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Abstract. The main theoretical and experimental results of the
study of magnetic skyrmions in films of isotropic chiral mag-
nets are considered. A significant part of the paper presents
new results that were not included in previous monographs and
reviews. Skyrmions are formations characterized by a quant-
ized topological number. They attract considerable attention
of researchers due to their dynamics in external fields, which
has promising features in terms of applications in spintronics.
Special attention is given to the structure and interaction of
3D skyrmions, and a new magnetic structure — the chiral
bobber — is considered.
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1. Introduction

The term ‘skyrmion’ was proposed by Tony Skyrme in the
1960s to refer to a solution with a topological singularity in a
nonlinear sigma model from the field of elementary particle
physics [1-3]. Since then, many different versions of the
concept of ‘skyrmions’ have been used to designate states
and localized particle-like excitations in various condensed
matter, including two-dimensional electronic gases with the
quantum Hall effect [4], Bose—Einstein condensates [5], liquid
crystals [6], and superfluid 3He.
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The first skyrmions were observed in 1983 [7] (see also
monograph [8]) in the chiral superfluid A-phase of *He where
the Cooper pairing of atoms occurs in the state with spin
S = 1 in the p state with orbital moment L = 1. Experiments
using the nuclear magnetic resonance (NMR) method clearly
indicated the existence of new superfluid vortices with a
velocity vy, which, unlike the velocity of vortices in “He, was
not determined by the phase gradient and was nonsingular on
the vortex axis. Quantization of the circulation of these
vortices was determined by the distribution of the field of
vector I (|I] = 1) associated with the orbital part of the order
parameter and its topology. In the cross-section plane of the
vortex, the field I takes all the values on the sphere S? twice. It
is this that leads to the formation of new vortices in superfluid
3He-A, called skyrmion vortices. The topology of such
particle-like solitons, including three-dimensional (3D) soli-
tons, merons, and hopfions, was discussed in [8, 9].

However, in recent years, skyrmions have been very
actively investigated in the scope of solid-state magnetism,
where new spin structures are also called skyrmions. These
textures are magnetic vortices but, unlike the previously
studied vortex structures [10—12], they are formed in mag-
netic crystals without a center of inversion (chiral ferro-
magnets). In such systems, the competition between the
exchange interaction and the Dzyaloshinskii—-Moriya inter-
action caused by the spin-orbital coupling leads to the
appearance of noncollinear or nonplanar spin structures,
such as magnetic vortices, domain walls, and helices.

In theory, magnetic vortices as structures with finite
energy were predicted in noncentrosymmetric magnetic
crystals [13] as early as 1989 (see also [14]). Such vortices
were later called magnetic skyrmions [15]. Somewhat later, by
analogy with the Abrikosov vortex lattice in type II super-
conductors, Bogdanov et al. pointed out the possibility of
forming a skyrmion lattice in a certain range of magnetic
fields in a number of noncentrosymmetric crystals [16—19]. In
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2010, in experiments with an Feys5CogsSi thin film using
transmission electron microscopy (TEM) methods, Tokura’s
group found a stable 2D skyrmion lattice in a wide
temperature range down to almost zero temperature [20].
This work initiated an avalanche of publications on the study
of skyrmions and other textures in bulk and thin-film chiral
magnets.

Skyrmions are characterized by a quantized topological
number and attract considerable attention of researchers,
since their exotic dynamics in external fields have promising
properties for applications in spintronics. Today, the litera-
ture on the structure, physical properties, and dynamics of
skyrmions, including technical applications, is rich (see
monographs [21-25] and reviews [26-31]).

This review presents the main theoretical and experimen-
tal results on the study of magnetic skyrmions in films of
isotropic chiral magnets. A significant part of the review is
devoted to new results that were not included in previous
monographs and reviews. Unfortunately, for a number of
reasons, F N Rybakov, who with his colleagues made a
decisive contribution to our collaboration, could not be a
coauthor of this review.

Section 2 provides a brief introduction to helicoidal
structures in chiral magnets, including their theoretical
description based on the Ginzburg—Landau functional and
the results of the first experiments for detecting one-dimen-
sional helical structures.

Section 3 provides a theoretical description of the skyrm-
ion and 2D skyrmion lattice in a bulk crystal as well as the
results of observations by Tokura’s group of skyrmion
lattices in real space in a thin film of Fe( sCog 5Si using TEM
methods. The experimental phase diagram of magnetic
structures in a thin film obtained by Tokura’s group
demonstrated its significant differences from the phase
diagrams in a bulk crystal.

The first 3D calculations of modulated chiral states in thin
films of cubic helimagnets are presented in Section 4. It is
shown that conical modulations of helicoids and skyrmion
lattices provide a specific mechanism for stabilizing these
structures in a wide range of magnetic fields at low
temperatures.

In Section 5, a new phase (a stack of spin helices) in a
certain range of magnetic fields and film thicknesses of an
isotropic helimagnet is predicted using computer simulation.

The structure and properties of the new particle-like
state— the so-called chiral bobber predicted in [32]—are
discussed in Section 6. As distinct from the previously known
magnetic localized structures— domain walls, helices, skyrm-
ions, vortices—a thermodynamically stable chiral bobber is
formed on the phase interface or on the surfaces of chiral
magnets.

Section 7 presents the results of experimental detection of
a chiral bobber in thin plates of an FeGe helimagnet using off-
axis electronic holography. A new concept of magnetic solid
state memory is proposed based on encoding the data stream
with a chain of alternating magnetic skyrmions and chiral
bobbers, which play the role of bits 1 and 0.

Experimental and theoretical studies of the interaction of
skyrmions with each other and with the edges of samples in
nanostrips of an FeGe chiral magnet are described in Section
8. It is shown that in magnetic fields exceeding a certain
critical value the nature of the interaction of skyrmions
changes from attraction to repulsion, which is quantitatively
consistent with the results of micromagnetic simulation.

Section 9 presents some results of the theory of 2D
magnetic helical textures of the FeGe helimagnet experimen-
tally discovered in [33]. Analytical and numerical methods
made it possible to determine the structure of these helical
textures and predict spiral lattices.

2. Helicoidal structures in cubic chiral magnets

Let us first consider localized magnetic structures in crystals
without a center of symmetry. Typical examples are manga-
nese silicide MnSi (the first thoroughly studied magnetic
system without an inversion center [26]), FeGe, and
Fe.5CogsSi. Let us recall that the center of symmetry of an
elementary cell is a mathematical point characterized by the
fact that, on a line drawn through this point, atoms of the
same type are located at the same distances on both sides of it.
The MnSi compound is a ferromagnetic 3d-metal with a cubic
crystal structure B20 without a center of symmetry (spatial
group P2,3) (Fig. 1). This compound exists in two versions
(right-handed and left-handed) which are mirror images of
each other. Such crystals are called enantiomorphic.

Atoms in the right-handed modification of MnSi have

coordinates
(x,x,x) 1er l—x —X —X ler —X
bl I k) 2 72 bl v b “72 ’ I’
l—x —X l—i—v
2 b 72 - b

where x is measured in units of the lattice constant:
xvn = 0.137, xs; = 0.845. The left-handed modification
corresponds to the replacement x — 1 — x. Magnets without
a center of symmetry are often called chiral or helicoidal. A
microscopic model of a Heisenberg ferromagnet is used to
theoretically describe the magnetic structures of the MnSi
compound with energy of the form

E= Z Z (=Jijsisy + Dyjfsi x sj]) — guBHZsi, (1)

i)

which includes the exchange interaction of spins s; on the ith
node of the lattice with exchange integrals J;;, the Dzya-
loshinskii-Moriya (DM) interaction with the anisotropic
vector D;;, and the interaction with the external magnetic
field H (up is the Bohr magneton, g is the gyromagnetic ratio).
In typical magnets without a center of symmetry, the
Heisenberg exchange interaction between adjacent spins has
the form

*JS,'SJ', |S,‘| = ], J > 0,

and in the ground state lines up the spins in one direction
(Fig. 2a) [25]. In cubic crystals with a B20 crystal structure,

Mn [ Si

N
=
=}

Figure 1. (Color online.) Crystal structure of (a) right-handed and (b) left-
handed modifications of MnSi.
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due to the loss of inversion symmetry, a nontrivial DM
interaction occurs [34, 35] due to the spin-orbital coupling of
neighboring atoms: H = A(S;L; + S;L,). For the two nearest
spins, the DM interaction has a simple form: Dy,[s; x s,] [35].
The constant vector Dy, is expressed in terms of matrix
elements of the operators of the orbital moments of electrons
(L;, L) in the basis of atomic orbitals and depends on the
difference between the energies of atoms in excited and
ground orbital states. This interaction is minimized for
mutually perpendicular neighboring spins (Fig. 2b). As a
result, due to the competition of Heisenberg and DM
interactions, a nonuniform ground state is established in
B20 structures—a helical (screw-shaped) structure [36]
(Fig. 3a).

The spin structure in the unit cell of MnSi is described by a
superposition of four helices:

s; = a;cos (kr) + b;sin (kr), i=1,2,34,

where r is the position of the atom in the cell, a;, b; are unit
vectors, and a;b; = 0. It is seen that the spins in each magnetic
sublattice rotate in a plane perpendicular to the vector
¢; = a; X b;. The wave vector k sets not only the direction of
modulation but also the change in the phase of rotation of the
spins when moving from the initial cell to the neighboring
ones. The modulation period depends on the temperature,
and it is incommensurate with the lattice period. Therefore,
helical structures are often called long-period or incommen-
surable. Review [27] and book [37] were among the first
reviews and monographs that set out the theory of long-
period structures. A microscopic theory of MnSi helical
structures with energy (1) is proposed in [38], where, in
particular, it is shown that in the approximation of the
nearest neighbors, the modulus of the vector k is expressed
in terms of the components of the Dzyaloshinskii-Moriya
vector D = Dy

(D, — 2D, + D.)
3J

2
k| = , Dip=D=(D,,Dy,D.).

