УСПЕХИ ФИЗИЧЕСКИХ НАУК

ОБЗОРЫ АКТУАЛЬНЫХ ПРОБЛЕМ

Природа коэффициента Пуассона аморфных полимеров и стёкол и его связь со структурно-чувствительными свойствами

Д.С. Сандитов

Представлены обзор и анализ работ, касающихся природы коэффициента Пуассона µ стеклообразных систем. Величина µ является более выраженным структурно-чувствительным свойством, чем модули упругости. Рассмотрено обоснование однозначной связи µ с параметром Грюнайзена. В связи с этим выделена проблема взаимосвязи гармонических (линейных) и ангармонических (нелинейных) характеристик. Коэффициент Пуассона оказывается однозначной функцией параметров, характеризующих динамические свойства, критические процессы, и является чувствительным к динамике решётки и атомномолекулярному строению стёкол. Обсуждаются структурные особенности изотропных твёрдых тел с отрицательным коэффициентом Пуассона (коэффициентом поперечной деформации).

Ключевые слова: коэффициент поперечной деформации, потенциал межатомного взаимодействия, ангармонизм, упругие постоянные, ауксетики, аморфные органические полимеры, неорганические стёкла

PACS numbers: 62.20.-x, 63.20.Ry, 81.05.Kf

DOI: https://doi.org/10.3367/UFNr.2019.05.038574

Содержание

- 1. Введение (355).
- 2. Связь коэффициента Пуассона с динамикой решётки (356).
- Коэффициент поперечной деформации и нелинейность силы межатомного взаимодействия (коэффициент Пуассона и параметр Грюнайзена) (357).
- О взаимосвязи гармонических и ангармонических величин. Термодинамический и решёточный параметры Грюнайзена (358).
- Микроскопическая трактовка параметра Грюнайзена. Коэффициент Пуассона и предельная упругая деформация межатомной связи (359).
- Потеря устойчивости твёрдого тела при сдвиге и коэффициент поперечной деформации (361).
- Коэффициент Пуассона и замороженная обратимая деформация стёкол (362).
- Коэффициент поперечной деформации как характеристика изменения объёма деформируемого тела (363).
- 9. Теория Кузьменко (363).
- 10. Теория Пинеды (364).
- 11. Модель случайно упакованных сфер (364).
- 12. Коэффициент Пуассона и рассеяние света от стёкол (366).
- 13. Упругие модули и коэффициент поперечной деформации (366).
- Связь коэффициента Пуассона с вязкостью стеклообразующих расплавов в области перехода жидкость – стекло (368).
- 15. Заключение (369).

Список литературы (369).

Д.С. Сандитов

Бурятский государственный университет им. Доржи Банзарова, ул. Смолина 24а, 670000 Улан-Удэ, Российская Федерация; Институт физического материаловедения СО РАН, ул. Сахьяновой 6, 670047 Улан-Удэ, Российская Федерация E-mail: sanditov@bsu.ru

Статья поступила 26 марта 2019 г., после доработки 31 мая 2019 г.

1. Введение

Коэффициент Пуассона μ , который иногда называют коэффициентом поперечной деформации, равен отношению относительной поперечной деформации тела $\varepsilon_z = \Delta r/r$ к его относительному продольному удлинению $\varepsilon_x = \Delta l/l$ при одноосном растяжении:

$$\mu = -\frac{\Delta r/r}{\Delta l/l} \,. \tag{1}$$

По Ландау и Лифшицу [1] у изотропных твёрдых тел диапазон разрешённых значений μ определяется по известной формуле теории упругости ($B \ge 0, G \ge 0$):

$$\mu = \frac{1}{2} \frac{3B - 2G}{3B + G} \,. \tag{2}$$

В соответствии с этим соотношением при равенстве нулю модуля объёмного сжатия, B = 0, коэффициент Пуассона равен нижнему пределу $\mu = -1$, а когда модуль сдвига равен нулю, G = 0, получаем верхний предел $\mu = 0,5$. Таким образом, μ может изменяться в интервале [1]

 $-1 \leq \mu \leq 0.5$.

Как видим, теоретически возможно существование твёрдого тела с отрицательным коэффициентом поперечной деформации, $\mu < 0$. Это означает, что при одноосном растяжении стержня из такого материала вместо поперечного сжатия ($\Delta r < 0$) происходит его поперечное расширение ($\Delta r > 0$), что, вообще говоря, противоречит здравому смыслу. Однако в последнее время появились публикации (см. обзор [2]), убедительно показывающие существование изотропных твёрдых тел с отрицательным коэффициентом Пуассона [2–7]. В 1987 г., по-видимому, впервые был синтезирован полимерный изотропный пеноматериал с коэффициентом поперечной деформации $\mu = -0,7$ [3, 4]. Такие материалы стали называться ауксетичными или ауксетиками [2, 7] (от греческого *auxetos* — разбухающий).

Наряду с этим необычным явлением обнаружены другие "аномалии", например однозначная связь коэффициента Пуассона с параметром Грюнайзена γ_D — мерой нелинейности силы межатомного взаимодействия (ангармонизма) [8, 9] — и с неупругой деформацией твёрдых тел [10, 11]. В определении коэффициента Пуассона (1) речь идёт о "тихих" статических упругих деформациях, однако μ оказывается однозначной функцией параметров, характеризующих динамические, критические процессы.

Обращает на себя внимание то обстоятельство, что, в отличие от упругих модулей, величина μ выражает особенности не только прямой деформации в направлении действия внешней силы, но и поперечной деформации, происходящей в направлении, не совпадающем с направлением действия силы. Прямая деформация ε_x определяется непосредственным сопротивлением тела в направлении действия деформирующей силы, а поперечная деформация *ε*_z зависит от того, как это тело передаёт внешнее воздействие в других направлениях. Последнее зависит от особенностей атомно-молекулярного строения тела и динамики решётки. По этим и другим причинам коэффициент Пуассона оказывается более выраженным структурно-чувствительным свойством, чем упругие модули, хотя он изменяется в небольших пределах.

В настоящем обзоре предлагается анализ работ, касающихся природы коэффициента Пуассона стеклообразных твёрдых тел. Основное внимание уделяется связи величины μ с динамическими свойствами этих систем и её интерпретации в рамках теоретических подходов по данной тематике.

В разделах 2–7 рассмотрена в основном связь коэффициента поперечной деформации μ с рядом структурно-чувствительных механических и тепловых свойств неорганических стёкол и аморфных органических полимеров, а также некоторых кристаллических твёрдых тел. В разделах 8–14, которые условно можно назвать теоретическими, приводятся определённые суждения о природе коэффициента Пуассона стеклообразных твёрдых тел, основанные главным образом на теориях Кузьменко, Пинеды и модели Берлина, Ротенбурга и Басерста.

2. Связь коэффициента Пуассона с динамикой решётки

Известно, что при статическом упругом нагружении твёрдых тел помимо изменения их внешних размеров и формы происходят "невидимые" внутренние изменения динамического характера, например изменение частоты колебаний атомов в нагружаемом теле [12].

Микитишин [13] обратил внимание на тот факт, что динамика решётки зависит от коэффициента Пуассона через зависимость последнего от параметров межатомного потенциала. Величина $(1-2\mu)$, тесно связанная с относительной объёмной деформацией (см. раздел 8), оказывается, зависит от тепловых колебаний решётки и (в той или иной степени) от температуры Дебая θ_D . Для изотропных структур гранецентрированного и объёмноцентрированного куба зависимость $(1-2\mu)$ от отношения $\theta_D \sqrt{m/T_{ev}}$ (T_{ev} — температура испарения, m — атомная масса) является линейной — экспериментальные точки ложатся на прямые (см. рис. 2 в работе [13]):

$$\frac{\theta_{\rm D}\sqrt{m}}{T_{\rm ev}} \sim 1 - 2\,\mu\,.$$

Поскольку произведение $\theta_D \sqrt{m}$ определяется среднеквадратичным смещением атома из равновесного положения $\langle \Delta r^2 \rangle$, можно рассматривать его как своеобразный аналог атомного смещения Δr_m и, следовательно, элементарного объёма делокализации атома $\Delta v_e = = \pi d^2 \Delta r_m$ в стеклообразных твёрдых телах [14]:

$$\Delta v_{\rm e} = \frac{RT_{\rm g}}{f_{\rm g}B}$$

где πd^2 — площадь эффективного сечения атома, $\Delta r_{\rm m}$ — предельное смещение атома из локального равновесного положения, R — газовая постоянная, $f_{\rm g}$ — доля флуктуационного объёма, замороженная при температуре стеклования $T_{\rm g}$, B — модуль объёмного сжатия.

Поэтому по аналогии с указанной выше линейной зависимостью следует ожидать определённой корреляции между объёмом делокализации атома Δv_e и функцией коэффициента Пуассона $(1-2\mu)$:

 $\Delta v_{\rm e} \sim 1 - 2 \,\mu$.

В самом деле, у ряда неорганических стёкол и аморфных полимеров наблюдается линейная корреляция между функцией $(1-2\mu)$ и элементарным объёмом Δv_e , необходимым для смещения атома из равновесного положения (рис. 1, 2) [15]. Таким образом, коэффициент

Рис. 1. Зависимость функции коэффициента Пуассона $(1 - 2\mu)$ от объёма делокализации атома Δv_e для фосфатных стёкол систем NaPO₃-Li₂SO₄ и NaPO₃-Na₂SO₄. Содержание Li₂SO₄ (мол. %): I - 0, 2 - 10, 3 - 20, 4 - 30; Na₂SO₄ (мол. %): 5 - 10, 6 - 20, 7 - 30.

Пуассона определённым образом связан с динамикой решётки, со смещением частицы из равновесного положения (с амплитудой её колебаний).

3. Коэффициент поперечной деформации и нелинейность силы межатомного взаимодействия (коэффициент Пуассона и параметр Грюнайзена)

Разберём связь коэффициента поперечной деформации μ с параметром Грюнайзена γ_D , который входит в уравнение состояния твёрдых тел и служит мерой ангармонизма колебаний решётки и нелинейности силы межатомного взаимодействия. Параметр γ_D определяется изменением частоты нормальных мод колебаний решётки ν в зависимости от изменения объёма системы,

$$\gamma_{\rm D} = -\frac{V}{v}\frac{\partial v}{\partial V} = -\frac{\partial \ln v}{\partial \ln V}.$$
(3)

Обходя трудности, обусловленные изменением частоты колебаний решётки при переходе от одной колебательной моды к другой, Грюнайзен исходя из уравнения состояния вывел формулу

$$\gamma_{\rm D} = \frac{\beta B V}{C_V} \,, \tag{4}$$

с помощью которой можно вычислять γ_D из экспериментальных данных о коэффициенте объёмного теплового расширения β , изотермическом модуле объёмного сжатия *B*, молярном объёме *V* и молярной теплоёмкости *C_V*.

