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Abstract. Potassium, rubidium, aluminum, iron, nickel, and tin
embedded atom models (EAMs) have been used as examples to
ascertain how well the properties of a metal are described by
EAM potentials calculated from the shape of shock adiabats
and/or static compression data (from a function of cold pres-
sure). Verification of the EAM potential implies an evaluation
of its predictive power and an analysis of the agreement with
experiment both at 0 or 298 K and under shock compression. To
obtain consistent results, all contributions of collectivized elec-
trons to energy and pressure need to be taken into consideration,
especially in transition metals. Taking account of or ignoring
electron contributions has little effect on the calculated melting
lines of the models, self-diffusion coefficients, and viscosity. The
shape of the melting line is sensitive to the behavior of the
repulsive branch of the pair contribution to the EAM potential
at small distances.
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1. Introduction

The era of pair potentials ¢(r) ended in the main by the end
of the 20th century. The concept of pair interaction did not
allow simultaneous agreement to be obtained between the
calculated properties of a substance and the mechanical and
caloric equations of state. The end of the pair potential era
closed the door on the further development and application
of the theory of simple liquids, which had an almost 60-year
history. The time has come for multiparticle potentials. A
new promising concept of the embedded atom model (EAM)
that emerged in the 1980s paved the way for the use of
multiparticle potentials [1-5]. In mathematical terms, the
notion of embedding potential was introduced to character-
ize the energy of an atom in the field of an effective electron
charge created by metal atoms. This charge makes possible
multiparticle interaction. For the purpose of calculation of
interparticle forces, it can be represented as the totality of
effective pair interactions with the possibility of molecular
dynamics (MD) calculations of metal model properties [6] by
enumerating pairs of atoms rather than triplets, as in the
action of valence forces.

The majority of studies that have used EAM potentials
were aimed at calculating properties of crystalline metals and
alloys mainly in limited intervals of the parameters of state —
temperature and pressure, usually at absolute zero. Only
comparatively new studies are designed to construct metal
models in broad temperature and pressure ranges, e.g., under
shock compression conditions, when the density increases
1.5-2 times or more and the temperature rises to tens of
thousands of degrees.
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2. Potential of the embedded atom model

At first, the embedded atom model was intended for MD-
modeling of lattice defects, analysis of surface properties, and
phase transitions. Numerous EAM potentials published to
date have been used to calculate various physicochemical
properties of mono- and multicomponent metallic systems. It
is impossible to list them all. The embedded atom model is
based on the expression for the potential energy of a metal:

N N
Upol = Z (D(pl) + Z (P(l'i‘j) y Pi= Z lp(rij) ) (1)
i=1 i<j 7

where r;; is the interparticle distance. The first sum is the
‘embedding energy’ and the second one represents a usual
pair interaction with potential ¢(r). There is no embedding
energy in nonmetallic systems. To calculate the total energy,
expression (1) needs to be supplemented by the kinetic energy
of atoms (3/2) NkT and the thermal energy of the electron gas
(if it is taken into consideration). The energy in (1) is
calculated with respect to the ideal gas of particles at rest.
Function y(r) is the effective electron density created by atom
jonatom i and the quantity p; is the effective electron density
at the point r; created by the surrounding atoms. It is
convenient to choose the condition p =1 in a certain
‘standard state’ on a crystal atom at 7= 0 or on an atom of
a liquid near the melting point). Functions &, ¢, and  are
presented either analytically or in the form of tables.

The embedded atom model can be applied to describe a
concrete metal as follows. First, it is necessary to determine
the form of the pair contribution ¢(r) to the EAM potential.
For crystalline metals, the problem is solved quantum
mechanically. In the case of liquid metals, the function ¢(r)
can also be determined using the diffraction pair correlation
function (PCF) of the fluid [7, 8] and the Schommers
algorithm [9]. This is the inverse problem of the fluid theory.
There are other algorithms for inverse calculation of the pair
potential in the form of the PCF using more complex
equations of the theory of fluids [10, 11], but there are no
particular advantages of their choice, since the inverse
problem does not have an unambiguous solution [7, 12].
Other paired contributions to the EAM potential (Lennard-
Jones, Morse, etc.) were also used.

As far as the embedding potential is concerned, the form
of functions @(p) and Y (r) can be chosen in different ways,
e.g., in the form of the Sutton—Chen formulas [5, 13-15]:

a

®(p) = —eCp'*, Y(r) = <—>m7

r

with the paired contribution ¢(r) = & <f) , (2)
p

or in the form [16, 17]
ow-—fn())(2) o)
Y(r) =bexp [ = x(r—re)], (3)

where a, b, p., m, and n are parameters, or in the piecewise
continuous form, for example [7],

W (r) = prexp (—par),

(D(P):éllJrCl(P*Po)z at p, < p < pg,

D (p) = a;+bi(p — pi_y) +cilp — piy)’

at pi<p<pi—l(i:2’37475)7 (4)

@ (p) = [as + bs(p — p,) + cs(p — p;)°] {2/%’ (Z)T

at p < ps,
@ (p) = a7+ bi(p — pe) + c1(p — pg)"

at pg < p<prs (5)
P (p) = as +bs(p — p7) +cs(p—p;)" at p>py,

with p, = 1; at p = p;, the function @(r) itself and its first
derivative are continuous. Additional parts of the function
@(p) can be added at large p. The p; values increase in the
following sequence: ps < py < p3 < Py < p; < Py < Pg < P7-
Finally the EAM potential is determined by the parameters
pi,P2,a1,¢1—cs, p; — p7,m,n, which allows, in principle,
fitting the properties of the models to the experimental data.
Expressions (4) and (5) are used to model normal or low-
density and high-density states, respectively. Parameters of
the expressions for the embedding potential can be found on
theoretical grounds as well as from the data of static tests or
shock compression experiments. To model a liquid metal, it is
convenient to choose the y(r) function so that the mean value
(p) of the fluid model near the melting point (in the ‘standard
state’) equals 1. It follows from (4) that in a state with
p=po=1, d®/dp = 0, and interparticle forces are deter-
mined only by the pair contribution to the potential.

For example, it is convenient to describe the embedding
potential @(p) by the expression

W(p) =ar+ Y anlp—1)". ©
2

Coefficients a, can be found from the p(7") dependence at the
298-K isotherm under static compression. Coefficient qg is
determined from the model energy.

Later authors proposed variants of the EAM potential,
such as the modified EAM (MEAM), taking into account the
directional coupling [18, 19]. In many cases, EAM potentials
are sufficiently accurate to describe a set of properties of the
crystalline phase and even to describe several phases of a
given metal at a time. However, such high accuracy can be
reached only within a limited interval of state parameters,
e.g., at absolute zero. The potentials can be insufficiently
accurate to describe substances exposed to high temperatures
and pressures characteristic of shock compression and
astrophysical objects. For example, potentials calculated for
Nb and V in [20] lead to the destruction of the crystal lattice at
~ 500 and ~ 1000 K, respectively. Moreover, EAM poten-
tials developed for crystalline substances turn out to be
insufficiently accurate for predicting the properties of the
liquid or amorphous phase. For this reason, they can not
always be used, for example, to calculate the melting line
with sufficient accuracy. This poses the question as to
whether it is possible to apply EAM potentials in wide
ranges of pressures and temperatures. In other words, do
EAM potentials have a predictive power? The search for the
answer to this question is the central topic of the present
review.
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It is relatively easy to evaluate the accuracy of EAM
potentials to describe metals at moderate temperatures and
pressures. For example, the authors of [21] compared the
results of calculations of liquid lithium properties (melting
lines, vapor pressure, density, structure, and surface tension)
obtained with the use of six different EAM potentials at
pressures up to ~ 4 GPa and temperatures up to 2200 K.
They failed to observe ideal agreement with experiment but
managed to distinguish the most accurate potentials.

It is very difficult to describe the temperature dependence
of metal properties with the use of embedding potentials,
because this dependence becomes apparent only due to a
change in effective electron density p resulting from thermal
expansion or structural modification. An analysis of results of
calculations of model properties in fairly wide pressure and
temperature ranges is needed to assess the value of embedding
potentials. Let’s take for an example the Sutton—Chen
potential (2). Its parameters for nickel were reported in [13]
as ¢ = 0.031774 eV, C =33.5741, a = 3.1323 A, n = 8.975,
and m = 3.631 with the cutoff radius r. = 6.00 A (with an
additional shift of functions ¢(r) and y(r) to zero at r = r).
Figure 1 presents calculated pressure values for nickel models
with potential (2) at the 298-K isotherm in comparison with
static compression data [22, 23] and calculated pressure
values on the shock adiabat (SA) obtained as described in
Section 2.2 below in comparison with the factual data [24-26].
Excellent agreement between theory and experiment was
demonstrated for the 298-K isotherm, whereas the calculated
pressures in the case of shock compression proved greatly
overestimated. This means that the temperature on the
calculated adiabat is overestimated, i.e., the heat capacity is
underestimated. Indeed, MD calculation usually yields values
of model heat capacity Cy close to the classical value 3R,
whereas the heat capacity of real metals can be much higher
than that (for example, it is 53.02 Jmol~! K~! for chromium
at 2000 K and 49.12 J mol~! K~! for uranium at the same
temperature). Therefore, a type (2) embedding potential does
not ensure agreement with experiment at elevated tempera-
tures without special correction.

We shall consider three main types of states differing in
temperature: the metal compression isotherm at 298 K, its
shock adiabat (the Hugoniot adiabat), and the metal melting
line. Also, the possibility of a simultaneous description of a

p, GPa

Figure 1. 298-K isotherm and shock adiabat of nickel. 7—static
compression at 298 K [22, 23], 2— 298-K isotherm with the Sutton—Chen
potential (2), 3—shock adiabat of real nickel [24-26], 4— calculated
shock adiabat with the Sutton—Chen potential. Z = V;/V, where V is the
molar volume, V) is the standard metal volume.

metal in these states using a single EAM potential will be
analyzed. For this purpose, we shall check how accurately the
potential found from the shape of the shock adiabat describes
pressure on the 298-K isotherm and whether the potential
calculated from the form of the cold pressure function is
suitable for describing the shock adiabat. In addition, we shall
consider the peculiarities of melting line calculation at high
pressures.

2.1 Baseline data for the calculation of EAM potential
Experimental data on metal behavior under high pressure are
obtained in two main ways: by the methods of static and
shock compression. The former usually uses compression of a
very small sample in a diamond cell and its heating by a laser
beam. The method permits us to reach pressures of millions of
atmospheres, but it is rather complicated and has thus far
provided data only for a few metals, viz. up to 40 GPa for
lithium [27], up to 140 GPa for sodium [28], up to 25 GPa for
potassium [29], up to 13 GPa for rubidium [30, 31], up to
5.5 GPa for cesium [31, 32], up to 125 GPa for aluminum [33,
34], up to 100 GPa for lead [31], up to 300 GPa for iron [35],
and up to 125 GPa for nickel [36].

The dependence of pressure on the degree of metal
compression at 0 or 298 K (the ‘cold pressure’ function) is
often described by the Birch—-Murnaghan equation for
isothermal substance compression:

p(Z) = 3K VARV AR) {1 + % (K —4) (2% - 1)} . (7

Here, Z = Vi /V, V is the metal volume, Vy is the fit
parameter, Ky is the compression modulus, and K, is the
parameter proportional to the volume derivative of the
modulus. Vinet’s equation [22] is often used:

p(x) =3Ky(1 — x)x " exp [I.S(Kl —n)(1-— x)} , (8)

where x = (V/V00)1/3, and Vy, Ky, K|, m, n are fit para-
meters.

There is an extensive shock compression literature,
including a comprehensive database that encompasses a
wide variety of metals [24]. However, this information is still
insufficiently used for calculating interaction potentials.

Figure 1 showing nickel SA [24-26] illustrates the
dependence of metal pressure in the region of compression
(behind the shock wave front) on the degree of compression
Z = Vy/V, where Vis the molar volume behind the front and
Vy is the standard molar volume. The metal energy E under
shock compression is described by the equation [37, 38]

E = Ey +%(P+P00)(V00—V)7 )

where Eqy, poo, and Vo are the energy, pressure, and volume,
respectively, in the initial state. If pgy and Vg are specified, the
shock adiabat is uniquely defined. For example, if the
standard state is chosen as the initial state of a metal, then a
series of shock tests yields a single principal adiabat. In such a
case, the problem of the embedding potential looks like this.
Suppose that a calculated potential adequately describes the
behavior of the metal (its pressure and energy) along the
principal adiabat. Does it correctly describe other states
(above or below this adiabat)? Do the properties of the
metal obtained based on the shock compression data agree
with those deduced from static compression data and vice
versa? Is it possible to calculate the melting line in a broad
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Table 1. Pressure p on the principal adiabat in the case of SA approxima-
tion by polynomials, Z = V3 /V.

p, GPa,
Metal References Year VA for the degree
of the polynomial
3 4
[39] 1960
25] 1980
[40] 1962|200 2832 | 284.1
[26] 1981
sn 25] 1980
[40] 1962 2.00| 283.5 | 284.3
26] 1981
[25] 1980
2.00 | 286.2 299.7
26] 1981
[25, 41-46] 1957-2001 395.5 395.8
[7,24,25,43-47] 19602001 398 399.6
Fe [24, 25, 45-47] 19802001 [ 1701 3902 | 390.2
[24, 45-47] 2000-2001 392 391.5

pressure range? Finally, does the embedded atom model have
a predictive power?

In most recent works on the calculation and application of
EAM potentials, either the problem of describing high-
temperature states is not posed at all, or the potentials
derived from low-temperature data are boldly applied at
high temperatures. Obviously, this problem concerns, in
particular, the construction of phase diagrams.

The analysis of these issues in the first part of the review is
based on the method of considering combinations (tandems)
of static and shock compression data. A potential is
considered adequate if it accurately describes the properties
of a given metal both on the 0-K (or 298-K) isotherm and on
the shock adiabat. In the second part of this review, we shall
consider possibilities for calculating the melting line of a
metal and using experimental data on the melting line to
refine the EAM potential.

The use of experimental shock compression data to
calculate the potential usually implies the approximation of a
large set of pressure values p(Z) on a SA by polynomials. The
result of approximation depends on the choice of the source of
initial data. Table 1 presents examples of the approximation of
tin and iron shock compression data. At a given value of Z, the
pressure can change by several GPa and sometimes much
more, depending on the literary source, which introduces an
uncertainty into the calculation of the potential.