In [38], the relationship between microscopic and phenomen-
ological theory is established. It is shown that, in the
continuum approximation, the energy (1) of the helical

666 0é-0 ¢ o

Figure 2. (Color online.) Main interactions in chiral magnets: (a) ferro-
magnetic exchange, (b) noncollinear DM interaction. (From [25].)

structure takes the form

Os 0Os
E—Jdl‘|:.]]a—xia—xi+l)]

(s rots) + Eskew
The first two terms coincide with the energy in a Ginzburg—
Landau-type phenomenological theory with parameters

3J

Ji=". Di=D;—2D,+D..

The skew energy Egiew 1S proportional to

2
J<1 242 (M) )
J
and is associated with the skews of neighboring spins (or with
the disorientation of the rotation axes ¢; (i = 1,2, 3,4) of four
helices with different positions of Mn in the unit cell).

A model used for a macroscopic description of magnetic
structures in compounds B20 has the energy density:

on On

E=A4——
axiaxi

+ Dn rotn — MHn, (2)

where n = (sin 6 cos @, sinfsin @, cosf) is the unit vector
along the direction of magnetization, M is the spontaneous
magnetization of the material, and A4 is the exchange
interaction constant.

The theoretical study of one-dimensional chiral structures
was carried out in papers [16, 34, 35]. In the absence of a field,
the ground state is a helix with the vector k = (0,0, k) and the
period Lp:

_Ipl

0= =
24°

@:kz, k LD:

T

2 )

with the distribution of the magnetization
n = (cos (kz), sin (kz),0)

and the energy density

D2
24M°

HpM
2 )

Epet = — Hp =

as shown in Fig. 3a, b where the arrows show the directions of
the vector n (3) in the planes z = const, in which the magnetic
moments are codirectional. Magnetic moments change their
orientation when going from layer to layer, forming a helical
wave with the period Lp determined by the constants of
exchange interaction and spin-orbit coupling. When the latter

k| = 2n/Lp
Lp = 4n4/|D)|

Conical helix Helicoid

Figure 3. Schematic representation of various modulated states in chiral magnets: (a) a spin spiral in the absence of a magnetic field with a wave vector k
along the z axis, (b) the location of the helix in planes. Under the influence of a magnetic field, the helix (a) is transformed either into a conical helix (c) with
an inclined magnetization and a wave vector along the magnetic field or into a longitudinal helicoid (d).
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decreases, Lp goes to infinity, which corresponds to the
transition to a homogeneous ferromagnetic state. In various
types of B20 magnets, the structure period Lp varies from a
few nanometers to several hundred nanometers. In cubic
helimagnets in the absence of a field, the ground states will
also all be helicoidal structures that are obtained from (3) by
simultaneous rotation of the spin and coordinate spaces.

In a magnetic field, there are two ground states that differ
in the directions of the magnetic field and magnetization. In
the magnetic field H = (0,0, H) parallel to the helix vector,
the spins deviate to the direction of the field, and the simple
helix is transformed into a conical helix (forming a conical
phase). In the conical phase (Fig. 3c), the distribution of
magnetization is as follows:

H 2n
0=—, &=— 4
cos 0 I z 4)
with energy density
H?+ H}
Eeone = ————L2 M. (5)

2Hp

In the critical field H = Hp, the conical phase transforms into
a ferromagnetic state in which all spins are unidirectional with
the field vector, and the energy density is expressed as
Ew = —HM (H > Hp). From a comparison of energy
densities, it follows that the field-dependent transition
between the conical and ferromagnetic phases is a second-
order phase transition.

If the magnetic field H = (0,0, H) is perpendicular to the
helix vector k = (k,0,0) and @ =mn/2 (as on the Bloch
domain wall), then the vector n lies in the plane yz,

n = e, sin0(x) + e, cos 0(x),

where the angle 0(x) defines the modulated helicoidal structure
(Fig. 3d), the explicit form of which,

cos sn 2VHx sin cn 2VHx
— = " m in - = ——m
2 mLp/Hp' ’ 2 mLp\/Hp’ '
(6)
is found by integrating Euler equations
2
2AﬂfHMsin0 =0
dx?

for the functional (2). Here, sn (x,m) and cn (x, m) are Jacobi
elliptic functions with the modulus m (0 < m < 1). The
parameter m is determined by minimizing the average energy
E per period L of the structure:

2 4E(m)\  Dn
m2+K(m)) mK(m)

HM
24
(7)

_ 1 (L
E:—[ Edz=MH<1—
L),

where K(m) and E(m) are complete elliptic integrals of the
first and second kind, respectively. Direct calculations show
that the average energy is minimal if m satisfies the implicit
equation

mny/Hp — 4VHE(m) = 0. (8)

Then, the equilibrium average energy £ and the period of the
helicoid L are expressed as

1

> 2
E= 5 H(m’ ~2)M,
1 [Hp 4 ©)
L= T mLpK(m) = = LpK(m)E(m) .
Equation (8) has a solution under the condition
Hp 4
H =’

Formulas (7)—(9) give a complete analytical description of the
helicoidal structure. The period of the helicoid continually
increases from L = Lp at H = 0 (since £(0) = K(0) = /2 at
m = 0) up to infinity in the critical field H, (at m = 1):

_I{DTE2
T

HL (10)

In this case, the explicit form of the helicoidal structure
changes from the sinusoidal one,

2
cosﬂzcos<—nx), H=0,
Lp

to the localized one,
2

cos=1-— 5, H=H..
cosh [n?x/(2Lp)]

In magnetic fields H > H., equation (8) has no solutions. The
ground state is § = 0 (ferromagnetic ordering).

In a number of experimental papers (e.g., [39-45] and
references therein), helical structures in compounds
Fe;_Co,Si and MnSi have been studied using neutron
scattering. In an Fe;_,Co,Si isotropic helimagnet, a helical
structure with the vector k = (k, 0,0) along the direction [100]
and with the magnetization M = |M|(0, sin (kx), cos (kx))
[46] was observed using the TEM method. Unlike neutron
scattering, which provides information about the magnetic
structure in the momentum space, the TEM method allows
the magnetic structure to be visualized in real space. This has
the advantage that separate spin textures, dislocations of the
skyrmion crystal, etc. can be observed with changes in
temperature and magnetic field. TEM involves studying thin
samples using an electron beam. When a flow of electrons
irradiates a ferromagnet, the Lorentz force induced by the
magnetization component orthogonal to the incident electron
beam deflects the beam, after which it focuses on the imaging
device. The transport intensity equation (TIE) is used to
process the TEM results [47].

The helical structure Fe;_,Co,Si shown in Fig. 4 (below
the Néel temperature 7 = 38 K) is obtained in [46] using the
TEM method with an electron beam perpendicular to the film
plane. The image in Fig. 4a clearly shows the distribution of
magnetization in the periodic structure of the strips (the strips
are orthogonal to the axis [100]). The direction and amplitude
of the magnetization are represented by changes in color and
brightness according to the color map (lower right corner of
Fig. 4a). Green and purple pairs of strips represent areas with
opposite magnetic orientation; the darker regions correspond
to a lower local magnetization amplitude. Sinusoidal modula-
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Figure 4. (Color online.) Helical spin order in Fe;_,Co,Si (see explanations in the text).

tion in Fig. 4b (the profile of the magnetization amplitude
along the bright line in Fig. 4a) indicated a helix spin ordering
with a period of 90 nm along the [100] axis, which is in good
agreement with neutronographic results [48—50].

Another interesting feature of the magnet structure
Fe;_,Co,Si, according to [46], is the presence of topological
magnetic defects. Experimental results revealed defects in the
helical structure that are similar to grains and dislocations in
the crystal lattice [51]. Figure 4c shows the magnetization
distribution in the sample, consisting of several areas
separated by wavy lines with dark contrast. Within each
region (magnetic domain), there is a periodic order of spins
with a given direction of the helix axis. Most of the
neighboring regions are characterized by a slight disorienta-
tion of the helix axis, but with no change in the period of the
helix. Spin strips can be seen even inside dark-contrast areas
where the order of spins in the helix is less regular. Therefore,
the wavy dark-contrast region can be called the helical
boundary of the magnetic domain. After the sample was
heated to the temperature 7 > TN and then cooled to the
initial temperature (20 K), new domain structures appeared,
which differed from the previous ones in shape and size.
Domain structures are also sensitive to magnetic fields.
Figure 4d schematically shows the magnet edge dislocation
which is located in the area indicated by the arrow in
Fig. 4c.

3. Two-dimensional skyrmion lattices

As mentioned in the Introduction, two-dimensional magnetic
vortices — skyrmions in crystals without an inversion center
— were first predicted [13, 14] in 1989-1990 by analogy with
vortices in type II superconductors. In such magnets,
localized structures with finite energy can exist, which are
stabilized by the negative DM interaction. In [16], the
structure of isolated skyrmions at different values of the
magnetic field and the easy-axis anisotropy parameter in
chiral magnets of the crystal classes D,, C,, (n = 3,4,6) is
investigated using numerical integration of the Lagrange—
Euler equations for the energy functional (2). Profiles of

skyrmions were defined using the substitutions
0=00). @=¢+3, (11)

0=00p), o=¢ (12)

and asymptotic conditions 0(oco) = 0, 0(0) = = in the polar
coordinate system (p, ¢). Such structures are called Bloch and
Néel skyrmions, respectively.

From asymptotic conditions n — (0,0, —1) (for p — o0),
it follows that we can consider this field on an extended plane
R? to which an infinitely remote point (co) is attached. Such a
plane is isomorphic to a two-dimensional sphere, in the
symbolic notation S% = R2Uco. On the other hand, the
field n(x,y) takes values on the unit sphere S,zz > =1). In
other words, the function n(x, y) maps the sphere Si to the
sphere Si. In topology, the set of sphere-to-sphere mappings
is divided into equivalence classes (homotopy classes), and
continuous deformation can translate mappings only within a
single class. Each homotopy class can be assigned an integer
Q, called a topological charge, which does not change when
the field is continuously deformed. For a field of a unit vector,
the topological charge is defined by the expression

0= ﬁjsin 0(0:00,9 — 0,00,9) dxdy.

