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Abstract. We review numerical results of studies of the complex
dynamics of one- and double-dimensional networks (ensembles)
of nonlocally coupled identical chaotic oscillators in the form of
discrete- and continuous-time systems, as well as lattices of
coupled ensembles. We show that these complex networks can
demonstrate specific types of spatio-temporal patterns in the
form of chimera states, known as the coexistence of spatially
localized domains of coherent (synchronized) and incoherent
(asynchronous) dynamics in a network of nonlocally coupled
identical oscillators. We describe phase, amplitude, and double-
well chimeras and solitary states; their basic characteristics are
analyzed and compared. We focus on two basic discrete-time
models, Hénon and Lozi maps, which can be used to describe
typical chimera structures and solitary states in networks of a
wide range of chaotic oscillators. We discuss the bifurcation
mechanisms of their appearance and evolution. In conclusion,
we describe effects of synchronization of chimera states in
coupled ensembles of chaotic maps.
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1. Introduction

Already over the last several decades, studies of collective
dynamics in complex systems of various natures, synchroni-
zation in ensembles of coupled oscillators, the formation of
various dissipative structures, and their evolution have been
one of the central themes of nonlinear dynamics and the
related interdisciplinary branches of science. Results collected
in these studies are reflected in numerous monographs [1-15]
and articles [16—46]. It has been found that structures such as
clusters of synchronization, spatial intermittency, regular and
chaotic patterns fixed in space can form in nonlinear
ensembles and networks. In many studies, as a rule,
ensembles of identical oscillatory elements coupled locally
or globally have been explored.

Relatively recently, spatio-temporal structures of a new
type, called chimera states, were discovered [47, 48]. This
discovery was in essence brought about by the introduction
of nonlocal coupling between the ensemble elements. A
nonlocal coupling implies that each oscillator in the
ensemble is connected to a finite number of nearest-
neighbor oscillators on the right and left. Such a state was
first discovered in a one-dimensional ensemble of nonli-
nearly coupled identical phase oscillators [47] and then
explored in more detail in Ref. [48], where the name chimera
state or chimera was also proposed. The term ‘chimera’,
from Greek mythology, characterizes a combination of the
‘compatible’ with the ‘incompatible’.

We note that structures resembling chimeras were
observed long before they were defined in Refs [47, 48]. The
attention of researchers in those days was focused on the
analysis and control of transitions from regimes of spatial
chaos to those when all elements in the ensembles are fully
synchronized. Chimera-type structures were observed in the
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transition to synchronization regimes and were referred to as
synchronous and asynchronous clusters [17, 25].

Over the last few years, studies of chimera structures have
been attracting attention, piquing the interest of numerous
researchers and leading to a growing number of numerical and
theoretical studies [49-98], followed by experimental work [99—
107]. It has been shown that the appearance of chimera states is
not limited to phase oscillators. Such states are observed in
ensembles with partial elements of various types: in discrete-
time [55, 56, 66, 75-77, 86-88, 90, 91, 96, 98] and continuous-
time [55, 56, 70, 81, 91, 93, 97] chaotic systems, in van der Pol
oscillators [79, 81, 84], in excitable systems like the FitzHugh—
Nagumo neuron model and other models of neuronal activity
[57, 67, 80, 81, 85, 89, 94, 108], in population models [70, 83],
and in autonomous Boolean networks [42, 58]. At present,
chimera structures are observed in laboratory experiments in
optical, optoelectronic, laser [99, 102, 105], chemical [100, 101],
and mechanical systems [103, 104]. Work on possible applica-
tions of chimera structures to describe the dynamics of
ensembles in living nature is in progress. Chimera states are
explored in relation to the analysis of alternating sleep phases
of brain hemispheres [109, 110], epileptic seizures [111, 112], the
activity of brain neurons [113, 115], and cardiac muscle
dynamics (fibrillation of ventricles) [116, 117]. Studying
chimera states is also of practical importance for the analysis
of stable functioning regimes of power grids [118, 119] or
transport networks [120], etc.

Very recent research is directed at finding the specifics of
chimera states in ensembles of various nonlinear oscillators,
attempts to describe their realization mechanisms, and the
analysis of the impact of the topology of coupling between
ensemble elements [67, 70, 79, 81, 84, 85] and the role of noise
perturbations [82, 90, 98, 121]. Attempts have been made to
classify the types of chimera structures [78, 91]. We specially
stress the important role of specifying initial conditions for
individual ensemble oscillators. As a rule, chimera states are
explored in ensembles of identical oscillators. Given a
symmetric topology of coupling between the elements and
identical initial conditions, the ensemble demonstrates syn-
chronous dynamics without forming incoherent clusters.
Therefore, initial conditions are either set in a special way in
the space of ensemble oscillators or selected as randomly
distributed in some interval. The latter way seems to be
preferable because it corresponds to the functioning of real
ensembles in nature or technology.

In spite of numerous studies exploring chimeras in various
ensembles, many questions remain unsolved or have been
solved incompletely. Of fundamental importance is the ques-
tion of chimera state stability. Are the chimeras stable or they
are only a long-lasting transient process? Most publications
base the conclusion about stability on numerical simulations.
However, it should be realized that a numerical experiment is
“not in position to distinguish between stable states and long-
lived transient processes” [65]. A theoretical stability analysis
requires obtaining an analytic solution for the regime of the
chimera ensemble state. This problem has been unsolvable in
the general form thus far. One of the methods used to estimate
stability relies on the analysis of the effect of weak noise on
chimera regimes [90, 95, 98]. The fact that chimera states are
experimentally observed in a number of systems [99—105] favors
the conjecture on their stability. In a general case, the question
of a rigorous stability proof for chimera states remains open.

Among other, still not fully solved, problems, we mention
the analysis of bifurcation mechanisms whereby one chimera

structure or another, the statistical characteristics of these
chimeras, their lifetimes, external and mutual synchronization,
the role of external factors, and so on is realized. It is important
to note that the existing research literature contains relatively
few examples exploring chimera structures in ensembles
composed of oscillators with chaotic dynamics, which present
a rather broad class of auto-oscillatory systems. Besides, most
publications deal with a single ensemble of identical oscillators.
However, coupled ensembles, including those composed of
different individual oscillators, are of special interest. In
particular, one of the poorly studied questions in the dynamics
of coupled ensembles is that of external and mutual synchroni-
zation between chimera structures [122—124]. The questions
mentioned are not discussed in the two widely known reviews
[65, 81], which present results of studies investigating ensembles
of Kuramoto phase oscillators, FitzHugh—-Nagumo and
Stuart-Landau systems, Van der Pol oscillators, the effect of
topology of coupling between oscillators, the role of delays in
coupling networks, etc. But the dynamics of ensembles made of
chaotic oscillators is not discussed. Systematic studies exploring
the dynamics of ensembles of nonlocally coupled oscillators
and mechanisms of spatio-temporal structure formation,
including chimera states, in individual or interacting ensembles
have been carried out at the Department of Radiophysics and
Nonlinear Dynamics of Chernyshevsky Saratov National
Research State University during the last five years. This
review relies on the original research results published by the
authors in collaboration with master’s and PhD students of the
department in leading national and international journals.