It follows from Table 1 that a natural pressure error of
several GPa should be taken into consideration when using
shock compression data.

2.2 Relationship between the shape

of the shock adiabat and the EAM potential

If the thermal contributions of electrons to the energy and
pressure are disregarded, then (for a given pair contribution
¢(r) in (1)) the embedding potential is determined unambigu-
ously from the SA shape, since the number of thermodynamic
degrees of freedom on the SA is equal to unity. When adding

2000

1500

1000

500

U, kJ mol™!

500 1 1 1 1 1 1
50 100 150 200 250 300 350
p, GPa

Figure 2. Presentation of the calculation of a point on the shock adiabat at
the molar volume V. I —dependence E(p) for metal models with a given
EAM potential, MD method, 2—the same dependence taking into
account the electron contribution to the energy, 3— graph of equation (9)
for a compact metal at Voo = Vy, where V) is the standard molar volume,
4—graph of equation (9) for an initially porous metal at Vo) = mVy,
where m is the degree of porosity. The intersection points /-3 and -4
determine the states on the shock adiabats of compact and porous metals
without taking into account electron contributions; the intersection points
of 2-3 and 2—4 are the same, taking into account electron contributions.

the electron contributions, the embedding potential must be
changed so that it generates the same initial SA.

To construct the SA of a metal with a known EAM, it is
sufficient to calculate the parameters of a series of points lying
on the SA. Let us choose a test point with the molar volume of
compressed metal V', and construct by the MD method a
series of models with this volume but with different
temperatures 7;. For each model, the pressure p; and the
energy E; = U; + (3/2)NkT are determined. They define the
E(p) dependence for a given volume V. If the thermal energy
and pressure of electrons are taken into account, they should
simply be added to E; and p;. Usually, the obtained
dependence E(p) is close to a linear one or fairly well
approximated by a polynomial of the 2nd or 3rd degree. Its
slope at each point is determined by the expression
(8E/0p), = Cv(3T/0p), = V/y. where 3= (V/Cy)(@p/aT),
is the Griineisen coefficient. The coefficient y is usually on the
order of ~ 0.1—1.0. If the E(p) graph intersects with the
graph of equation (9) (the straight line) at = V,and p = p,,
the intersection point (with pressure p, and energy E\) should
lie on the SA of the metal with the molar volume V. Indeed,
the equation of state for the metal and the adiabatic
equation (9) at this point are valid. The temperature at this
point is simultaneously determined.

This construction is shown in Fig. 2. In what follows, the
described method for calculating the adiabat is referred to as
the graphical method. Obviously, the same shock adiabat
should be obtained with different embedding potentials,
depending on the case, whether the electron contributions
are taken into account or ignored.

A peculiarity of thermal contributions of the electron gas
to the energy and pressure of the metal that appear during
heating is that they are usually ‘nonpotential’, i.e., indepen-
dent of atom coordinates and determined by metal density
and temperature. Models taking no account of electron
contributions to the energy and pressure will hereinafter be
called parametal models. It is possible to understand how the
addition of these thermal contributions (at a constant
interparticle potential) affects the SA shape by considering
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the pressure dependence of the model energy at a fixed
volume in the state on the SA. Figure 2 shows this
dependence at Z = V3 /V = const. Line 7 describes a series
of parametal models at Z = const and different temperatures,
and line 3 the SA equation (9) at Z = const. The intersection
point of lines / and 3 determines the coordinates of the point
on the parametal SA. The slope of line / is (dE/dp), = V/y,
where v is the Griineisen coefficient of the parametal model.
According to (9), the slope of line 3 is (dE/dp), =
0.5(Voo — V). The inclusion of thermal electron contribu-
tions to the energy and pressure yields plot 2 instead of plot /
(the E(p) dependence). For thermal electron contributions,
(dE./dpe),, = V/y., where 7, is the Griineisen coefficient of
electrons. If y, < y, the slope of line 2 is greater than that of
line /, and the intersection point of lines 2 and 3 moves to the
left (see Fig. 2). In this case, the pressure and the energy on the
SA model with electron contributions decrease in comparison
with those in the model ignoring electron contributions. This
effect must be roughly proportional to y — y,.

In the case depicted in Fig. 2, the value of the Griineisen
coefficient of para-potassium near a temperature of 20,000 K
is y = 0.72. The choice of y, = 2/3 as in the model of free
electrons (MFE) results in y, < 7y and the pressure on the SA
of the potassium model, taking into account the electron
contributions, being lower than that in the model disregard-
ing them. As y, decreases to zero, the effect of pressure
reduction on the SA tends toward a maximum.

This line of reasoning leads to the following rule: “If
¥ > 7., then taking account of thermal electron contributions
at the same EAM potential leads to a decrease in the pressure
difference along the SA and the 298-K isotherm at the same
volume.”

2.3 Peculiarities of shock compression

of initially porous and liquid specimens

If the initial specimen is in the standard state at 298 K, its
molar volume V) is equal to the standard Vggg and the initial
energy Ey is equal to the standard value E§98, known from
thermodynamic data. If the initial sample is porous, then its
initial volume at 298 K Vg = mV e, where m is the degree of
porosity. However, the initial energy Ey is usually very close
to EY, since they differ only by a small amount of the metal
dispersion energy or the energy of pore formation. Figure 2
shows that the initial porosity increases the pressure and
energy at points on the SA. Similarly, it is possible to
construct the SA of a metal liquid in the initial state.

2.4 Calculation of the EAM potential

from the shape of the shock adiabat

Theoretically, this problem has a unique solution. The choice
of the pair contribution to the EAM potential is discussed in
Section 2. After choosing the mathematical form of the
embedding potential (such as expressions (4) and (5)), one
should determine its parameters, taking into account the
dependence of the substance density and energy on tempera-
ture and pressure both at the 298-K isotherm (the binodal)
and on the SA. This stage of calculations is difficult to
formalize, and it is usually performed by trial and error
(choice of parameters — construction of models by the MD
method — comparison with experiment — variation of para-
meters, etc.). The criterion for the quality of calculations is
agreement between the experimental data and the character-
istics of the models along both the 298-K/binodal isotherm
and the SA.

Reference [7] reports examples of calculations of the EAM
potential from shock compression data. The choice of the
parametrized form of the EAM potential allows its character-
istics to be determined (with or without regard to thermal
electron contributions) and metal properties to be calculated
under any given conditions. Usually, these parameters are
found from the shape of the principal Hugoniot adiabat
obtained by compressing the metal from the standard initial
state (standard pressure, standard density, temperature
298 K). For each metal there is a single principal Hugoniot
adiabat. However, other adiabats can also be obtained by
impacting metal samples that are porous in the initial state
[38]. Shock compression of porous samples makes it possible
to enter the regions of quadrant (p, V') lying above the
principal adiabat and to study the metal at much higher
temperatures than on the principal adiabat. A wealth of data
on shock compression of porous samples was obtained in the
second half of the 20th century; sporadic publications on the
same topic appeared in the 21st century.

One can get an idea of the accuracy of calculations of the
EAM potential from the data on shock compression of
porous samples and their agreement with those obtained for
compact samples, for example by calculating parameters of
the EAM potential from the shape of the principal SA of a
compact substance; hereafter, this SA is compared with the
“theoretical Hugoniot adiabat”of a porous substance con-
structed by the aforementioned graphical method. In this
case, it is assumed that the substance in the compressed state
is in thermodynamic equilibrium.

The described method for finding the theoretical SA of a
porous substance (or a substance in any initial state differing
from the standard one, e.g., in a liquid state) is suitable for
calculations with and without regard to thermal electron
contributions. The main thing is that each of these potentials
correctly describes p(¥') and E(V') dependences on the real
SA of a compact substance.

Such calculations were carried out in [7] for copper,
cesium, lead, iron, nickel, bismuth, and zinc, taking into
consideration electron contributions to the energy and
pressure. Let us denote the degree of porosity of the initial
sample by m = Vyo/ Vo, where V) is the initial molar volume
of the compact metal in the standard state, and Vo > ¥V is
the actual molar volume of the initial porous metal. By way of
example, Fig. 3 shows Hugoniot adiabats of iron at
m = 1.002, 1.361, and 1.660 [7]. In the cases of copper at
m = 1.00—2.00,ironatm = 1.00—1.361, nickel at m = 1.108,
and bismuth at m = 1.486, the agreement of theoretical and
real adiabats is fairly good; at a higher degree of porosity,
discrepancies appear that become unacceptably large at
m = 1.66 for iron, m = 1.413 for nickel, and m = 1.50 for
zinc. We believe that the good agreement between the
theoretical and real adiabats testifies in favor of the
adequacy of the EAM potential not only along the principal
Hugoniot adiabat but also far from it. Consequently, the
form of the EAM potential (1) was the correct option in the
cases under consideration. The discrepancies at high porosity
values appear to be related to peculiarities of the experi-
mental technique. Thus, the results of shock compression of
porous samples are hardly worth using for potential
calculations.

It should be borne in mind that an analysis of data on
shock compression of porous samples does not provide new
information on the properties of a substance; it only extends
the attainable range of state parameters (pressure, tempera-
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Figure 3. Shock adiabats of iron. /—real adiabats [25], 2— theoretical
adiabats [7], 3—m = 1.002, 4—m = 1.361, 5—m = 1.660. Curves 4 and
5 are shifted upward by 200 and 400 GPa, respectively.

ture), mainly in the direction of higher temperatures but lower
densities, when the state of the substance approaches that of
an ideal gas. Extreme pressure testing (e.g., in underground
nuclear explosions [48, 49]) allows the Hugoniot adiabats to
be shifted to the region of high densities and temperatures.
When constructing MD models with temperatures of millions
of degrees, the simple Verlet algorithm may not ensure
sufficient accuracy of calculations of model properties; in
such cases, higher order algorithms are needed.

Since the temperature on the SA is usually unknown, these
data may not provide complete information about the
equation of state. Therefore, the properties associated with
temperature, heat capacity, etc. remain unknown. To
calculate them, certain assumptions about the equation of
state of the metal are needed. Progress in shock compression
technologies based on the use of high-power laser radiation
should be expected in the near future.

2.5 Phenomenological method

for the treatment of shock data

The classical molecular dynamics method faces difficulties
related to the caloric equation of state, namely, the behavior
of heat capacity. Typically, the heat capacity Cy of MD
models described by classical mechanics is close to
3R~ 25] mol~! K~! at a variety of potentials. However,
the heat capacity of real metals depends on temperature
and may differ several-fold from the classical value (see
Section 2.1). This difficulty can be overcome by ascribing the
discrepancy between theory and experiment to the excitation
of the electronic subsystem that contributes to the energy and
pressure but does not affect interparticle forces.

A large amount of data on the high-temperature behavior
of metals is provided by shock compression experiments.
Most of them were carried out before the 1980s, i.c., before
the development of the embedded atom model, when
calculations of properties at high pressures using interparti-
cle potentials were rare. The then accepted method (standard)
for the treatment of shock compression data is described, for
example, in [38, 47, 50]. The energy and pressure of the metal
are written in the form

E(WV,T)=E.V)+ Er+ E.,

p(V7T):Px(V)+pT+pe, (10)

where E (V') and p,(V') are ‘cold’ energy and pressure at
T =0 (or similar values at 298 K), Er and pr are heat

additions from crystal lattice vibrations, and E. and p. are
electron contributions. It is further assumed that

1 V m
Er =3R(T-2 E.=-pT?*| —
T =3RT-29%), B=3p7( )
_ B (11)
pT_/V7 pe_er'

Here, Cy = 3R, R = 8.314 Jmol~' K~!,m =0.5-0.67is
the electronic heat capacity coefficient derived from low-
temperature heat capacity measurements, and the Griineisen
coefficient y of the substance assumed to depend on the
volume alone can be estimated, for example, using the
formula [51, 52]

2 2
2 Vdop/dV (12)

The introduction of the degree of metal compression Z =
Vo/V, where Vj is the standard volume, transforms (12) into
1 Z d*p,/dz?
X/ ( 1 3)

W) =343 a7

If the pressure in a certain density range can be
approximated by the dependence p = aZ9, it follows from
(13) that y = 1/3+ (¢ — 1)/2. As for the electron contribu-
tions, 7. = 2/3 in the free electron model as in an ideal gas.
Cold pressure p, (V) in this calculation scheme is determined
experimentally. Of course, the above assumptions of the
constancy of heat capacity Cy = 3R and the independence
of the Griineisen coefficient y of temperature impose limita-
tions on the accuracy of this method.

3. Thermal electron contributions
to energy and pressure

In what follows, it will be shown that in many cases
nonpotential (thermal) contributions to the energy and
pressure coming, for instance, from the presence of free
electrons play an important role. In the computer modeling
of crystalline metals and alloys, these contributions are now
rather rarely taken into account, since they are small at
ordinary temperatures. Moreover, the ab initio method does
not require the separation of electron contributions to the
energy and pressure. Nevertheless, constructing MD models
at elevated temperatures and pressures is impossible without
taking into account the thermal properties of electrons. At the
same time, the inclusion of electron contributions into the
calculation scheme encounters serious difficulties. Statistical
mechanics makes no use of potentials, the parameters of
which explicitly depend on temperature or any quantities that
can not be expressed directly through the atoms’ coordinates.
Moreover, the above formulas (11) for E. and p. may be far
from reality. Therefore, it is important to consider what may
be the consequences of ignoring or incorrectly considering
thermal electron contributions to the energy and pressure.

3.1 Thermal electron contributions to energy

The problem of considering electron contributions in the
context of the application of the molecular dynamics method
is not given due attention in the literature. The contribution of
electrons to the heat capacity of iron in Earth’s core was
estimated as amounting to (1.6—1.8) R [53-55]. Calculations
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Figure 4. Heat capacity of Al electrons for standard volume V=
9.993 cm?® mol~!. Three collectivized electrons per atom. / —equations
(14), 2— Sommerfeld’s approximation C, = aT.

of electronic state density and heat capacity at temperatures
up to 50,000 K are reported for a group of transition metals
(Au, Ni, Cu, Pt, Ag, Al, W, Mo, Ti, Fe) and alloys (Fe—Ni,
Cr—Ni) in [56-59]. These data were used in studies by the
author of this review to model iron and nickel by the MD
method [60]. However, most studies, including MD calcula-
tions of melting lines at high pressures, disregard electron
contributions.