Simple calculations show that the topological charge for a
skyrmion has the form

1 (. 1
0= HJSIH@d@d(D = —E(cosﬂ(oo) —cos0(0)) = —1.

In addition, in [16, 18, 52], a two-dimensional skyrmion
lattice was predicted, similar to the Abrikosov vortex lattice
in type II superconductors. The hexagonal lattice cells were
approximated by circular cells, and the energy of the spin
texture of a unit area

2 R
w= F,[o E(0(r),r) dr
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Figure 5. (Color online.) Topological spin textures in Fey sCog 5Si film. (a) Helical and (b) skyrmion structures predicted by simulations using the Monte

Carlo method. (c) Diagram of the spin configuration of skyrmions.

was numerically studied in this approximation under bound-
ary conditions

000)=m, O(R)=0.

Here, E(0(r),r) is the energy density of the magnet, R is the
radius of the cell. The results of the calculations give the
equilibrium radius R for the vortex cell, which depends on the
external magnetic field and the anisotropy parameter.
Finally, in [17], using a model that allows for changes in
spontaneous magnetization (a typical example is metal
magnets), it is shown that skyrmion textures as ground states
can exist in many chiral magnets, including those on the
surfaces of thin films and in bulk samples.

Experiments on small-angle neutron scattering in MnSi
[53] and Fe(5Coy5Si [54] compounds have shown that, in a
certain limited range of temperature and magnetic field
parameters, six peaks of Bragg reflections from a hexagonal
lattice strictly perpendicular to the magnetic field are
observed for all orientations of the magnetic field relative to
the lattice of atoms. In [53], it is suggested that they
correspond to a new magnet phase called the A-phase. The
magnetization in this phase can be approximated by a
superposition of the magnetizations of three helicoidal
structures that are perpendicular to the external field and
rotated 120° relative to each other. The spin texture with the
lowest energy can be considered a 2D lattice of magnetic
vortices for which the magnetization in the center is directed
opposite to the vector of the applied field. The authors of [53],
after analyzing theoretical and experimental data, concluded
that the skyrmion lattice is stabilized by thermal fluctuations
in the A-phase.

A two-dimensional skyrmion lattice in real space was first
observed in a thin Fej sCoq 5Si film using TEM methods [20].
The results of Monte Carlo simulation in [20] for a discrete
version of the Hamiltonian in an external magnetic field
predict that the helical structure will transform into a two-
dimensional skyrmion lattice when the film thickness is close
to the period of the helical structure. Observations of TEM in
the zero field at temperatures below the magnet transition
temperature (38 K) clearly show the strip structure (Fig. 5a)
with a transverse magnetization component and a period of
90 nm. The helical structure is formed along the directions
[100] or [010]. If the magnetic field (50 mT) is applied
normally to the plate, then, as predicted in the simulation, a
two-dimensional hexagonal lattice of skyrmions is observed
(Fig. 5b). A diagram of the spin configuration of skyrmions
on an enlarged scale is shown in Fig. Sc. The lattice period is
of the same order of magnitude as the period of the original

strip structure— 90 nm. Every skyrmion has a gain in energy
of DM interaction. The areas between skyrmions give a gain
in the energy of the magnetic field. Thus, a tightly packed
hexagonal lattice of skyrmions provides a gain in both
energies. Twisting of spins counter-clockwise in the region
of each skyrmion reflects the sign of the DM interaction for
chiral magnets. As follows from the simulation results, the
spins in the black centers of the skyrmions are directed
downwards.

Field and temperature dependences of spin textures are
also investigated in [20]. First, the isothermal change in the
spin texture in a magnetic field applied along the normal (001)
to the surface of the film is studied. The configuration of the
magnet structure in the absence of a field coincides with the
helical structure along the direction (100). When the magnetic
field increases to 20 mT, a fragment of the hexagonal lattice of
skyrmions is generated in the structure of the strips. When the
field is further increased to 50 mT, the strip domains are
completely transformed into a hexagonal lattice of skyrmions
that occupies the entire surface (001) of the sample except for
the area containing the dislocation. The skyrmion lattice is
replaced by a homogeneous ferromagnetic alignment of spins
in a magnetic field of the order of 80 mT. A similar pattern of
skyrmion generation is observed when the temperature
changes in a constant magnetic field (50 mT) directed along
the normal to the surface of the film. The texture of the spin
strips observed at 5 K transforms at 15 K into a mixed
structure of strips and skyrmions, and then at 25 K a
hexagonal lattice of skyrmions is formed. At 40 K, the
inhomogeneous spin ordering disappears.

The experimental phase diagram of the spin textures in a
thin Fey 5Coy 5Si film in Fig. 6 is in good agreement with the
results of the Monte Carlo simulation of the two-dimensional
(2D) model (2). The magnetic field and temperature are
normalized using arbitrary constants Bc and Tc¢. The
colored strips on the right side of the phase diagram show
the skyrmion density in units of 10~'?> m? per d?, where dis the
wavelength of the helicoid. The dashed lines represent the
phase interfaces between the skyrmion crystal (SC), the
helicoidal structure (HL), and the ferromagnet (FM). There
is good agreement between the experimental data and the
results of numerical simulation not only for the interfaces
between the helicoidal phase and the skyrmion crystal but
also for the regions of coexistence of the HL, FM, and SC
states. Even in a weak magnetic field, the transition to the
skyrmion phase depends on the temperature.

In addition, in [20], significant differences between phase
diagrams in a thin film and in a bulk crystal were noted. The
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Figure 6. (Color online.) Experimental phase diagram of the magnetic
structure in a thin FeysCog sSi film on the magnetic induction—tempera-
ture (B—T) plane.

skyrmion phase of the film on the B—T plane occupies a
relatively large area. In a bulk crystal, the skyrmion phase
exists only in a narrow window on the B—T plane: at
magnetic induction of the order of 10 mT and temperatures
of 35-40 K [43]. The critical field in the ferromagnetic region
of the film increases in comparison with that in the three-
dimensional case (up to 100 mT at 5 K). It is interesting that
the SC phase in the film can be obtained, which is important,
using a magnetic field perpendicular to the film even at low
temperatures when the thermal fluctuations are small.

4. Three-dimensional skyrmions
in thin films of chiral magnets

According to the theory developed by Bogdanov et al. [16,
18, 55], quasi-two-dimensional skyrmions in bulk chiral
magnetics with relatively weak crystallographic anisotropy
can only exist in a metastable state. The energy of skyrmions
is always higher than the energy of the conical phase, which
dominates in bulk samples over almost the entire range of
magnetic fields and temperatures. This conclusion is con-
sistent with many experimental studies of chiral magnets in
which skyrmions were not observed. The only exception is
the A-phase, the high-temperature region of the phase
diagram (slightly below the uniform ordering tempera-
ture), in which skyrmions are stabilized by thermal fluctua-
tions.

Theoretical models [18, 55-57] predict that in bulk
magnets skyrmions can also be stabilized by strong cubic or
uniaxial anisotropy (including ‘easy plane’ type anisotropy
induced by magnetoelastic interaction) or by another special
crystal symmetry that suppresses the formation of a conical
phase. Experimental observations of the magnetic properties
of skyrmions in thin films of cubic helimagnets [20, 58-62] in
the absence of induced anisotropy clearly differed from the
magnetic properties of skyrmions in bulk cubic helimagnets,
where skyrmions can only exist as metastable states. In this
regard, the first three-dimensional calculations of chiral
modulated states in thin films of cubic helimagnets were
performed [63]. As a result, the physical mechanism under-
lying the formation of skyrmions in magnets without an
inversion center was elucidated.

In numerical calculations, expression (2) was used for the
energy density of a cubic ferromagnet without an inversion
center, which does not take into account the intrinsic and

White, n = (0,0, —1)

Figure 7. (Color online.) Directions of the vector nin the section 7. = 0 (a)
and on the sphere (b) shown in different colors.

externally induced energy of magnet anisotropy

an

as well as magnetodipole interaction, both of which are weak
due to the stabilizing effect of DM interaction [64]. A film
with thickness L infinite in the x and y directions bounded by
parallel planes z = 4+L/2 was considered. Numerical solu-
tions were obtained by direct minimization of the energy
functional with free boundary conditions along the z axis
(0.0 = 0,0.9¢ = 2n/Lp) and periodic boundary conditions in
the (x, y) plane. This leads to an equilibrium inhomogeneous
distribution of magnetization in the film, which depends on
three spatial variables and two parameters: the dimensionless
magnetic field H/ Hp and the confinement parameter L/ Lp.In
[63], a special calculation algorithm was developed in the
CUDA! architecture for Nvidia graphics cards, and a
nonlinear method of conjugate gradients was used to
minimize the energy functional. The minimization results
were checked for compatibility with the Euler—Lagrange
equations.

Here and hereafter, the color map defined in Fig. 7 is used
to indicate the direction of the vector n in the figures. The
results of numerical simulation are shown in Figs 8 and 9.

The equilibrium configuration of the 3D skyrmion lattice
is very different from the 2D skyrmion lattice in bulk
helimagnets. The magnetization distribution n in a cylindri-
cal coordinate system, depending on three variables p, ¢, z,
demonstrates complex three-dimensional modulations of the
z plane (see also the video in [65] illustrating the conical and
helicoidal magnetic structures as well as the structure of the
skyrmion in the film). In numerical modeling, trial functions

n 2n

0=0(p), ¢:¢+§+fDZ (13)

provide a good approximation of solutions for isolated and
lattice 3D skyrmions. In formulas (13), the dependence of the
field @ on p and of the angle 0 on z is neglected, and the term
2nz/Lp is taken the same as in the conical phase (4).