The review is organized as follows. After a brief introduc-
tion, we discuss the results of a pioneering study of the phase
chimera in one-dimensional ensembles of logistic maps and
Rossler oscillators with nonlocal coupling [55, 56]. We then
proceed to the formation mechanism and characteristic
properties of phase chimeras. We demonstrate that a chimera
structure of a new type, called the amplitude chimera, can be
realized. The mechanism behind its appearance, its statistical
characteristics, and its lifetime are described. A hypothesis is
further formulated and substantiated that chimera structures
can form in ensembles of chaotic systems with a nonhyperbolic
attractor, but typically they occur in ensembles of chaotic
systems with a quasihyperbolic attractor. Based on this
hypothesis, two basic models describing chimera structures in
ensembles of nonlocally coupled chaotic systems are intro-
duced. Next, spatio-temporal structures in two coupled
ensembles are considered and a chimera structure of a new
type — the chimera of solitary states — is described. General
principles of chimera structure formation in ensembles of
bistable oscillators are discussed. We conclude with an
illustration of the effect of external and mutual synchroniza-
tion of chimera structures in two symmetrically coupled
ensembles of nonlocally connected logistic maps.

2. Phase chimera states in ensembles
of nonlocally coupled logistic maps

Chimera structures in ensembles of chaotic nonlocally
coupled oscillators were first explored in detail in Refs [55,
56]. The discrete logistic map [125, 126] and Rossler oscillator
[127] in dynamic chaos regimes were taken as individual
ensemble elements.

We consider the main results for a one-dimensional
ensemble of nonlocally coupled logistic maps, described by
the equation
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Figure 1. (a) Domains of coherence in the plane of parameters (r, o) for
N = 100 logistic maps (1) and (b) Rossler oscillators (3) labeled with the
wave numbers k. The hatched domain (k = 0), corresponding to the
regime of full chaotic synchronization, is delimited by the bifurcation
line BB (blow-out bifurcation). Domains k = 1,2, and 3 correspond to
coherent regimes with the instantaneous oscillator amplitudes shown in
the insets. Regimes of oscillations with period doubling are realized inside
the ‘tongues’ of coherence. The lines CIB (coherence-incoherence bifurca-
tion) separate regimes with coherent and incoherent dynamics. Parameters
of systems: (a) a = 3.8, (b) a = 0.42, b = 2.0, ¢ = 4.0. The arrows indicate
the direction of change in the parameter ¢ for r = 0.32 for ensemble (1),
which is described further below [56].
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where x/ is a real-valued variable, ¢ is the discrete time,
i=1,2,...,N is the number of oscillators in the ensemble
(N =100), f(x) = ax(1 — x) is the logistic map in a chaotic
regime (a = 3.8), and ¢ is the nonlocal coupling coefficient
between the oscillator i and P neighbors to the right and left.
The coupling parameter ¢ and normalized coupling radius
r= P/N are used as the parameters governing system (1).
Ensemble (1) is considered under periodic boundary condi-
tions and typically for random initial conditions distributed
in the interval [0, 1]. We note that system (1) describes the
cases of local (P=1), global (P = N/2), and nonlocal
(1 < P < N/2) coupling. The coherence-incoherence transi-
tion is explored in the plane of parameters r and ¢. The
bifurcation diagram for system (1) is shown in Fig. 1a [56].

In [55], coherent states were understood as the regimes for
which the instantaneous profiles of the amplitudes are
sufficiently smooth and satisfy the condition

X/ —x/[<d, d<1, t=const, i=12,...,N. (2)
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Figure 2. Evolution of instantaneous profiles of amplitudes in ensemble (1)
for a decreasing o for r = 0.32. The shaded regions «; and o, correspond to
incoherent profiles [56].

Full synchronization of all ensemble elements corresponds to
0 — 0 (for example, in the domain k = 0 in Fig. 1a).

For a decreasing coupling coefficient (in moving along the
line shown in Fig. 1a), the authors of Refs [55, 56] describe the
coherence—incoherence transition presented in Fig. 2. The
smooth wavy profile x/ (Fig. 2a) breaks into the upper and
lower branches (Fig. 2b). Then, as ¢ decreases, two regions
with incoherent dynamics (o) and o) appear in the vicinity of
points x; and x;. The width of these regions increases as o
decreases (Fig. 2c,d). Further, the dynamics of ensemble
elements become fully chaotic (incoherent) (Fig. 2e, f). In the
o and oy incoherence regions, the ensemble oscillators
irregularly switch between the upper and lower branches of
the instantaneous profile. As a result, a regime of coexisting
coherent and incoherent clusters with sharp boundaries in the
ensemble space is realized in ensemble (1). Put differently, a
chimera state appears in ensemble (1), which fully corre-
sponds to the definition given in Ref. [48].

Results of analytic computations of the critical value o,
of the coupling coefficient that corresponds to the appearance
of a chimera state (the appearance of regions ¢; and a; in
Fig. 2) were presented in [56]. As can be seen from Fig. 2,
chimera state formation follows the formation of the vertical
profile of instantaneous amplitudes with its subsequent
breakup. Just this fact serves as a basis for the theoretical
analysis of the mechanism whereby a chimera state is born in
ensemble (1). It was concluded in [56] that for the map
parameter a = 3.8, the critical value of the coupling para-
meter is g, ~ 0.44. Chimera states appear if ¢ < 7.

A no less important result in Ref. [56] is a numerical
analysis of the dynamics of a one-dimensional ring composed
of Rossler oscillators with a nonlocal coupling introduced for
all three phase variables:

i+P
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Figure 1b shows a bifurcation diagram obtained by analyzing
the equations of ensemble (3) [56]. A comparison of the results
shown in Fig. 1a and b indicates that dynamical regimes of
ensembles of logistic maps (1) and Rossler oscillators (3) are
topologically equivalent. This is an important point, and we
return to it in what follows.

3. Formation mechanism
and properties of phase chimeras

Analysis of the properties of chimera structures in rings
composed of logistic maps and Rossler oscillators in
Refs [55, 56] is undoubtedly important and fundamental.
But these results do not answer a number of questions about
the structure of the chimera found, its dynamical and
statistical properties, or, finally, the question of whether
chimeras of other types can be observed in systems (1) and
(3). These questions are addressed in a set of papers published
later [75, 91]. We digress to describe new results found there.

We turn once again to system (1), which can be rewritten

as
M =ax!(1 —x!)+ F(a,r,x!), (4)
where
s P
Florsl) =15 3 (5 ~£x1). )
oy

and f'(x) is the logistic map. It follows from (4) that each ith
ensemble oscillator experiences the action of P neighboring
oscillators to the right and to the left. This net action
F(o,r,x!) is different for each ensemble oscillator with the
number i =1,2,..., N. The difference between the acting
signals originating from nonlocal coupling leads to the
formation of spatio-temporal structures of certain types in
the ensemble. We refer to F (o, r, x/) as the coupling function.

We consider ensemble (4) setting a = 3.8, N = 1000, and
P =320 (r = P/N =0.32) and compute the coupling func-
tions F(x;) for different values of g. The left column in Fig. 3
shows the results of computing F (x;) in the form of spatio-
temporal profiles that were constructed as follows. For each
oscillator 7, 20 to 50 values of the amplitude x; were plotted,
excluding the equilibration time, which comprised approxi-
mately 5 x 107 iterations of system (4) [91]. As a result of such
a procedure, the dependences F (x;) give a qualitative idea of
the temporal dynamics of each oscillator and its evolution in
the ensemble space. Figure 3 clearly indicates that for
o =0.43 (Fig. 3a), the function F(x;) describes periodic
oscillations with period 2, and further, with a decrease in o,
it acquires period 4 (Fig. 3b), and for ¢ = 0.3574 (Fig. 3c),
period 8.