Simulation of nontransition metals is possible with the use
of the free electron model. In this case, two limiting variants
of taking the electron contributions into account are avail-
able. If valence electrons are completely delocalized, their
energy E. can be calculated in the framework of the MFE
using formulas from statistical mechanics [61]:

00 1/2
Ne:CJ 1+ 8(( dg )/kT) )
exp ((e —
0 p I (14)
00 3/2
Ee:CJ ¢ de .
o 1+exp((e—p)/kT)

In equations (14), N, is the number of electrons and u is
their chemical potential. In the MFE, the coefficient C =
47[(2m)3/2 V/h3, where m is the electron mass, ¥ is the metal
volume, and /% is the Planck constant. These equations are
usually well satisfied for simple liquid metals having an
isotropic structure. If N, volume V, and temperature 7 are
given, u can be found from the first equation and E, from the
second one. At low temperatures, Eqns (14) yield the known
Sommerfeld solution. Usually, the increment E.r(7) =
E.(T)—E. (298 K) that vanishes at T=298 K rather than
the E. itselfis used. Figure 4 presents the plots of the dependence
of electron heat capacity in Al calculated using expressions (14)
and the Sommerfeld formula for the heat capacity of an electron
gas Cer = BT. The results of these calculations are in excellent
agreement at low temperatures, but the linear dependence
markedly overestimates the heat capacity at 7 > 10,000 K.

3.2 Thermal electron contributions to pressure

Besides thermal contributions of electrons to the energy, their
contribution to the pressure may play an important role.
Electron pressure per is usually calculated from the equation
petV = y.Eer (V is the volume of the metal). The behavior of
the electronic Griineisen coefficient y, has been discussed
many times in the literature. In the free electron model,
7. = 2/3 [61]. In the case of real metals, the value of the

electronic Griineisen coefficient y, can be calculated quantum
mechanically. For noninteracting electrons, 0 <y, < 2/3.
Cases of a more complex electron behavior are reported in
Ref. [62]. Calculations of electron pressure for Al, Au, Cu, K,
Ni, Ta, Ti, and W were carried out, for example, in [59, 63,
64], e.g., for the case of ultrafast laser heating of a metal. A
suitable parameterization of these data is required for use in
MD modeling. The two simplest cases are considered below.
In the first one, electrons behave in accordance with the MFE.
In the second case, the valence electrons are thermally excited,
but the electron gas is highly localized. For this reason, the
thermally excited electrons do not contribute to the pressure
and y, = 0. This variant is considered for uranium in [7].

When using results of shock compression to select the
EAM potential, the pressure and energy of the electron gas
must first be subtracted from the experimental data. After
building a metal model, these pressures and energies must
again be added to the model properties. Taking into account
electron contributions leads to an increase in the heat capacity
of the models. As a result, the calculated temperature on the
adiabat lowers and the thermal pressure decreases accord-
ingly. At a certain (V,-dependent) total pressure on the
adiabat, the pressure due to interparticle forces increases.
Therefore, the pressure at the 298-K isotherm should also
increase. However, if the SA is calculated using the potential
found from the shape of the 298-K pressure isotherm, taking
account of thermal electron contributions leads to a decrease
in the calculated pressure on the SA. This inference can be
formulated as follows: “when electron thermal corrections
are considered, the difference Ap between calculated pressures
on SA and at the 298-K isotherm decreases.”

To conclude this section, it should be noted that the real
interparticle potential may depend on temperature. The
simplest example is silicon-like substances in which melting
alters the type of bonding. Therefore, the same interparticle
potential can not simultaneously describe the behavior of
crystalline and liquid phases. Another example is ordinary
metals in which the electronic structure changes in response to
high-temperature heating. A measure of such changes can be
the behavior of the number of delocalized electrons that can
be analyzed by quantum mechanical methods. In the case of a
simple metal, e.g., aluminum, the number of delocalized (free)
electrons remains equal to 3 even during heating to 103 K.
However, it increases from 2.4 at 0 K to 4.25 at 10° K in the
case of gold, and from 1.4 at 0 K to 2.9 at 10° K in the case of
nickel [59]. Evidently, this reduces the number of localized
electrons determining the effective ion size; the intreparticle
potential must change accordingly. In the considered algo-
rithms for shock data processing, these changes are regarded
as thermal electron contributions at variance with their real
nature. These effects should naturally manifest themselves in
modeling by the ab initio method.

Difficulties complicating the use of potentials that depend
explicitly on density/temperature are discussed, for example,
in Ref. [65].

3.3 Calculation of the EAM potential

from static compression data

It was mentioned in Section 2 that pressure dependences of
the degree of compression at ~ 298 K had been calculated for
certain metals. Such experiments are carried out in diamond
cells with the use of laser and/or synchrotron radiation [27—
36]. Usually, the parameters of EAM potentials are deter-
mined by means of selection, and the criterion for the results is
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Table 2. Comparison of the data obtained by EAM and ab initio methods.

N Number of steps p, GPa D x 10°, cm? 57!
Metal d, gem™ T,K
EAM Ab initio EAM Ab initio EAM Ab initio EAM Ab initio
Ni 13.655 4450 2048 473 5000 59 281.0 332.0 6.02 5.50
Na 2.689 4000 2000 432 5000 1148 70.0 439 75.0 64.8
Fe 12.961 6000 2000 432 5000 26 300.0 341.5 6.30 10.9
Bi 17.885 10,000 2000 432 5000 109 100.7 146.0 12.8 11.9
Note. d—density, N—number of model atoms, D — self-diffusion coefficient (B R Gelchinski data).

the proximity of the calculated pressures to those obtained
experimentally.

3.4 Use of ab initio data for the choice

of the EAM potential

Another way to select the EAM potential is quantum
mechanical calculations using the Hellmann—Feynman theo-
rem and software tools like Potfit [66]. A set of noncrystalline
models of a given metal (built up with any potential) is
created, interparticle forces are calculated quantum mechani-
cally, and the form of the EAM potential that could fairly well
approximate these forces is selected. In this case, it is very
useful to include the liquid phase in the set of test models [67,
68]; then, the EAM potential proves just as well suitable for a
fluid. There are few studies of this type, and the accuracy of
the described method remains to be thoroughly analyzed.

This method has limitations. Ab initio calculations of the
metal energy are not sufficiently accurate, because energy
variations at the chemical level (~ 1 eV per atom) are some
orders of magnitude smaller than in the case of an atom
‘undressed’ to the state of a ‘naked’ ion (in the all-electronic
version of the calculation) or to pre-valence shells. For
example, when the six outer electrons of the iron atom are
taken into account in the ab initio procedure, the sum of the
energies of ionization to the Fe™® state is AE = 284.33 eV per
atom. Thus, the iron sublimation heat of 4.30 eV per atom is
only 1.5% of the ionization energy AE. The error of energy
calculations by the ab initio method is usually (5—10)x
1073 eV per atom [69]. Calculations of heat capacity on the
100-K basis gives an error on the order of 50-100J mol~! K~!,
considered to be unacceptably large.

It seems that a higher accuracy is possible to achieve when
using the ab initio method by calculating the diffusion
coefficient, pair correlation function, and pressure. Table 2
presents data for four metals undergoing shock compression.
The SIESTA package was employed in ab initio calculations.
The discrepancy between pressure values with respect to
EAM data was 15-50% and about the same between self-
diffusion coefficients. A better agreement between the results
obtained using the EAM method and in experiment was
reached by using more accurate ab initio programs, such as
VASP. For example, the generalized gradient approximation
in the theory of the density functional allows discrepancies on
the order of 1015 GPa to be obtained between calculated and
measured pressures for iron and nickel [23]. However, even
such a discrepancy is too large to regard the calculated data as
a reference when fitting the EAM potential.

4. Analysis of data consistency
for 298-K isotherm-shock adiabat tandems

When analyzing the adequacy of a potential, it is very
informative to compare the equations of state calculated

from experimental static and shock data obtained in wide
ranges of temperature and pressure. If these data are assumed
to be sufficiently accurate (otherwise, they would be
unworthy of discussion), the calculated EAM potential
should demonstrate their good consistency. A set of static
and shock data for a concrete metal will be called a tandem.

Let us consider this problem with reference to potassium,
rubidium, aluminum, iron, nickel, and tin tandems. Potas-
sium and rubidium are alkali metals with high compressi-
bility, aluminum is a simple nontransition metal, iron and
nickel are transition metals, and tin is a popular subject of the
theory of liquids. In the cases of K, Rb, and Al, the MFE can
be used (even if with reservations), but it is inapplicable in the
case of iron and nickel. For brevity, the models taking no
account of electron contributions are called parametal models
(para-aluminum, etc.). At the same time, we shall consider
how the properties of the models change when the EAM
embedding potential is totally ignored, this will permit
comparing the roles of the embedding potential @(p) and
the pair contribution ¢(r) to the EAM potential. Models
totally disregarding the embedding potential (i.e., taking
account of the pair contribution ¢(r) alone) will be called
protometal models.

4.1 Potassium tandem

The pair contribution to the EAM potential of potassium was
calculated in [70] according to the Schommers algorithm [9]
from the form of the pair correlation function (PCF) of liquid
potassium near the melting point (7y,). It is shown in Fig. 5.
The PCFs of liquid potassium calculated with this potential
near Ty, practically coincide with the diffraction PCFs [71]
(Fig. 6).

Experimental static and shock compression data are
currently available for potassium. Shock compression of
potassium was investigated in [24, 25, 72]; the potassium SA
is shown in Fig. 7. These data were used to calculate the EAM
potential of potassium, taking into account the thermal

K

1.0 1.5 2.0 25 30 35 40 45 50 55 6.0
rA

Figure 5. Pair contribution to the potassium EAM potential [70].
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Figure 6. Pair correlation functions of potassium under normal pressure.
1—343 K, 2—473 K. Dashed lines— diffraction data [71], markers —
MD method.
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Figure 7. Shock adiabats of potassium. /—experiment [25, 72], 2—
EAM-1 potential [7, 73], 3— EAM-2 potential and y, = 2/3, 4—EAM-2
potential and y, = 0.

contributions of electrons to the energy and pressure in
accordance with the MFE. This potential, shown in Fig. 8, is
called the EAM-1 potential. The EAM-1 embedding poten-
tial of potassium [7, 73] very well describes the SA (see Fig. 7).
The mean-square deviation (MSD) of the calculated pressure
from the actual one (columns 4 and 2 of Table 3) is only
0.31 GPa.

The compressibility of potassium at 298 K was also
studied by the shock compression method in diamond cells

Figure 8. Potassium embedding potentials. /—in EAM-1 [7], 2—in
EAM-2.

in the range of 29-51 GPa [75]. The data obtained are
described by equation (8) at the following parameter values:
Voo = 36.614 cm3 mol™!, K, = 8.8 GPa, K; =3.1, m=5,
n=3. They are presented in column 5 of Table 3. The 6th
column shows the pressures of potassium models with the
EAM-1 potential at 298 K. Column 7 shows potassium cold
pressures at 298 K calculated from shock compression data
using the standard method (see Section 2.5) without taking
into consideration thermal electron contributions [72].

It follows from Table 3 that the calculation of the EAM-1
potential underestimates cold pressure in comparison with
the static data in the case of modeling by both the MD
method with the EAM-1 potential and the standard method
without accounting for thermal electron contributions (see
Section 2.5). Discrepancies between the pressure values
amount to ~ 15 GPa, while the MSD between the numbers
in columns 5 and 6 is 7.03 GPa. At a pressure above 10 GPa,
the discrepancies may be partly due to the difference between
the model (body-centered cubic, bee) and real (bee or body-
centered tetragonal, bet) potassium structures [76]. However,
the pressure of the models weakly depends on the structure.
For example, the pressure of the bcc potassium model at
298 K and Z=2.50 is 15.49 GPa and that of the face-
centered cubic (fcc) one of equal density is 15.86 GPa.
Therefore, it would be possible to improve the agreement
with the cold pressure experiment by changing the approach
to taking into consideration electron contributions. Cancel-
lation of such consideration in the case of the EAM-1
potential will lead to an additional decrease in cold

Table 3. Properties of bee potassium models. EAM-1 potential. ¥y = 45.46 cm® mol~! [74].

Shock compression Cold pressure pagg, GPa
Z=VyV Experiment ppy,, EAM-1[7, 73] Standard
GPa [25, 72] Experiment [75] EAM-1 method [72]
THng! K PHug» GPa

1 2 3 4 5 6 7
1.6 4.1 826 3.9 3.30 3.07 3.75
1.8 6.7 1448 6.6 5.81 4.86 5.76
2.0 10.0 2601 10.0 8.78 7.44 8.14
2.2 14.2 4478 14.4 12.2 10.60 10.89
2.4 19.9 7273 20.0 16.1 13.78 14.01
2.6 27.3 11,180 27.2 20.4 16.58 17.5
2.8 36.8 16,393 36.5 25.2 19.20 21.4
3.0 48.9 23,106 48.4 30.4 21.81 25.6
3.2 63.8 31,511 63.6 36.0 24.47 30.1
34 82.1 41,804 82.8 42.1 27.07 35.0

Note. pyyg — pressure on SA, Ty, — temperature on the adiabat, pygs — pressure at 298 K.
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pressure and an increase in the discrepancy with the static
compression data.

Let us use static compression data as a basis. The EAM
embedding potential was calculated from the potassium static
compression data [75] in Ref. [70]. Here, it is additionally
corrected, and its optimal parameters refined as follows:
pe=1.15, p;=2.90, ¢;=0.052, ¢s=0.012, m=2.00, n=1.50,
in addition to the remaining parameters cited in [7]. We call
this potential EAM-2. The data in Table 4 indicate that it very
well describes the real potassium pressure isotherm at 298 K
(columns 2 and 3), with the MSD between them equaling
0.35 GPa. Also, the embedding potential of potassium for
EAM-2 is presented in Fig. 8.

Let us calculate potassium SA using the EAM-2 potential
and the aforementioned graphical method both taking into
account electron contributions and not doing so. The results
of the calculation disregarding electron contributions, i.e., for
para-potassium, are presented in Table 4. The calculated
pressure values pyy, of para-potassium (column 6) are greatly
overestimated compared with the real ones (column 4). The
same is true of calculated temperatures. This means that the
EAM-2 potential can not be used for SA calculations without
proper correction, taking into account electron contributions.