Наряду с уравнением Грюнайзена (4) предложены другие способы расчёта γ_D . Опираясь на теорию упругости, молекулярную акустику и термодинамику, Леонтьеву [16] удалось усреднить частоту колебаний решётки и непосредственно из определения параметра Грюнайзена (3) вывести следующее соотношение:

$$\gamma_{\rm D} = \frac{3}{2} \frac{B_{\rm A}}{\rho v_{\rm q}^2} \,, \tag{5}$$

где $B_{\rm A}$ — адиабатический модуль объёмного сжатия, ρ — плотность, $v_{\rm q}$ — средняя квадратичная скорость волн деформации, квадрат которой является инвариантом суммы квадратов скоростей распространения продольных ($v_{\rm l}$) и поперечных ($v_{\rm s}$) упругих волн,

$$v_{\rm q}^2 = \frac{v_{\rm l}^2 + 2v_{\rm s}^2}{3} \,. \tag{6}$$

На рисунке 3 сопоставляются результаты расчёта γ_D по уравнениям Грюнайзена (4) и Леонтьева (5) для ряда твёрдых тел (табл. 1) [17]. Как видно, в первом приближении наблюдается удовлетворительное согласие между этими соотношениями. Отклонения от данной корреляции для некоторых твёрдых тел обусловлены, по-видимому, главным образом разбросом значений γ_D , полученных разными исследователями. Например, для алюминия по трём источникам параметр Грюнайзена составляет 2,1, 2,3 и 2,4 [18].

Используя выражение для модуля сдвига $G = \rho v_s^2$ и формулу (6) для v_q^2 , преобразуем уравнение Леонтьева (5):

$$\gamma_{\rm D} = \frac{3}{2} \frac{B_{\rm A}}{\rho v_{\rm s}^2} \frac{v_{\rm s}^2}{v_{\rm q}^2} = \frac{3}{2} \left(\frac{B_{\rm A}}{G}\right) \frac{3}{\left(v_{\rm l}/v_{\rm s}\right)^2 + 2}$$

Рис. 3. Сравнение значений параметра Грюнайзена γ_D , рассчитанных по уравнению Грюнайзена (4) и по формуле Леонтьева (5), для различных кристаллов. Номера точек соответствуют номерам твёрдых тел в табл. 1.

Таблица 1. Сопоставление результатов расчёта параметра Грюнайзена γ_D по уравнениям Грюнайзена (4), Леонтьева (5) и Беломестных – Теслевой (7) (использованы данные [8, 17, 18])

№	Элементы	μ	γ _D				
	и соедине- ния		Грюнайзен (4)	Леонтьев (5)	Беломестных – Теслева (7)		
1	LiF	0,214	1,34	1,35	1,34		
2	NaCl	0,243	1,46	1,53	1,47		
3	LiCl	0,245	1,52	1,47	1,48		
4	KCl	0,259	1,60	1,60	1,54		
5	NaF	0,234	1,57	1,44	1,43		
6	NaBr	0,270	1,56	1,65	1,60		
7	LiBr	0,256	1,70	1,53	1,53		
8	KBr	0,283	1,68	1,67	1,67		
9	Fe	0,292	1,68	1,68	1,72		
10	KI	0,265	1,63	1,60	1,57		
11	Co	0,357	2,10	1,85	2,19		
12	Al	0,340	2,11	2,16	2,05		
13	Ag	0,379	2,40	2,24	2,40		
14	Be	0,034	0,83	0,83	0,82		
15	Y	0,245	1,25	1,40	1,48		
16	NaNO ₃	0,257	1,31	1,27	1,53		
17	NaClO ₃	0,270	1,37	1,61	1,60		
18	Th	0,254	1,40	1,61	1,52		
19	Mg	0,270	1,41	1,64	1,60		
20	RbBr	0,267	1,50	1,76	1,59		
21	Та	0,337	1,73	2,05	2,03		
22	AgBr	0,396	2,33	2,65	2,58		
23	Pd	0,374	2,40	2,44	2,35		
24	Au	0,420	2,80	2,90	2,88		

Далее с помощью известных выражений теории упругости [1]:

$$\frac{B}{G} = \frac{2}{3} \frac{1+\mu}{1-2\mu} , \qquad \left(\frac{v_{\rm l}}{v_{\rm s}}\right)^2 = \frac{2-2\mu}{1-2\mu}$$

в приближени
и $B_{\rm A} \approx B$ приходим к формуле Беломестных – Теслевой [8]

$$\gamma_{\rm D} = \frac{3}{2} \frac{1+\mu}{2-3\mu} \,, \tag{7}$$

Рис. 4. Сравнение значений параметра Грюнайзена γ_D , рассчитанных по уравнению Грюнайзена (4) и по формуле Беломестных – Теслевой (7), для различных кристаллов. Номера точек соответствуют номерам твёрдых тел в табл. 1.

Рис. 5. Сравнение значений параметра Грюнайзена, рассчитанных по уравнению Леонтьева (5) и по формуле Беломестных – Теслевой (7), для натриевоалюмосиликатных стёкол. Номера точек соответствуют номерам стёкол в табл. 2.

	• •	7					/	E 1	101
	, ,	TRUEILO ODOLLOTDO	TT TTO MOD LOTH	 DIAMONDATIO HOT	PHODOO TION COOL THE COTHER W	OTOROT		TOTITIO	
				 пнанаизена на г		() (CK())	использованы	ланные п	911
I HOUTINGH	••••	inpyrne ebonerbu	n napane p	 promanoena mar	pheboushowioensmikumbix	CICROSI (nenosibsobulibi	dampie 1	

Nº	Соста	з по синтезу, мол. %		ρ ,	$v_{\rm l}$, м с $^{-1}$	$v_{\rm s}$, м с $^{-1}$	$B \times 10^{-8}$, Па	μ	γ _D
	Na ₂ O	Al ₂ O ₃	SiO ₂	10 ° KI M °					
1	15	0	85	2,339	5430	3340	342	0,196	1,28
2	15	5	80	2,358	5570	3390	370	0,206	1,31
3	15	10	75	2,410	5697	3510	386	0,194	1,26
4	15	15	70	2,465	5737	3469	416	0,212	1,34
5	15	20	65	2,428	5850	3540	425	0,211	1,34
6	15	25	60	2,472	6000	3568	470	0,226	1,40
7	25	0	75	2,439	5280	3140	359	0,226	1,40
8	25	5	70	2,455	5480	3240	394	0,231	1,41
9	25	10	65	2,461	5610	3330	411	0,228	1,40
10	25	15	60	2,480	5640	3350	418	0,227	1,39
11	25	20	55	2,470	5680	3450	405	0,208	1,32
12	25	25	50	2,499	5790	3490	432	0,215	1,35
13	25	30	45	2,519	6026	3556	490	0,233	1,43
14	35	0	65	2,497	5340	3070	398	0,253	1,52
15	30	5	65	2,486	5500	3200	413	0,244	1,47
16	20	15	65	2,450	5670	3490	390	0,195	1,28
17	17,5	17,5	65	2,447	5746	3458	418	0,216	1,35

которая была получена авторами [8] из иных исходных посылок.

Таким образом, с этой точки зрения коэффициент Пуассона μ и параметр Грюнайзена γ_D оказываются однозначно взаимосвязанными.

Формула Беломестных – Теслевой (7) привлекательна тем, что позволяет рассчитывать γ_D по данным только о коэффициенте Пуассона μ . Оценка γ_D с помощью формулы (7) для многих металлов, ионных и молекулярных кристаллов удовлетворительно согласуется с результатом расчёта по уравнению Грюнайзена (4) (см. табл. 1) (рис. 4) [8, 17]. На рисунке 5 приведена зависимость параметра Грюнайзена γ_D , рассчитанного по формуле Леонтьева (5), от функции коэффициента Пуассона по Беломестных – Теслевой $(3/2)(1 + \mu)/(2 - 3 \mu)$ для натриевоалюмосиликатных стёкол с различным содержанием оксидов (табл. 2 [19]). Видно, что уравнения Леонтьева (5) и Беломестных – Теслевой (7) находятся в хорошем согласии. Такие же результаты получаются для других стёкол.

4. О взаимосвязи гармонических и ангармонических величин. Термодинамический и решёточный параметры Грюнайзена

Отмечая согласие формулы Беломестных – Теслевой (7) с уравнением Грюнайзена (4), необходимо обратить внимание на тот факт, что формула (7) однозначно связывает между собой линейную (гармоническую) μ и нелинейную (ангармоническую) γ_D величины. Встречаются другие подобные корреляции [20–24], например известное эмпирическое правило Баркера [22], выражающее однозначную связь модуля упругости *E* с квадратом коэффициента теплового расширения: $\beta^2 E \approx$ const. Вместе с тем в настоящее время природа этого явления остаётся во многом неясной. Известны лишь попытки качественного приближённого объяснения данного факта [20, 21, 23].

Гармонический, *a*, и ангармонический, *b*, коэффициенты в разложении в ряд потенциальной энергии

взаимодействия атомов U(r) определены соответственно второй и третьей производными функции U(r) при равновесном межатомном расстоянии $r = r_0$ (см. раздел 5). Используя в указанных производных потенциал Ми $(U = -Ar^{-m} + Br^{-n})$, Конторова [20] установила взаимосвязь указанных коэффициентов:

$$b = \frac{m+n+3}{2r_0} a$$

Отсюда обсуждаемое явление Конторова объясняет существованием связи между *a* и *b* типа приведённого соотношения и полученной ею функциональной зависимости от них линейных и нелинейных свойств твёрдых тел.

Таким образом, подход Конторовой [20, 21], а также теория Пинеды [23] (см. раздел 10) указывают на принципиальную возможность реализации корреляций между, казалось бы, совершенно различными по своей природе физическими свойствами твёрдых тел, в том числе между гармоническими и ангармоническими величинами.

Значения $\gamma_{\rm D}$ обычно рассчитывают по формуле типа уравнения Грюнайзена (4), в которое входят тепловые и механические характеристики твёрдых тел. Для кристаллов одного структурного типа с одной системой межатомных связей соотношения, основанные на разных методах, приводят к одним и тем же значениям, например, у ионных кубических кристаллов $\gamma_{\rm D} \approx 1,5-2,0$ (см. табл. 1).

В случае полимерных систем ситуация несколько иная. Вдоль полимерной цепи между атомами имеют место сильные ковалентные связи типа – С – С –, а между цепями — более слабые межмолекулярные связи. Указанные связи имеют разные степени ангармонизма, поэтому в физике полимеров различают решёточный у_L и термодинамический у_t параметры Грюнайзена (см., например, [24, 25]). Решёточный параметр ($\gamma_L \approx 2-4$) отражает ангармоничность низкочастотных межцепочечных колебаний, связанных с межмолекулярным (вандер-ваальсовым) взаимодействием, а термодинамический параметр ($\gamma_t \approx 1$) выражает ангармонизм, усреднённый по внутрицепным и другим колебательным модам. Термодинамический параметр Грюнайзена у_t рассчитывают по уравнению Грюнайзена (4), а решёточный параметр Грюнайзена _{у_L} — по формулам типа (7), которые связывают ур с физическими величинами, определяющимися межмолекулярным взаимодействием.