Thus, with the reduction in the nonlocal coupling
coefficient ¢, the coupling function undergoes a cascade of
period doubling bifurcations. The evolution of the front in the
distribution of instantaneous amplitudes (the right column in
Fig. 3) is seen in this case, with the front becoming vertical
(Fig. 3b,c). And yet, this fact notwithstanding, the chimera
structure is not observed. As ¢ = 0.35is reached (Fig. 3d), the
coupling function demonstrates the transition to a weakly
chaotic regime characterized by two incoherence regions
coexisting with coherence regions (Fig. 3d, right column).
Thus, a chimera state is born. A further decrease in the
coupling strength results in the widening of incoherence
clusters, in the same manner as shown in Fig. 2.

We note that instantaneous profiles shown in Fig. 3 evolve
with time because the ensemble oscillators continue to
oscillate. Computations indicate that the time evolution of
profiles does not modify the topology of the respective curves
for the amplitude distribution in the ensemble space. For the
coupling strength values that correspond to the data in
Fig. 3a—c, the profiles remain smooth, satisfying the require-
ments in Eqn (2), which is the condition of coherence. For
o = 0.35 (Fig. 3d), the coherence breaks down for two small
oscillator clusters, spawning a chimera state. Some informa-
tion on the time evolution of instantaneous spatio-temporal
amplitude profiles is also available in Fig. 5.

It can be concluded from the foregoing that the chimera
state is related to the cascade of period doubling bifurcations
in the coupling function F(x;) that occur as the nonlocal
coupling coefficient ¢ decreases. The sequence of period
doubling bifurcations terminates, leaving the regime of
dynamic stochasticity, and the chimera state just follows this
transition [48, 55, 75, 91].

We take a closer look at this type of chimera structure.
Figure 4 depicts a numerically found instantaneous profile of
amplitudes (Fig. 4a), time realizations F(x/) for two
neighboring oscillators in an incoherent cluster of the
chimera (Fig. 4b), and the crosscorrelation coefficient ¥ ;
(Fig. 4c).

It has been found in [75, 91] that in regions labeled as 7 and
2 in Fig. 4a, the oscillations are nearly periodic with the
period 2, but differ by one time iteration (Fig. 4b). We say that
in region /, all oscillators are ‘in-phase’, and in region 2, they
are ‘anti-phase’. In regions of incoherence, the oscillators
switch irregularly between the in-phase and anti-phase
regimes (Fig. 4b). This effect breaks the coherence by
creating regions of incoherence and hence the chimera state.

We analyze the cause and mechanism of switching the
‘phase’ of oscillators. With this aim, we return to Fig. 3 (right
column) and construct spatio-temporal profiles for these
regimes (Fig. 5). Numerical data in Fig. 5a correspond to an
instantaneous profile of the amplitudes in Fig. 3a (right
column). From the plot, it can be seen that the oscillators
with numbers i = 298 and i = 798 are in a fixed-point regime,
whereas all other oscillators perform oscillations with the
period 2. For the specified oscillators, the coupling function
F(x;) vanishes, as can be seen from Fig. 3a (left column).
Equation (4) then allows determining a fixed point of period 1

0 =38x"(1-x%, x"=0.737. (6)

This value corresponds to the result presented in Fig. 5a. It
can be easily verified that the equilibrium state x* is unstable.
As follows from a detailed analysis [75, 91], all the oscillators
with numbers i < 298 perform in-phase oscillations, whereas
those with numbers 298 < i < 798 are in anti-phase. The
change in the phase of oscillations (one iteration shift) occurs
in space on passing along the ensemble through the oscillator
i =298. As can be seen from Fig. 5a, on approaching the
oscillator i =298, the amplitude of oscillations decreases,
becoming zero at i =298, and then starts to increase for
i > 298. This is accompanied by an abrupt change in the
‘phase’ of oscillations. Because the initial conditions for
system (4) are taken as randomly distributed in the interval
[0,1] and the equilibrium state x° = 0.737 is unstable,
oscillators with in-phase and anti-phase dynamics alternate
irregularly close to i = 298. One incoherence cluster of the
chimera state is thus formed.
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Figure 3. Spatio-temporal profiles of the coupling function F; (left) and instantaneous profiles of the amplitudes x; (1 = const) (right) for the coupling
coefficient g: (a) 0.43, (b) 0.38, (c) 0.3574, and (d) 0.35. The other parameters are a« = 3.8, r = 0.32, and N = 1000.

The alternation of in-phase and anti-phase oscillations in
the incoherent cluster of a chimera structure can be illustrated
quantitatively by using the crosscorrelation coefficient (CC)
for different ensemble elements [77, 86]. We consider the first
(i = 1) and ith oscillators at the same given moment of time.
Then the CC is defined as

wo=—SON0) - ), )

(XP(0)(x2(1))

where the angular brackets denote time averaging.

Figure 4c displays the results of CC computations using
formula (7) for the chimera state regime shown in Fig. 4a. As
can be seen from this figure, in the incoherent clusters of the
chimera, the CC values alternate, being either ~ +1 or >~ —1.
A decay of correlations is not observed, only a change of sign.
This quantitatively confirms the fact that the oscillations in
regions / and 2 are practically periodic with the period 2 and
differ only by a half-period phase lag (one iteration with
time). We mention that |¥, ;| ~0.95 < 1. This happens
because the oscillations correspond to a weak chaos regime
and fail to be strictly periodic, as mentioned already.
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Figure 4. (a) Instantaneous profile x; (1 = const) computed for ¢ = 0.27 using Eqns (4); (b) temporal realizations of the function F(x;(¢)) for two
neighboring elements i = 318 and i = 319 from the incoherence region, and (c) the crosscorrelation coefficient ¥, ; in Eqn (7) for the chimera structure

shown in panel a. All other parameters are as in Fig. 3.
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Figure 5. Spatio-temporal profiles of the amplitudes x; for three values of the coupling strength g: (a) 0.43, (b) 0.38, and (c) 0.35. The other parameters are

the same as in Fig. 3.

The properties of such a chimera state, described in detail
above, gave us grounds to call it the phase chimera[75,91]. As
shown in Section 4, this chimera type is not the only one.
Ensemble (1) allows another type of spatio-temporal struc-
ture, which we called the amplitude chimera [75, 91].

4. Amplitude chimera states

Studies of coherence—incoherence transitions in ensemble (4)
showed that a decrease in the nonlocal coupling parameter
o to values smaller than the critical value o, ~ 0.44 leads
to the appearance of incoherence regions (see Figs 3 and 4).
A chimera state called the phase chimera is born. But
what happens in ensemble (4) if ¢ is decreased further,
keeping r =0.32 fixed? The research shows that in this
case a new cluster of incoherent dynamics can be created
for a finite number of ensemble oscillators, shown in Fig. 6.

Figure 6a illustrates a cluster of oscillators 120 < i < 280
with various instantaneous oscillation amplitudes. From
the plot of the coupling function F(x;) (Fig. 6b), it is
clearly seen that oscillators in the indicated range of i are
under the action of a chaotic signal. As a result of this
action, the oscillators of an incoherent cluster demonstrate
chaotic dynamics [75, 91].