The second variant of calculation envisages consideration
of thermal electron contributions. Let us assume that the
contribution to the energy is described by the MFE, i.c., by
Eqns (14). The graphical method allows such a consideration
by adding the electron energy and pressure to the values
obtained while constructing the model. Table 4 presents the
results of calculations at two values of the electronic
Griineisen coefficient: y, = 2/3 (as in the MFE) and y, =0
(i.e., ignoring electron contributions to the pressure). The

pressure on the SA of para-potassium models is always higher
than on the real potassium SA. A transition from para-
potassium to the variant with y, = 2/3 results in a reduction
in the SA pressure; it further decreases in the variant with
7o = 0 (columns 6, 8, and 12 in Table 4). SAs obtained with
different interparticle potentials are compared in Fig. 7. The
latter variant is regarded as the most suitable (MSD = 1.96).

To sum up, if the experimental data on static and shock
compression are accurate and the form of the EAM potential
is perfectly adequate, the best results of modeling the
potassium tandem are obtained by taking into account the
thermal electron contribution to the energy according to the
MFE and disregarding the thermal contribution of electrons
to the pressure (i.e., y, = 0).

Let us estimate the degree of agreement between the
experimental data on static and shock compression of potas-
sium. It should be borne in mind that the experimental static
data were obtained up to a pressure of 42 GPa, and the shock
data up to 82 GPa. The EAM-1 potential reproduces the
real SA with MSD pressure Dy,e = 0.31 GPa. The EAM-2
potential reproduces the 298-K isotherm with Dgoq =
0.35 GPa. Small Dy, and Dy values characterize the
quality of fitting EAM potentials according to experimental
data. However, the MSD of the calculated cold pressure with
EAM-1 (see Table 3) from the actual pressure at the 298-K
isotherm Aco1g =7.03 GPa. Accordingly, Ay, =1.96 at y,=0
and 8.74 at y, = 2/3. High 4.4 and Ay values at y, =2/3
characterize the deviation of potassium model properties
from those of real potassium. The small value of Ay, at
v = 0 evidences the agreement between experimental data
and the acceptable adequacy of the EAM-2 form aty, = 0. To
recall, Acog & Amug aty, = 2/3. Table 5 compares the proper-

Table 4. Properties of bee potassium models at 298 K and on SA. EAM-2 potential. ¥y =45.46 cm?® mol~!, pet and E.r — electron contributions.

SA, EAM-2 potential
Pas, GPa ) .
z Experiment Para-potassium Yo =2/3 Ye =0
, GPa
Experiment | EAM-2 | 5520 | Ti K | pitve: GPa | Tig K | pig. GPa | per, GPa | Ear, Tirug. K | pitug. GPa
[75] kJ mol~!

1 2 3 4 5 6 7 8 9 10 11 12
1.6 3.30 3.18 4.1 909 4.19 891 4.18 0.01 0.55 886 4.17
1.8 5.81 5.42 6.7 — — — — — — — —
2.0 8.78 8.71 10.0 4090 12.2 3769 12.1 0.22 7.66 4090 11.81
22 12.2 12.5 14.2 — — — — — — — —
24 16.1 16.8 19.9 12,880 26.4 12,189 26.1 1.58 4491 8829 23.52
2.6 20.4 20.9 27.3 25,690 40.4 — — — — — —
2.8 25.2 25.2 36.8 36,945 54.6 24,490 53.0 7.20 175.4 17,658 40.9
3.0 30.4 30.1 48.9 > 45,000 ? — — — — — —
3.2 36.0 35.8 63.8 >90,000 ? ~ 45,000 >90 >18 >380 31,788 66.1

Table 5. Comparison of potassium models on SA and at 298 K. Ap = puyg — paos.
Potential SAatZ =32 BCC Fluid at Ty, and p = 0
Phug, GPa Paos, GPa Ap, GPa Thue, K dyg, gem™ | ERc kI mol™! dy, gcm™3 E,, kJ mol™!
Experiment 63.3 36.0 27.3 0.860 —82.8 0.8293 —78.5

EAM-1 63.9 24.5 39.4 31,510 0.8258 —82.06 0.8226 —80.84
EAM-2, - 35.8 — >90,000 0.8280 —382.00 0.8245 —80.84

para-potassium
EAM-2,7.=2/3 >90 35.8 — > 45,000 0.8280 —82.00 0.8245 —80.84
EAM-2,7. =0 66.1 35.8 30.3 31,790 0.8280 —82.00 0.8245 —80.84
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ties of potassium models on the shock adiabat and at 298 K
built with different EAM potentials. Clearly, the option with
EAM-2 and condition y, = 0 provides good agreement with
experiment in all the states considered.

It can be concluded that the corrected EAM-2 potential
permits, in principle, adequately predicting potassium prop-
erties both on the SA and at the 298-K isotherm.

The authors of [77] calculated Li, Na, and K pressure
isotherms at 298 K up to 10 GPa by the pseudopotential
method (with the Heine—Abarenkov pseudopotentials). The
parameters of the pseudopotentials were adjusted according
to the shape of these isotherms. As a result, excellent
agreement with experiment was obtained not only for crystal-
line but also for liquid metals near the melting points. The
theory predicts a maximum of the potassium melting line at
520 K and 5.5 GPa. The calculated pressure on the lithium
SA is overestimated compared with the real values, under-
estimated on the sodium SA, and agrees with experiment on
the potassium SA. Taking into account/disregarding elec-
tron contributions has little effect on the calculated pressure
on the potassium SA, in accordance with the data in Table 4.

4.2 Rubidium tandem

The pair contribution to the EAM potential of rubidium was
calculated in [73, 78] using the Schommers algorithm [9] from
the form of the pair correlation function of liquid rubidium. It
is shown in Fig. 9. The pair contribution provides very good
agreement with the diffraction PCF of liquid rubidium near
the melting point (Fig. 10).

In the case of rubidium, experimental data are available
for both static and shock compression. The shock compres-
sion of rubidium was studied in [24, 25, 79] up to a pressure of
39 GPa,at Z < 3.0. These data were used in [8, 73] to calculate
the EAM-1 potential of rubidium, taking into account the
thermal contributions of electrons to the energy and pressure
according to MFE. The parameters of the EAM-1 potential
are also given in [7]. It describes the pressure along the adiabat
at Z < 3.0 with a relatively small mean deviation of 1.06 GPa.
The calculated values of cold pressure of rubidium models at
298 K obtained by the MD method with the EAM-1 potential
are presented in Table 6. They are very similar to the actual
ones [75], and the MSD of the calculated pressures at 298 K
from the static data at Z < 3.0 is 3.34 GPa. Column 7 in
Table 6 shows the cold pressure values obtained in [80] using
the standard method without regard for electron contribu-
tions. They are somewhat lower than those obtained by the
MD method, and the difference between pressures (~ 5 GPa
at Z = 3.4) is smaller than in the case of potassium.

Rb
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Figure 9. Pair contribution to the rubidium potential [73, 78].
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Figure 10. Pair correlation functions of liquid rubidium. /—323 K, 2—
473 K. Dashed lines — diffraction data [71], markers— MD method.

Table 6. Properties of bce rubidium models on SA and at 298 K. EAM-1
potential. ¥y = 55.86 cm® mol~!.

Shock compression Cold pressure pyg, GPa
7 |Experiment| EAM-1[7,73] |Experi- Standard
PHug, GPa ment |EAM-1| method [80]
(25,79] | Thue: K| Phiue. GPa| 175
1 2 3 4 5 6 7
1.6 - 826 1.8 2.08 | 242 2.3
1.8 4.69 1448 49 3.16 3.72 3.5
2.0 7.80 2601 7.9 444 | 541 5.0
2.2 10.6 4478 11.4 5.01 7.00 6.7
2.4 15.3 7273 16.5 7.58 8.84 8.7
2.6 24.2 11,180 25.5 9.45 | 11.09 10.8
2.8 39.7 16,393 41.4 11.51 | 1391 13.2
3.0 — — — 13.76 | 17.22 15.7
3.2 — — — 16.21 | 21.33 18.5
34 — — — 18.82 | 26.44 21.4

Static data for rubidium were obtained in [75] at pressures
up to 20 GPa. The data are described by equation (8) for the
values of the parameters Vo =55.86 cm® mol™', m=5,n=3,
Ky=1.92 GPa, K| =3.42; they are shown in the 5th column of
Table 6 and in the 2nd column of Table 7. In the case of
rubidium, the MD calculation using EAM-1 (the 6th column
of Table 6) slightly overestimates cold pressure in comparison
with the static compression data. Worth mentioning here is
the difference between model (bcc) and real (fcc or bet)
rubidium structures. Here too, the pressure of the models
weakly depends on the structure. Regarding the bee rubidium
model at 298 K and Z = 2.5, the pressure is 9.96 GPa; in the
fcc model, it is 9.65 GPa.

By analogy with the case of potassium, the EAM-2
potential of rubidium can be calculated from the data for
the 298-K isotherm [75]. The parameters of the EAM-2
potential are the same as those of the EAM-1 potential,
except for the new values: ps = 1.15, p; = 3.70, ¢; = 0.022,
cg = —0.003,m = 2.0, n = 3.5. The calculated pressure values
for bee rubidium with the EAM-2 potential at the 298-K
isotherm are presented in column 3 of Table 7. The agreement
of these data with experiment (2nd column) is fairly good
(MSD is only 0.41 GPa).

Similarly to the case of potassium, three series of rubidium
models with the EAM-2 potential were built: one ignoring
electron contributions, another (para-rubidium) taking them
into account in the free electron model (y, = 2/3), and the
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Table 7. Properties of bee rubidium models at 298 K and SA calculations. EAM-2 potential. ¥y = 55.86 cm® mol~!.

SA, EAM-2 potential
Pressure at 298 K, GPa - -
7z Experiment Para-rubidium ve =2/3 7. =0
. PHug>» GPa
EXpCI‘lant EAM-2 [5; 79] THug, K PHug» GPa THugs K PHug> GPa PeT> GPa EeTv THuga K PHug> GPa
[75] kJ mol~!

1 2 3 4 5 6 7 8 9 10 11 12
1.6 2.08 2.15 — 512 2.19 507 2.20 0.003 0.12 493 2.19
1.8 3.16 3.14 4.69 — — — — — — — —
2.0 4.44 4.28 7.80 2636 6.2 2249 6.1 0.076 3.20 2202 5.95
2.2 5.01 5.94 10.6 6603 12.1 5478 11.8 0.444 16.93 4883 11.07
2.4 7.58 7.57 15.3 11,212 16.7 8252 15.7 0.98 34.4 7126 13.9
2.6 9.45 9.74 24.2 18,970 24.2 13,309 23.2 2.42 77.9 10,414 19.2
2.8 11.51 11.81 39.7 31,100 353 20,320 33.5 4.74 141.9 17,538 25.0
3.0% 13.76 14.16 — — — — — — — — —
3.2% 16.21 16.75 — > 70,000 ? 45,580 68.6 15.86 4154 24,520 39.2
3.4% 18.82 19.26 — ? ? — — — — — —

* Extrapolation.
Table 8. Comparison of rubidium models on SA and at 298 K.
Z=28 298 K Fluid at Ty, and p = 0
Potential 0 0

PHug>» D298, Ap, THngs K dzgxs Ezgg» dm, En,
GPa GPa GPa gem™? kJ mol~! gem™3 kJ mol~!
Experiment 39.7 11.5 28.2 — 1.530 —74.7 1.4785 —72.06
EAM-1 41.2 139 27.3 16,393 1.528 —75.23 1.483 —72.49
EAM-2, para-rubidium 353 11.8 23.5 31,100 1.519 —75.20 1.482 —72.44
EAM-2,y.=2/3 335 11.8 21.7 20,320 1.519 —75.20 1.482 —72.44
EAM-2,7.=0 25.0 11.8 13.2 17,538 1.519 —75.20 1.482 —72.44

third considering only the contribution to the energy (y, = 0).
Based on these data, the SA of rubidium was calculated, the
results are presented in Table 7. The transition from a real
metal to para-rubidium is accompanied by a slight decrease in
the pressure on SA. Taking into consideration the electron
contributions resulted in a further reduction in the pressure to
ye = 2/3 and then to 7, = 0, as in the case of potassium.

In the case of para-rubidium at Z = 2.8 near 30,000 K, the
Grlineisen coefficient is y = 0.737. Choosing y. = 0.667 gives
7. <7, and the inclusion of electron corrections leads to a
decrease in the SA pressure in accordance with the data in
Table 7.

Let us estimate the degree of agreement between experi-
mental static and shock compression data for rubidium. It
should be borne in mind that the experimental static data
were obtained up to a pressure of 20 GPa, and shock data up
to 40 GPa. The EAM-1 potential reproduces the shock
adiabat with the MSD pressure Dyy,e = 1.06 GPa. The
EAM-2 potential reproduces the 298-K isotherm with MSD
Deog = 0.41 GPa. As with potassium, the values of Dy, and
Dcog are small and characterize a good fit of the EAM
potentials. The mean standard deviation of calculated cold
pressure with the EAM-1 potential versus the actual pressure
on the isotherm (6th and Sth columns of Table 6) is Acoq =
3.34 GPa. The standard method gives A¢oq = 1.58 GPa. The
mean standard deviation of the calculated SA pressure with
the potential EAM-2 and y, =2/3 (see Table 7) from the
actual pressure on the SA is Ay, =2.96 GPa, and the MSD at
Ve = 015 Apye = 7.02 GPa. The relatively small value of Ayjyg
at y. = 2/3 means that the experimental data are consistent,
and the form of the EAM potential is acceptable at y, = 2/3.

Table 8 compares the properties of rubidium models on
the SA and at 298 K constructed with various potentials.
Clearly, variants with EAM-1 (in MFE) and EAM-2 (with the
condition y, = 2/3) allow good agreement to be obtained
with experiment in all considered states.

The examples of potassium and rubidium indicate that it
is impossible to reconcile the experimental static and shock
compression data without correcting EAM potentials. The
use of the free electron model to calculate the electron
contributions to the energy and pressure allows approximate
agreement to be reached. In the case of potassium, the best
result is obtained with the use of the EAM-2 potential in the
7. = 0 variant, and in the case of rubidium by using EAM-1
and EAM-2 potentials with y, = 2/3.