The energy of a skyrmion in approximation (13) was
calculated by the formula

1 2n L/2 00
Es = J dqﬁJ dzJ E— Ey)pdp,
ALp Jy 2 Jo ( )

(14)

! CUDA (Compute Unified Device Architecture)— hardware and soft-
ware architecture for parallel computing that improves computing
performance by using Nvidia GPUs.
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Figure 9. Schematic representation of skyrmion tubes. (a) Vector fields and
isosurfaces n. = 0 for a skyrmion tube with uniform magnetization along
the symmetry axis. (b) Skyrmion tube with three-way inhomogeneous
magnetization and rotations of magnetic moments induced by the film
surface. n, > 0, n, < 0 in sections z = const.

where Ey = —HM is the energy density of the saturated state.
The results shown in Fig. 8a demonstrate that in a wide range
of parameters, 0.2 < H/Hp < 1, the energy of isolated 3D
skyrmions is less than that of 2D skyrmions homogeneous
along the z axis. The film thickness is L/Lp = 0.25. In the
inset in Fig. 8, the dependence of the skyrmion equilibrium
energy on the film thickness in a fixed field H/Hp = 0.4 is
shown.

The results of numerical simulations show that the
helicoids also become inhomogeneous in film thickness (see
video in [65]). Conical states whose axes are perpendicular to
the film are compatible with the film geometry, and free
boundary conditions do not impose restrictions on such
modulations. For numerical calculations of modulated
structures, it is convenient to enter a dimensionless energy
density:

L _2E)
T MHp’

where (E ) is the energy density averaged over the modulation
period. Then, according to (5), in the conical phase of the bulk
sample,

€cone = _<

Calculations show that the conical phases of the film and of
the bulk sample are almost identical and give the same values
of the equilibrium energy density. Conical states (4) exist even
in films with a thickness less than the helix period.

The equilibrium energy densities for the helicoidal
structure eys and the 3D skyrmion lattice es;, were calcu-
lated. They are compared with the energy density of the
conical phase e.one. Figure 8b shows the dependence of the
Aeﬁsfcone = €HS — €cone and AeSLfcone = €SL — €cone differ-
ences on the magnetic field, together with the corresponding
results for the 1D helicoid and the lattice of 2D skyrmions in
bulk cubic helimagnets. The functions Ae are constructed for
the normalized film thickness values L/Lp = 0.25 and 0.5.

In bulk samples, the conical phase has the lowest energy at
all values of H less than the saturation field Hp. This situation
persists in sufficiently thick films (see inset in Fig. 8a).
However, the energy balance between the phases changes
dramatically when the film thickness is less than a certain
critical value. Then, 3D modulated helicoids and skyrmion
lattices become energetically more advantageous than the
conical phase (Fig. 8b), meaning that, in sufficiently thin films
of a 3D cubic helimagnet, conical modulations of helicoids
and skyrmion lattices provide a specific mechanism for
stabilizing these structures in a wide range of magnetic fields.

Figure 9a shows the structure of a homogeneous
untwisted skyrmion tube in thick films or in bulk samples.
Figure 9b schematically shows the result of numerical
calculations of the structure of a skyrmion tube in a thin
film. This case is characterized by a magnetization twist
nonuniform along the thickness of the film. The magnetic
moments in the top surface layer are slightly inclined to the
center of the skyrmion, while in the lower part of the film,
however, they are slightly inclined from the center. Twisting
of spins on the top and bottom faces of the film corresponds
to intermediate configurations between pure Bloch
(® =1/2+ ¢) and Néel (¢ = ¢) types of skyrmions. Note
that the largest deviations are observed for spins near the
surface of the film, where they are weakly coupled among
themselves due to the smaller number of neighbors. The
energy gain from the contribution of the DM interaction
accumulates along the film thickness and reduces the overall
energy of the state, so that in a certain range of the magnetic
field and film thickness a nonuniform skyrmion tube becomes
energetically more favorable than the conical phase.
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Figure 10. (a) (Color online.) Phase diagram of magnetic states in an isotropic chiral magnet film. (b) Average energy density of different phases depending

on the applied magnetic field for the film thickness L = 6Lp.

In the first direct observations of chiral skyrmions in the
Fe.5CogsSi compound, the film thickness was L = 20 nm
and Lp =90 nm, which is significantly less than the critical
thickness. Thus, the magnetization twist inhomogeneous in
the film thickness is the key to elucidating the mechanism of
stabilization of 3D skyrmions at low temperatures. The effect
of twisting skyrmion tubes was first experimentally detected
in [66, 67] and confirmed by subsequent studies (see [68] and
references therein).

5. Phase diagram
for an isotropic helimagnet film

In Section 4, it was noted that there is a critical thickness of
the film at which, when exceeded, the gain in energy from the
twisting of the magnetization near the surface of the film
becomes insufficient to stabilize the skyrmion lattice. The
phase diagram of the film of an isotropic helimagnet is
calculated in [69] to determine the ranges of thicknesses and
magnetic fields that determine the stability regions of lattice
of skyrmions and other states. A comparison of the energy
densities of each of the equilibrium states obtained by
minimizing the energy functional

on O
E:A—n—n+Dnrotn+MH(1—nz)—i-Eo,

15
6x,~ 6x,- ( )

where Ej is the energy of the saturated ferromagnetic state,
allows us to determine the geometric and material parameters
of the film corresponding to different phases.

In the phase diagram shown in Fig. 10a, the thickness of
the film and the magnitude of the magnetic field directed
normal to the surface of the film are given in dimensionless
units L/Lp and H/Hp, respectively. In the central part of
Fig. 10a, the film thickness varies from 0 to 50Lp (where Lp is
the period of the helicoid at H = 0). The inset shows details of
the phase diagram for films with thickness 0 < L < 10Lp.
Isolated metastable skyrmions have the lowest energy in the
small shaded area of the conical phase. The left part of
Fig. 10a corresponds to a monolayer (two-dimensional
helimagnet), and the right one corresponds to the case of an
extremely thick film (a bulk crystal). Circles I and IT with
coordinates L/Lp and H/Hp correspond to triple points.
Quantities Lp and Hp are expressed in terms of material

parameters A, D, M that can be measured experimentally.
Solid curves in Fig. 10a correspond to first-order phase
transitions among the helical spin spiral (red area), skyrmion
lattice (grey), conical phase (white), and new phase (yellow),
called stacked spin spirals (SSSs). The horizontal dashed line
indicates a second-order phase transition between the conical
phase and the saturated ferromagnetic state (blue area).

In contrast to the phase diagram proposed in [70], the
phase diagram shown in Fig. 10a contains five phases and two
triple points. The triple point I determines the critical
thickness of the film L* = 8.17Lp, beyond which skyrmions
can only exist in a metastable state. For example, for MnSi
(Lp = 18 nm) and FeGe (Lp = 70 nm), the critical values are
L* =150 nm and L* =570 nm, respectively. As the film
thickness decreases, the interval of magnetic fields in which
the skyrmion lattice is formed increases. This fact reflects an
increase in the relative contribution of surface twists with a
decrease in thickness. There is another critical point at which,
at L < 0.68Lp, the conical phase is completely suppressed
and becomes energetically unprofitable over the entire range
of fields.

It is important to note that the chiral surface twists
discussed in Section 4 also add additional modulation to the
helicoidal spiral state. The vector k of such a helix lies in the
film plane orthogonal to the applied field. Surface-induced
modulations reduce the energy of the helix and, in a certain
range of fields, make it energetically more advantageous than
the conical state. The distribution of magnetization in a thin
film is very different from that in bulk cubic chiral crystals,
where any small magnetic field leads to the transformation of
the helix into a conical phase, or rather into the SSS,
according to the results presented in the right part of Fig. 10a.

Note that the surface twist effect is not limited to the
surface of the film, but also appears on the side faces of the
sample. We emphasize that the continual 3D model of an
isotropic chiral magnet is not reduced to a simple 2D model in
the other limiting case, when L/Lp — 0. This is illustrated in
the left part of Fig. 10a, where a 2D phase diagram is given for
a single isotropic monolayer or for a multilayer structure with
an interface induced by the DM interaction of certain crystal
symmetries, e.g., C,,,, D2y, and S4 [13, 64]. Figure 10b shows
the dependence of the average energy density of different
phases on the applied magnetic field for a film of thickness
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Figure 11. (Color online.) Stacks of spin spirals. Local directions of magnetization in the film are indicated by color in accordance with the scale shown in

Fig. 7.

L = 6Lp. The inset in this figure shows the dependence of the
energy of the conical phase on the applied field.

A wide range of the phase diagram is occupied by the SSS
area. Triple point IT determines the thickness limit of the film,
beyond which SSSs can appear as the global minimum energy
of the system. Figure 11 illustrates the complex spin structure
of SSSs.

The spin structure of SSSs represents the interference of
the conical phase in a sample volume with quasi-helical
magnetization modulation localized near its surface. Such
surface modulations have a finite depth of penetration and
appear on the upper and lower surfaces. They have a mixed
helical (0 = 0(y), ® = n/2) and cycloidal (0 = 0(y), ® = 0)
modulation type. The period of surface helical modulations is
always longer than that of ordinary helicoids (6), and it
increases with increasing field.

Figure 11a shows the distribution of magnetization in a
film with thickness L = 4Lp. Vector k. indicates the direction
of propagation of the conical helix in the film volume, and
vectors k; and ky indicate the direction of propagation of
complex spin helices on the upper and lower surfaces of the
film, respectively. At this film thickness, the vectors k; and kj
are counter-directed and orthogonal to the vector k..