В щёлочно-силикатных стёклах R_2O-SiO_2 (R == Li, Na, K) имеются также две основные системы связей: ионно-ковалентные -Si-O-Si- внутри кремнекислородной сетки и ионные, обусловленные кулоновским взаимодействием между ионами щелочных металлов (R^+) , находящимися в пустотах сетки, и немостиковыми ионами кислорода (Si-O⁻). Ангармонизм колебаний ионных связей в комплексах $Si - O^- R^+$ выражен сильнее, чем для связей в кремнекислородной сетке (-Si – O – Si–). Такая ситуация характерна для германатных, боратных, фосфатных и других неорганических стёкол, для которых по аналогии с полимерами вводятся решёточный γ_L и термодинамический γ_t параметры Грюнайзена. Величина $\gamma_{\rm L} \approx 1,5-2,0$ у щёлочно-силикатных стёкол совпадает с таковой для ионных кубических кристаллов, а $\gamma_t \approx 1 - c$ термодинамическим параметром Грюнайзена аморфных полимеров [24, 25].

5. Микроскопическая трактовка параметра Грюнайзена. Коэффициент Пуассона и предельная упругая деформация межатомной связи

Рассмотрим сначала двухатомную модель твёрдого тела [26]. Пусть левый атом закреплён, а правый — свободен. Если последний вывести из равновесного положения $r = r_0$, то при малых смещениях $x = r - r_0$ он будет совершать гармонические колебания с параболическим парным потенциалом межатомного взаимодействия U(x), которому соответствует линейная зависимость силы взаимодействия между атомами f(x) от смещения x.

Однако при более значительных смещениях атома x предположение о линейной зависимости силы f(x) не оправдывается. Проявляется ангармонизм — отклонение от линейной зависимости силы межатомного взаимодействия f(x). Атом совершает ангармонические (негармонические) колебания. С точностью до членов третьего порядка (в разложении в ряд Тейлора) энергия межатомного взаимодействия U(x) выражается формулой

$$U = \frac{a_0 x^2}{2} - \frac{b_0 x^3}{3}$$

где a_0 — гармонический коэффициент (жёсткость связи). Коэффициент ангармоничности колебаний b_0 (ангармонический коэффициент) учитывает асимметрию кривых U(r) и f(r),

$$a_0 = \left(\frac{d^2 U}{dr^2}\right)_{r=r_0}, \quad b_0 = -\frac{1}{2} \left(\frac{d^3 U}{dr^3}\right)_{r=r_0}.$$

Перейдём к линейной цепочке атомов. Обозначим через l "период решётки" — расстояние между соседними атомами. Качественное представление о потенциале, в котором движутся атомы такой цепи, можно получить, складывая потенциальные кривые, характеризующие взаимодействие атома с соседями справа и слева: U_- и U_+ . Хотя каждая из них имеет собственный минимум (при $r = l_0$), вблизи которого

$$U = U_0 + \frac{a_0}{2} (r - l_0)^2 - \frac{b_0}{6} (r - l_0)^3 + \dots, \qquad (8)$$

в сумме они дают потенциал $\Phi = U_- + U_+$, симметричный по смещению от положения, равноотстоящего от обоих соседей [25–27]. Возвращающее усилие *F*, приложенное к данному атому, также слагается из сил, действующих на него слева и справа: $F = f_- + f_+$. Каждая из них определяется одной и той же производной парного потенциала:

$$f(r) = \frac{\mathrm{d}U}{\mathrm{d}r} \,,$$

о которой можно составить представление, мысленно дифференцируя U(r). Используя разложение (8), нетрудно установить, что вблизи узла решётки функция f(r) выражается соотношением [27]

$$f(r) \approx a_0 (r - l_0) - \frac{b_0}{2} (r - l_0)^2 \approx \approx c (l - l_0) + a (r - l) - \frac{b}{2} (r - l)^2,$$
(9)

где
$$c = a_0 - b_0 (l - l_0)/2, \ b = b_0,$$

 $a = a_0 - b_0 (l - l_0).$ (10)

Вообще говоря, $\Delta l = l - l_0 \neq 0$, так как решётка может находиться как в сжатом, так и в растянутом состоянии. Обычно отношение $\Delta l/l_0$ настолько мало, что несовпадение минимумов U_- и U_+ не мешает иметь по сумме при малых смещениях параболическую форму, присущую гармоническому потенциалу. Становится очевидным, что относительно слабые перемещения атомов в твёрдом теле должны носить характер гармонических колебаний вблизи положений равновесия. При этом оказывается, что в связанной цепочке атомов, как показал Дебай (см., например, [26–29]), возможны колебания со множеством частот, спектр которых простирается от 0 до максимальной частоты v_m , которая определяется формулой

$$v_{\rm m} = \frac{1}{\pi} \sqrt{\frac{a}{m}}.\tag{11}$$

Здесь т — масса атома, а определяется соотношением (10).

Не вдаваясь далее в детальный анализ динамики решётки, рассмотрим микроскопическую трактовку параметра Грюнайзена.

При переходе от одной колебательной моды к другой изменяются как частота, так и фаза колебаний. Связь между частотой и фазой колебаний обычно аппроксимируется моделью Дебая. В таком приближении параметр Грюнайзена выражается через характеристическую температуру Дебая $\theta_{\rm D} = hv_{\rm m}$ [27–29] (*h* — постоянная Планка),

$$\gamma_{\rm D} = - \, \frac{\partial \ln \theta_{\rm D}}{\partial \ln V} \, .$$

В данной формуле используем соотношение максимальной частоты (11)

$$\gamma_{\rm D} = -\frac{\partial \ln \theta_{\rm D}}{\partial \ln V} = -\frac{1}{2} \frac{\partial \ln a}{\partial \ln V} = -\frac{V}{2a} \frac{\partial a}{\partial V}.$$
 (12)

При изотропной деформации dV/V = 3(dl/l). Проводя дифференцирование в (12) с учётом этого равенства и соотношения (10), приходим к следующей микроскопической интерпретации параметра Грюнайзена [27, 28]:

$$\gamma_{\rm D} = -\frac{l}{6a} \frac{\mathrm{d}a}{\mathrm{d}l} = \frac{lb_0}{6a} \,.$$

Если принять во внимание, что $l/a \approx l_0/a_0$, то тогда

$$\gamma_{\rm D} = \frac{l_0 b_0}{6a_0} \,. \tag{13}$$

Результаты, полученные при анализе линейной цепочки атомов, остаются в силе при переходе к трёхмерному твёрдому телу [26]. Следуя Я.И. Френкелю, представим себе, что мы имеем дело с моделью кристалла, состоящей из трёх слоев, причём крайние слои образованы неподвижными атомами, а атомы среднего слоя колеблются свободно. Трёхмерное тепловое давление, действующее со стороны среднего слоя на крайние слои, оказывается аналогичным тепловому давлению обычного трёхмерного (фононного) газа. При предположении, что данное давление уравновешено упругими силами (внутренним давлением), которые возникают благодаря тепловому расширению, выводится формула для коэффициента теплового расширения трёхмерного твёрдого тела [26, с. 171]

$$\beta = \frac{b_0 k}{2a_0 l_0^2 B} \,.$$

Умножив правую часть последнего равенства на отношение $(3N_A l_0/3N_A l_0)$, его можно представить в виде [30, 31]

$$\beta = \frac{l_0 b_0}{6a_0} \frac{C_V}{BV}$$

где $C_V = 3N_A k = 3R$ — молярная теплоёмкость, $V = N_A l_0^3$ — молярный объём, N_A — число Авогадро, B — объёмный упругий модуль.

Из сравнения этого соотношения с уравнением Грюнайзена (4),

$$\beta = \gamma_{\rm D} \frac{C_V}{BV} \,,$$

получаем приближённый вывод приведённой выше (см. формулу (13)) микроскопической интерпретации параметра Грюнайзена [30, 31]: $\gamma_{\rm D} = l_0 b_0 / (6a_0)$. Последняя формула выводится строго с привлечением квантовой механики, включая область низких температур ($T < \theta_{\rm D}$) [27, 28].

Остановимся на ангармонизме и оценке предельной упругой деформации межатомной связи $\Delta l_{\rm m} = l_{\rm m} - l_0$. При $l = l_{\rm m}$ в точке перегиба кривой U(l) сила взаимодействия атомов f(l) проходит через максимум,

$$\left. \frac{\partial f}{\partial r} \right|_{r=l_{\rm m}} = 0 \, .$$

Используя для зависимости f(l) разложение (9), легко увидеть, что максимальное относительное удлинение связи между атомами выражается как [27]

$$\frac{\Delta l_{\rm m}}{l_0} = \frac{a_0}{l_0 b_0} = \frac{1}{6\gamma_{\rm D}} \,, \tag{14}$$

где принята во внимание микроскопическая трактовка (13) для параметра Грюнайзена.

Таблица 3. Коэффициент Пуассона и рассчитанные характеристики аморфных полимеров: параметр Грюнайзена и предельная упругая деформация межатомной (межмолекулярной) связи (использованы данные [52])

N⁰	Полимер	Сокращённое обозначение	μ	γ _D (7)	$\Delta l_{\rm m}/l_0$
1	Полистирол	ПС	0,34	2,1	0,08
2	Поливинилхлорид	ПВХ	0,35	2,1	0,08
3	Поливинилфторид	ПВФ	0,35	2,1	0,08
4	Полиметилметакрилат	ПММА	0,33	2,0	0,08
5	Эпоксидная смола (отв.)	ЭД-5	0,35	2,1	0,08
6	Поликарбонат	ПК	0,37	2,3	0,07
7	Полифенилизобутилсил-	ΠΦCCO	0,31	1,8	0,09
	сесквиоксан				
8	Полиоксиметилен	ПОМ	0,31	1,8	0,09
9	Полипропилен	ПП	0,34	2,1	0,08
10	Политетрафторэтилен	ПТФЭ	0,32	1,9	0,09
11	Политрифторхлорэтилен	ПТФХЭ	0,40	2,6	0,06
12	Найлон-6	H-6	0,41	2,7	0,06
13	Найлон-7	H-7	0,38	2,4	0,07
14	Найлон-11	H-11	0,40	2,6	0,06
15	Найлон-12	H-12	0,40	2,6	0,06
16	Поли-4метилпентен-1	П4МП1	0,39	2,5	0,07
17	Поливинилиденфторид	ПВДФ	0,31	1,8	0,09

