the ratchet effect may only occur due to time
asymmetry (¢ # 0). The stopping points and reversal of
motion are possible in the range of negative o values,
provided x>0 and & <0, since only then does time
asymmetry compete with this type of spatial asymmetry.

Additional options for controlling nanotransport emerge
in the case of sufficiently massive nanoparticles, for which
inertial effects should be taken into account. Under certain
conditions, a setup is possible where a particle of small mass m
moves in one direction due to the ratchet effect, while a
particle loaded with an additional mass M moves in the
opposite direction. This model of motion, referred to as the
molecular shuttle model [124], may be used to move loads
between two given points. To illustrate this mechanism, we
give the expression for the average velocity of an adiabatic
high-temperature ratchet with the additive-multiplicative
potential energy U(x, t) = u(x) + o()w(x) taking into
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account a small inertial correction [113]:

4L
(W) = —— B> Im (wywiw} + 2us wi)

nT
1 1272 7
) 1At — (144,
3 BL-L2 9
A= Im (uywawys + duywiwi + Quiwiwy)
- Im (uywiwj + 2ujw})

(17)

In this formula, u, and w, are the Fourier components of the
terms u(x) and w(x), which are taken into account up to the
first harmonics (¢ = +1,£2,43), and ¢(¢) = +1 describes a
dichotomous process with a large period 7. The smallness of
the inertial correction entails the smallness of the dimension-
less quantity mV/({?L?), while the use of the high-tempera-
ture approximation results in the smallness of the quantity
BV, where V'is the characteristic value of the amplitudes of the
potentials u(x) and w(x). Therefore, in the high-temperature
region, the contribution of the inertial correction
12n%m/(B¢*L?) may be comparable to the main contribu-
tion of the order of (fV')*.

The parameter A is equal to zero for the widely used two-
harmonic potentials (u3 = w3 = 0), and the inertial correction
12n2m/(BC*L?) can only enhance the ratchet effect. If the
shape of the potential relief becomes more complicated
(contains more extrema in the spatial period), then us # 0,
ws # 0, and A4 # 0, and the velocity sign may be changed. It
follows from Eqn (17) that such a possibility arises if the
values of the parameter A fall in the range —3 < A < —9/7.If
this condition is fulfilled, the direction of motion is reversed at
a temperature T = —(2n) ({2 L2 /mkg)(3 4+ A)/(9 + 74).

Figure 12a shows the average velocity for the on-off
ratchet as a function of inverse temperature for the potential
energy of the form

o) =) = [sn () fn (45)
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Figure 12. (a) Average velocity of the inertial on-off ratchet as a function of
inverse temperature, (b) the potential relief defined by Eqn (18) that was
used in calculating the average velocity.

(the corresponding potential relief is shown in Fig. 12b). If
there is no inertia (m — 0), the velocity is positive, and the
nanoparticle moves to the right. It can move in this mode
from point A to point B. If it is loaded at point B with mass
m # 0, then, at sufficiently low temperatures (below the
temperature at which it stops), the velocity is negative, and
the nanoparticle moving to the left returns to point A. It can
be unloaded there and repeat the trip. This implies that it can
operate in a molecular shuttle mode.

Quantum effects open up new ways to control the direction
of motion of a particle capable of sub-barrier tunneling. A
situation was described in [103], where, at sufficiently high
temperatures, the ratchet effect made the particle move in one
direction (the same as in the classical description), whereas at
low temperatures, when tunneling motion was only possible,
the particle moved in the opposite direction. It should be noted
that the described reversal of the direction of motion can be
facilitated by the features of the temperature dependence of the
tunneling transport rate constant [99, 125, 126].

5. Conclusion

Unlike conventional methods of controlling nanotransport,
e.g., by applying forces or by creating a concentration
gradient, the ratchet effect depends on many factors related
to the temperature and viscosity of the medium, parameters
of the asymmetric potential relief, and its fluctuations, and
therefore provides alternative options to control its charac-
teristics. This advantage becomes especially obvious if
compared with standard methods of directional transporta-
tion of materials. Indeed, nanoobjects usually move under the
effect of a magnetic or electric field. To realize directional
motion, for example, in a magnetic field, a drugis applied to a
ferromagnetic nanoparticle or a particle that contains a
ferromagnetic layer. Then it can be moved using a permanent
magnet or when placing the patient in a capsule with a
strongly nonuniform magnetic field. It should be noted that
the procedures for preparing magnetic nanoobjects and
removing magnetic components after delivery of drugs are
rather complex.

If an electric field is used to transport a drug, its particles
must either be charged or have a significant dipole moment.
In the first case, it is necessary to use a certain technology for
the separation of charges, and this separation must be
maintained throughout the entire delivery procedure. In
addition, since the initial field is greatly attenuated in blood
having a large dielectric constant, a sufficiently strong, i.e.,
unsafe, field has to be applied to the patient’s body; otherwise,
its particle-transporting capability will be quite low. If dipole
particles of drugs must be transported, the external electric
field should be significantly nonuniform; moreover, notable
nonuniformity should exist on the dipole scale, at distances
less than the particle size. Creating a field with such a
structure is very difficult.