Computations showed that the incoherent cluster
120 < i < 280 is characterized by an irregular distribution of
the oscillation amplitudes x;, whereas the oscillators in the
ensemble outside the incoherent cluster perform oscillations
with a period close to 4. Studying the dynamics of individual
oscillators in the incoherent cluster (the analysis of temporal
realizations of the x;(7)) indicated that oscillations exhibit a
pronounced chaotic character and are characterized by an
exponential instability. The specific features of the cluster,
reflecting irregularity in the amplitudes of cluster oscillators,
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Figure 6. [llustration of the amplitude chimera in ensemble (4) for ¢ = 0.28. (a) The profile of instantaneous amplitudes, (b) the spatio-temporal profile of the
coupling function F(x;), and (c) the dependence of the CC ¥, ; for oscillators of the amplitude chimera cluster. The other parameters are the same as in Fig. 3.
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motivated calling the chimera state of the described type the
amplitude chimera [75, 91].

To quantitatively describe the incoherence of oscillations
in the amplitude chimera regime (Fig. 6a), CC (7) has been
computed [77, 86]. The amplitudes of chaotic oscillations in
the incoherent cluster are confined to two chaotic subsets. As
follows from computations, the phase trajectories of indivi-
dual elements in the amplitude chimera cluster regularly
switch over between these subsets with the period 2. To
eliminate the periodic component from the realization of
x;(t), we sampled amplitudes every second iteration, i.e., we
considered values of x;(¢) at discrete moments of time
t=1,3,5,.... The computed CC ¥, ; are plotted in Fig. 6c.

As follows from Fig. 6c, the CC ¥, ; is close to unity for
oscillators in the coherent state to the right and to the left of the
incoherent cluster of the amplitude chimera, and it sharply drops
to ~ 0.7 in the incoherence cluster 120 < i < 280. Computa-
tions confirm the fact that the oscillators in the amplitude
chimera cluster are uncorrelated and hence incoherent [77, 86].

Numerical studies revealed general properties of phase and
amplitude chimera states in ensembles of chaotic oscillators
where chaos is realized as a result of period doubling
bifurcations. The studies involved ensembles of nonlocally
coupled double-dimensional Hénon maps [66, 87, 88], cubic
[93], and sinusoidal maps, as well as time-continuous systems:
Rossler and Anishchenko—Astakhov oscillators [91, 128, 129]
and the Chua chain [93, 130]. Details and differences among
the regimes of phase and amplitude chimera were uncovered.

In all these ensembles, phase chimeras are characterized
by periodic oscillations in incoherent clusters with an
irregular phase shift between oscillators. The lifetime of
phase chimeras in numerical experiments is practically
unlimited. The phase chimeras persist in ensembles of
discrete maps for more than 10% iterations.

The properties of amplitude chimera regimes are differ-
ent. Detailed studies of time realizations of the x;(¢) for

oscillators from a cluster of amplitude chimeras demon-
strated the following. First, temporal oscillations are nonsta-
tionary and represent a process of irregular intermittency
between several distinct regimes. Most often, the intermit-
tency occurs between the regimes of phase and amplitude
chimeras. Second, amplitude chimeras have a finite lifetime.

As an example, Fig. 7 displays computation results for an
ensemble of nonlocally coupled Hénon maps [90]. The
ensemble equations are analogous to (1), but individual
elements are described by a double-dimensional map:

‘ o
Xit+1 =f(x/,¥]) Jrﬁ Z (f(??,‘t»yj'r) *f(xitayit» )

J=i—P

v =gl Sy =1 —a(x)) + ! (8)

The finite lifetime and nonstationarity of oscillations of the
oscillators from an incoherent cluster of an amplitude
chimera suggest that chimera states of this type can be
classified as transient chimera states [78)].

5. Role of quasihyperbolicity
of chaotic attractors

It has been found from numerical experiments that the spatio-
temporal structures in ensembles of nonlocally coupled
oscillators with period doubling are not encountered in
ensembles of Lorenz systems. A system of nonlocally
coupled Lorentz oscillators

i+P

. g
Xi=—y(xi —yi) + 5p j:zi_:P(xj - Xi),
5 P
Vi=—Xizi+ pxi =it g > =), )
P

Zi = —bzi + xipi
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was explored in [131] for values of parameters that corre-
spond to the classical Lorenz attractor [132-135]: p = 28,
y =10, and b =8/3. The number of oscillators in the
ensemble is N =100. An analysis of the dynamics of
ensemble (9) on the (r,g) parameter plane, where r = P/N,
indicated that the coherence—incoherence transition occurs in
this system through the regimes of so-called solitary states and
traveling waves [131]. No chimera states were found in this
case! A basic question is why? The answer is given in Ref. [66].

The absence of chimera structures in ensemble (9) comes
from a fundamental difference between the chaotic attractor
in the individual Lorenz system and the chaotic attractors
forming via a cascade of period doubling bifurcations
according to the Feigenbaum scenario [136]. The Lorenz
attractor is quasihyperbolic and in numerical experiments
can be considered hyperbolic because it does not include
stable regular subsets such as fixed points or limit cycles [134,
135, 137]. For Lorenz-type attractors, multistability is
excluded, and a chaotic attractor is the only attracting set in
the system phase space.

The authors of [66] formulated a hypothesis that chimera
states in ensembles of nonlocally coupled chaotic oscillators
occur only when chaotic attractors of individual oscillators
are nonhyperbolic [138, 139] and are characterized by multi-
stability. If the chaotic attractors are in the quasihyperbolic
(or hyperbolic) class, chimera states are not realized in the
ensembles. As a characteristic example, an ensemble of
nonlocally coupled Lorenz oscillators (9) was considered in
[66] for parameter values p = 220,y = 10, and b = 8/3, when
the attractor in the Lorentz system loses its property of
quasihyperbolicity, becoming nonhyperbolic. Chimera
states were obtained in this case.

Based on the results in Ref. [66], it was proposed to
introduce two basic models to describe the mechanisms and
properties of chimera structures in ensembles of chaotic
systems: Hénon [140] and Lozi [141] maps.

Double-dimensional Hénon map (8) is typical for the
description of chaotic systems with a so-called spiral Shilni-
kov attractor [142]. As ff — 0, system (8) transforms into the
logistic map. Furthermore, for spiral attractors in three-
dimensional differential systems of the Rossler type, a
double-dimensional map is realized in the Poincaré section,
which is topologically equivalent to the Hénon map [143, 144].

As the second basic model, using the Lozi map [141]

Xpp1=1—a (10)

xn‘ +Vns Yn= ﬁxn

was proposed in [66]. As is known, the Lozi map was
introduced especially to describe the subcritical excitation
mechanism and properties of the classical Lorenz attractor
[132, 134, 135, 145]. Map (10) is quasihyperbolic: as f — 0, it
transforms into a classical hyperbolic ‘tent map’. In the
Poincaré section by a double-dimensional plane, the Lozi
map serves as a model to describe a wide class of three-
dimensional differential systems with a Lorenz-type attractor.

Thus, using the basic Hénon (8) and Lozi (10) maps as
elements of ensembles with nonlocal coupling results in a
sufficiently general model of ensembles of chaotic oscillators
with both discrete and continuous time.