4.3 Aluminum tandem

In the case of aluminum, both static and shock compression
experimental data are available. Data on shock compression
of a compact metal up to pressures of ~ 260 GPa are given in
Table 9 [24, 25, 81, 82]. Experimental data on the static
compression of aluminum at pressures up to 125 GPa are well
described by the Birch-Murnaghan equation (7), where
Z="Vy/V, Vo =9.807 cm? mol~!, Ky=84.93 GPa, and
K; =3.79 [83, 84]. They are shown in Table 10.

The EAM potential for fcc aluminum has been proposed
in many publications [2, 4, 7, 17, 85-92]. Their authors did not
calculate electron contributions to the energy and pressure
(i.e., in our notations, they modeled para-aluminum). In
Ref. [92], the potential was calculated using ab initio data,
and the proposed EAM potential of aluminum had a
somewhat steeper repulsive branch than the real potential; it
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Table 9. Properties of para-Al and Al models on SA and at 298 K. EAM-1 and EAM-2 potentials. ¥y = 9.993 cm® mol~!.

Shock compression Cold pressure, 298 K, GPa
7 Experiment [24, 81, 82] Para-Al, EAM-1 [85] EAM-2[7] Experiment | EAM-1[85]| EAM-2 Standard
[83, 84] atT=0 method [81]
THug’ K PHug> GPa THuga K PHug> GPa THug’ K PHug> GPa
1 2 3 4 5 6 7 8 9 10 11
1.00% 298 0.0 298 0.23 298 0.23 0 0.03 0.26 0.0
1.10% 348 8.8 325 10.45 325 10.48 9.7 10.8 10.35 7.8
1.20? 488 20.8 425 21.86 405 21.76 21.9 19.1 19.86 19.7
1.30* 818 37.2 830 353 843 35.68 36.6 31.9 31.85 34.5
1.40% 1476 58.8 1590 58.5 1500 58.97 53.9 53.0 51.73 51.9
1.50* 2640 86.6 2790 86.6 2619 88.26 73.9 81.1 78.77 72.7
1.60* 4410 121.5 4590 118.6 3430 122.1 96.7 105.3 103.2 97.0
1.70 6790 164.5 6130 160.7 5520 164.0 122.2 129.0 134.3 125.0
1.75 8180 189.3 7850 186.7 6940 189.4 136.0° 139.4 149.0 140.0
1.80 9670 216.5 9780 215.6 8580 218.21 150.5° 162.4 166.8 157.0
1.8182 — 226.9° 10,600 227.6 9100 228.55 — — — —
1.873 — 260.6° 12,510 260.8 10,650 261.9 — 173.4 — —
a fec structure, © inter/extrapolation.
Table 10. Properties of aluminum models at 298 K and SA calculations. EAM-3 potential.
Pressure at 298 K, Shock compression, EAM-3
GPa -
7z Experiment Para-Al 7e =2/3 Ye =0
. PHug, GPa
Experiment EAM-3 81, 82] Thug, K PHug, GPa Thug, K PHug> GPa Thug, K PHug> GPa
(83, 84] ’
1 2 3 4 5 6 7 8 9 10
1.00* 0 0.20 0.0 298 0.23 298 0.23 298 0
1.10* 9.7 10.27 8.8 351 10.53 351 10.53 351 10.5
1.20* 21.9 21.84 20.8 485 22.78 482 22.77 468 18.9
1.30* 36.6 36.29 37.2 872 39.9 871 39.85 871 39.8
1.40* 539 54.49 58.8 1811 63.8 1672 63.1 1679 63.2
1.50* 73.9 75.23 86.6 2616 84.6 2497 84.3 2493 84.0
1.60% 96.7 97.60 121.5 3820 111.5 3600 111.0 3587 110.4
1.70 122.2 123.14 164.5 5405 148.2 5134 145.5 5120 144.6
1.75 136.0° 135.68 189.3 6652 172.0 6193 166.6 6170 165
1.80 150.5° 146.08 216.5 8659 204.3 7102 195.6 7107 194
2 fce structure, P extrapolation.
overestimated pressure on the Hugoniot adiabat. Therefore, Al
the correction for the potential [92] was calculated in Refs [7, T Klz’ooo
8, 85]. The embedding potential @(p) in [92] is a smooth " 10,000
function of effective electron density p; it becomes equal to
—2.6358 at p = 1.20. In Refs [7, 8, 85], the following formula 8000
was used for the embedding potential at p > 1.20: 6000
b
with the optimal values of parameters a=—1.301 and » =2.500. 2000
Here, the Heaviside function H(z) =1 atz > 0 and H(z) =0

at z < 0. Taking into account this potential (called EAM-1), the
pressures on the para-aluminum SA were calculated. They are
shown in column 5 of Table 9. They agree fairly well with
experiment (column 3, the MSD of calculated and measured
pressures is 1.95 GPa), which suggests the adequacy of the
EAM-1 potential for describing para-aluminum.

To elucidate the role of electron contributions, similar
calculations of the Al embedding potential were carried out in
[7] based on shock compression data taking account of
electron contributions to the MFE (EAM-2 potential) at
7. = 2/3 using the method described in [7, 8]. The concentra-
tion of collectivized electrons was assumed to be equal to

Figure 11. Temperature on Al shock adiabats. /— EAM-1 potential, 2—
EAM-2 potential taking into account electron contributions, 3— EAM-3
potential disregarding electron contributions, 4—EAM-3 potential
taking into account electron contributions, 5—standard calculation [81].

3 electrons per atom. The correction for potential [92] had the
same form (15), but a = —0.900. The results of calculations
with the EAM-2 are presented in Table 9 and Fig. 11. They are
also in excellent agreement with experiment (columns 3 and 7,
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Figure 12. Cold pressure of aluminum. /— para-aluminium [85], 2—
aluminum models taking into account electron contributions [7], 3—
standard calculation based on shock compression data without taking
account of electron contributions [81], 4— static compression (Birch—
Murnaghan equation (7)).

MSD =1.12), which means that the EAM-2 is suitable for
describing aluminum, taking into account thermal electron
contributions. Consideration of these contributions markedly
reduces calculated adiabat temperatures T, (by roughly
1000 K at Z = 1.800; see column 6 and Fig. 11).

Figure 12 and Table 9 show the values of cold pressure
calculated by the MD method on aluminum models with
EAM-1 and EAM-2 potentials and by the standard method
[81]. All calculations using shock data overestimate the cold
pressure relative to the static data. When electron contribu-
tions are taken into consideration, the calculated cold
pressure increases.

We calculated the potential (EAM-3) which best describes
the static data for aluminum at 298 K. This potential has the
same form as the EAM-1, but with a slightly different
correction:

®(p) = —2.6358 +a(p — 1.36)"H (p — 1.36), (16)
and optimal values of the parameters ¢ = —1.600 and
b =1.700. The degree of agreement between the calculated
cold pressure and the static data [83, 84] is illustrated by
Table 10 (columns 2 and 3). The standard deviation between
the calculated and experimental data is 0.73 GPa.

Using the EAM-3 potential, it is possible to calculate the
corresponding SA by the graphical method described in a
preceding paragraph. The results of these calculations are
shown in Table 10. Calculations using static data underestimate
the shock adiabat pressure relative to its actual value. The
degree of such underestimation at Z > 1.5 is 10-12%.

These calculations can also be carried out taking into
account electron contributions to the energy and pressure.
The results are presented in Table 10. Consideration of the
electron contributions to the energy and pressure for the case
of y, =2/3 further diminishes the calculated SA, although
this effect is not too large. Greater electron contributions
affect temperature. Taking them into consideration results in
an additional drop in temperature at Z=1.8 by 1500 K, or
approximately 17%. Figure 11 shows temperatures on the
aluminum SA calculated with the use of various potentials.
The highest temperatures were obtained by standard calcula-
tions without taking account of electron contributions [81],
and the lowest ones by using the EAM-3 potential and
disregarding electron contributions. The difference between
these data at Z = 1.8 is ~ 30%.

Let us estimate the degree of agreement between experi-
mental data on the static and shock compression of
aluminum. It should be taken into account that the experi-
mental static data were obtained up to a pressure of 125 GPa,
and shock data up to 260 GPa. The potentials EAM-1
(excluding electron contributions) and EAM-2 (taking them
into account, at y, = 2/3) were found from the shape of the
aluminum SA, and the EAM-3 was calculated from the shape
of the compression isotherm at 298 K. It follows from Tables 9
and 10 that the calculated EAM potentials are quite adequate
in the region where they are determined. However, when the
calculated cold pressure with the EAM-1 potential is com-
pared with its actual values on the 298-K isotherm (columns 9
and 8 in Table 9, p < 125 GPa), the MSD 4,4 = 5.05 GPa;
at p = 125 GPa, the EAM-1 potential gives an error of 5.6%.
In the case of the EAM-2 potential, A.,q = 5.53 GPa. The
standard method [81] (excluding electron contributions) gives
the standard deviation A.,q = 1.82 GPa. Thus, taking into
account electron contributions has a relatively weak effect on
aluminum cold pressure.

On the other hand, calculation of the aluminum SA with
the use of the EAM-3 potential leads to the MSD Ay, =
7.15 GPa between calculated and real pressures on the SA (at
p < 125 GPa) in the case of para-aluminum. At the EAM-3
potential and y,=2/3, Ay, =7.98 GPa; Apye = 8.36 GPa if
7. = 0. Here, the calculated pressure is underestimated com-
pared with its actual value at Z > 1.5, taking into account or
ignoring electron contributions having but a small effect on the
result. Acolq and Apyg values are close to each other, as in the
case of potassium and rubidium.

An analysis of the data presented in Tables 9-11 gives
evidence that the best (even if moderate) agreement with
experiment for pressures on the SA and at 298 K is obtained
with the EAM-1 potential. It can probably be improved by
selecting an EAM potential of a different form.

4.4 Iron tandem

There are experimental data for both the static and shock
compression of iron. The analysis of shock compression
below is based on the results of Refs [25, 42, 43, 45, 81, 93].
Table 12 presents data on the pressure of real iron on the
principal SA (column 2). Static compression of iron in
diamond cells at pressures up to 360 GPa and 200 GPa is
reported in [35] and [22, 23, 94] respectively. The equation of
state (8) for real hcp iron (hcp stands for hexagonal close-
packed structure) is fulfilled at 298 K if the following
parameters are chosen: Vyo = 6.73 cm® mol~!, m=2,n=1,
Ky = 160.2 GPa, K; = 5.82 [35]. This equation is valid at
pressures up to 300 GPa or more (see the 5th column of
Table 12). Other parameters were proposed in [22]: Vi =
7.08 cm® mol~!,m=2,n=1, Ky = 165 GPa, K; = 5.47.

A number of EAM potentials have been proposed to
describe the properties of iron [2, 5, 14, 55, 68]. In [14, 55], the
potential (2) was applied with parameters ¢ =0.0173 eV,
C=24939,a=34714A,m=4.788, n = 8.137.

We performed further calculations using the EAM-2
potential of iron found from the SA shape without regard
for electron contributions (i.e., the para-iron potential) [7, 95].
In this potential, the iron @(p) function from Ref. [68] is
piecewise continuously extended to the region of high
effective electron density p according to the formula

Pi(p) = ai +bi(p — p;) + cilp — p))"
at p; <p <pip-

(17)
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Table 11. Comparison of aluminium models on SA and at 298 K.

Potential Z=1.7 fee, 298 K Fluid at T, and p =~ 0
PHugs GPa | pags, GPa Ap, GPa Tiug, K | dyg, gem™ EYg, kJ mol™! dm, gcm™3 Ep, kI mol™!

Experiment 164.5 1222 42.3 6790 2.700 —323.8 2.377 —295.0
EAM-1 160.7 132.9 27.8 6130 2.701 —316.8 2.349 —288.45
EAM-2 164.0 1343 29.7 5520 2.693 -316.8 2.350 —288.54
EAM-2, 148.2 123.1 25.1 5405 2.693 —316.80 2.350 —288.53

Para-aluminium

EAM-3,vy, =2/3 145.5 123.1 224 5134 2.693 —316.80 2.350 —288.53
EAM-3, 7, =0 144.6 123.1 21.5 5120 2.693 —316.80 2.350 —288.53
[17] 187.1 137.5 49.6 7451 2.642 —310.14 2.313 —283.9

Table 12. Properties of fcc para-iron models with the EAM-2 potential [7, 95] on SA and at 298 K and with the EAM-2el potential [7] on SA.

Vo = 7.093 cm?® mol~!.

Shock compression Cold pressure, 298 K, GPa Shock compression, EAM-2el [7]
7 Experiment ppyug, GPa EAM-2 [7, 95] Experiment EAM-2[7] Thug, K Eer, per, GPa Ye
[25,42, 43, 45, 81, 93] [22, 23, 35, 94, 96] kJ mol~!
THuga K PHug» GPa
1 2 3 4 5 6 7 8 9 10
1.0 0 298 0 0 0.91 298 0 0 —
1.1 14.0 430 14.3 9.7 14.8 330 0.10 — —
1.2 35.1 580 36.1 31.8 30.6 417 0.38 0.17 —
1.3 68.6 953 69.1 62.1 49.2 937 3.38 2.58 —
1.4 118.3 1946 117.7 101.3 82.1 1930 12.53 5.24 2.12
1.5 188.1 4070 186.4 150.2 140.3 3534 31.05 11.5 1.75
1.6 281.7 7930 279.6 209.4 221.3 6116 67.79 20.9 1.37
1.7 403.1 14,250 401.9 279.5 307.9 10,012 143.9 38.0 1.10
1.8 555.9 23,840 557.6 361.0 375.4 15,655 268.3 62.6 0.92
The following parameters are used here: no account of electron contributions results in a significant
reduction in the pressure. As was mentioned above, con-
Interval p pi a; b Ci qi sideration of thermal electron contributions must increase
38.0-60.0 38.0 | —6.675404 | —0.108005| 0.00275 1.73 cold pressure.
Thus, the excellent agreement between calculated and
> 60.0 600 | —8.473783|-0.062574] —0.00020 |  1.80 actual pressures on the SA when using the EAM-2 potential

At high pressures, real iron has a hexagonal close-packed
(hep) structure, but the fcc structure can be used in modeling
as technically more suitable for the MD method, since fcc and
hcp models have very similar properties. Table 12 contains
characteristics of fcc para-iron models on the SA (columns 3
and 4) constructed with the EAM-2 potential and parameters
from (17). A comparison of the data for real and calculated
adiabats shows that the EAM-2 potential rather accurately
describes the behavior of iron on the SA, with the MSD
between theoretical and measured pressures (columns 2 and
4) being only 1.22 GPa.