Стекло	μ	$\gamma_{\mathbf{D}}$	$\Delta l_{ m m}/l_0$
Калиево-бо	ратные стён	сла	
$K_2O - B_2O_3$			
К ₂ О, мол. %			
1,1	0,292	1,72	0,10
2,5	0,293	1,73	0,10
3,9	0,293	1,73	0,10
8,5	0,293	1,73	0,10
13,0	0,295	1,74	0,10
18,0	0,301	1,78	0,09
22,8	0,295	1,74	0,10
28,2	0,288	1,70	0,10
33,5	0,303	1,79	0,09
Сульфатно-ф	осфатные ст	гёкла	
NaPO ₃	0,294	1,74	0,10
$NaPO_3 - Na_2SO_4$			
Na ₂ SO ₄ , мол. %			
10	0,299	1,77	0,09
20	0,292	1,72	0,10
30	0,288	1,70	0,10
$NaPO_3 - K_2SO_4$			
К₂SO₄, мол. %			
10	0,316	1,88	0,09
20	0,316	1,88	0,09
30	0,313	1,86	0,09
$0,4NaPO_3 \times 0,6Na_2SO_4$	0,320	1,90	0,09
Щёлочно-сил	икатные ст	ёкла	
Li_2O-SiO_2			
Li ₂ O, мол. %			
10	0,187	1,24	0,13
25	0,223	1,38	0,12
33,3	0,232	1,42	0,12
Na_2O-SiO_2			
Na ₂ O, мол. %			
13	0,205	1,31	0,13
26	0,245	1,48	0,11
33,3	0,255	1,52	0,11
K_2O-SiO_2			
К ₂ О, мол. %			
13	0,230	1,41	0,12
25	0,270	1,60	0,10
32	0,250	1,50	0,11

Таблица 4. Характеристики неорганических стёкол (использованы данные [31, 32])

С привлечением соотношения Беломестных – Теслевой (7) относительная деформация связи (14), так же как и γ_D , оказывается однозначной функцией коэффициента Пуассона,

$$\frac{\Delta l_{\rm m}}{l_0} = \frac{2 - 3\mu}{9(1 + \mu)} \,. \tag{15}$$

У стеклообразных систем относительная предельная деформация межатомной связи, рассчитанная по формуле (15), изменяется в небольших пределах (табл. 3 и 4) [31–33], поскольку μ колеблется в узком интервале:

$$\frac{\Delta l_{\rm m}}{l_0} \approx 0,07 - 0,12$$

что находится в согласии с другими методами оценки этой величины [24, 29].

Таким образом, коэффициент Пуассона аморфных полимеров (см. табл. 3) и стёкол (см. табл. 4) однозначно связан с предельной упругой деформацией межатомных и межмолекулярных связей. Величина $\Delta l_m/l_0$ пред-

ставляет собой критическую деформацию, при которой сила межатомного взаимодействия достигает максимума (происходит переход от упругой деформации к неупругой).

6. Потеря устойчивости твёрдого тела при сдвиге и коэффициент поперечной деформации

Применительно к стёклам ранее была предложена связь между коэффициентом Пуассона и параметром Грюнайзена γ_D , несколько отличная от таковой, описываемой уравнением Беломестных – Теслевой (7) [25],

$$\gamma_{\rm D} = A \frac{1+\mu}{1-2\mu} \,,$$

где множитель A определяется долей флуктуационного свободного объёма f_g , замороженной при температуре стеклования, и он близок к единице:

$$A = \frac{2}{9} \ln \frac{1}{f_{\rm g}} \approx \text{const} \approx 1 \,.$$

Поэтому, приняв *A* в первом приближении за единицу, $A \approx 1$, величину $\gamma_{\rm D}$ можно оценить из данных о коэффициенте Пуассона [25, 29]:

$$\gamma_{\rm D} \approx \frac{1+\mu}{1-2\mu} \,. \tag{16}$$

Подставив (16) в равенство (14), для предельной деформации межатомной связи получаем соотношение, аналогичное выражению (15),

$$\frac{\Delta l_{\rm m}}{l_0} \approx \frac{1 - 2\mu}{6(1 + \mu)} \,. \tag{17}$$

Оценка $\Delta l_{\rm m}/l_0$ по формуле (17) практически совпадает с результатом расчёта по уравнению (15).

Равенство (17) интересно тем, что Немиловым [34, 35] на основе экспериментальных данных установлено, что правая часть (17) (функция коэффициента Пуассона) зависит только от произведения параметров потенциала Ми *m* и *n*,

$$U = -Ar^{-m} + Br^{-n}$$

Для различных веществ взаимосвязь µ и mn выражается следующими эмпирическими соотношениями: — для металлов с гранецентрированной и объёмноцентрированной структурой

$$\frac{1}{mn} = \frac{1 - 2\mu}{6(1 + \mu)} , \tag{18}$$

— для щёлочно-галоидных солей со структурой NaCl, фтористого бериллия, оксидов SiO₂ и GeO₂, многокомпонентных и бинарных силикатных, халькогенидных стёкол

$$\frac{1}{2mn} = \frac{1 - 2\mu}{6(1 + \mu)},$$
(18a)

— для алмаза, веществ с алмазоподобной структурой, для металлов с гексагональной плотноупакованной

структурой

$$\frac{2}{mn} = \frac{1 - 2\mu}{6(1 + \mu)} \,. \tag{186}$$

Как видно, правые части последних трёх соотношений совпадают с правой частью равенства (17). Следовательно, обратная величина произведения параметров потенциала Ми (1/mn) у этих веществ пропорциональна предельной деформации межатомной связи (в соответствии с выражениями (18), (18а) и (18б)):

$$\begin{split} \frac{1}{mn} &\approx \frac{\Delta l_{\rm m}}{l_0} \;, \\ \frac{1}{mn} &\approx 2 \; \frac{\Delta l_{\rm m}}{l_0} \;, \\ \frac{1}{mn} &\approx \frac{1}{2} \; \frac{\Delta l_{\rm m}}{l_0} \;. \end{split}$$

В самом деле, Лазаревым с соавторами [36, с. 100] теоретически показано, что величина (1/*mn*) имеет смысл критической деформации ε_c , при которой изотропное поликристаллическое твёрдое тело теряет устойчивость при сдвиге,

$$\varepsilon_{\rm c} = \frac{1}{mn} \, .$$

При выводе последнего равенства использовано приближение упруго-изотропного поликристаллического тела с модифицированным потенциалом Ми, который не связан с представлениями о парности и центральности межатомного взаимодействия [36, с. 97].

Под "потерей устойчивости твёрдого тела при сдвиге" следует понимать критическую деформацию решётки, при которой происходит переход от упругой деформации к неупругой [36].

7. Коэффициент Пуассона и замороженная обратимая деформация стёкол

Под действием механического напряжения, превышающего некоторый предел $\sigma_{\rm el}$, при температуре 20 °C в силикатных стёклах при определённых условиях возникает неупругая деформация, которая после снятия внешнего напряжения может сохраняться сколь угодно долго. Примечательно, что при нагревании (при температуре ниже и вблизи температуры размягчения $T_{\rm g}$) данная деформация релаксирует практически до исчезновения. Следовательно, она оказывается замороженной обратимой деформацией. Тем не менее, следуя многим авторам, будем использовать термин "пластическая деформация" (см. ссылки в работах [29, 33]).

Аналогичная замороженная обратимая деформация обнаруживается у аморфных органических полимеров. "Пластически" деформированное при температуре 20 °С полимерное стекло, например оргстекло ПММА (полиметилметакрилат), при нагревании до температур, меньших и близких к T_g , возвращается к первоначальному недеформированному состоянию [37, 38], как и у силикатных стёкол. Интересно отметить, что у массивных металлических стёкол, в частности у стекла $Pd_{40}Cu_{40}P_{20}$, обнаружены замороженная деформация и её термостимулируемая релаксация [39], причём основные закономерности этих процессов фактически такие же, как и у неорганических стёкол и аморфных полимеров. Не останавливаясь на различных попытках объяснения природы эффекта пластичности стёкол [29, 33, 37– 42], покажем, что замороженная обратимая деформация стеклообразных материалов фактически однозначно связана с коэффициентом Пуассона.

"Пластичность" хрупких неорганических стёкол удобно изучать методом микротвёрдости. При микровдавливании алмазной пирамидки Виккерса и других заострённых инденторов в силикатное стекло образуется "пластичный" микроотпечаток-лунка. При этом микротвёрдость по Виккерсу H_V у силикатных, германатных и других неорганических стёкол совпадает с предельным напряжением σ_{el} , при превышении которого наблюдается "пластическая" деформация: $H_V \approx \sigma_{el}$ [33, 43]. Поэтому для них за меру замороженной деформации ε_{el} в первом приближении можно принять отношение микротвёрдости к модулю упругости *E*

$$\varepsilon \approx \frac{\sigma_{\rm el}}{E} \cong \frac{H_{\rm V}}{E} \,.$$
 (19)

В свою очередь отношение H_V/E оказывается функцией только коэффициента Пуассона [29, с. 52, 227] (табл. 5),

$$\frac{H_{\rm V}}{E} \cong \frac{1 - 2\mu}{6(1 + \mu)} \,. \tag{20}$$

Принимая во внимание равенство (20), а также соотношение (19), приходим к выводу о том, что замороженная ("пластическая") деформация стёкол является однозначной функцией коэффициента Пуассона µ,

$$\varepsilon_{\rm el} \simeq \frac{1 - 2\mu}{6(1 + \mu)} \,. \tag{21}$$

В соответствии с выражением (21) у ряда стёкол между замороженной деформацией ε_{el} и функцией коэффициента Пуассона $(1 - 2\mu)/(1 + \mu)$ наблюдается линейная корреляция (рис. 6 и 7), что подтверждает справедливость соотношения (21).

Значительная работа по систематизации и анализу экспериментальных данных о коэффициенте Пуассона проведена Костером и Францем [44] (в основном для металлов) и рядом других исследователей [2, 4, 13, 45, 46]. Вместе с тем, в целом, приходится признать, что пока

Рис. 6. Зависимость замороженной обратимой деформации натриевосиликатных (квадраты) и натриевогерманатных (кружки) стёкол $\varepsilon_{\rm cl}$ от функции коэффициента Пуассона $(1 - 2\mu)/(1 + \mu)$. $I - {\rm SiO}_2$; 2-4 — стёкла Na₂O – SiO₂ с содержанием Na₂O (мол. %): 2 - 16, 3 - 20, 4 - 33,5; $5 - {\rm GeO}_2$; $6-8 - {\rm стёкла Na_2O} - {\rm GeO}_2$ с содержанием Na₂O (мол. %): 6 - 5, 7 - 20, 8 - 30.