Figures 11b, ¢ show the magnetization distributions in
the film cross sections by yz and xz planes (these cross sections
are highlighted by dashed rectangles in Fig. 11a). Figures 11c—
f illustrate the distribution of magnetization in a film of
thickness L = 4.25Lp. For such a film, the equilibrium stack
of helices is characterized by mutually orthogonal vectors kg,
ky,, and k.. The black dashed curves in Fig. 11b,c,e,f
highlight small volumes near the surface of the film with a
negative magnetization projection, n. < 0. The relative
orientation of the spin helix vectors on the upper and lower
surfaces, k; and ky, respectively, depends on the thickness of

the film. The angle f; between k; and k, for the SSS
equilibrium phase varies depending on the film thickness. In
particular, when the L = (n + 1/2)Lp condition is met (nis an
integer), the equilibrium values of 8, are zero and gradually
change depending on the thickness: S, =90° at L=
(n+3/4)Lp, B, = 180° at L = (n+ 1)Lp, and B, = 90° at
L= (n+5/4)Lp.

Due to the relatively weak dependence of the energy of
thick films on the angle f,;,, in such samples we should expect
a strong influence of crystallographic anisotropy on the
mutual orientation of the vectors k; and ky,.

Model (15) does not take into account the surface
properties of real samples, which depend on surface doping,
modifications of the crystal structure, the formation of
terraces, etc. All this changes the electronic spectrum of the
surface layers of the medium, and therefore the parameters of
the model. Due to changes in the constants of the exchange
and spin-orbit interactions, we can expect a slight modifica-
tion of the absolute values for the observed quantities, phase
transition lines, and critical points on the phase diagram. At
the same time, the contribution of surface effects in the first
approximation must be proportional to the ratio 1/Lp of
thickness /4 of such a surface layer to the penetration depth Lp
of surface spin modulations (SSMs). Usually, A is of the order
of several interatomic distances a, while for helimagnets Lp is
of the order of several tens or hundred a. Therefore, in chiral
magnets with long-period structures, the contribution of
surface atomic layers with changed parameters is negligible
compared to the contribution of SSMs.

6. Chiral bobber

A rich variety of metastable states is inherent in many fields of
modern physics. Particular attention is drawn to states
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Figure 12. (Color online.) Schematic representation of the vector field n for
(a) a chiral bobber in the conical phase and (b) the Bloch point.

characterized by a high energy barrier that can remain
metastable for a long time. Such states are of particular
interest for optical, magnetic, and electronic information
storage technologies. In principle, all modern electronics
and spintronics are based on working with and managing
such metastable states. In particular, magnetic domains in
magnetic storage devices are the best examples of metastable
states separated by high-energy barriers. High-energy bar-
riers in hard drives are created due to the strong crystal-
lographic anisotropy of the material, which attaches magnetic
domains to their positions. The disadvantage of such data
storage is that the detector must be moved to the location
where the data bit is contained, or the entire data carrier must
be moved in the direction of the detector.

Modern spintronics offers many alternative ideas for a
new generation of magnetic data storage devices that are
based on the use of mobile metastable states. The most
interesting candidates are domain walls in nanostrips [71]
and magnetic chiral skyrmions (CSs) [64, 72, 73]. Chiral
vortices of these types are considered promising particles in
the field of information technology due to their unusual
transport properties, as well as their compact size, which
under certain conditions can be reduced to several nano-
meters [74] or even to several atomic distances [75]. In
addition, this is an interesting and important topic of
fundamental research for nonlinear physics.

In [32], a new type of particle-like state in chiral magnets
was predicted, which was named the ‘chiral bobber’ (CB) by
the authors of the article. Such a quasiparticle in a wide
range of parameters turns out to be more compact than a
chiral magnetic skyrmion, and is more energy efficient. A
CB is a three-dimensional localized finite-energy soliton in
nonlinear field equations, consisting of a smooth vector field
of magnetization and a ‘hedgehog’ type magnetic singularity
(Fig. 12). Unlike previously known magnetic localized
structures (domain walls, helices, skyrmions, vortices), a
thermodynamically stable CB is formed at the phase inter-
face or on the surfaces of chiral magnets. Next, we present
the main results of Ref. [32].

For numerical calculations of the chiral bobber in [32], the
energy density on a discrete lattice was used, which includes
the Heisenberg exchange coupling, the DM interaction, and
the Zeeman interaction:

E= —JZ nn; — ZD,‘][U,’ X l'lj} — ,U,SHZHI' .
(i) (ij) i

Here, the symbol (ij) denotes the summation over pairs of
nearest neighbors, n; = M;/p is a normalized unit vector of

(16)

the magnetic moment on the ith node of the lattice, J is a
constant of exchange interaction, D;; is a Dzyaloshinskii—
Moriya vector, D;; = Dr;;, where D is a scalar, the unit vector
r;; is directed from node i to node j, and H is an external
magnetic field applied along the z axis perpendicular to the
film plane. To preserve the generality of the results of a
discrete model and the possibility of comparing them with the
conclusions of the continuum model, we use the previous
notation for the parameters Lp and Hp:

D? D2

A J
L R R ) Vo B

where a is the lattice constant.

Direct minimization of Hamiltonian (16) was performed
using the nonlinear conjugate gradient method with adaptive
stereographic projections based on the CUDA architecture
[63].

Everywhere inside the conical phase in Fig. 11a (except for
the shaded area), a new structure (CB structure) , which is a
truncated 3D skyrmion, corresponds to the metastable state
with the lowest energy (Fig. 12a). The vector field of such a
structure is characterized by an almost parabolic isosurface
n, = 0 and a topological singularity at the point P, which is
located inside the film at a finite distance rp from the surface.
This type of singularity is known in >He as a hedgehog [8], and
in ferromagnets as a Bloch point [10] (Fig. 12b). In the case of
other condensed matter, such as ultra-cold gas [76] and spin
ice [77], it is called a magnetic monopole.

Hedgehog structure

r

r|

can be obtained explicitly from the Hamiltonian (15)
equations in the zero magnetic field. The magnetic field
deforms the magnetization field, and the hedgehog trans-
forms into a chiral Bloch point. In the z = const plane cross
section, the CB spin structure simulates a field of 2D
skyrmions whose diameter decreases with increasing dis-
tance from the film surface. The depth of penetration into
the film satisfies the condition rp < Lp/2 with an accuracy of
+a/2. In view of the significant chirality of the state and its
localization near the surface of the film, like a bobber on the
surface of water, the structure under consideration was called
‘bobber’. Visualization of the CS and CB spin structure is
given in [78] (videos 1 and 2).

Note that the possibility of such topological defects has
been discussed in the context of various physical problems.
“A vortex with an end is an unexpected phenomenon’ [79].
An analog of the bobber in an unlimited A-phase of an *He
environment was first discussed in [80—82]. Such structures —
solitons ending with a hedgehog of the field d, called Dirac
monopoles—were observed in Bose—Einstein condensate
[76, 83]. In [76], the inhomogeneous rotation of the spins of
ultracold rubidium atoms under adiabatic changes in the
magnetic field induced the flow of a superfluid liquid at the
velocity of v. The vorticity @ = rotv of the velocity field
corresponded to a semi-infinite vortex line (a Dirac string).
The end point of this line gives the magnetic field of the
monopole B ~ r/r3. Finally, in [84], the formation of 2D
vortices from truncated 1D domain walls was studied, and the
formation of a soliton from a vortex with a half-integer
quantum in the A-phase of *He was described in detail in
monograph [8].
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Figure 13. (Color online.) Dependences of the energies for an isolated CS (white dots) and CB (red dots) on the magnetic field at a fixed film thickness (a, b)
and on the film thickness at a fixed field (c, d). The dependences of CS and CB energies on the parameters of cubic (e) and uniaxial (f) anisotropy in fixed

values of film thickness and magnetic field.

The dependences of the CS and CB energies on the
external magnetic field and the sample thickness are shown
in Fig. 13. The CS and CB energies are reckoned from the
energy of the conical phase. Figures 13a—d correspond to the
isotropic case, i.e., the uniaxial (K, ) and cubic (K) anisotropy
constants that can be induced by interfaces or external
stresses are zero here, K. = K, = 0. Parameter values used
in the calculations: J=1, D =0.15 (Lp = 41.89a). The
simulated area contained 56 x 256 x Ln spins, where
Ln = 40—280. White and gray areas in Fig. 13a—d represent
the stability regions of the conical phase and of the skyrmion
lattice, respectively, and in the dashed region of the conical
phase, the CS energy is less than the CB energy. As can be seen
from these figures, almost everywhere within the conical
phase, the CB has an energy much smaller than the CS. The
difference between the CS and CB energies becomes more
pronounced when the film thickness changes (Fig. 13c,d).
The CS energy increases linearly with increasing film
thickness. At the same time, due to the localization of the
CB near the surface, its energy is almost independent of the
film thickness. This regularity is broken only in small fields
and for very thin films outside the stability region of the
conical phase (see insets in Fig. 13c, d).

In [32], the anisotropy energy was added to the energy (16)
to evaluate the stability of CBs in anisotropic crystals Ej:

E, =— Z {Kunf_, + K. (nfx + nf}, + nf_,)} ,

1

where n; , (x = x, y,z) is an a-component of the unit vector n
on the node i.

Figures 13e,f show the dependence of the CS and CB
energy on the anisotropy constants for fixed external field
H = 0.8Hp and film thickness; the anisotropy constants are
given in units Ky = D?/(2J). According to these results,
within the conical phase, the CB is always more energy
efficient than the CS. The asterisks in Fig. 13e, f correspond

to the points of collapse of the CB. Due to the presence of free
boundaries, the CB topology must be described in terms of
relative homotopy groups [85]. The corresponding group
m5(S?,8?) =0 is trivial. This means that the geometric
singularity of the CB field can be displaced to the surface
and then smoothed out. Despite this, the chiral bobber has a
high energy barrier. To estimate it, the minimum energy path
was calculated using the Geodesic Nudged Elastic Band
method (GNEB) [86]. It is shown that the energy barriers
for CSs and CBs have a comparable height. Based on this, we
can conclude that the thermal stability range for CBs will have
the same order of magnitude as for isolated CSs. In addition,
due to the high activation energy, it can be expected that the
probability of spontaneous generation of a CS by thermal
fluctuations is significantly less than that for a CB. This
conclusion is confirmed by the results of Monte Carlo
simulation. With parameters L = 2.36L, and H = 0.8H)p,
the spontaneous initiation of a CB is observed during
simulated annealing, while a CS does not occur in this
mode [78].