However, results of calculations of fcc para-iron pressure
with the EAM-2 potential at 298 K reveal alternating
deviations from those measured in a static experiment. Here,
the MSD between theory and experiment (columns 6 and 5) is
rather large (around 14 GPa).The authors of [42] calculated,
based on shock compression data, the cold pressure function
at 0 K by the standard method, disregarding electron
contributions. At Z > 1.5, the cold pressure was 3060 GPa
below that shown in Table 12 and 20-40 GPa below the static
values reported in [22, 23, 35, 94, 96]. This means that the
transition from a real SA to the cold pressure function taking

does not necessarily mean agreement with experiments on
cold pressure, heat capacity, etc. It should be clarified whether
the agreement can be improved by including electron
contributions. Reference [7] considers the possibility of
using the EAM-2 potential to describe iron models with the
addition of thermal electron contributions E.r and per to the
obtained values of model energy and pressure, respectively.
For each Z value, a new temperature on the Ty, adiabat was
found self-consistently from the condition that the sum of the
energy of the model with the EAM-2 potential and the
electron energy Ecr from Refs [56, 57] at this Ty, value is
equal to the actual energy on the adiabat. The difference
between the actual pressure of iron on the adiabat and the
model pressure was assumed to be equal to the thermal
contribution per of electrons to the pressure. This version of
iron description will be called EAM-2el.

Results of these calculations are presented in Table 12.
Taking into account electron contributions markedly
decreases the temperature on the adiabat (by 35% at
Z = 1.8). The calculated values of per and E.r can be used
to find out the electronic Griineisen coefficient y, = per V/ Eer.
The y, values of iron models lying in the 0.9-2.1 range are
higher than the value 2/3, characteristic of the MFE.
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y. decreases monotonically during heating. The described
method makes it possible to match the data on the SA and
on the 298-K isotherm. As far as heat capacity is concerned,
taking into account electron contributions improves the
agreement with experiment. For example, the heat capacity
of iron C, during pulsed heating at 4,000 K is
44.7 J mol~! K~! [97], while calculation with the EAM-2el
potential gives Cy =~ 40.8 J mol~! K~! (at 230 GPa).

Let us analyze, by analogy with previous examples and
moving in the opposite direction, the adequacy of the EAM
potential. The choice of the cold pressure function measured
under static conditions [22, 23, 35, 94, 96] as the initial
parameter allows calculating the corresponding EAM poten-
tial at a temperature of 298 K and constructing a series of
models under shock compression. Judging by static data, the
optimal parameters of the EAM potential in accordance with
equation (17) have the following form:

Interval p 0; a; b; ¢ qi
38.0-47.5 38.0 —6.512968| —0.108593| 0.0088 1.4
47.5-60.0 47.5 —7.4548931 —-0.076444| —0.0020 1.2

>60.0 60.0 —8.451876| —0.080421| —0.0081 1.1

In what follows, this potential is referred to as EAM-3.
The results of calculating the properties of para-iron models
with the EAM-3 potential are presented in Table 13. Column 3
gives cold pressures at 298 K calculated from models with the

EAM-3 potential. They are in good agreement with experi-
ment [35] (2nd column, MSD = 1.34). Then, characteristics of
states on the shock adiabat of para-iron models with the
EAM-3 potential can be calculated by the graphical method
described in Section 2.2 (if pressures do not exceed the actual
ones on the ‘cold * isotherm).

Column 6 of Table 13 shows calculated pressure values on
the SA. They differ from those on the real iron adiabat
(column 4). The 7th column shows the pressure difference
Ap between the models with the EAM-3 potential and real
iron on the shock adiabat. At Z < 1.5, these figures are small
and behave randomly, but at Z > 1.5, the pressure of the
para-iron models becomes 10-30 GPa lower than the real
pressure on the SA, i.e., the SA of models with the EAM-3
potential lies below the real one.

So, taking the cold pressure function of iron as a basis, it is
possible to calculate the shock adiabat of para-iron under-
going compression up to Z = 1.5 without taking account of
thermal electron contributions with an error of ~ 5%; the
error increases by 2-3 times at Z = 1.6. Therefore, it is
necessary to consider the influence of electron contributions
on the properties of models built with the use of the EAM-3
potential. Table 14 shows results of a graphical calculation of
the iron SA with the EAM-3 potential, taking into considera-
tion thermal contributions of electrons. The thermal energy
of electrons was calculated from the data of Refs [56, 57]. The
contribution of electrons to the pressure was taken into
account using the relation perV = y.Eer. Table 14 presents
results of SA calculations with the EAM-3 potential by the

Table 13. Properties of fcc para-iron models at 298 K and on SA. EAM-3 potential.

Pressure at 298 K, GPa SA
7 Experiment EAM-3 Ap, GPa
Experiment EAM-3 PHug, GPa Thug, K PHug, GPa
[22, 23, 35, 95, 96]
1 2 3 5 6 7
1.0 — — 298 0.70 0
1.1 7.5 — 14.0 — — —
1.2 29.7 30.8 35.1 460 32 -3.1
1.3 60.2 61.1 68.6 1260 70.1 1.5
1.4 99.8 98.4 118.3 2750 124.5 6.2
1.5 149.4 148.0 188.1 4300 179 -9.1
1.6 209.4 211.9 281.7 5850 250 —-31.7
1.7 280.6 280.5 403.1 12,000 371% —
1.8 363.4 362.8 555.9 22,840 540° —
# Extrapolation.
Table 14. Properties of fcc-iron models on the principal SA. EAM-3 potential taking into account electron contributions.
Experiment py,g, GPa EAM-3,7. =0 EAM-3, 9. = 1.55
VA [25, 42, 43, 45, 81, 93]
THug, K PHug> GPa THug, K PHug» GPa
1 2 3 4 5 6
1.0 0 298 0.70 298 0
1.2 35.1 400 31.8 400 32.2
1.3 68.6 970 67.1 1030 69.0
1.4 118.3 1910 117.5 2163 124
1.5 188.1 3050 170 2580 182
1.6 281.7 3630 228.6 4213 249
1.7 403.1 6020 317 7792 376"
1.8 555.9 9030 424 13,860 555¢
2 Extrapolation.
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graphical method with the choice of y, equaling either 0 or
1.55.

Obviously, the variant with the EAM-3 potential and
7. =0 leads to a marked reduction in pressure at the
calculated SA as compared with the real one. With the choice
of y, = 1.55, the calculated adiabat approaches the actual
one. Noticeable deviations of 20-30 GPa remain only at
Z =1.6—1.7. As in the case of the EAM-2 potential, taking
into account the thermal contribution of electrons to the iron
energy, but disregarding the contribution to pressure, leads to
unacceptable errors in SA calculations.

At Z = 1.8, the real pressure difference on the adiabat
and on the 298-K isotherm is 194.9 GPa (see Table 12,
columns 2 and 5). In the case of the EAM-2 potential, it is
equal to 182.2 GPa (columns 4 and 6). In the case of the
EAM-3 potential, this pressure difference is 177.2 GPa for
para-iron (see Table 13, columns 3 and 6), 61.2 GPa for iron
at y, = 0 (Table 14, column 4), and 192.2 GPa at y, = 1.55
(Table 14, column 6). The best agreement with experiment
with respect to the pressure difference is obtained in the
EAM-2 and EAM-2el variants, as well as EAM-3 at
ye = 1.55.

The calculated temperatures on the adiabat at Z = 1.8 are
23,840 K with the EAM-2 potential at electron contributions,
15,655 K with the EAM-2e¢l potential, taking into considera-
tion electron contributions, 22,840 K with the EAM-3
potential, without taking account of electron contributions,
9030 K with the EAM-3 potential and due regard for electron
contributions at y, = 0, and 13,860 K at y, = 1.55. Tempera-
ture plots along the principal shock adiabat of iron are shown
in Fig. 13.

What are the possible causes of the discrepancy with
experiment? (1) The experimental data on cold pressure and
the shock adiabat disagree; (2) the data on the thermal energy
of iron electrons are incorrect; (3) the EAM potential found
from the cold pressure function is inaccurate; (4) the inter-
particle potential of iron changes during heating above
10,000-20,000 K. The very fact that there is a change in the
effective interparticle potential at high temperatures could be
verified by calculations using the ab initio method. Appar-
ently, the accuracy of the calculation of electronic properties
is sufficient for this purpose. Indeed, in the case of nickel at
T = 40,000 K, the calculated heat capacities Cy proved close
to the real ones; specifically, 34.1 J mol~' K~!in [56, 57] and
35.7 Jmol~! K~!in[59].

The potential from Ref. [55] greatly overestimates the
pressure and energy of the bcc iron model at 298 K and
standard density 7.873 g cm™>. At the same time, it under-
estimates fluid density and overestimates its energy at the
melting temperature Ty,. For example, the real iron density at

Table 15. Comparison of fcc-iron models on SA and at 298 K.
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Figure 13. Temperature on calculated iron shock adiabats. /—EAM-2
potential for para-iron, 2— EAM-2el potential taking into consideration
thermal contributions of electrons to the energy and pressure [7], 3—
EAM-3 potential for iron taking account of electron contributions at
7. =0[7], 4—EAM-3 potential taking into account electron contributions
aty, = 1.55[7].

2500 K is 6.397 [98] and model density at p ~ 0 is 4.32 g cm .
With such initial data, it makes no sense to calculate the iron SA.

A comparison of the properties of models with different
potentials (Table 15) shows that none of the options
considered for the description of a metal affords good results
for the iron tandem. Apparently, the main cause is the lack of
information about the behavior of the electronic subsystem.
Correction of these data could improve the agreement with
experiment of the calculated properties with EAM-2 and
EAM-2¢l potentials.

4.5 Nickel tandem
Similar calculations can be made with another transition
metal, nickel. Shock compression of compact and porous Ni
has been investigated by many authors [24]. In what follows,
we shall use data obtained for compact nickel at pressures up
to ~ 760 GPa [24-26, 40]. Static compression of nickel under
150 GPa was investigated in Refs [22, 23]. The cold pressure
isotherm at 298 K is described by Eqn (8) at m =2, n =1,
Voo = 6.589 cm?® mol~!, Ky = 176.7 GPa, and K; = 5.23[23].
There are a large number of publications on the modeling
of crystalline nickel using the MD method. Early authors
used potentials calculated from the known structural diffrac-
tion data to model liquid nickel with the use of the Percus—
Yevick equation [99] or the Born—Green—Bogolyubov equa-
tion [100]. This approach can be used to achieve good
agreement between the PCF of the model and the diffraction
PCF, but usually the energy of the model differs several-fold
from the actual one. Later, EAM potentials were proposed
for fcc [4, 88, 101-106] and liquid [60, 67, 107, 108] nickel.

Z=16 bec at 298 K and p ~ 0 Fluid at T, and p = 0

Potential

PHug, GPa Paos, GPa Ap, GPa Thye, K dg, gem™> Epg, kI mol™! d, gcm ™3 Em, kI mol™!

Experiment 281.7 209.4 72.3 — 7.873 —407.8 6.999 —366.6
EAM-2 279.6 221.3 58.3 7930 7.938 —407.0 7.054 —348.1
EAM-2el 279.6 221.3 58.3 6160 7.938 —407.0 7.054 —336.8
EAM-3 250.0 211.9 38.1 5812 7.938 —407.1 7.056 —348.2
[68] 231.0 159.4 71.6 3764 7.693 —375.9 7.049 —331.0
(2) [14, 55] — 190.1 — — 6.791 —223.1 4.992 —174.2
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Reference [108] reports excellent agreement between the
structure factor of the liquid nickel model and the diffraction
factor; however, the potentials proposed for fcc nickel are on
the whole not good enough for the liquid metal.

In Ref. [88], the ab initio method was used to construct
several crystal structures of nickel and to calculate the
parameters of the corresponding EAM potential. The
obtained potential made it possible to correctly describe
basic physical properties of crystalline nickel, but it over-
estimates liquid nickel density at 2500-3600 K by ~ 1 gcm ™3
and underestimates the energy by 10-20 kJ mol~!. In
addition, the density of liquid models turns out to be
~ 0.2 g cm~3 higher than that of fcc nickel.

In Ref. [7, 60], the EAM potential in the form [1] was
applied to simulate liquid nickel by the MD method.
However, this potential proved of little use for calculating
the nickel melting line. Further calculations of the EAM
potential were carried out in Ref. [109] where a different form
of the pair contribution to the potential (Morse function) and
the power law (instead of exponential) dependence for
effective electron density were chosen. The electron contribu-
tion to the energy was described in accordance with calcula-
tions [56, 57] in which the density of nickel d-states (up to
50,000 K) was used. Reference [109] considered two variants
of electron behavior. One is based on the assumption that
electrons do not contribute to either energy or pressure (para-
nickel, EAM-A potential), the other on the assumption that
electrons contribute to the energy, but not to the pressure (i.e.,
ye = 0, EAM-B potential). Parameters of the EAM potential
were selected using shock compression data [24-26]. The
parameters of the nickel EAM potentials in these two cases
differ only in the values of the c¢g coefficient in formulas (5)
(2.71 in EAM-A and 3.48 in EAM-B). The corresponding
embedding potentials are shown in Fig. 14. Both potentials are
in good agreement with experiment as far as the shape of the
adiabat is concerned (Fig. 15). Taking into account electron
contributions leads to a decrease in the adiabat temperature
from 27,360 to 16,430 K at Z = 1.8 (Table 16). Analytical
calculations without taking into account electron contributions
[47] give results for para-nickel close to our estimates (column 7
in Table 16). At the same time, the inclusion of electron heat
capacity in the calculation scheme in Ref. [110] yielded good
agreement with our data for nickel models constructed with due

Ni
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S 1
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Figure 14. Nickel embedding potential. /—disregarding electron con-
tributions [109], 2—taking into account electron contributions to the
energy [7, 85].
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Figure 15. Nickel Hugoniot adiabat. /—experiment [24-26], 2—MD
calculation with the EAM-A potential (para-nickel, excluding electron
contributions), 3— MD calculation with the EAM-B potential (nickel,
taking into account electron contributions to the energy). Vo=
6.6133 cm® mol~!. All data are approximated by third degree polyno-
mials.

regard for electron contributions (columns 5 and 8§ in Table 16).
The electron thermal energy may be as high as 32% of the total
metal energy.