The situation with the transport of drugs using ratchets
is completely different. The ratchet effect emerges due to
rectification of nonequilibrium fluctuations of various
nature, leading to time dependences of the potential energy
of interaction between the particle and the environment.
This effect can also emerge as a result of specially arranged
external processes in which the average forces acting on the
particle are equal to zero (see Sections 2 and 3). In the
course of ratchet operation, particle flows occur without the
action of macroscopic forces: all acting forces are local
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being effective at distances of the order of one potential
period. The directional motion (ratchet effect) is maintained
in this case throughout the entire duration of fluctuations
and can make the particle move over distances that
significantly exceed the spatial period of potential energy
or effective fields. It should be noted that the standard
mechanisms of transport and separation of materials used in
medicine (electrophoresis, chromatography, etc.) employ
macroscopic gradients.

If the directional movement of nanoobjects is due to the
ratchet effect and is described by diffusion dynamics laws, the
term Brownian motors is used, and if the ratchet effect is
caused by irradiation of nanoparticles, then we speak about
Brownian photomotors. Radiation (in particular, as emitted
by lasers) causes electronic transitions in the particle and,
consequently, changes its characteristics, including dipole,
quadrupole, and higher moments, polarizability, geometric
parameters, etc. For example, in the case of the photomotors
considered in [47], the driving force of the ratchet effect only
emerges if the nanoobject acquires a dipole moment, and this
phenomenon occurs when a photon is absorbed. It is of
importance that the duration, duty cycle, wavelength, and
intensity of the exciting laser radiation can be adjusted using
in this way many control degrees of freedom. Of great
importance is the interaction of the particle with the
environment, and the fact that the nonuniformity scale of
the fields affecting the particle actually corresponds in this
case to the size of the dipole. In other words, the theory
developed in [47] enables tuning of radiation parameters to
achieve the maximum (optimal) velocity of the photomotor in
a given direction. It is also possible to control the size of a
nanoobject using light and induce its directional motion due
to the entropic ratchet effect [74, 93].

It should be noted that the average rate of drug transport
due to the dielectrophoretic exposure of a 1-um particle to an
electric field of the order of 10 kV m~! with a nonuniformity
scale of | mm may be as high as 1 pm s~! [13]. The velocity of
the same particle due to the ratchet effect, which is caused by
fluctuations in the electric field of the order of 1000 kV m~!
created by a mesh of electrodes with a period of 10 um, may be
as high as 0.1 pm s~! for fluctuation periods of the order of
10 s [75]. Thus, though the ratchet effect, generally speaking,
results in small velocities of directional motion compared
with direct methods, these velocities may be significantly
enhanced due to large gradients of fluctuating electric fields.
On the other hand, the ratchet effect is advantageous, since
the magnitude and sign of the velocity of motion may be
controlled by changing the temperature and viscosity of the
medium, as well as the frequency and time asymmetry of
fluctuations (see examples in Figs 6, 8-10).

Deterministic fluctuations in the potential energy of a
nanoparticle yield a relatively narrow frequency distribution
of the average velocity, which has a bell-shaped curve (see
Fig. 5). The highest maximum is obtained in this case for a
dichotomous (stepwise) time dependence of the fluctuation
part of the potential energy. Since the dimensionless
frequency parameter I'L? /D contains, apart from the fluctua-
tion frequency I', the diffusion coefficient D = kg T'/(, which,
in turn, is determined by the temperature 7, the viscosity of
the medium #, and the particle size R ({ ~ 10Rn), this type of
fluctuations is of practical interest in those cases when only
particles of a certain size or at a certain temperature of the
medium must come into motion. If, on the contrary, the goal
is to transport particles of various sizes and at various

temperatures, it is advisable to use stochastic fluctuations,
which yield a rather wide frequency distribution. Due to the
extended HF wing of this distribution, relatively high
velocities of motion of large nanoparticles and at sufficiently
low temperatures may be attained.

The ratchet effect can perform useful work against load
forces, both actual (gravity or a stationary electric field acting
on a charged particle) and generalized (concentration
gradients). Brownian motors with the highest values of the
load forces at which the motion is reversed or with maximum
energy efficiency are naturally the most promising (see Fig. 6).
An analysis of various models of pulsating ratchets showed
that their high efficiency is achieved with a large asymmetry of
the potential profile and adiabatic fluctuations in the
positions of extrema [48, 51, 57, 106].

Given the various factors that affect the direction of
motion (Section 4), the easiest way to achieve the desired
effect is to arrange competition between spatial and time
asymmetry. Indeed, the creation of two competing potential
wells on the period of the potential profile (Fig. 7a) is a rather
laborious task compared to changing the duty cycle of
radiation pulses, which also affects the direction of motion of
a photomotor (see Figs 10 and 11). An additional option to
control the direction of motion arises from changing the phase
shift of the spatial harmonic of the fluctuation contribution to
the potential energy of the particle (see Fig. 9). This effect can
be implemented experimentally using the interference of laser
beams that propagate in opposite directions and form a
spatially periodic potential (as occurs in ratchets in optical
lattices [127-129]). However, it is necessary to take into
account in this case that manifestations of the ratchet effect
may be forbidden for reasons of symmetry [107, 130, 131].

The most impressive example of reversing the direction of
motion is the molecular shuttle, whose velocity sign depends
on the total mass of the nanoparticle (the mass of the
nanoparticle itself and of the load it can transport) [124].
Such a shuttle can apparently be used for multiple transport
of a drug from the point of introduction into the body to the
target area where this drug has a therapeutic effect.

We described in this review the mechanisms of directional
motion that use the ratchet effect, presented its main
parameters and characteristics, and listed the factors that set
the direction of motion. A detailed description of specific
implementations of the ratchet effect, which requires a more
detailed analysis of the properties of real systems, is beyond
the scope of this review, the main goal of which was to present
the basic aspects of ratchets operation.
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