7. Experimental observation of a chiral bobber
in thin films of a FeGe helimagnet

Chiral bobbers were experimentally detected [87] in thin films
of FeGe helimagnet using off-axis electronic holography
(EH). The EH method is based on the Aaronov—Bohm effect
[88]: in quantum mechanics, the interaction of a charged
particle with an electromagnetic field is not reduced to the
local influence of the Lorentz force on it. EH provides
quantitative measurement with high spatial resolution of the
phase ¢y, of an incident electron beam interacting with
magnetic induction components inside and outside the
sample [89]. The wave function of the incident electron
beam interferes with the reference electron wave whose
phase ¢, is known. In the interference pattern, the intensity
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distribution 7 has the form
I= A} 4+ A} + 24,45 cos (8¢),

where 4; (i = 1,2) are wave amplitudes, and 8¢ = ¢y — ¢y is
the difference between their phases.

In the quantum-mechanical description of an electron, the
Schrodinger equation includes the vector potential A, not the
magnetic field B = rot A. In particular, the wave function of a
beam of electrons moving along the z axis in the vector
potential field A acquires the phase

2me
mJ&UJ%NL

¢(X,y) = h

(17)

In the EH method, the change in the phase d¢ of the wave
function of the incident electrons is proportional to the
magnetic flux @y through the contour D, which is formed
by parallel electron trajectories of the incident and the
reference beams closed at infinity:

2me 2me

3¢ = h ffDAdl_ i DM (S) .
Here, S is the area bounded by the contour D, 2re/h is the
quantum of the magnetic flux. Relation (17) for the change in
the phase of the wave function of the electron beam with the
change in the values of the vector potential in spatial domains
where there is no magnetic field expresses the Aaronov—Bohm
effect [88].

The vector potential is determined by the dipole—dipole
interaction and depends on the magnetization distribution in
the sample volume V:

g ho o r—r
A(l') = —EJVlI M(r ) Xﬁ dr’. (18)

r—r

According to (17) and (18), the contribution of magnetization
to the phase shift is as follows:
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(19)

X

where M, and M, are the magnetization components
averaged over the film thickness,

M,-(x/,y')ziM[(r/)dz', i=x,y.

In [87], experimental observations were supplemented with
micromagnetic calculations in the framework of the model of
a helimagnet with energy density

on 0 1
W=4A4 —n—n+Dn rotn — MBen — - MBgn.
Gx,- 6x,~ 2

(20)
Here, Bey is the external magnetic field, and By is the
magnetostatic field of the sample. Since CB, unlike CS, has
a finite penetration depth and occupies a much smaller
volume, the phase shift (19) caused by the CB must be
weaker than that caused by the CS. This assumption is
confirmed by the results of micromagnetic simulation.

A quantitative comparison of the measured and theoreti-
cally calculated phase shift makes it possible to identify CBs

and CSs and distinguish them. Most EH measurements were
performed on three FeGe samples.

Following the theoretical predictions of spontaneous
generation of CBs under the conditions of film annealing in
a magnetic field, the authors of [87] performed EH experi-
ments with cooling samples from high to low temperature in a
constant magnetic field Bey ||e.. Most of the EH measure-
ments were performed on three FeGe samples of different
shapes.

Here, we present experimental data for sample S1, which
is a nanostrip with varying thickness (Fig. 14a). Figure 14b
shows typical phase shift images and corresponding profiles
obtained after cooling the sample from a temperature of
Text =240 K to T=95 K at Bgy = 200 mT, followed by
increasing the field Bey to 300 mT. Figure 14b shows an image
of the portion of the sample highlighted with a dashed line in
Fig. 14a. The phase shift of images mainly demonstrates a
contrast characteristic of magnetic skyrmions, i.e., bright
spots with a bell-shaped profile with almost identical
intensities and sizes (Fig. 14b). The change in the phase shift
along the strip for skyrmions (blue line) and bobbers (red line)
is shown in Fig. 14c. As can be seen, there is a linear increase
in the phase shift of a signal from the CS chain along the film
thickness gradient (dashed line in Fig. 14c). However, a
quantitative analysis of the phase shift profiles revealed the
presence of two different objects with different intensities and
values of ¢. Objects with a weaker contrast marked in Fig. 14b
with red arrows correspond to CBs observed in the micro-
magnetic simulation. In a wedge-shaped sample, such objects
appear only in films with thicknesses exceeding the critical
value (at L > 110 nm = 1.6Lp). The position, size, and
intensity of these objects depend on the magnitude of the
magnetic field. The theoretical dependence ¢ on the magnetic
field is consistent with experimental data.

Objects of low intensity are identified with CBs, because
their properties are consistent with theoretical predictions.
However, the spontaneous generation of CBs during anneal-
ing in the field corresponds to a metastable state and is a rare
event. In most cases, this procedure leads to a pure multi-
skyrmion state.

To systematically study CBs, we managed to find a
reliable way to generate them. In the course of micromag-
netic modeling, the generation of CBs was revealed from a
defect in the helicoidal structure of the type of edge
dislocation with a small inclination of the external magnetic
field. With an increase in the field, the helicoidal isosurfaces
demonstrate a slope of helix vector k to the direction of the
vector Bey. At a certain value of the field, a fold is formed on
the isosurface, which in turn leads to the appearance of a
Bloch point near the surface of the sample, which then
penetrates from the surface into its volume to a certain
depth. This state remains stable only within a narrow range
of fields and becomes a CB when the magnetic field increases
further. By a similar mechanism, Bloch points appear in the
skyrmion lattice and in the helical phase [90, 91].

In an experimental setup, the direction of the applied field
is always fixed and coincides with the direction of the incident
electron beam. The slope of the field is reached by turning the
sample around two mutually orthogonal axes, so that the
vector Bey forms an angle of 10° with the normal to the plate.
The obtained multiple images of the phase shift in all samples
illustrate:

(1) a weaker contrast of CBs than that of CSs;

(2) the reproducibility of a CB in an oblique field;
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Figure 14. (Color online.) Experimental proof of the origin of magnetic bobbers under the conditions of annealing samples in a magnetic field (see

explanations in the text).

(3) the appearance of CBs in different positions in the
sample;

(4) CB mobility in the applied field;

(5) quantitative agreement of the measured value of the
phase shift with the theoretical one.

A reliable method for generating CBs also allowed us to
study their stability with increasing temperature. Figure 14d
shows a phase diagram in the magnetic field—temperature
variables based on a large number of experimental data. The
gray area corresponds to the stability range of magnetic
skyrmions. This area is bounded by the collapse field (black
line) and the elliptical instability field (green line). The blue
line corresponds to the origin of the CS (the transition from a
helicoidal structure to isolated skyrmions as the field
increases). Note that the elliptic instability fields are smaller
than the CS generation fields. The shaded part of the gray
area corresponds to the CB area of existence. This region is
bounded at the bottom by the same elliptical instability field,
but has much lower collapse fields than for CSs. The red line
shows the temperature dependence of the CB collapse field.

The equilibrium distance between the CB (CS) and the
edge of the sample increases with increasing field and shows
the same character of Lennard-Jones type interaction found
for CSs [92].

Experimental evidence of the formation of chiral bobbers
is presented independently in [93] by measuring the suscept-
ibility in FeGe/Si thin films (111). It is shown that the CB
predicted in [87] as a metastable state is stable in the presence
of additional Dzyaloshinskii-Moriya—Rashba interfacial
interactions. The results of the magnetization measurements
presented in [93] are interpreted as proof of the formation of a
lattice of chiral bobbers at the FeGe/Si interface.

A chiral skyrmion, in addition to being of academic
interest, shows prospects for practical applications. For
more than half a century, hard disk drives have been the
main storage devices of digital data. Currently, they have high

reliability and are widely used. However, the density of
recording information on magnetic drives and the speed of
their operation are limited by thermal effects [94]. In addition,
the complexity and fragility of the mechanical parts of
magnetic drives are motivating the search for new solid-state
devices with comparable or higher bit densities. In recent
years, alternative solid-state magnetic memory devices with-
out moving mechanical parts have been proposed. The most
promising of them are based on the concept of racetrack
memory [71]. In this case, the role of information carriers is
played by: (1) magnetic domain walls in nanowires — narrow
transition layers between regions with opposite directions of
magnetization [71] or (2) chiral skyrmions in a magnetic
nanotape [64].

CSs are topologically stable and can be moved by currents
that are several orders of magnitude lower than those
required to move domain walls [72]. Stack memory on
skyrmions is currently considered the most efficient. How-
ever, the use of CSs only for coding data involves ‘quantiza-
tion’ of the distances between skyrmions on the racetrack. In
addition, CSs are highly mobile and interacting objects, and
thermal fluctuations cause them to drift. These factors make
it difficult to maintain the distance between CSs along the
track. To solve this problem, [73] proposes a special design in
which skyrmions can move along parallel nanostrips. For
thermal fluctuations, a CS does not change its strip, since
different strips are separated from each other by high energy
barriers.

Section 6 shows that the energy barriers that protect
skyrmions and bobbers are of the same order of magnitude,
and these two objects are possible candidates for use as
carriers of bits 1 and 0. In [87], a binary data stream
representing a sequence of ones and zeros is proposed to be
encoded using a sequence of movable skyrmions and bobbers
of two types. With this approach, there is no need to maintain
a certain distance between carriers. The coherent motion of
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Figure 15. (Color online.) An alternative concept of magnetic solid-state
memory based on encoding the data stream in nanostrips with skyrmions
and bobbers.