In a one-dimensional ensemble of nonlocally coupled
Hénon maps, as shown in Refs [66, 87, 88], all types of spatio-
temporal structures resembling those described above are
realized. Furthermore, for = 0.3 (for sufficiently strong
contraction in phase space), the bifurcation diagram of regimes

in the plane of coupling parameters for a ring of Hénon maps
practically repeats the diagram for a ring of logistic maps
(Fig. 1a). Not only qualitative but also quantitative correspon-
dence takes place [66, 87, 88]. For this reason, we do not discuss
the details of the coherence—incoherence transition in ensembles
of nonlocally connected Hénon maps. In the ensemble of Lozi
maps, as expected, the transition from full chaotic synchroniza-
tion to spatio-temporal chaos (complete incoherence) occurs
differently [66, 87, 88].

6. Coherence—incoherence transition
in an ensemble of Lozi maps

We consider the dynamics of ensemble (8) using Lozi map
(10) as its individual oscillator. It was shown in [87, 88] that
the transition from the regime of full chaotic synchronization
to that of spatio-temporal chaos also occurs in this ensemble
when the strength of nonlocal coupling ¢ is varied. However,
first, this transition occurs through the regime of so-called
solitary states [131] and, second, the regimes of chimera states
are not observed in this case. We consider the bifurcation
diagram for the Lozi ring regimes shown in Fig. 8.

This bifurcation diagram qualitatively resembles the one
for the ring of logistic maps (see Fig. 1) by the presence of the
coherence regions A, C, and D and spatio-temporal chaos B.
However, the transition from the region of chaotic synchro-
nization A to region B proceeds through the regime of solitary
states, and in the regions painted white, the regimes of
traveling waves are observed, as in the ensemble of coupled
Lorenz oscillators [131].

We consider the regime of solitary states in some detail. If
the transition from region A to region B is made by varying
the coupling parameter, then the picture presented in Fig. 9 is
realized. For ¢ = 0.226, a sharp amplitude spike for one
oscillator appears in the instantaneous profile (Fig. 9a). A
further reduction in the coupling parameter leads to an
increase in the number of oscillators in the regime of
amplitude spikes (Fig. 9b, ¢), finally leading to the regime of
spatio-temporal chaos. We stress that chimera states were not
found in this transition. The mechanism spawning solitary
states operates through a change in the properties of
individual ensemble oscillators under the action of nonlo-
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Figure 8. Bifurcation diagram in the plane of parameters (r,0) for an
ensemble of nonlocal coupled Lozi maps (10). Regions A and B
respectively correspond to full chaotic synchronization and the spatial
incoherence regime. The coherent spatial profiles (shown in the insets) are
realized in region C with the wavenumber k£ = 1 and in region D with
k = 2. The ensemble parameters are o = 1.4 and § = 0.3.
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Figure 9. Regimes of solitary states in a ring of coupled Lozi maps (10) for r = 0.2 for a decreasing coupling parameter o: (a) 0.226, (b) 0.225, and (c) 0.223.
An amplitude spike appears in (a), there are two of them in (b), and even more appear in (c).
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Figure 10. Attractors of system (11) for the coupling parameter ¢ (a) 0.226 and (b) 0.2. Gray shading marks attraction basins of solitary state attractors

computed for a selected ensemble oscillator.

cally coupled neighboring oscillators. Our studies showed
that the dynamics of an individual Lozi oscillator in the
ensemble become substantially modified under the action of
P neighboring oscillators from the right and left. The Lozi
system loses its hyperbolic character under the external action
and becomes bistable. The spikes in amplitudes in Fig. 9 just
correspond to the ‘switch over’ of phase trajectories to the
second attractor because of random initial conditions. As the
coupling coefficient ¢ decreases, the attraction basin of the
second attractor widens. The number of solitary states also
increases, which is reflected in Fig. 9.

We pause here to clarify the details. By simple manipula-
tions, ring equations (8) can be rewritten in the form

coupling coefficient is decreased, the attraction basins widen
(Fig. 10b), and increasingly more oscillators are in the regime
of solitary states. Their number increases linearly with the
decrease in the coupling coefficient. In the limit ¢ — 0, the
ensemble contains N uncoupled Lozi oscillators in the chaotic
regime and a transition to the regime of spatio-temporal
chaos occurs.

7. Chimera of solitary states
in coupled ensembles of Hénon and Lozi maps

We consider a system of two interconnected ensembles with a
nonlocal coupling, consisting of one-dimensional rings of
Hénon and Lozi oscillators

i+P
= (U= 0) (L) 5 D S,
ZP«f;P xitﬂ =f(x/,») +% Z [f(x/tayj’) _f(x[t7y[t)] + pF,
y”l — fx!. (11) » j=i—P
i i yi+ — Bxit ;
. _ (12)
It follows from system (11) that under the influence of nonlocal o, LR
coupling, the coupling coefficient modifies the form of each ul™t = g(uf,vl) +3r Z le(u/,v]) — g(uf,v))] —Ff,
individual oscillator: the factor (1 — o) appears in the first term j=i—R

in the right-hand side of (11), and this oscillator works in a
nonautonomous regime, affected by P neighboring oscillators
(second term) via nonlocal coupling. Owing to these modifica-
tions, individual oscillators in the ensemble acquire fundamen-
tally new properties. A special study of a ring of Lozi maps
showed that individual ensemble oscillators acquire the
bistability property by virtue of (11): a new attractor emerges
close to the Lozi attractor in phase space. The attraction basin
of the new attractor is rather narrow and widens with the
decrease in the coupling coefficient. The results of computa-
tions are shown in Fig. 10.

Because of random initial conditions, one ensemble
oscillator turns out to be in a narrow attraction basin
(Fig. 10a) passing to the solitary state regime. As the

v =Bu!, i=1,2,...,N, N=1000.

The first system of equations in (12) describes a ring of
nonlocally coupled Hénon maps (f(x,y) = 1 — ax? + y). The
parameter of nonlocal coupling ¢ and the number of nearest
neighbors P of the ith element to the right and to the left are
selected such that a chimera state is observed in an isolated
ensemble of Hénon maps. The second system of equations in
(12) describes a ring of nonlocally connected Lozi maps
(g(u,v) = 1 — a|u| + v). The coupling parameters o, and R
are chosen such that the ensemble of Lozi maps demonstrates
the regime of solitary states in the absence of coupling to the
ring of Hénon maps. The governing parameters of individual
elements in (12) are selected as a = 1.4, and f = 0.3, which
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corresponds to chaotic behavior in all individual elements of
the system considered in the absence of coupling. The two
rings are coupled symmetrically via the coupling function F,
which in the case of dissipative or inertial coupling between
the rings takes the respective form

Fl=g(uf,v)) —f(x/,»}) or F/ =uj—x. (13)
The coefficient y characterizes the strength of symmetric
coupling between the ith oscillators in the Hénon and Lozi
rings.

As a result of numerical studies, it has been found [124]
that with a variation in parameters in system (12), spatio-
temporal structures can be realized that can be found in
individual (uncoupled) Hénon and Lozi ensembles. For
example, when the parameter of symmetric coupling y is
varied, the regimes of phase and amplitude chimeras can be
realized in the Lozi ring, and the regimes of solitary states and
traveling waves can be realized in the Hénon ring. In addition
to the structures mentioned, for both dissipative and inertial
coupling types in system (12), a new type of chimera state can
be realized that we call the chimera of solitary states, a
chimera structure including solitary states [124]. The new
structure is realized in the ensemble of Hénon oscillators for a
small value of the coupling parameter y; its form is presented
in Fig. 11.