Table 16 shows experimental data on the static compres-
sion of nickel in diamond cells [22, 23] under pressures up to

Table 16. Properties of nickel models on SA and at 298 K. EAM-A and EAM-B potentials. ¥y = 6.6133 cm?® mol~".

Shock compression
Cold pressure, 298 K, GPa
7z EAM-A [109] EAM-B[109] Thue. K
Experiment N B
Phue, GPa Thug, K [ pHug, GPa| Tiug, K | pug, GPa [110]¢ Experiment | EAM-A | EAM-B [47] [50]
[24—26] [22, 23] [109] [109]

1 2 3 4 5 6 8 9 10 11 12 13
1.02 0 298 0 298 4.75 298 298 0 0 0 0 0
1.12 23.8 300 31.0 300 30.41 310 439 20.53 27.0 27.8 20.7 23.0
1.2¢ 54.9 316 60.1 336 59.12 676 667 49.83 56.6 56.0 49.7 54.3
1.3 96.3 640 99.0 696 98.52 1400 1150 87.92 95.3 93.9 88.0 95.1
1.4% 155.5 1490 155.8 1620 156.2 2670 2060 135.31 146.7 146.5 136.8 146.6
1.5% 239.8 3500 238.6 3310 239.9 4910 3560 — 214.5 218.9 197.3 210.2
1.6° 356.6 7600 355.5 6080 357.1 8710 5810 — 302.4 316.1 270.5 286.9
1.7° 513.4 15,040 514.4 10,300 515.4 14,870 8980 — 414.0 443.4 357.8 377.8
1.75> 609.0 20,430 612.2 13,100 612.5 19,150 — — 479.8 519.8 407.1 —
1.8° 717.4 27,360 723.6 16,430 722.6 24,410 — — 552.9 605.6 460.3 483.8

a fee-Ni, P bee-Ni, © interpolation.
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150 GPa. The construction of nickel models at 298 K makes it
possible to calculate the cold pressure of nickel in various MD
versions. The potentials EAM-A and EAM-B give rather
similar results at Z < 1.5 (columns 10, 11 in Table 16), which
are in good agreement with the estimates by the standard
method taking into account electron contributions [50], but
slightly higher than experimental data (column 9). On the
contrary, the standard method without taking into account
electron contributions [47] leads to good agreement with
experiment. At Z > 1.5, the inclusion of electron contribu-
tions slightly increases the cold pressure in accordance with
the general rule (see Section 2.2). At Z = 1.8, the difference
between cold pressures in [109] and [47] reaches 145 GPa.
Cold pressure plots obtained by different methods are shown
in Fig. 16.

Similarly to the previous tandems, one can calculate the
EAM potential of nickel from static data for compressibility at
298 K and check how suitable this potential is for describing
high-temperature states. The initial energy in shock compres-
sion was assumed to be equal to the model energy at Z = 1 and
298 K. The resulting potential EAM-C has the same shape as
EAM-A and EAM-B, but with coefficients ¢; = 1.15,
m = 2.40. It can be used up to 150 GPa. The cold pressure
data calculated with EAM-C are presented in Table 17.

Let us consider the calculated difference Ap between the
pressure on the nickel SA and the cold pressure at 298 K using
different EAM potentials. These data are shown in Table 18.
They look disappointing. The best agreement with experi-
ment in terms of pressures piye and piog was obtained using
the Sutton—Chen potential [5] (Eqn (2)); however, this
potential underestimates the energy of para-nickel in the
standard state by ~ 40 kJ mol~! (at the potential parameters
indicated in [5] and in the case of its shift in accordance with

Ni, cold pressure
800
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Figure 16. Nickel cold pressure. / — using shock compression of nickel at
0 K [50], 2— para-nickel at 0 K [47], 3— para-nickel at 298 K [109], 4 —
nickel at 298 K [109].

¥(r) = 0 at the cutoff radius r. = 6.0 A) and overestimates
fluid density. The potential [16, 17] (equation (3)) gives
reasonable pressure values, but greatly overestimates the
energy, while underestimating fluid density. The potential
[7, 101] overestimates pyyg and prog and leads to a minimum
pressure on the isochor Z = 1.4 near 1500 K, i.e., it simulates
an anomalous metal. Potentials EAM-A, B, C underestimate
the pressure difference Ap by ~ 10 GPa with respect to
experiment. None of these potentials provides good agree-
ment with experiment for all of these reference positions. In
other words, the applicability of the EAM potentials for
describing nickel in a wide range of pressures and tempera-
tures remains questionable.

Table 17. Properties of nickel models at 298 K and SA calculations. EAM-C potential. ¥ = 6.6133 cm? mol~'.

Pressure at 298 K, GPa Shock compression, EAM-C
7 Experiment Para-nickel 7. =0 Yo = 1.55
. PHug> GPa
Experiment EAM-C [24-26] Thyg. K PHug, GPa Thyg. K PHug, GPa Thue. K PHug, GPa
[22, 23]
1 2 3 4 5 6 7 8 9 10
1.0 0 0 0 — — — — — —
1.1 20.53 21.7 23.8 — — — — — —
1.2 49.83 49.86 54.9 439 49.9 300 49.8 — —
1.3 87.92 87.56 96.3 873 89.6 734 89.2 — —
1.4 135.31 135.7 155.5 2029 145.8 1771 144.3 1842 146.6
1.5 — — 239.8 — — — — — —
Table 18. Comparison of fcc-nickel models on SA and at 298 K.
Z=14 feccat 298 K and p ~ 0 Fluid at Ty, and p ~ 0
Potential
PHug, GPa Paos, GPa Ap, GPa Thue, K dyg, gcm™> EYg, kI mol™! A, gcm™3 Ep, kI mol™!
Experiment 155.5 135.2 20.2 — 8.875 —424.8 7.839 —390.0
EAM-A 156.2 146.5 9.1 1490 8.748 —420.63 7.843 —364.5
EAM-B 155.8 146.7 9.9 1620 8.748 —420.53 7.843 —364.5
EAM-C 145.8 135.7 10.1 2029 8.756 —420.40 7.856 —364.7
[5,13]1(2) 155.4 130.47 24.9 2784 9.170 —467.33 8.041 —417.5
[16, 171 (3) 162.5 146.4 16.1 2386 8.830 —420.07 7.626 —363.7
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Figure 17. Tin Hugoniot adiabat. /—experiment [25, 26, 39], 2—MD
calculation with the EAM-A potential (para-tin, excluding electron contribu-
tions), 3—MD calculation with the EAM-B potential (taking into account
electron contributions to the energy [7, 8]). o = 16.262 cm® mol~".

4.6 Tin tandem

The tin SA under pressures up to 300 GPa is shown in Fig. 17
[7, 8,25, 26, 39]. Tin static compression in diamond cells was
studied in [111]up to 200 GPa and in [112] up to 230 GPa. The
dependence of pressure on the degree of compression is
described in [111, 112] by the expression p=py+p(Z ), where
p(Z) is given by (7) and py is the initial pressure in an area
with a given crystalline structure. In the section with the bce
structure (from 76 to 158 GPa), the parameters of equation
(7) are as follows: p7s =76 GPa, V76 = 33.46 A3 for every
2 atoms, Ky = 347 GPa, K; = 3.84 [112]. For the hcp phase
(158-230 GPa), the parameters are as follows: pjsg =
158 GPa, Vy55=27.77 A3 for every 2 atoms, Ky=631 GPa,
K;=4.0. Accordingly, the values for the bcc phasein[111] are
pioo = 100 GPa, Vipo=15.78 A% per atom, K,=400 GPa,
Ky =337, and for the hcp phase pigo = 157 GPa, Vg =
13.96 A3 per atom, Ky = 652 GPa, K| = 4.0. These data are
generally in good agreement. Tin cold pressure data are
presented in Table 19.

In Ref. [113], the effective pair potential of tin was
calculated from the diffraction data. Tin modeling without
regard for electron contributions is described in [8] (EAM-A
potential), while Refs [7] (EAM-B potential) and [114]
(EAM-C potential) describe it taking electron contributions
into consideration. Tin was also modeled in [115-118] by the
ab initio method. Parameters of the EAM-B potential of tin
are given in [7]; specifically, formulas (5) contain c¢g = —0.040,

m=1.24, and n = 1.50. When electron contributions are
disregarded (para-tin), it is sufficient to choose cg = —0.240
and n = 1.80 in potential (5) in order to obtain practically the
same calculated Hugoniot adiabat (see Fig. 17).

Certain results of calculations with tin EAM-B and
EAM-C potentials are presented in Table 19. The calcu-
lated pressure values on the SA are consistent with actual
ones in the case of EAM-B (columns 4 and 2 in Table 19,
MSD=2.05 GPa), but less so in the case of EAM-C
(MSD=4.03 GPa). The EAM-B potential significantly
underestimates cold pressure at Z = 1.4—1.8, the EAM-C
potential overestimates pressure at Z = 2.0 by 30 GPa, and
the results of the standard method [40] are in good
agreement with static data.

It is possible to calculate the EAM potential from cold
pressure data [111, 112]. This potential coincides with that
given in [7], but with modified parameters: ps=1.20, p; =
2.00, pg=2.94, ¢7=1.054, cg=—0.18, ¢g = 1.425, m = 1.54,
n=26.00, ¢g=2.00 (one more division of the p-axis was
added). We call it EAM-D. This potential works at p < 3.1.
MD calculations with the EAM-D potential are given in
Table 20. The EAM-D potential overestimates the calculated
pressure on the SA when taking into account electron
contributions in the variant with y, =2/3 as well as at
Z =1.4—1.6 in the variant with y, = 0. As a result, all the
potentials (EAM-B, EAM-C, and EAM-D) overestimate the
pressure difference on the SA and on the 298-K isotherm at
average Z values in comparison with experiment. Possibly,
agreement can be improved by using the EAM-D potential
and taking a more realistic account of electron contributions.

4.7 Griineisen coefficients

One of the options for using the cold pressure function to
calculate properties at elevated temperatures includes esti-
mating the Griineisen coefticient y=(V/Cy)(0p/0T'),, from
the compressibility of a solid metal at 0 or 298 K. Specifically,
formulas like (12) and (13) are used to estimate the Griineisen
coefficient when calculating cold pressure by the standard
method [51, 52]. The formulas can be checked based on static
compression data. In this case, it is convenient to carry out the
analysis using metal models, because it is this approach that
makes possible an accurate calculation of pressure at 0 or
298 K, all its derivatives with respect to volume, and the
coefficient y itself. Figure 18 compares the Griineisen
coefficients found for lithium models in [7] with those
calculated by formula (13). The p(Z) dependence was
approximated by a third degree polynomial. The actual y
value of the models depends on temperature, while formula

Table 19. Properties of tin models on SA and at 298 K. bcee-crystal. EAM-B and EAM-C potentials. Vo = 16.262 cm® mol~!.

Shock compression
- Cold pressure pagg, GPa
7 Experiment EAM-B EAM-C Thug, K
pHug’ GPa .

25, 26] Tug. K PHug, GPa PHug, GPa [40] Experiment [111, 112] | EAM-B | EAM-C [40]
1 2 3 4 5 6 7 8 9 10
1.0 0.0 298 1.0 0 298 0 1.6 1.57 0
1.2 14.4 300 13.1 17.7 — 17.5 16.6 17.2 13
1.4 429 1652 42.6 41.5 1450 38.3 31.5 33.7 37
1.6 97.4 5700 93.2 101.3 5360 73.0 53.6 67.0 74
1.8 184 13,665 183 185.5 11,700 122.5 102 130.5 125
2.0 300 24,000 302 308.2 20,540 187.7 178 217.5 189
2.1 367 30,480 365 — — 226.3 223 — 226
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Table 20. Properties of tin models at 298 K and SA calculations. EAM-D potential. ¥y = 16.262 cm® mol~'.

Pressure at 298 K, GPa Shock compression, EAM-D
7 Experiment EAM-D Experiment Para-tin Ve =2/3 Ve =0
[111,112] PHug» GPa
[25, 26] THug’ K PHug>» GPa THug’ K PHug>» GPa THug, K PHug>» GPa
1 2 3 4 5 6 7 8 9 10
1 0 0.98 0.0 298 0 298 0 298 0
1.2 17.5 17.7 14.4 393 15.8 392 15.8 390 15.8
1.4 38.3 38.5 429 1616 474 1500 46.6 1500 46.6
1.5 53.9 53.2 66.4 4719 82.6 4004 79.3 3901 78.0
1.6 73.0 72.5 97.4 8788 122 6870 115 6518 112
1.8 122.5 123.6 184 20,888 217 14,200 204 14,018 182
2.0 187.7 188.4 300 40,100 343 24,115 314 21,124 284
Note. bece models are prone to amorphization.

(13) gives results independent of temperature and over-
estimated by almost two times.

Figure 19 shows the same data for copper models. Here,
the agreement of the calculated y values with formula (13) is
better than for lithium, and formula (13) overestimates y by
an average of 20%.

One can also check the accuracy of equation (13) for
calculating the Griineisen coefficients y from cold pressure
data for aluminum. The cold pressure function of alumi-
num (Table 10, column 2) is very well described by the
polynomial

paos [GPa] = 9.605Z° 4+ 93.007Z% — 130.29Z + 27.693 .

Formula (13) gives y values from 1.77at Z = 1.0to 1.21 at
Z = 1.8 (Fig. 20, curve 2). Calculations with the EAM-2
potential yield similar values: from y = 1.55 at Z=1.0 to
y = 1.21 at Z = 1.8 [7]. Direct calculations of the Griineisen
coefficient at 298 K using aluminum models with the EAM-2
potential at Z = 1.0 and with the EAM-3 potential give
y = 1.53 and y = 1.77, respectively. The actual values of the
Griineisen coefficient at 350 K deviate noticeably from the
predictions of formula (13). The standard calculation method
based on the shock data gives y = 2.0 at Z = 1.05 [81].

To conclude, calculations using formula (13) are apt
to both underestimate and overestimate the value of y.

Moreover there is a tendency to overestimate the value y
in the low pressure region. In general, this formula
provides only a rough estimate of the Griineisen coeffi-
cient.