CBs and CSs is expected to be stable due to the coupling force
in interparticle interactions. A conceptual diagram of a single
register in such a storage device is shown in Fig. 15.

A nanostrip has the form of a closed track and contains a
chain of alternating magnetic skyrmions and chiral bobbers
that play the role of bits 1 and 0. Writing, reading, and erasing
information are performed on different parts of the guiding
track. Spin structures for CSs and CBs in Fig. 15 are
schematically represented by their isosurfaces.

8. Interaction of skyrmions

Studies of the mechanisms of skyrmion formation, scenarios
of their evolution in crystals of limited geometry (nanowires
and nanostrips), and the interaction of skyrmions with each
other and with the edges of samples are important not only for
possible technological applications but also for the further
development of fundamental research.

The transformation of the helicoidal ground state of an
FeGe nanostrip into individual skyrmions and skyrmion
chains in the magnetic field, as well as the interaction of
skyrmions with the edges of the sample, was experimentally
observed in [95], where the dynamics of magnetization in
strips with width w = 396 nm at temperature 7 = 100 K was
systematically studied.

Figures 16a—i illustrate the evolution of spin textures with
increasing magnetic field. The corresponding enlarged images
are selectively shown in Figs 16j—m. In the absence of a field,
an almost helicoidal structure was observed in a strip
w = 130 nm wide.

Figures 16a, j show that at width w = 396 nm, a helicoidal
state occurs in the strip with the coexistence of two helices: (1)
with a wave vector Q) parallel to the edge of the strip (an ideal
helical structure) and (2) with a wave vector Q ; orthogonal to
edge (a distorted edge helical structure). When a magnetic
field B is applied perpendicular to the nanostrip plane, these
helices change in different ways. In field B~ 1.6 kOe
(Fig. 16b,k), the helices with Q; become less noticeable,
while the helices with Q begin to deform. When the magnetic
field reaches the value B = 1.9 kOe, the helices with Q
completely disappear, and the helices with Q transform

Figure 16. (Color online.) Evolution of spin helicoids when the magnetic
field changes in an FeGe nanostrip with a width of 396 nm at 7= 100 K.

into a structure of strips of finite length (bimerons)
(Fig. 16¢,1). As the field increases further, the strip structure
transforms into a chain of skyrmions stretched along one of
the edges of the nanostrip (Fig. 16d, m). This fact indicates
that skyrmions can only be created from helices with a
distorted structure along the edge of the nanostrip.

The high mobility of skyrmions in a magnetic field
demonstrates itself in their unfixed positions. For example,
as seen in Fig. 16d, in the field B = 2.2 kQe, the chain of
skyrmions near the upper right edge of the strip merges with
the one near the lower edge of the strip when the field is
increased to B = 3.5 kOe (Fig. 16¢) without the birth of new
skyrmions or the destruction of the former ones. Similar
phenomena are also found in nanostrips with different
widths.

Despite the high mobility of skyrmions, the equality of the
number of periods of the helix and the number of skyrmions
formed from it is always maintained. After a chain of
skyrmions has been formed along the edge of the nanostrip
(Fig. 16g), a further increase in the magnetic field leads to the
movement of this chain into the inner region of the strip
(Fig. 16d—g). At the same time, the number of skyrmions
remains unchanged in a wide range of magnetic fields
(2.2 < B< 4.9 kOe). Conservation of the number of sky-
rmions is related to their topological stability. The collective
motion of skyrmions is due to the repulsion at small distances
of edge spins and skyrmions. With a further increase in the
field, the skyrmion chain is distorted (Fig. 16g), the skyrmions
in it gradually disappear (Fig. 16h), and in fields B > 5.3 kOe,
a transition of the system to a homogeneous ferromagnetic
state is observed (Fig. 16i). Red arrows indicate the orienta-
tion of the magnetization near the edges of the strip.

The nontrivial interaction of skyrmions in the conical
phase was first discovered in [92] using numerical modeling in
the framework of the standard model of a helimagnet (15).
Numerical calculations of the structure of skyrmions in the
field H = 0.57 H4 and analysis of their interaction in thin films
with thickness Lp were performed. In a cylindrical coordinate
system r=(p cos ¢, p sin ¢, z), the radial energy density

)= [ a: [ abwiv. .
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for a three-dimensional skyrmion with exponentially decreas-
ing asymptotic behavior is negative in the peripheral region of
the conical phase. The dependence of the interaction energy
of two asymmetric skyrmions E»7(r) on the distance between
them for different values of the applied magnetic field has the
form of a Lennard-Jones type potential and indicates an
attractive interskyrmion interaction, which is characterized
by a low potential barrier and a fairly deep potential energy
well for the transition of skyrmions to the bound state
(biskyrmion). The nature of this interaction differs from
that of skyrmions in the ferromagnetic phase [15, 96], where
CSs homogeneous along the z axis in (11) and (12) always
repel each other.

Detailed experimental and theoretical studies of the
nature of the interaction of skyrmions with each other and
with the boundaries of sample in the nanostrips of FeGe
chiral magnet were carried out in [97]. It was shown that when
the magnetic field exceeds a certain critical value, the nature
of interaction between skyrmions changes from attraction to
repulsion. Experimentally found field dependences of equili-
brium distances between two skyrmions, as well as the
distances between an individual skyrmion and the edge of
the strip, are quantitatively consistent with the results of
micromagnetic simulation.

The authors of [97] managed to go beyond collective
phenomena and studied isolated pairs of skyrmions in order
to identify the true nature of skyrmion interaction. In
addition, an adequate theoretical model of skyrmion interac-
tions, which must be in quantitative agreement with experi-
mental data, requires correct consideration of the dipole—
dipole interaction that is always present in the nanostrip. The
important role of such interactions which were not taken into
account in earlier micromagnetic models is noted in [98],
where it is shown that the dipole—dipole interaction signifi-
cantly affects the equilibrium distances in the skyrmion
lattice.

Here are some results of Ref. [97], revealing details of
interskyrmion and skyrmion-edge interactions. Figure 17
shows the evolution of two pairs of skyrmions in an FeGe
nanostrip (width 430 nm, length 1590 nm, and thickness
120 nm) when the magnetic field Bexx = uH increases
(Fig. 17a—f) and decreases (Fig. 17g-1). In the experiment,
the dependences of equilibrium skyrmion—skyrmion and
skyrmion—edge distances on the magnetic field were mea-
sured, and the critical field Bey, was found for which, if
exceeded, skyrmions begin to weakly repel each other. The
initial state with a small number of CSs was set by
controlling the number of helicoids in the nanostrip. Figure
17a shows that, in the field B¢y = 255 mT, two pairs of
skyrmions are located near the opposite edges of the sample
at a great distance from each other, so the interaction
between them can be disregarded. When the field is
increased to 400 mT, the smallest skyrmion-skyrmion
distance dis remains almost unchanged (Fig. 17a—d), then
in the range from 400 mT to 500 mT it increases sharply
(Fig. 17e,f). Unlike dgs, in small fields By, the distance from
skyrmions to the edges of the strip ds. gradually increases
(Fig. 17a—c). In fields above 350 mT, they begin to increase
dramatically. In stronger fields, Bex ~ 500 mT, skyrmions
are concentrated in the middle part of the sample. With a
further increase in the field, the skyrmions change their
positions slightly, until a collapse occurs. The observed
behavior clearly shows that, as the field increases, the
interactions among skyrmions change from strong attrac-

355mT  374mT 400 mT 474mT 502 mT

255mT

439mT 408 mT 376 mT 351 mT 266 mT 193 m

Figure 17. (Color online.) Evolution of a pair of skyrmions when the
magnetic field changes in the FeGe plate. The directions of magnetization
in the plane are indicated by color.

tion to weak repulsion. A detailed picture of the movement
of skyrmions in a magnetic field, in particular their jumps,
is given by the animation presented on the websites [99,
100].

Full reversibility of states is an important feature of the
interaction of skyrmions in a magnetic field. With a decrease
in Bey to 408 mT (Fig. 17h), the interskyrmion distance ds of
the lower pair is significantly reduced, which indicates that
the attraction between skyrmions is restored. Interestingly,
the distance between the skyrmions in the upper pair remains
unchanged due to the attraction of skyrmions to the edge of
the sample. When the field is further decreased, all skyrmions
move to the edges of the strip, where they form pairs or
remain isolated (Fig. 17i-k).

Note the relatively large distance between a single CS and
a pair of CSs on the left side of the sample at 266 mT
(Fig. 17k). These three skyrmions, despite the extremely
large distance between them, form a chain when the magnetic
field is further decreased to 193 mT (Fig. 171). Therefore, CSs
can be attracted to each other at distances significantly
greater than the Lp size of each of them.

Micromagnetic modeling revealed a nontrivial three-
dimensional structure of the bound CS pair and the isolated
skyrmion. The isosurfaces 6 = 90° and 6 = 5° for them,
represented by closed curves, are shown in Fig. 18a,b, and
the magnetization distributions in the plane z = const are
shown in Fig. 18c, d. Black and white areas correspond to the
valuesn, = 1 (0 =0)and n. = —1 (0 = 180°).