Стекло	μ	<i>Е</i> , кг с мм ⁻²	$H_{ m V}$, кг с мм $^{-2}$	$\frac{H_{\rm V}}{E}$	$\frac{1-2\mu}{6(1+\mu)}$	$H_{ m V}$, кг с мм $^{-2}$
		Экспер		Расчёт по формуле (20)		
SiO ₂	0,17	7450	692	0,093	0,094	700
Na ₂ O-SiO ₂ Na ₂ O, мол. % 16 20 33,3	0,218 0,235 0,255	6144 5756 5993	442 405 364	0,072 0,071 0,061	0,077 0,071 0,065	473 409 376
GeO ₂	0,197	4333	360	0,083	0,082	373
Na ₂ O-GeO ₂ Na ₂ O, мол. % 5 20 30	0,226 0,250 0,265	5042 6722 5529	370 450 350	0,073 0,067 0,063	0,074 0,067 0,065	383 456 349
K8* БK10* ΤΦ3* ΤΦ1*	0,225 0,250 0,219 0,225	7920 7516 5469 5355	578 553 424 392	0,073 0,075 0,075 0,077	0,074 0,067 0,077 0,074	586 505 420 395

Таблица 5. Упругие постоянные µ, Е и микротвёрдость H_V неорганических стёкол

^{*} Оптическое многокомпонентное стекло.

Рис. 7. Зависимость ε_{el} от функции коэффициента Пуассона $(1 - 2\mu)/(1 + \mu)$ для халькогенидных стёкол: $I - As_{10}S_{90}$, $2 - As_{20}S_{80}$, $3 - As_{28}S_{72}$, $4 - Ge_{13}As_{24}S_{63}$, $5 - Ge_{26}Sb_8S_{66}$, $6 - Ge_{32}As_2S_{66}$.

нет полной ясности относительно физического смысла коэффициента поперечной деформации некристаллических твёрдых тел. В разделах 8–10 обсуждаются теоретические разработки по коэффициенту Пуассона [4, 23, 45, 47].

8. Коэффициент поперечной деформации как характеристика изменения объёма деформируемого тела

Коэффициент поперечной деформации μ характеризует прежде всего изменение объёма тела при деформации [45, 46].

Изменение объёма V = V(r, l) прямоугольного параллелепипеда длиной l и квадратным поперечным сечением со стороной r можно представить в виде [46]

$$\mathrm{d}V = \frac{\partial V}{\partial r} \,\mathrm{d}r + \frac{\partial V}{\partial l} \,\mathrm{d}l. \tag{22}$$

Принимая во внимание соотношение для объёма $V = r^2 l$, находим производные $\partial V/\partial r = 2rl$ и $\partial V/\partial l = r^2$, с учётом которых выражение (22) принимает вид

$$\mathrm{d}V = 2rl\,\mathrm{d}r + r^2\,\mathrm{d}l$$

Преобразование данного равенства с привлечением определения коэффициента Пуассона (1) в дифференциальной форме

$$\mu = -\frac{l}{r}\frac{\mathrm{d}r}{\mathrm{d}r}$$

позволяет связать изменение объёма тела с величиной μ :

$$\mathrm{d}V = -\mu 2r^2 \,\mathrm{d}l + r^2 \,\mathrm{d}l$$

Умножив правую часть этого соотношения на l/l и учитывая, что $r^2 l = V$ и $dl/l = \varepsilon_x$, окончательно можно получить следующую формулу для относительного изменения объёма dV/V при одноосном растяжении параллелепипеда [46]:

$$\frac{\mathrm{d}V}{V} = \varepsilon_x (1 - 2\mu) \,. \tag{23}$$

Таким образом, функция коэффициента поперечной деформации $(1-2\mu)$ и, следовательно, сам коэффициент Пуассона μ связаны главным образом с изменением объёма тела при его одноосной деформации.

9. Теория Кузьменко

Согласно подходу Кузьменко [45], коэффициент Пуассона твёрдых тел характеризует их способность противодействовать изменению объёма. Чем больше μ , тем меньше изменение объёма твёрдого тела при деформации. Верхний предел $\mu = 0,5$ следует из условия, что изменение объёма при деформировании полностью компенсируется противодействием вещества ($\Delta V = 0$). Это условие относится к жидкостям, а для твёрдых тел полной компенсации изменения объёма не происходит, поэтому для них $\mu < 0,5$. Действительно, как видно из равенства (23), чем больше коэффициент Пуассона данного твёрдого тела, тем меньше его относительная объёмная деформация $\Delta V/V$. При $\mu = 0,5$ величина $\Delta V/V = 0$. Аналогичная закономерность наблюдается и по относительным линейным деформациям (см. (13), (17), (18), (21)). Например, с возрастанием μ уменьшается критическая деформация материалов (1/(*mn*)), при которой наступает потеря их устойчивости при сдвиге (18). Чем больше величина μ для данного стекла, тем при меньшем относительном растяжении $\Delta l_m/l_0$ сила межатомного взаимодействия достигает максимума и тем при меньшем значении $\Delta l_m/l_0$ происходит переход от упругой деформации к неупругой (13).

По теории Кузьменко [45] коэффициент Пуассона, помимо сказанного выше, характеризует также долю энергии сдвига *W*_s в общей энергии деформирования *W*:

$$\frac{W_{\rm s}}{W} = \frac{1 - 3\mu^2 - 3\mu^3}{1 + \mu} \,. \tag{24}$$

Чем больше μ , тем меньше относительная энергия сдвиговых деформаций, тем меньшее сопротивление сдвигу оказывает данный материал и тем ближе он в этом отношении к жидкости. Отсюда следует, что коэффициент Пуассона должен быть связан, например, с такой характеристикой неупругости твёрдого тела, как предел текучести.

В самом деле, материалы с небольшими пределами текучести, т.е. с повышенной мягкостью и пластичностью (золото, серебро, медь), имеют высокие значения μ , приближающиеся к 0,5, а хрупкие твёрдые тела с высоким пределом текучести, наподобие кварцевого стекла, имеют малые коэффициенты Пуассона μ .

10. Теория Пинеды

Пинеда (Pineda) [23] теоретически исследовал влияние структурных изменений на упругие постоянные металлических стёкол. С помощью теории Пинеды, на наш взгляд, на качественном уровне (как и в работах Конторовой [20, 21]) можно обосновать взаимосвязь между коэффициентом Пуассона и параметром Грюнайзена (7). Кратко обсудим этот вопрос.

Пинеда исходит из следующих трёх основных допущений: 1) потенциал межатомного взаимодействия состоит из гармонической и ангармонической частей

$$U(r) = a(r - r_0)^2 - b(r - r_0)^3,$$

где *а* — гармонический коэффициент, *b* — ангармонический коэффициент, *r*₀ — межатомное расстояние, соответствующее минимуму потенциала; 2) распределение расстояний между ближайшими атомами является гауссовым; 3) упругие свойства определяются непосредственным окружением атомов — первой координационной сферой.

В окончательные (довольно громоздкие) формулы мгновенных модулей объёмного сжатия *В* и сдвига *G* входят безразмерные параметры:

$$s = \frac{\delta}{r_0}$$
, $\sigma = \frac{\sigma_1}{r_0}$, $\gamma_1 = \frac{br_0}{a}$,

где $\delta = r_1 - r_0, r_1$ и σ_1 — средний радиус и ширина первой координационной сферы соответственно. Величины *s* и σ

характеризуют отклонения межатомного расстояния от его равновесного значения r_0 и среднюю дисперсию вблизи r_0 . Параметр γ_1 , который характеризует степень ангармоничности потенциала, пропорционален параметру Грюнайзена $\gamma_D = br_0/(6a)$ (см. (11)).

Свою теорию Пинеда применил для объяснения экспериментов по структурной релаксации и по всестороннему сжатию металлических стёкол. Коэффициент Пуассона в результате структурной релаксации уменьшается (снижение параметра σ оказывается сильнее), но увеличивается при сжатии под давлением (здесь эффект уменьшения *s* является доминирующим). В целом, теория качественно правильно отражает изменение упругих характеристик в этих опытах.

Теорию Пинеды используем для проверки зависимости отношения упругих модулей B/G и, следовательно, коэффициента Пуассона μ (см. соотношение (2)) от параметра ангармоничности γ_1 . Из теории следует, что такая (практически однозначная) зависимость существует. В самом деле, в соответствии с формулами упругие модули *B* и *G* пропорциональны гармоническому коэффициенту *a* — параметру межатомного потенциала, а их отношение B/G (а значит, и коэффициент Пуассона μ) практически не зависит от *a* и определяется главным образом параметром ангармоничности γ_1 . Отсюда следует зависимость коэффициента Пуассона μ от параметра Грюнайзена γ_D — меры ангармонизма.

Таким образом, с точки зрения теории Пинеды получает определённое обоснование расчёт параметра Грюнайзена γ_D на основе данных о коэффициенте поперечной деформации μ (см. (7)).

11. Модель случайно упакованных сфер

Среди работ, посвящённых природе коэффициента Пуассона, особого внимания заслуживает подход Берлина, Ротенбурга и Басерста [4, 47], предложивших модель случайно упакованных сфер, взаимодействующих между собой в месте контакта двумя видами сил: нормальных к плоскости контакта (центральных сил) и тангенциальных (сил трения), действующих по касательной к данной плоскости. Назовём её моделью БРБ. Предполагается, что нормальные, f_n , и тангенциальные, f_t , силы пропорциональны соответствующим смещениям атома x_n и x_t из равновесного положения:

$$f_{\rm n} = a_{\rm n} x_{\rm n} \,, \qquad f_{\rm t} = a_{\rm t} x_{\rm t} \,,$$

где a_n и a_t — нормальная и тангенциальная жёсткости соответственно. Из модели БРБ следует, что коэффициент Пуассона определяется отношением этих сдвиговых и изгибных жёсткостей, $\lambda = a_t/a_n$ [4],

$$\mu = \frac{1-\lambda}{4+\lambda} \,. \tag{25}$$

При $\lambda = 0$ имеем $\mu = 0,25$, что соответствует ансамблю частиц с центральными силами $(a_n \gg a_t)$. С возрастанием λ величина μ уменьшается и при $\lambda = 1$ $\mu = 0$, а в пределе $\lambda \to \infty (a_t \gg a_n) \mu = -1$. Как видим, модель случайно упакованных сфер предсказывает возможность существования тел с отрицательным коэффициентом Пуассона, $\mu < 0$, и приводит к нижнему пределу $\mu = -1$ [1].

С точки зрения данной модели ауксетичные материалы (с $\mu < 0$) должны обладать высокой жёсткостью связей на изгиб и малой жёсткостью на осевое сжатие –

ź

растяжение: $a_t > a_n(\lambda > 1)$. Фактически все известные потенциалы взаимодействия частиц являются или центральными, или значительно более жёсткими в нормальном направлении, чем в тангенциальном ($\lambda < 1$). Поэтому в окружающем нас мире очень редко встречаются материалы с отрицательным коэффициентом Пуассона.