An incoherent cluster of a solitary state chimera includes
a group of oscillators (300 < i < 500 in Fig. 11) in the
regime of solitary states, which, unlike the phase chimera,
are in a weakly chaotic regime. The new structure is
insensitive to small variations in the initial conditions, and
it is realized in a finite domain of the governing parameters
of system (12). Studies of the properties of the amplitude
chimera in the system of coupled ensembles (12) demon-
strated full correspondence of its properties to those
described above for an individual ring of logistic maps.
The amplitude chimera also exhibits nonstationarity of
oscillations for all cluster oscillators and typically a finite
lifetime. However, in a system of two coupled rings, the
lifetime of amplitude chimeras can be controlled in wide
limits by varying the coupling coefficient y. The dependence
of the lifetime on the parameter 7 is essentially nonlinear in
this case.
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Figure 11. Instantaneous profile of the dynamics of an ensemble of Hénon
maps in coupled system (12) illustrating the coexistence of solitary state
and amplitude chimeras for a weak coupling y = 0.005. The system
parameters are o = 1.4, §=0.3, 0y =0.32, 0, =0.225, P =320, and
R =190.

Special studies have demonstrated that the mechanism of
solitary state chimera formation qualitatively corresponds to
that described in Section 6 (see Fig. 10). Owing to nonlocal
coupling, two close attractors emerge in the phase space of
system (12) that correspond to the coherent regime and the
regime of solitary states, and the system becomes bistable.

8. Realization mechanisms of solitary state
regimes and the solitary state chimera

in a one-dimensional ensemble of nonlocally
coupled Hénon maps

In Section 6, we discussed the mechanism leading to solitary
states in an ensemble of Lozi maps. The ensemble equations
are given by (8), where f(x/,y/) should be taken as Lozi
map (10). It was shown that the reason behind the
occurrence of the solitary state regime is the loss of
quasihyperbolicity by the Lozi map and the appearance of
bistability (see Fig. 10). It is natural to suppose that similar
dynamics can be demonstrated by a one-dimensional ring of
oscillators of Hénon maps, because an individual Hénon
map is by definition a nonhyperbolic system. The results in
Ref. [146] confirmed this fact. It was found that solitary state
regimes and chimeras of solitary states are indeed realized in
a one-dimensional ring of Hénon oscillators (8) and are
caused, as for a Lozi ring, by the bistability effect. We
consider these results in more detail.

To demonstrate the presence of bistability, we add a noise
perturbation to the coupling coefficient in system (8) by
taking

o= ao(1+V2DEY, (14)
where D is the intensity of noise distributed uniformly from
—1 to 1, and ¢’ is the noise source. If the system is bistable,
then, under the action of noise, its phase trajectories could
intersect the separatrix surface between the attraction basins
of'its attractors. Computations confirmed this fact. Under the
action of noise, regimes of solitary states are indeed realized in
the Hénon ensemble [146]. Phase portraits of the emerging
attractors and their attraction basins in the plane of variables
(x;, y;) were constructed based on numerical simulations for
an oscillator in the solitary state regime. Figure 12a plots
computed attractors for the oscillator i = 721 under various
initial conditions (x¥, 7). As can be seen from Fig. 12a, the
phase portrait reflects the presence of two attractors, shown
in black (attractor la, b) and gray (attractor 2a, b). The first
corresponds to the solitary state of oscillator i = 721. The
second attractor corresponds to the dynamics of an oscillator
in the coherent domain.

Each attractor contains two attracting subsets (labeled a
and b), and the phase trajectory switches regularly between
them at every time iteration.

Figure 12b shows the computed attraction basins for
attractors la and 2a. Under the action of noise, phase
trajectories intersect the separatrix and find themselves in
the attraction basin of attractor 1 related to the solitary state.
The effects of switching between bands a and b isillustrated in
Fig. 12c. It is seen that oscillations at attractors 1 and 2 are
aperiodic, with a phase lag of one iteration, and contain a
regular component of period 2.

The results shown in Fig. 12 are obtained under the action
of weak noise D = 0.000815, which triggered switching the
system over from attractor 2 to attractor 1. It was found that the
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Figure 12. (a) Attractors for oscillator i = 721: la,b correspond to the
solitary state regime, 2a, b correspond to the coherent domain. (b) The
attraction basins for attractors la (white) and 2a (gray); the black region
corresponds to trajectories escaping to infinity. (c) Temporal realizations
x1,, on the attractor la,b (gray dots) and 2a,b (black dots). Even
iterations correspond to bands a, and odd to bands b. The parameters of
system (8) are oy = 0.282, r = 0.32, and D = 0.000815.

switching is also realized in the absence of noise [146]. This
depends on two factors: the character of the random distribu-
tion of initial conditions and the form of the ensemble spatio-
temporal structure, i.e., on the selected parameters P and ¢ in

system (8). If the regime with coexisting phase and amplitude
chimeras of the type shown in Fig. 6a is initially realized in
model (8), then, under random initial conditions, the regime of
a solitary state chimera can emerge in system (8) (Fig. 13a). Ifan
amplitude chimera exists in the system, the attraction basins of
attractors 1 and 2 change their structure, manifesting a riddling
effect [147-149]. Riddling of the attraction basin of attractor 1
(the white region in Fig. 13b) raises the probability that the
system would switch ower to the regime of solitary states and
leads to the appearance of the solitary state chimera structure.
Thus, the results presented in Figs 12 and 13 indicate that the
regimes of solitary states and the chimera of solitary states are
realizable in a one-dimensional ring of nonlocally coupled
Hénon maps.

9. Double-well chimeras in ensembles
of bistable oscillators with a nonlocal coupling

Among dynamical systems with regular and chaotic
dynamics, a wide class of so-called bistable systems can be
singled out. The bistable dynamics are demonstrated by
physical [150, 151], radio-electronic [130], chemical [152],
biological [153, 154], and other systems [155, 158]. Spatio-
temporal structures in ensembles of coupled oscillators such
as discrete cubical maps, FitzHugh—Nagumo oscillators, and
the Chua chain in regimes of bistable dynamics were
explored in [93, 95]. A new type of chimera structure was
discovered, called the double-well chimera in Ref. [95]. As an
example, we consider a double-dimensional ensemble of
nonlocally coupled cubic maps described by the system of
equations [95]

i+R, j+R
=1 + 5 st ) = st )]
k=i—R,p=j—R
i j=1,....N, (15)
f<x>—<o<xx3>exp[x/;]> B=(1+2R) -1,

t _ t t _ t
Xignj = Xijs XijeN = Xij-

The indices i and j specify the element position in the lattice
and are treated as spatial coordinates (x and y, respectively),
and 1=0,1,2,... is the discrete time. The function f(x)
determines the dynamics of an individual map and depends
on the parameters o and f. The size of the system is N, the
number of elements in one direction (along the x or y axis).
Boundary conditions are periodic in both directions. The
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Figure 13. (a, b) Instantaneous profiles in the regime with coexisting amplitude and phase chimeras for various initial conditions for oscillator i = 700:
(a) in the attraction basin of the attractor from the coherent domain (black domain in panel ¢) and (b) in the attraction basin of the attractor of solitary
states (white region in panel ¢); (c) attraction basins of subsets 1a (white domain) and 2a (black domain) (see Fig. 12) for oscillator i = 700. Small grains in
the attraction basins of attractors 1 and 2 characterize the riddling effect. The parameters of system (8) are oo = 0.282, r = 0.32, and D = 0.
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Figure 14. A double-well chimera in system (15) for r = 0.35, ¢ = 0.444. (a—d) Spatial sections and temporal realizations of oscillations for selected
elements. Shown are (a) the spatial section j = 6 and (b) the temporal realization of oscillations for two neighboring elements i = 49, j = 6 and i = 50,
J = 6 corresponding to the lattice part with a double-well chimera; (c) the spatial section j = 50 and (d) a temporal realization of oscillations for element
i =31, j = 50 corresponding to the lattice part with an amplitude chimera. Panel (¢) shows a three-dimensional snapshot of an instantaneous lattice state.