Attraction can be explained qualitatively in terms of
magnetic poles. The skyrmion in the conical phase consists
of the core (the black area in Fig. 18c) with positive energy,
where 0 = 0 (north pole), the shell (white area) with negative
energy, where 0 = 1t (south pole), and the conical phase (blue
area). In the ferromagnetic phase, the structure of skyrmions
is quasi-two-dimensional, and they always repel when
approaching due to the repulsion of the similar (south)
poles. In the conical phase, the structure of a pair of
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Figure 18. (Color online.) (a—d) Micromagnetic modeling of the structure and interaction of skyrmions in the conical phase. The dependences of
(e) skyrmion—edge and (f) skyrmion—skyrmion distances on the magnetic field. The red and blue dots represent the results of numerical simulations.
(g) Field dependences of dss and dy. calculated disregarding magnetostatic fields.

interacting skyrmions is more complex. As seen in Fig. 18d,
in the region between the north poles there is always one
south pole, which leads to attraction of the skyrmions. In
addition, the volume of the pair is less than the total volume
of the two isolated CSs in the conical phase. As a result, the
total energy of the bound two-skyrmion state will be less
than the corresponding energy of the conical phase.
However, too small a distance between the two CSs results
in an energetically disadvantageous distortion of their spin
configurations. Therefore, the competition of two effects
leads to an equilibrium distance between skyrmions: (1) a
decrease in the total volume of the CS pair; (2) a distortion
of each CS.

In [97], a micromagnetic simulation of the behavior of
skyrmions in the real geometry of the sample using the
MuMax program [101] was also performed. Hamiltonian
(20) was used, and the demagnetization fields By at the
borders and inside the sample were taken into account. The
theoretical curves in Fig. 18e, f (red and blue dots) are in good
qualitative and quantitative agreement with the experimental
data (white dots). For the critical fields B ~ 420 mT and
By ~ 510mT, the theoretical dependences for di. and dgs tend
to infinity, reflecting the change in the nature of interactions
from attraction to repulsion. The reason is that, in a strong
external field, the conical phase reaches saturation, and the
‘vacuum’ surrounding the skyrmions becomes homogeneous
and ferromagnetic. As a result, the measured value of the
critical field By can also be considered the saturation field of
the conical phase.

It is important to note that the skyrmion—edge interaction
changes character in fields that are significantly smaller than
those for the skyrmion—skyrmion interaction. In the field

range
BSC < BCXl < BSS?

skyrmions form clusters that are concentrated in the center of
the sample away from the boundaries.

Calculations of ds. and dg, disregarding demagnetization
fields, B4 = 0 (Fig. 18g), lead not only to a decrease in the
critical fields By, and By, but also to their equality, Bse = Bis.
This means that the effect of clustering of skyrmions in the
center of a sample strongly depends on the demagnetizing
field generated by the sample itself. All the above-mentioned
effects are also observed in large samples (see the Appendix in
[97]). In [97], the potential energy of interaction between
skyrmions and also that of a skyrmion with an edge was
calculated as the functions of dy and dg, respectively,
calculated for different values of the applied magnetic field.
These Lennard-Jones type potentials clearly demonstrate a
decrease in the potential well with an increase in the magnetic
field.

9. Helical structures in chiral magnets

Helical structures called ‘swiss-roll-like vortices’ were first
observed experimentally [33]in an FeGe helimagnet (Fig. 19a)
when the sample was heated to 7> Tn = 280 K and then
cooled to 7'= 200 K. Figure 19b shows an image of such a
spin structure obtained by TEM with subsequent TIE
processing. A vortex-like unclosed spin strip is clearly visible
without a singular point in the center. The spin strip is formed
from a helicoidal structure and as a whole twists around a
certain center. Schematically, swiss-roll-like vortices are
shown in Fig. 19c. A similar pattern of vortex-like spin strips
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Figure 19. (Color online.) Vortex-like strip spin patterns.

shown in Fig. 19a was observed in other fragments of the
sample.

In [102], the structure of these helical textures is studied
using analytical and numerical methods in the framework of
the standard model. The analytical formula for the structure
of a helix outside its core is consistent with numerical
calculations and allows us to study the main features of
helices, including their behavior in a magnetic field. The
Euler-Lagrange equations for the energy functional (15) in
the polar coordinate system (r, ¢) have the form
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where h = H/Hp and A is the Laplace operator,
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To solve equations (21) and (22), the method of minimiz-
ing the energy functional (15) was used. The calculations are
performed on a high-density grid selected so that the angle
between the directions of two vectors in neighboring nodes
does not exceed 10°. The nonlinear method of conjugate
gradients with additive penalty functions necessary for fixing
the norm of vectors n was used. To control the accuracy of the
result, the first and second derivatives were calculated, and
then the residual of equations (21), (22) was estimated. The
algorithm is implemented on the Nvidia CUDA architecture
using multiprocessors of video cards (GPUs) for massive
parallel computing and real-time visualization. Such technol-
ogies can significantly improve the speed and quality of
solving a number of computational problems, including
micromagnetic ones. As a result, helical structures of various
types were found, which are described below.

In addition, based on the analysis of numerical results, it
was possible to put through analytical studies. For r — oo,
the asymptotic behavior of solutions of the system (21), (22)

for the helical structure was found. So, if 4 = 0, we have

2 1
v—a-Zreneroll),
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where N € Z. Here and in the following formulas, the
logarithmic terms with arbitrary constants associated with
exchange helices, the analytical formula for which is obtained
in[103, 104], are omitted. These constants must be set to zero
when minimizing the energy (15). Then, the solutions for
n3 = cos 6 are 2N spiral domains separated by Archimedean
spirals. It can be shown that for 4 > 0 the asymptotic solution
has the form
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where am (x,m) is the Jacobi amplitude, F(x,m) is an
incomplete elliptic integral of the 1st kind, and K = K(m) is
a complete elliptic integral of the 1st kind. The modulus of
elliptic functions and integrals m depends only on % and is
determined by the equation (compare with (8))

mm—4VhE =0,

where E = E(m) is a complete elliptic integral of the 2nd kind.
It is noteworthy that the period of spiral turns,
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coincides with the period of the helicoid (9). At N =1, the
n3 = const level lines form an Archimedean spiral (AS) (at
N > 1, the spiral has many branches). As numerical calcula-
tions show, spiral textures as metastable states can exist in an
environment of labyrinth structures (Fig. 20a,b) or of
skyrmions (Fig. 20c, d). Light areas in Fig. 20a—d correspond
to the direction of the magnetization vector against the field,
and dark ones along the field.

A similar pattern is observed for static spiral domains
(SDs) in ferrite-garnet films, which are usually surrounded by
a labyrinth domain structure [105] or a lattice of cylindrical
magnetic domains [106, 107]. In some samples, they are
observed only as dynamic structures [108]. Magnetodipole
interactions play a key role in the formation of static SDs
[109]. However, for ASs in chiral magnets, as for other
solitons with dimensions of the order Lp, accounting for
long-range magnetostatic forces is not so critical [64].

Figure 20 shows that an AS is slightly deformed under the
influence of the environment. Similar helices for the director
field are observed in liquid crystal films [110-112]. However,
the director field is highly inhomogeneous along the film
thickness and contains topological defects [113]. By contrast,
the vector field of ASs is continuous everywhere and has no
singularities. Meanwhile, it is topologically nontrivial. When
the field increases, the AS period increases, and parts of the
helix turns, magnetized against the field, are thinned (see
animation [114]). The localized AS (Fig. 20c) due to
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Figure 20. (Color online.) Calculated AS in the environment of various
structures: (a, b) the labyrinth structure in the absence of a magnetic field;
(c) the skyrmion lattice in the absence of a field; (d) the field # = 0.5. The
lattice of an AS (e) with five turns in the absence of a magnetic field; (f) with
three turns in the field 4 = 0.15.

continuous deformation of the field can be tightened into a
two-dimensional skyrmion with a single topological index.
For a certain threshold value of the magnetic field, the AS
shown in Fig. 20c loses stability and transforms into the same
skyrmion as in the surrounding skyrmion lattice.

The existence of single topological defects in condensed
matter (dislocations, disclinations, vortices, skyrmions, etc.)
is usually accompanied by the formation of their periodic
structures. A new equilibrium phase — a hexagonal lattice of
Archimedean spirals (LASs) with a different number of
turns —was predicted using the method of minimizing the
average energy density with periodic boundary conditions.
Such structures remain stable at low perturbations and do not
transform into a helicoidal phase.

Figures 20e, f show examples of equilibrium lattices of
Archimedean spirals. Although this phase superficially
resembles the lattice of spiral domains that are observed in
ferrite-garnet films [107, 115], its existence is due to the local
DM interaction, rather than the long-range and nonlocal
magnetostatic interaction.

Numerical analysis of the energies of various two-
dimensional structures at zero temperature leads to the
following conclusions. In the absence of a magnetic field, the
average energy densities (in units Ey/L3) of the Dzyaloshin-
skii helical phase, AS lattice, and skyrmion lattice are
op = —19.74, oas = —19.58, and 6, = —18.31, respectively.
The negative sign in expressions for energy densities is
associated with the negative sign of the DM energy. In
magnetic fields 0 < /& < 0.2, these energies form a sequence
op < oas < 0s. At h =~ 0.2, the AS lattice becomes unstable.
Therefore, the basic state of the system in the form of an AS
lattice is possible only at a nonzero temperature and a
magnetic field in the range 0 < / < 0.2. Under these condi-
tions, the LAS free energy must be lower than the energy of
the helicoidal phase, since the spiral lattice has many more
degrees of freedom than the one-dimensional helicoid. A
metastable AS lattice can be excited by an alternating
magnetic field, just as is done for generating metastable
spiral domains [115].

10. Conclusion

As noted above, the concept of chiral skyrmions proposed
more than 20 years ago turned out to be one of the most
important areas in condensed matter physics. Whether it
finds promising technical applications will only be shown by
future research. We want to believe that familiarity with the

review has shown that there are many interesting problems
for theorists and experimenters in the field of chiral magnets,
and many of their subtle properties are awaiting future
research.

We are grateful to V V Kiselev and E A Kravtsov for
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and to D V Dolgikh for his invaluable assistance in its
preparation. The work was performed within the framework
of the state assignment of the Ministry of Education and
Science of Russia (theme Quantum, grant AAAA-A18-
118020190095-4).
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