Важно то обстоятельство, что в формулу модели БРБ (25) входит микроскопический параметр λ , анализ которого может дать определённую информацию о природе коэффициента поперечной деформации μ . Поскольку сдвиговая жёсткость a_t связана с диссипацией энергии деформирования (с силой трения), можно ожидать зависимости $\lambda = a_t/a_n$ от нелинейных эффектов, в частности от ангармонизма, мерой которого служит параметр Грюнайзена γ_D . В самом деле, из соотношения (25) и формулы Беломестных–Теслевой (7) вытекает однозначная связь λ с параметром Грюнайзена:

$$L = \frac{1,5 - \gamma_{\rm D}}{\gamma_{\rm D}} \,. \tag{26}$$

Следовательно, в уравнении БРБ (25) в неявном виде заложена зависимость коэффициента Пуассона от ангармонизма.

Параметр $\lambda = a_t/a_n$, равный относительной тангенциальной (сдвиговой) жёсткости межатомной связи, повидимому, определённым образом связан с относительной энергией сдвига W_s/W в формуле Кузьменко (24). В соответствии с последней, чем больше коэффициент Пуассона μ , тем меньшее сопротивление сдвигу оказывает данный материал и тем меньше относительная тангенциальная жёсткость λ (см. формулу (25)). Отсюда также следует связь величины λ с характеристиками неупругости твёрдого тела.

Рассмотрим связь величин γ_D , μ и λ с особенностями структуры аморфных полимеров и стёкол на атомномолекулярном уровне.

В аморфных органических полимерах на коэффициент Пуассона µ заметное влияние оказывают боковые разветвления основной цепи макромолекулы ("боковые привески" главной цепи). Минимальными значениями μ и $\gamma_{\rm D}$ обладает полиэтилен, у которого роль боковой "привески" играет лёгкий атом водорода. Замещение атомов водорода более крупными и тяжёлыми атомами фтора при переходе от полиэтилена к политетрафторэтилену приводит к возрастанию µ от 0,25 до 0,33 и, соответственно, к увеличению γ_D от 3 до 4. Далее, при замене фтора в повторяющемся соединительном звене политетрафторэтилена атомом хлора и при переходе к политрифторхлорэтилену наблюдается ещё большее возрастание µ (от 0,33 до 0,37) и у_D (от 4 до 5) [48]. Здесь под у_D следует понимать решёточный параметр Грюнайзена (см. выше) [24, 25].

При замещении лёгких атомов более крупными и тяжёлыми атомами на боковых (а также концевых) участках цепей увеличивается нелинейность силы межмолекулярного взаимодействия и ангармонизм колебаний решётки (γ_D), что снижает относительную сдвиговую жёсткость связей λ . В свою очередь уменьшение λ приводит к возрастанию коэффициента Пуассона (см. (25) и (26)).

В неорганических стёклах изменение коэффициента Пуассона тесно связано с локальной деформацией структурной сетки валентных связей, обусловленной смещением мостикового атома (типа атома кислорода в мостике – Si–O–Si–). На смещение мостикового атома

Таблица 6. Характеристики натриевосиликатных стёкол (использованы данные [32])

Na ₂ O, мол. %	SiO ₂ , мол. %	$\gamma_{\mathbf{D}}$	μ
0 15 25	100 85 75	1,20 1,28 1,40	0,170 0,196 0,226
35	65	1,52	0,253

определённое влияние оказывают ионы щелочных и щелочноземельных металлов ("боковые привески").

При увеличении содержания оксида натрия Na₂O (ионов натрия) в натриевосиликатных стёклах Na₂O – SiO₂ от 0 до 35 мол. % параметр Грюнайзена возрастает от $\gamma_D = 1,2$ для кварцевого стекла SiO₂ до $\gamma_D = 1,5$ для стёкол Na₂O – SiO₂ с содержанием 35 мол. % Na₂O (табл. 6), что в соответствии с формулой (26) приводит к снижению относительной сдвиговой жёсткости от $\lambda = 0,25$ до $\lambda = 0$. В свою очередь, согласно уравнению (25), уменьшение λ приводит к возрастанию коэффициента Пуассона от $\mu = 0,17$ у кварцевого стекла SiO₂ до $\mu = 0,25$ у натриевосиликатных стекол Na₂O – SiO₂ (см. табл. 6). Таким образом, возрастание μ в данном случае объясняется уменьшением λ .

Очевидна зависимость относительной тангенциальной жёсткости λ от плотности поперечных связей, определяемой как число валентных связей на один катион n_n у ряда полимеров и стёкол (рис. 8) [49]. У линейных структур (полибутилен, селен, поливинилхлорид), имеющих связанность 2 (два аниона, связанных с катионом вдоль

Рис. 8. Схемы линейной (а), линейно-разветвлённой (б) и сетчатой (в) структур аморфных веществ [49]. Стрелки показывают напряжения растяжения. I — анионы, 2 — катионы; на рис. а плотность поперечных связей $n_n = 0$, $\mu \approx 0.4$; на рис. б $n_n = 1$, $\mu \approx 0.3$; на рис. в $n_n = 2$, $\mu \approx 0.15$.

цепи) (рис. 8а), $n_{\rm n} = 0$ и $\mu = 0,4;$ для линейно-разветвлённых структур со связанностью 3 (B₂O₃, P₂O₅, As₂O₃) $n_{\rm n} = 1$ (рис. 8б) и $\mu = 0,3;$ для структурных сеток со связностью 4 (SiO₂, GeO₂) $n_{\rm n} = 2$ (рис. 8в) и $\mu \approx 0.15$ (т.е. примерно 0,3:2=0,15). Ясно, что с возрастанием плотности поперечных валентных связей ослабляется нелинейность силы взаимодействия атомов, убывает ангармонизм (ур) и в соответствии с зависимостью (26) увеличивается относительная сдвиговая жёсткость связей λ, что, согласно формуле БРБ (25), приводит к уменьшению коэффициента поперечной деформации µ. Плотность поперечных мостиковых связей даёт ключ также к объяснению диаметрально противоположных температур плавления оксидов, прочности связей которых примерно одинаковы. Так, у SiO₂ и GeO₂ температуры плавления значительно выше (1610 и 1115 °С), чем у Р2О5, В2О3 и As₂O₃ (580, 450 и 313 °С соответственно) [49]. То же самое можно сказать о температуре размягчения этих систем, поскольку между температурами плавления T_{melt} и размягчения T_g наблюдается линейная корреляция — правило двух третей: $T_{\rm g} \approx (2/3) T_{\rm melt}$.

Таким образом, коэффициент Пуассона закономерно зависит от особенностей атомно-молекулярного строения стеклообразных систем через величину λ , тесно связанную с мерой ангармонизма $\gamma_{\rm D}$.

12. Коэффициент Пуассона и рассеяние света от стёкол

В связи с природой μ представляет интерес работа Андреева и Бокова [50], в которой экспериментальные данные о температурной зависимости интенсивности рассеяния света R_c в интервале стеклования проанализированы с учётом вклада упругой энергии в термодинамический потенциал. Этот вклад появляется в области низких температур при повышении вязкости расплава, когда коэффициент Пуассона начинает отклоняться от значения $\mu = 0,5$ (рис. 9).

Для расчёта µ предложена формула [50]

$$\mu = \frac{2B\alpha_c^2 - 3\varphi_{\rm el}}{4B\alpha_c^2 - 3\varphi_{\rm el}},$$
(27)

где $\alpha_c = (1/V)(\partial V/\partial c)$ — коэффициент концентрационного расширения, V — объём, c — молярная концентрация, $\varphi_{\rm el}$ — дополнительный член в формуле для интенсивности рассеяния света $R_{\rm c}$, учитывающий вклад упругой энергии, B — упругий модуль объёмного сжатия.

Рис. 9. Температурная зависимость коэффициента Пуассона $\mu(T)$ для расплава натриевоборатного стекла состава (мол. %) $3Na_2O \times 97B_2O$ [50].

Появление $\varphi_{\rm el}$ в формуле для $R_{\rm c}$ обусловлено необходимостью учёта возникновения сдвиговых упругих деформаций при вычислении минимальной работы образования флуктуаций в твёрдых стёклах. С возрастанием температуры коэффициент Пуассона увеличивается до $\mu = 0,5$, при котором $\varphi_{\rm el}$ обращается в нуль, $\varphi_{\rm el} = 0$, что соответствует переходу стекла в жидкость.

На рисунке 9 приведена температурная зависимость коэффициента Пуассона $\mu(T)$ натриевоборатного стекла Na₂O – B₂O₃, содержащего 3 мол. % Na₂O. Здесь зависимость $\mu(T)$ рассчитана по формуле (27) на основе данных о рассеянии света. Из рисунка видно, что при охлаждении расплава заметные отклонения от $\mu = 0,5$ начинают проявляться при температуре около 560 °C (которая заметно выше температуры стеклования $T_g \approx 520$ °C).

В дальнейшем представляет несомненный интерес сопоставление данных о температурной зависимости коэффициента поперечной деформации $\mu(T)$, полученных для одних и тех же стёкол двумя независимыми методами дифракционным и акустическим.

13. Упругие модули и коэффициент поперечной деформации

Представляет определённый интерес произведение плотности ρ на квадрат среднеквадратичной скорости волн деформации $v_{\rm q}^2$ [17]

$$K = \rho v_q^2$$

где v_q^2 для кубических кристаллов является инвариантом суммы квадратов скоростей распространения продольных (v_l) и поперечных (v_s) акустических волн (6) (см. раздел 3).

Данный раздел посвящён исследованию природы величины *K* и установлению её связи с упругими модулями и коэффициентом Пуассона применительно к стёклам, что позволяет получить определённую информацию, касающуюся природы *µ*.

Обратимся к формуле модуля объёмного сжатия *В* кубических кристаллов

$$B = \frac{C_{11} + 2C_{12}}{3}$$

и к соотношению квадрата среднеквадратичной скорости звука v_q^2 , представленному в виде [16]

$$\rho v_{\rm q}^2 = \frac{C_{11} + 2C_{44}}{3} \,,$$

где C_{11} , C_{12} и C_{44} — упругие постоянные второго порядка. Из двух последних выражений видно, что при выполнении условия Коши $C_{12} = C_{44}$, когда между однородно деформированными областями кубической решётки действуют центральные силы, величина $K = \rho v_q^2$ совпадает с модулем объёмного сжатия K = B. Во всех других случаях произведение ρv_q^2 отлично от B.

Убедимся, что, так же как и отношения упругих модулей изотропных тел, в частности отношение модуля сдвига G к модулю объёмного сжатия B [1],

$$\frac{G}{B} = \frac{3}{2} \frac{1 - 2\mu}{1 + \mu} , \qquad (28)$$

величины *G*/*K* и *B*/*K* являются однозначными функциями коэффициента Пуассона *µ*.