The other parameters are o« = 2.9, f = 10, and N = 100.

interactions among elements have a nonlocal character.
Each lattice element is coupled to all neighbors within a
square with the side 2R + 1 centered on the given element. In
the case considered, R is half the square edge; however, for
convenience, we use the conventional terminology, calling
the normalized quantity r= R/N the coupling radius.
Ensemble (15) has N2 = 100 x 100 elements. The values of
parameters o and f§ in the cubic map were selected to agree
with the regime of developed chaos with a unified attractor

(=29, = 10).
For a fixed parameter f = 10 and « varying, the cubic map
demonstrates different dynamical regimes [159]. For

1 <o <24, there are two stable fixed points on the map.
With o increasing, each of them demonstrates a cascade of
period doubling bifurcations leading to the appearance of two
chaotic attractors, symmetric relative to x = 0. For o < 2.84,
the cubic map is bistable. The values of x**! are either only in
the positive or only in the negative domain, depending on the
choice of initial conditions. The parameter value o, = 2.84 is
critical and corresponds to the union or crisis of symmetric
chaotic attractors. For o > o, points at any trajectory
belong to a unique chaotic attractor, which reflects bist-
ability in a certain sense [159].

In the case of an ensemble of coupled maps (15), the
effective parameter value o, is variable because of the effect
of coupling, which explains the appearance of regular regimes
and complex spatial structures in the transition from coherent
to incoherent chaos for a decreasing coupling parameter o
[see (11)].

If the coupling strength exceeds the value ¢ = 0.05, the
behavior of lattice elements becomes bistable with time. Each
element can stay in the region of either positive or negative
states. However, for arbitrary initial conditions, combined
spatial structures are realized: some of the elements oscillate
in the region of negative values, and others in the region of
positive values. When the coupling parameter reaches the
value ¢ = 0.1, a transition to the regime of single-well
structures occurs. With a further increase in the coupling

strength, the correlation between elements increases, leading
to the appearance of clusters with fundamentally different
behaviors of neighboring elements. Elements of one lattice
part behave coherently with respect to each other, whereas
elements of the other part behave incoherently. Thus a
transition to a chimera state regime occurs. The chimera
structures observed are characterized by all lattice elements
that are in regions of either positive or negative values.
Chimeras analogous to phase and amplitude chimeras found
in chains of logistic maps or chaotic autogenerators [75, 91]
can be realized.

With an increase in the coupling strength o, a bifurcation
occurs for chimera structures belonging to different attrac-
tors (either negative or positive), and a new chimera type
emerges, characterized by the elements of coherent clusters
being in the vicinity of one attractor, whereas the elements
belonging to incoherent clusters are irregularly distributed
between the two attractors. Such chimeras cannot occur in
systems of coupled oscillators with one attractor. All system
elements in this case oscillate within one attractor, never
switching over to the other one. This type of chimera was
called the double-well chimera. An example of such a
structure is given in Fig. 14.

We note that the majority of chimeras observed in the
lattice are combined ones, i.e., include incoherent clusters
characteristic of chimeras of different types: phase, ampli-
tude, and double-well.

10. External and mutual synchronization
of chimera states

We explore effects of chimera state synchronizationly resort-
ing to examples of systems of coupled ensembles comprising
various oscillators with chaotic dynamics [124, 160]. For
clarity, we consider the simplest example of chimera struc-
ture synchronization in a system of two coupled ensembles
consisting of rings of logistic maps with a nonlocal coupling
and misfit in governing parameters. The system equations
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Figure 15. Spatio-temporal profiles of the amplitudes (a) x/ in the first ring and (b) y/ in the second ring of logistic maps in the absence of coupling between

the rings.

have the form

i+P
. (] . .
Xt =} t3p > =)+ F
P
o i+R
vt =gl o5 D (g —gl) —nf, (16)
J=—R

Ji = ouxi(1 = xj),

Here, «; and o, are the nonlinearity parameters of the logistic
maps, a1 and g, are the nonlocal coupling coefficients, P and
R are the numbers of neighbors on both sides of the ith
element in the respective first and second rings, N = 1000 is
the number of elements in each ring, F/ =g/ —f! is the
function of dissipative coupling between the rings, and y,,
and 7y,, are the coefficients of coupling between the rings. In
the case of external synchronization, y,; = 0 and y;, = y. For
the regime of mutual synchronization, y,; =y, = y.

g =my/(1-y).

10.1 External synchronization

of spatio-temporal structures

We select the parameters of the first and second rings such
that different spatio-temporal structures are established in
them in the absence of coupling. We fix parameters that are
the same for both rings, R = P = 320 and N = 1000, and take

the values o; = 3.7, 01 =0.23 and o = 3.85, g, = 0.15.
Figure 15 shows spatio-temporal profiles for amplitudes in
the two rings in the absence of coupling. As can be seen, for
the selected parameter values, the regime of phase and
amplitude chimeras is realized in the first ring x; (Fig. 15a),
and a regime close to spatio-temporal chaos is established in
the second ring y/ (Fig. 15b). The above parameter values are
not critical. The main requirement needed to explore the
effect of synchronization is that these parameters provide
different spatio-temporal structures in the rings without
coupling. We note that spatio-temporal profiles that we use
to illustrate the dynamics of elements in coupled rings in this
section are a set of the last 100 instantaneous profiles of
ensemble states (or the last 100 iterations of system (16)).

We now trace the evolution of structures in the second
ring when a unidirectional coupling is introduced, i.e., when
the first (driving) ring of logistic maps acts on the second
(driven) ring, with the coupling coefficients y,, =y and
751 = 0. Computations indicate that after the coupling is
introduced, spatial structures in the second ring undergo
modifications as 7y is increased, gradually approaching the
structure in the governing ring (Fig. 15a). If the coupling
coefficient reaches the value y = 0.40 or higher, the structure
in the driven ring acquires a form identical to that in the
driving ring. Figure 16 illustrates this evolution.
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Figure 16. Spatio-temporal profiles of the amplitudes y/ in the second ring for (a) y = 0.15, when the effect of external synchronization is still absent, and

(b) y = 0.45, when it is present.
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Figure 17. Region of external synchronization of spatio-temporal struc-
tures in system (16) in the parameter plane («;, y) for o, = 3.85, 0 = 0.23,
and g, = 0.15. In hatched domain A, the crosscorrelation coefficient for
oscillators x/ and y/ is R; > 0.99.