Разделив модуль сдвига $G = \rho v_s^2$ на величину $K = \rho v_q^2$, получаем соотношение

$$\frac{G}{K} = \frac{v_{\rm s}^2}{v_{\rm q}^2} \,. \tag{29}$$

С помощью формулы (6) для v_q^2 правую часть данного равенства (v_s^2/v_q^2) выразим через отношение квадратов продольной и поперечной скоростей звука

$$\frac{v_s^2}{v_q^2} = 3\left(\frac{v_l^2}{v_s^2} + 2\right)^{-1},\tag{30}$$

где $v_{\rm l}^2/v_{\rm s}^2$ у изотропных тел является функцией коэффициента Пуассона μ [1],

$$\frac{v_{\rm l}^2}{v_{\rm s}^2} = 2\frac{1-\mu}{1-2\mu} \,. \tag{31}$$

Подставив (31) в выражение (30), а затем (30) в соотношение (29), приходим к заключению, что отношение G/Kявляется функцией только коэффициента Пуассона:

$$\frac{G}{K} = \frac{3}{2} \frac{1 - 2\mu}{2 - 3\mu} \,.$$

Из сопоставления последней формулы с равенством (28) следует, что отношение B/K также является однозначной функцией μ :

$$\frac{B}{K} = \frac{1+\mu}{2-3\mu} \,. \tag{32}$$

Этот результат ранее был получен иным (более сложным) способом [17].

Таким образом, во-первых, как и модуль сдвига, величина $K = \rho v_q^2$ выражается через произведение плотности на квадрат скорости звука, и, во-вторых, при выполнении условия Коши она совпадает с модулем объёмного сжатия. В-третьих, так же как и отношения упругих модулей, отношения G/K и B/K оказываются однозначными функциями коэффициента Пуассона.

В связи с этим величина $K = \rho v_q^2$, обладающая характерными признаками упругих модулей, была названа усреднённым модулем упругости [17]. Такое название является не совсем удачным, поскольку известные модули упругости *E*, *G* и *B* также относятся к усреднённым характеристикам. Поэтому целесообразно назвать *K* эффективным модулем упругости (подошло бы также название "характерный упругий модуль").

При установлении зависимости B/K от коэффициента Пуассона в виде (32) были использованы соотношения для изотропных кристаллов с кубическими решётками. Тем не менее зависимость (32) оказалась оправданной для кристаллических твёрдых тех с другими решётками, а также для ряда неорганических стёкол [17]. В качестве примера на рис. 10 приведены результаты применения выражения (32) к многокомпонентным промышленным оптическим стёклам. Необходимые экспериментальные данные взяты из справочника [51].

Как видно, зависимость отношения B/K от функции коэффициента Пуассона $(1 + \mu)/(2 - 3\mu)$ является линейной, причём в соответствии с равенством (32) прямая проходит через начало координат с наклоном, равным

Рис. 10. Зависимость отношения модуля объёмного сжатия к эффективному модулю упругости B/K от функции коэффициента Пуассона $(1 + \mu)/(2 - 3\mu)$ для многокомпонентных оптических стёкол: I = JK7, $2 = K\Phi6$, $3 = \Phi6$, $4 = K\Phi7$, 5 = K14, $6 = J\Phi5$, 7 = K8, $8 = K\Phi4$, $9 = \Phi13$, 10 = K19, $11 = \Phi4$, $12 = T\Phi1$, 13 = 5K6, $14 = 5\Phi21$, $15 = 5\Phi8$, 16 = 5K10, $17 = T\Phi7$, $18 = \PhiK14$, 19 = TK13, 20 = TK23, $21 = 5\Phi11$, 22 = TK17, $23 = O\Phi2$, 24 = CTK7, 25 = CTK9, 26 = JK4, $27 = T5\Phi4$. (Данные из справочника [51].)

Рис. 11. Зависимость отношения модуля объёмного сжатия к эффективному модулю упругости B/K от функции коэффициента Пуассона $(1 + \mu)/(2 - 3\mu)$ для аморфных органических полимеров при T = 240 К: 1 - полистирол, 2 - поливинилхлорид, 3 - поливинилфторид, 4 - полиметилметакрилат, 5 - поликарбонат, 6 -полифенилизобутилсилсесквиоксан, 7 -эпоксидная смола ЭД-5, 8 -полиоксиметилен, 9 - полиэтилен высокого давления, 10 -полипропилен, 11 -политетрафторэтилен, 12 -политрифторэтилен, 13 -найлон-6, 14 -найлон-7, 15 -найлон-11, 16 -найлон-12, 17 -поли-4-метилпентен-1, 18 -поливинилиденфторид [52].

единице, что подтверждает справедливость формулы (32).

На рисунке 11 представлена аналогичная зависимость для органических стёкол. Разброс экспериментальных точек на рис. 11 обусловлен существенной зависимостью механических свойств аморфных полимеров от тепловой предыстории образцов, а также от технологических условий полимеризации. Тем не менее, как видно из рис. 11, для них, за исключением двух-трёх полимеров, зависимость (32) удовлетворительно согласуется с экспериментальными данными.

Характерной особенностью эффективного модуля упругости K является его связь с параметром Грюнайзена γ_D , который служит мерой ангармонизма колебаний решётки и нелинейности силы межатомного взаимодействия. Тесная связь между K и γ_D следует, например, из

$$K = \frac{3}{2} \frac{B}{\gamma_{\rm D}} \,. \tag{33}$$

При выполнении условия Коши B = K параметр Грюнайзена в данном выражении $\gamma_D = 1,5$. Согласно уравнению (7) этому значению γ_D соответствует коэффициент Пуассона $\mu = 0,25$. Величины $\gamma_D = 1,5$ и $\mu = 0,25$ характерны для ансамбля частиц с центральными силами взаимодействия.

Ангармонизм колебаний решётки и нелинейность силы межатомного взаимодействия проявляются, например, в замороженной "пластической" деформации стеклообразных твёрдых тел [25] (см. раздел 7). Предел текучести $\sigma_{\rm el}$ — напряжение, при превышении которого наблюдается "пластичность" стекла, — является функцией отношения модуля упругости *E* к параметру Грюнайзена $E/\gamma_{\rm D}$, аналогичного отношению $B/\gamma_{\rm D}$ в равенстве (33) [25],

$$\sigma_{\rm el} = \frac{1}{6} \left(\frac{E}{\gamma_{\rm D}} \right). \tag{34}$$

В процессе пластической деформации аморфных полимеров ангармонизм усиливается (возрастает γ_D) и снижаются потенциальные барьеры межмолекулярного происхождения по сравнению с таковыми для недеформированного состояния, которое характеризуется межмолекулярным взаимодействием, определяемым модулем упругости *E*.

Из соотношений (33) и (34) следует, что у стеклообразных твёрдых тел одного класса, у которых $\mu \approx \text{const}$, предел текучести пропорционален эффективному модулю упругости:

$$\sigma_{\rm el}=\frac{1-2\mu}{3}\,K.$$

Как видим, функция коэффициента Пуассона $(1 - 2\mu)$ характеризует "пластическую" деформацию ($\sigma_{\rm el}/K$).

По формулам (7), (33) и (34) можно вычислять параметр Грюнайзена на основе данных только механических испытаний, тогда как по известному уравнению Грюнайзена (4) величина γ_D рассчитывается главным образом по данным о теплофизических характеристиках. Можно убедиться в том, что эти формулы находятся в удовлетворительном согласии с уравнением Грюнайзена [8, 17].

Таким образом, понятие об эффективном модуле упругости может оказаться полезным при рассмотрении механических свойств стеклообразных твёрдых тел с учётом ангармонизма.

14. Связь коэффициента Пуассона с вязкостью стеклообразующих расплавов в области перехода жидкость – стекло

В настоящее время остаются не совсем ясными факторы, контролирующие температурную зависимость вязкости и времени структурной релаксации в области стеклования. В связи с этим интересно отметить наличие линейной корреляции между отношением модулей объёмной и сдвиговой упругости (B/G) и так называемой фрагильностью m — фундаментальной характеристикой температурной зависимости вязкости $\eta(T)$ вблизи температуры стеклования $T_{\rm g}$ [53]:

$$m = \frac{\mathrm{d}\ln\eta(T)}{\mathrm{d}(T_{\mathrm{g}}/T)}\bigg|_{T=T_{\mathrm{g}}}$$

Данная корреляция установлена для большого количества стеклообразных систем, включая стёкла с ковалентными, водородными, ван-дер-ваальсовыми и ионными связями [54]:

$$m = 29\left(\frac{B}{G} - 0.41\right). \tag{35}$$

Этот факт означает, что фрагильность жидкости (температурная зависимость вязкости при температурах, близких к T_g) определяется только значением коэффициента Пуассона μ , поскольку μ является однозначной функцией B/G [1].

Наряду с этим установлена корреляция [54]

$$\frac{T_{\rm g}}{\Delta F_{\infty}} \approx 0.037 \left(\frac{B}{G} - 0.41\right),\tag{36}$$

где ΔF_{∞} — высокотемпературный предел энергии активации вязкого течения расплавов стёкол, соответствующий аррениусовской (экспоненциальной) зависимости $\eta(T)$ при высоких температурах. Из соотношений (35) и (36) следует простое правило: чем лучше стекло сопротивляется сдвиговым напряжениям, а не всестороннему сжатию, тем лучше выполняется обычная аррениусовская зависимость при структурной релаксации [54].

Отметим ещё одну корреляцию, касающуюся величины μ . Как видно из рис. 12, функция коэффициента Пуассона $(1 + \mu)/(2 - 3\mu)$ линейно зависит от доли флуктуационного объёма, замороженной при температуре стеклования: $f_{\rm g} = (\Delta V_{\rm e}/V)_{T=T_{\rm g}}$. (Использованы данные [55].) Флуктуационный объём аморфных веществ $\Delta V_{\rm e}$ обусловлен делокализацией атомов — их предельным смещением из равновесных положений [14] ($\Delta V_{\rm e} = N_{\rm e}\Delta v_{\rm e}$, $N_{\rm e}$ — число делокализованных атомов, $\Delta v_{\rm e}$ — элемен-

но при вланование и поределати и присода р и дона ния, для неорганических стёкол и аморфных органических полимеров: 1 — тяжёлый флинт SF64, 2 — флинтглас F51, 3 — тяжёлый флинт SF16, 4 — флинтглас F2, 5 — стекло для спаев с коваром 8250, 6 — стекло Дуран-50 (обозначения стёкол по каталогу фирмы Schott); 7 — полиакрилат, 8 — поливинилацетат, 9 — поливинилхлорид, 10 полистирол, 11 — полибутадиен, 12 — поливопрен (использованы данные [55]).

тарный флуктуационный объём, необходимый для делокализации атома).