To prove that we are dealing with the external synchroni-
zation of chimera structures, the results presented in Fig. 16
are, strictly speaking, insufficient. The similarity of synchro-
nous structures has to be quantified and the existence of a
finite synchronization domain in the system parameter space
must be shown. One possible quantitative characteristic for
the synchronous dynamics of two oscillators can be the CC

(17)

where x; and y; are the amplitudes of oscillations in the first
and second coupled ensembles, the angular brackets denote
time averaging, and i=1,2,..., N are the numbers of
respective elements in the coupled ensembles. Synchronous
dynamics of oscillators would be identified with R; = 1 for all
ensemble oscillators, whereas the coefficient R is less than
unity if synchronization is absent. Computations showed that
the structure given in Fig. 16b is indeed identical, and hence
synchronous, to the first structure observed in the driving ring
in the absence of coupling between the rings (Fig. 15a). In this
case, the CCis R; > 0.99 and this condition is observed for a
finite region in the domain of governing parameters. Thus, we
can argue that for a unidirected coupling, the chimera
structure of the first (driving) ring synchronizes the structure
in the second (driven) ring, and the effect of external
synchronization is realized for chimera structures.

More revealing is an experiment whose results are shown
in Fig. 17. We set o = 3.85 in the driven ring and construct
the region of synchronization in the plane of two parameters:
the coupling coefficient y and the nonlinearity parameter for
the driving ring ;. Changes in «; modify spatio-temporal
structures in the driving ring. As follows from computations,
the structures that are then realized in the driving ring
synchronize like structures in the governed ring as the
coupling parameter y increases. Further, varying the cou-

pling coefficient, we compute the CC R and draw the
synchronization domain shown in Fig. 17. In the hatched
domain A, the coefficient is R > 0.99, implying that in
domain A structures are realized that are identical to the
structures in the governing ring. It should be kept in mind that
under varying o; and y within domain A, the structures
observed may vary owing to variations in the parameter o
in the driving ring. However, everywhere in domain A the
structures of the first and second rings are synchronous. We
note that Fig. 17 suggests the existence of a synchronization
threshold, which originates from the fact that individual
oscillators in ensembles are not identical and from the
nonlocality of the coupling.

10.2 Mutual synchronization of spatio-temporal structures
With the goal of exploring mutual synchronization of
chimera structures, we add a symmetric bi-directional
coupling to Eqn (16) for coupled rings by setting
Y12 = V21 = 7. Introducing a small misfit in the parameters
o and o, in the ensembiles of logistic maps, we create different
chimera structures in the first and second rings (Fig. 18a).
With the coupling introduced, as follows from computations,
the structures start to approach each other, and for y > 0.07
the chimera structures become synchronized (Fig. 18c¢).

Computations of the CC showed that R > 0.99 in the
synchronization regime and that this condition holds for a
finite range of the coupling coefficient. Thus, we can state that
mutual synchronization of chimera structures is realized in
coupled ensembles (16). We note that synchronous structures
do not coincide with the structures in the first and second
ensemble without coupling, which is apparent from Fig. 18c.

The details of the synchronization effect for structures of
coupled ensembles (16) qualitatively correspond to the
classical theory of limit cycle synchronization. This fact
allows the results described to be regarded as a generalization
of ideas of the classical synchronization theory for periodic
auto-oscillations to the case of synchronization of spatio-
temporal structures in systems of coupled ensembles of
nonlinear oscillators.

11. Conclusions

In this review, we presented the results obtained in studies of
different types of spatio-temporal structures realized in
ensembles of nonlocally coupled chaotic oscillators with
discrete and continuous time. Relatively simple ensembles in
the form of a one-dimensional ring of nonlocally coupled
oscillators and systems of two coupled ensembles were
considered. The main focus was on exploring dynamical and
statistical properties of chimera structures characterized by
the coexistence of spatially localized clusters with coherent
and incoherent dynamics in the ensemble.

We briefly recapitulate the main results. In Section 2, we
presented studies of so-called phase chimeras. Computations
were carried out using a simple example of a one-dimensional
ring of nonlocally coupled logistic maps in the chaotic regime
of individual oscillators. It was found that an incoherent
cluster of phase chimeras comprises a finite number of
ensemble oscillators whose oscillations change their ‘phase’
irregularly in space. In Section 3, we presented the mechanism
of phase chimera formation and its statistical characteristics.
In Section 4, we described a new type of chimera structure
called the amplitude chimera, reviewing the results of studies
exploring the realization mechanism, statistical characteris-
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Figure 18. Effect of mutual synchronization of chimera structures in symmetrically coupled ensembles x; (top row) and y/ (bottom row) for the coupling
parameter y: (a) 0, (b) 0.025, (¢) 0.075 and o) = 3.7, 2 = 3.85, and 0; = g, = 0.28.

tics, and lifetime of amplitude chimera clusters. It was
confirmed by numerical simulations that the appearance of
phase and amplitude chimera structures is typical for a broad
class of ensembles with nonlocal coupling, with individual
elements being discrete or differential systems realizing a
transition to chaos through a cascade of period doubling
bifurcations.

The connection was presented between the types of
chimera structures in ensembles of chaotic oscillators and
the type of chaotic attractor for an individual oscillator. In
Section 5, we presented results indicating that chimera
structures occur in ensembles of oscillators with nonhyper-
bolic attractors and are still not found in ensembles with
quasihyperbolic attractors. Based on this, we proposed to use
basic models in the form of discrete Hénon and Lozi maps as
individual oscillators in ensembles. An ensemble of Hénon
elements is a system with a nonhyperbolic attractor, and an
ensemble of Lozi elements describes a system with a
quasihyperbolic attractor. With the help of these models, it
is possible to describe characteristics and properties of spatio-
temporal structures for a wide class of ensembles composed of
chaotic oscillators. A feature of ensembles with oscillators
having a quasihyperbolic type of attractor is the realization of
structures containing oscillators with abrupt amplitude
spikes (regimes of solitary states). In Section 6, devoted to a
description of solitary state regimes, we reported on the
results of studies exploring the mechanisms whereby this
regime is realized. It was found that the cause of solitary
state occurrence is the loss of quasihyperbolicity by the Lozi
system and the emergence of the bistable regime. A system of
two interacting ensembles of Hénon and Lozi maps was
discussed in Section 7. A chimera structure of a new type —
the solitary state chimera— was described, whose incoherent
cluster includes oscillators in the solitary state regime. In
Section 8, we presented original research on mechanisms
whereby regimes of solitary states and solitary state chimeras

occur in a one-dimensional ring of nonlocally coupled Hénon
maps. It was demonstrated that these regimes also originate
from the birth of bistability. The results of numerical analysis
pertaining to the so-called double-well chimera, which occurs
for a wide class of bistable oscillators, were discussed in
Section 9. In Section 10, we discussed the effects of external
and mutual synchronization of chimera structures in the
simplest system of two interacting one-dimensional ensem-
bles of nonlocally coupled logistic maps. These results
indicate that details of the effects of external and mutual
synchronization of spatio-temporal structures, including
chimera states, qualitatively correspond to the classical
theory of limit cycle synchronization.

At present, the efforts of numerous researchers are aimed
at studying processes leading to the formation of spatio-
temporal structures in more complex multi-component
systems. Such systems consist of several mutually connected
ensembles of various types of nonlinear oscillators with
different topologies and types of coupling between the
oscillators inside ensembles, as well as between the ensem-
bles. The authors hope that the results presented in this review
will be helpful in solving more complex problems.
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