15. Заключение

Из приведённых выше данных видно, что коэффициент Пуассона, несмотря на изменение его значений в небольших пределах, относится к одному из важнейших структурно-чувствительных свойств стеклообразных твёрдых тел. Величина μ оказывается однозначной функцией: параметра Грюнайзена, предельной деформации межатомной связи, замороженной обратимой деформации, доли энергии сдвига в общей энергии деформирования, произведения параметров потенциала Ми *mn*. Кроме того, коэффициент поперечной деформации μ однозначно связан с так называемой фрактальной размерностью структурных возмущений трёхмерной решётки d_f [36, 56],

$$d_{\rm f}=2(1+\mu)\,,$$

а также с размерностью областей локализации энергии, запасаемой деформируемым телом, *D*_f [36, 56],

$$D_{\rm f} = rac{2(1-\mu)}{1-2\mu} \, .$$

Вместе с тем относительно физического смысла коэффициента Пуассона стеклообразных твёрдых тел возникают вопросы, которые остаются не до конца решёнными [2-10, 44-50, 57-59].

Из теоретических разработок заслуживают внимания модель Берлина–Ротенбурга–Басерста [4, 47, 58], теории Кузьменко [45] и Пинеды [23]. С их помощью на качественном уровне можно попытаться объяснить, почему коэффициент Пуассона оказывается однозначно связанным с параметром Грюнайзена, почему у стёкол с высоким пределом текучести значения μ меньше, а у мягких материалов с низким пределом текучести значения μ выше, какими структурными особенностями должны обладать изотропные твёрдые тела с отрицательным коэффициентом Пуассона, почему μ является однозначной функцией критической деформации, при которой происходит переход от упругой деформации к неупругой.

На данном этапе приходится допускать однозначную связь коэффициента Пуассона с параметром Грюнайзена — мерой ангармонизма, что требует в дальнейшем детального обоснования. Это обстоятельство касается общей проблемы взаимосвязи гармонических (линейных) и ангармонических (нелинейных) величин.

Работа выполнена при финансовой поддержке Министерством науки и высшего образования Российской Федерации (грант 3.5406.2017/8.9).

Список литературы

- Ландау Л Д, Лифшиц Е М *Теория упругости* (М.: Наука, 1965); Translared into English: Landau L D, Lifshitz E M *Theory of Elasticity* (Oxford: Pergamon Press, 1970)
- 2. Конёк Д А и др. Механика композитных материалов и конструкций 10 (1) 35 (2004)
- 3. Lakes R Science 235 1038 (1987)
- 4. Берлин Ал Ал, Ротенбург Л, Басэрст Р Высокомолекулярные соединения Б 33 619 (1991)

- Новиков В В, Войцеховски К В ΦТТ 41 2147 (1999); Novikov V V, Voitsekhovskii K V Phys. Solid State 41 1970 (1999)
- 6. Сандитов Д С и др. Деформация и разрушение материалов (4) 11 (2009)
- 7. Evans K E Endeavour 15 170 (1991)
- Беломестных В Н, Теслева Е П ЖТФ 74 (8) 140 (2004); Belomestnykh V N, Tesleva E P *Tech. Phys.* 49 1098 (2004)
- Сандитов Д С, Мантатов В В Высокомолекулярные соединения Б 31 869 (1990); Sanditov D S, Mantatov V V Polymer Sci. 32 789 (1990)
- 10. Черкасов И И ЖТФ 22 1834 (1952)
- Сандитов Д С, Мантатов В В, Сандитов Б Д ЖТФ 79 (4) 150 (2009); Sanditov D S, Mantatov V V, Sanditov B D Tech. Phys. 54 594 (2009)
- Слуцкер А И, Поликарпов Ю И, Каров Д Д ЖТФ 84 (3) 82 (2014); Slutsker A I, Polikarpov Yu I, Karov D D Tech. Phys. 59 391 (2014)
- Микитишин С И Физико-химическая механика материалов 18 84 (1982)
- 14. Сандитов Д С ЖЭТФ **142** 123 (2012); Sanditov D S *JETP* **115** 112 (2012)
- Сандитов Д С, Сыдыков Б С, Сандитов Б Д Журн. физ. химии 88 887 (2014)
- Леонтьев К Л Акуст. журн. 27 554 (1981); Leont'ev K L Sov. Phys. Acoust. 27 309 (1981)
- Сандитов Д С, Беломестных В Н ЖТФ 81 (11) 77 (2011); Sanditov D S, Belomestnykh V N *Tech. Phys.* 56 1619 (2011)
- Беломестных В Н Письма в ЖТФ 30 (3) 14 (2004); Belomestnykh V N Tech. Phys. 30 91 (2004)
- 19. Лившиц В Я и др. Физ. и хим. стекла 8 688 (1982)
- Конторова Т А, в кн. Некоторые проблемы прочности твердого тела (Отв. ред. Φ Φ Витман) (М.–Л.: Изд-во АН СССР, 1959)
- 21. Жузе В П, Конторова Т А *ЖТФ* **28** 727 (1958)
- 22. Barker R E (Jr.) J. Appl. Phys. 34 107 (1963)
- 23. Pineda E Phys. Rev. B 73 104109 (2006)
- Козлов Г В, Сандитов Д С Ангармонические эффекты и физикомеханические свойства полимеров (Новосибирск: Наука, 1994)
- 25. Сандитов Д С, Козлов Г В Физ. и хим. стекла 21 549 (1995)
- 26. Френкель Я И Введение в теорию металлов (Л.–М.: ОГИЗ, 1948)
- 27. Бурштейн А И Молекулярная физика (Новосибирск: Наука, 1986)
- Leibfried G Gittertheorie der mechanishen und thermishen Eigenschaften der Kristalle (Handbuch der Physik, Bd. VII, Tl. 1) (Berlin: Springer-Verlag, 1955); Пер. на русск. яз.: Лейбфрид Г Микроскопическая теория механических и тепловых свойств кристаллов (М.-Л.: Физматгиз, 1963)
- 29. Сандитов Д С, Бартенев Г М Физические свойства неупорядоченных структур (Новосибирск: Наука, 1982)
- 30. Сандитов Д С, Мантатов В В Физ. и хим. стекла 9 287 (1983)
- 31. Сандитов Д С, Дармаев М В, Мантатов В В *Журн. физ. химии* **89** 412 (2015)
- MDL[®] SciGlass-7.8, Institute of Theoretical Chemistry, Shrewsbury, MA (2012)
- Сандитов Д С, Сангадиев С Ш, Сандитов Б Д Деформация и разрушение материалов (3) 2 (2013)
- 34. Немилов С В *ДАН СССР* **181** 1427 (1968)
- 35. Nemilov S V J. Non-Cryst. Solids 353 4613 (2007)
- Лазарев В Б Структурная устойчивость и динамическая прочность неорганических материалов (М.: Наука, 1993)
- Олейник Э Ф Высокомолекулярные соединения А 50 773 (2008); Oleinik E F Polymer Sci. A 50 494 (2008)
- Луковкин Г М и др. Деформация и разрушение материалов (6) 18 (2006)
- Чах К, Ляхов С А, Хоник В А Деформация и разрушение материалов (8) 22 (2006)
- Олейник Э Φ, Руднев С Н, Саламатина О Б Докл. РАН 465 46 (2015); Oleinik E F, Rudnev S N, Salamatina O B Dokl. Phys. Chem. 465 259 (2015)
- 41. Argon A S *The Physics of Deformation and Fracture of Polymers* (Cambridge: Cambridge Univ. Press, 2013)
- 42. Стрельников И А и др. Докл. *PAH* **457** 193 (2014); Strel'nikov I A et al. *Dokl. Phys. Chem.* **457** 108 (2014)

- Сандитов Б Д, Сангадиев С Ш, Мантатов В В, Сандитов Д С Деформация и разрушение материалов (10) 41 (2006)
- 44. Köster W, Franz H Metallurg. Rev. 61 (1961)
- 45. Кузьменко В А *Новые схемы деформирования твердых тел* (Киев: Наукова думка, 1973)
- Иванов Г П, Лебедев Т А Труды Ленинградского политехнического ин-та 236 38 (1964)
- Берлин Ал Ал, Ротенбург Л, Басерст Р Высокомолекулярные соединения А 34 (7) 6 (1992); Berlin Al, Rotenburg L, Baserst R Polymer Sci. 34 559 (1992)
- Перепечко И И Свойства полимеров при низких температурах (М.: Химия, 1977); Пер. на англ. яз.: Perepechko I Low-Temperature Properties of Polymers (Moscow: Mir Publ., 1980)
- 49. Bridge B, Patel N D, Waters D N Phys. Status Solids A 77 655 (1983)
- 50. Андреев Н С, Боков Н А Физ. и хим. стекла 22 407 (1996)

- 51. Петровский Г Т (Ред.) Оптические стекла. Справочник (Л.: ГОИ им. С.И. Вавилова, 1975)
- Голубь П Д Вестн. Барнаульского гос. педагогического ун-та Сер. Естественные и точные науки (8) 101 (2008)
- 53. Angell C A J. Phys. Chem. Solids 49 863 (1988)
- 54. Novikov V N, Sokolov A P Nature 431 961 (2004)
- 55. Coenen M Glastech. Ber. 50 74 (2004)
- Баланкин А С Синергетика деформируемого тела Ч. 1 (М.: Министерство обороны СССР, 1991)
- 57. Сандитов Д С Деформация и разрушение материалов (9) 2 (2015)
- Rothenburg L "Micromechanics of idealized granular systems", Ph.D. Thesis (Ottawa: Carlton Univ., 1980)
- Сандитов Д С Высокомолекулярные соединения А 58 484 (2016); Sanditov D S Polymer Sci. A 58 710 (2016)

Nature of Poisson's ratio of amorphous polymers and glasses and its relation to structure-sensitive properties

D.S. Sanditov

Banzarov Buryat State University, ul. Smolina 24a, 670000 Ulan-Ude, Russian Federation; Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, ul. Sakh'yanovoi 6, 670047 Ulan-Ude, Russian Federation E-mail: sanditov@bsu.ru

A review and analysis of studies concerning the nature of Poisson's ratio μ of glassy systems are presented. The value of μ is a more pronounced structure-sensitive property than are elasticity moduli. The unique relation of μ with the Gruneisen parameter is substantiated. In this connection, the interrelation of harmonic (linear) and anharmonic (nonlinear) characteristics is separately considered. Poisson's ratio proves to be a single-valued function of parameters characterizing dynamic properties and critical processes and is sensitive to the lattice dynamics and the atomic-molecular structure of glasses. The structural features of isotropic solids with the negative Poisson's ratio (coefficient of transverse deformation) are discussed.

Keywords: coefficient of transverse deformation, interatomic interaction potential, anharmonicity, elastic constants, amorphous organic polymers, inorganic glasses

PACS numbers: 62.20.-x, 63.20.Ry, 81.05.Kf

Bibliography — 59 references

Uspekhi Fizicheskikh Nauk 190 (4) 355-370 (2020)

DOI: https://doi.org/10.3367/UFNr.2019.05.038574

Received 26 March 2019, revised 31 May 2019

Physics - Uspekhi 63 (4) (2020)

DOI: https://doi.org/10.3367/UFNe.2019.05.038574