Cu
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Figure 19. Griineisen coefficients of copper models with the EAM
potential taking into account thermal electron contributions [7]. 1—
pressure of copper models at 298 K [7], 2—calculation of Griineisen
coefficients y according to formula (12), 3—7y coefficients for copper
models at 298 K, 4— y coefficients at 10,000 K [7].
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Figure 18. Griineisen coefficients of lithium models with the EAM
potential and taking into account all thermal electron contributions [7].
I —pressure of lithium models at 298 K [7], 2—calculation of the
Griineisen coefficients y according to formula (12), 3— 7y coefficients of
lithium models at 700 K, 4—1 coefficients at 4,000 K [7].
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Figure 20. Griineisen coefficients of aluminum models with the EAM-3
potential. /—pressure of aluminum models at 298 K [83, 84], 2—
calculation of Griineisen coefficients y according to formula (13), 3—
y coefficients of aluminum models with the EAM-3 potential at 350 K.
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Table 21. Pressure differences Ap = puyg — paos-

Ap, Taking into account | Ap, calculation From static compression data
Metal Z experiment, electron from SA data,
GPa contributions GPa Parametal Ve =2/3 7e=0 Ve = 1.55
1 2 3 4 5 6 7 8 9

K 2.8 11.6 MFE 17.6 29.4 27.8 15.7 —
Rb 2.8 28.2 MFE 27.5 23.8 22.0 13.5 —
Al 1.7 42.3 MFE 31.7 25.0 22.3 21.4 —
Fe 1.4 17.0 [56, 57] 35.6 26.1 — — —
Fe 1.7 123.6 [56, 57] 94.0 90.5 — 36.5 95.5
Ni 1.4 20.2 [56, 57] 9.3 10.1 — 8.6 10.9
Sn 2.0 112.3 MFE 124 154.6 125.6 95.6 —

4.8 Concluding comment

What are the possible causes of the discrepancy between
theory and experiment? They are inaccurate values of initial
parameters, errors arising from the complex nature of static
and shock compression experiments, thermodynamic none-
quilibrium of matter behind the shock front, deviations from
the free electron model, and changes in the electron structure
of metal atoms at high pressures and temperatures, as well as
common disadvantages inherent in the embedded atom
model. In an analysis of modeling studies, all these causes
manifest themselves in the form of thermal electron con-
tributions to the energy and pressure. It is especially
important to verify the EAM potential when extrapolating
results of calculations (e.g., of phase diagrams) to high
temperatures.

Table 21 summarizes results of an analysis of applying the
EAM to describe the behavior of metals in a wide range of
pressures. These data show that the use of EAM potentials
taking into account the thermal contributions of electrons
leads in the best case to discrepancies with experiment in the
values of difference Ap = prug — p2os by 1-4 GPa for alkali
metals, 12-20 GPa for aluminum, ~ 12 GPa for tin,
~ 30 GPa for iron, and ~ 10 GPa for nickel. Disregarding
electron contributions (i.e., for parametals) results in a
discrepancy with experiment by 542 GPa in both directions.
This equally applies to the derived properties (heat capacity,
thermal expansion coefficient, thermal pressure coefficient,
etc.); the accuracy of predicting these properties based on the
EAM is not very high. There is a tendency towards greater
divergences with decreasing compressibility of metals.

As a result, one has to state that the EAM can hardly be
regarded as suitable for describing the temperature depen-
dence of metal properties. Temperature dependences in the
context of the EAM are mainly due to changes in effective
electron density due to thermal expansion. In this case, the
form of the embedding potential and sensitivity of the
function ¥/(r) to volume changes become the determining
factors. If all discrepancies with experiment were attributable
to electron contributions to the energy and pressure, they
would have to be controlled by laws going beyond the model
of the embedded atom.

It should be noted that many studies with the use of EAM
investigate systems under isothermal conditions, e.g., at
absolute zero. In this case, there are no questions about the
effect of temperature. However, questions do arise in
connection with phase diagram calculations using the EAM.
An encouraging fact is if two phases similar in terms of
thermal electron contributions are in equilibrium, the equili-
brium persists even in the absence of these contributions.
Therefore, the position of lines in the phase diagram changes

but insignificantly upon transition from metals to parametals.
An example of such a situation is discussed below. However,
ignoring the problem of thermal electron contributions can
lead to serious errors.

5. Melting temperature in the context
of the embedded atom model

Methods for calculating the EAM potential of metals for
which static and shock compression data are available were
considered in preceding sections. Let us now take into
account that the melting point and its dependence on
pressure are also important characteristics of the models and
make it possible to judge the quality of the interparticle
potentials used.

5.1 Determining melting temperature of metal models

It is relatively easy to determine the melting temperature of
models by the heating method [7, 8], which measures it in a
series of long isothermal runs by recording the mean square of
particle displacements ((Ar)?) and the maximum value of the
structure factor S(K), where K is the scattering vector:

2

(18)

S(K) = % ' Z exp (—iKR;)

Here, R; denotes the coordinates of atoms and N is the
number of model particles, in the absence of averaging over
all directions. For a single crystal at low temperatures, the
maximum values of S(K) ~ N are achieved in the case of
scattering vectors K, which are the vectors of reciprocal lattice
nodes. When the model melts, ((Ar)?) sharply increases, while
Smax(K) decreases abruptly from ~ N to ~ 20—30. When
determining the melting temperature 7y, one can use either
the model of an ideal crystal or that of a crystal with a small
number of defects (e.g., vacancies). If melting does not occur
at a given temperature for 100-200 thousand time steps, then
the temperature can be increased by a certain value, etc. The
reheating method is quite simple, but subject to the risk of
overheating the solid phase by about a few ten degrees
Kelvin.

On the other hand, there is a two-phase technique in which
the model consists of two layers (crystalline and liquid) with a
flat boundary between them and a temperature selected so
that both layers are in equilibrium [21]. These methods can be
compared based on the results of simulation of lithium
melting models with a potential [7, 73, 78]. The two-phase
method was used in [21] and the reheating method in [7]. The
results are shown in Table 22. The two-phase method
produces a relatively small overestimation of Ty, over real
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Table 22. Melting temperature 7y, of simulated and real lithium. Table 23. Melting temperature of aluminium models.
Tm, K Pressure, GPa
Pressure, GPa X
[21] [7] Real Li [27] Model 0 | 50 | 100 ‘ 150 ‘ 200
0 482 556 454 Melting temperature, K (£5 K)
2.5 570 647 505
4.0 o 634 520 Proto-Al 790 3943 4944 — —
EAM-1 1132 3734 5093 5982 6792
values (by 30-70 K) due to the incomplete adequacy of the EAM-2 1132 3918 5062 5965 6665
potential, while the reheating method overestimates 7Ty, by an EAM-3 1132 3806 5106 - -
additional 60-80 K due to solid phase overheating.

The third method is designed to calculate the temperature (92] 930 _ _ — _
(under a given pressure) at which the Gibbs energies of the [119] _ 3100 4000 _ _
liquid and solid phases are equal. The following discussion is — | 94 910
focused on the results obtained mainly by the simpler xperiment [34] : — — —

reheating method.

To recall, the agreement between the calculated pressures
of the models under static conditions and/or at the shock
adiabat and the real pressures does not guarantee agreement
between calculated and actual melting lines. The calculated
melting lines can go both above and below the real ones, as
exemplified below. In the case of such discrepancies, a
correction of the interparticle potential is required. There-
fore, it is necessary to find out what corrections of the EAM
potential will lead to the desired change in the shape of the
melting line.

5.2 Taking account of electron contributions

to the energy and pressure

An analysis can begin with the question of how the calculated
melting line is affected taking into account or ignoring
electron contributions to the energy and pressure. Table 23
shows results of the calculation of the melting line of
aluminum models by the heating method. Variants of proto-
aluminum and aluminum with EAM-1, EAM-2, and EAM-3
potentials were investigated, with and without regard for
electron contributions to the energy and pressure (see
Section 4.3). It can be seen that calculated melting tempera-
tures in these variants are very similar, and only at a pressure
of 200 GPa is there a significant difference between them (by
no more than 2%). The calculated melting temperatures of
aluminum are greatly overestimated compared with experi-
mental data [34].

Similarly to the case of aluminum, it is possible to
calculate pressure dependences of melting temperature 7,
of nickel models taking into account (EAM-B) or ignoring
(para-nickel, EAM-A) electron contributions to the energy.
The results for fcc and bee lattice melting are presented in
Table 24. A comparison of melting temperatures of various
nickel structures with different potentials shows that (1) the
fce lattice at the melting line is more stable than the bec lattice
at pressures below 120 GPa (when its melting temperature is
higher) and less stable at higher pressures, (2) the difference
between melting temperatures for EAM-A and EAM-B
potentials is not very large and does not exceed 50-80 K
even at pressures ~ 600 GPa, i.e., about 1.5%, (3) a triple
point (fcc—bec—fluid) must exist at the melting line near
120 GPa, (4) a bcc phase region must exist on the phase
diagram of Ni models with EAM-A, B potentials at pressures
above 120 GPa.

Real nickel melting temperatures are subject to marked
variation. According to [36], Ty, values in [121-123] are
underestimated for technical reasons. Taking this estimate
for granted while being guided by the experimental data in
[36] leads to the conclusion that calculations with EAM
potentials underestimate the melting point of nickel by 300—
600 K.

Finally, let us consider the behavior of the tin melting line
based on the data obtained in diamond cells under pressures
up to 30-68 GPa [124-126], up to 105 GPa [127], and up to

Table 24. Pressure dependence of para-nickel and nickel model melting temperatures.

Pressure, GPa
Object, Method
reference 0 ‘ 25 ‘ 50 l 100 l 150 ‘ 200 l 250 l 300 | 400 | 500 | 600
Melting temperature, K
bee EAM-A 1437 — 2544 3231 3706 4056 4356 4518 4843 5118 5332
bee EAM-B 1437 — 2544 3231 3706 4090 4332 4518 4806 5040 5281
fec EAM-A 1656 2332 2733 3283 3668 4018 4281 4456 — — —
fee EAM-B 1656 2332 2733 3283 3668 4031 4318 4456 — — —
fee EAM-D 1656 — — 3356 3878 4394 - 5294 — — —
[110] Analytical 1728 — 2870 3760 4290 4810 5190 5510 — — —
[120] Ab initio 1750 2440 3000 — — — — — — — —
[36] Static 2635 3000 3690 4280 — — — — — —
[121-123] Static 2200 2400 — — — — — — — —
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Table 25. Pressure dependence of fcc tin model melting temperature.

Model pressure, GPa
System Potential 7.5 10.0 ‘ 20 | 322 44.8 57.3 75 125
Model temperature, K
Proto-Sn Pair contribution 1623 — — — — 6100 — 9910
Para-Sn EAM-A 741 894 1468 2268 — 4088 5506 8556
Sn EAM-B 741 894 1468 2268 — 4088 5375 8268
Experiment [127] — — 1150 1620 1920 2200 2430 — —
Sn Table 26. Lead model melting temperature.
14,000
T 12,000 Pressure, GPa
10,000 Model 0 | 25 | 50 ‘ & | 100
8000 Melting temperature, K
6000 [21, 128] — 1880 2490 3030 3450
4000 [130] — 2100 3200 4000°¢ ?
2000 [129] — 1830 2770 3510 4180°¢
Proto-Pb 662 — 3583 — 4981
0
50 100 150 200 250 Proto-12 662 — 4332 — 6893
p, GPa
. . . L Proto-2° 662 — 2768 — 2994
Figure 21. Melting temperatures. / —real tin, 2— Sn models taking into
account electron contributions, 3— para-tin models disregarding electron EAM-117,112] 531 1967 2834 3381 3805
contributions.
EAM-2 — 1943 2866 3483 4006
L . a Steepness of the repulsive branch is magnified,  steepness is diminished,
40 GPa by the ab initio method [118]. Melting temperatures of | ¢ ¢\ ranolation.

tin models were calculated by the reheating method [7]. Ty,
values of proto-tin, para-tin, and tin are presented in Fig. 21
and Table 25. The calculated T, values are inconsistent with
experimental ones [127]. However, the difference between Ty,
values in models with EAM-A and EAM-B potentials does
not exceed 3.4%.

Table 25 also shows the melting point of the proto-tin
models built taking into account only pair contribution to the
EAM potential. It gradually approaches (from above) the Ty,
values for para-tin and tin models as pressure grows due to the
increasing role of the repulsive forces in metal compression
and atom convergence controlled by the repulsive branch of
the pair contribution to the potential.

In all the cases considered, the melting point depends little
on the consideration or disregard of electron contributions,
the cause being that the Gibbs energies of the two phases are
equal at their equilibrium point and for the corresponding
parametals if their electron contributions to the energy and
pressure are comparable. This is an encouraging fact,
especially for molecular dynamics calculations of the melting
line, since it makes possible a rough determination of the
melting line without considering electron contributions, the
magnitude of which is often unknown.

5.3 Correction of the shape of the melting line

of metal models

When applying the method for calculating the EAM
potential described in [7], the pair contribution to the
potential is determined from the form of the pair correla-
tion function of the fluid slightly above the melting point
(the Schommers algorithm), and the embedding potential is
found from the shape of the SA or from static compression

data. It would seem that there are no degrees of freedom
left to refine the EAM potential taking into account the
shape of the melting line. However, this is not so. The pair
contribution to the potential is determined by the Schom-
mers algorithm only for distances r exceeding the minimum
interparticle distance rpj, in the fluid near the melting
point, while the form of the embedding potential at
r < rmin remains unknown and should be chosen addition-
ally.

So, itis necessary to find out to what extent the form of the
EAM potential at r < ry;, is sensitive so as to calculate the
melting temperature of the model. The easiest way to check
this is through an example of a protometal without regard for
the embedding potential. To this effect, melting points of
proto-lead models were calculated differing in the steepness of
the repulsive branches of the pair contribution to the EAM
potential. Table 26 shows lead melting temperatures mea-
sured by static [31, 128, 129] and shock [130] compression
methods, as well as the MD method, taking into account
electron contributions [7, 131] (hereinafter EAM-1) and with
the EAM-1 potential without regard for the embedding
potential, i.e., for proto-lead (proto-Pb, proto-1, proto-2).
The pair contribution to the EAM-1 potential [7, 131] at
r < 2.60 A has the form

@(r)[eV] = 0.438472 + (1.49474 — 5.488)(2.60 — r)

+2.8{ exp [1.96(2.60 — r)] —1}. (19)

It is this pair potential at the distance r < 2.60 A that is used
to construct the proto-Pb model. The potential steepness is
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Figure 22. Pair contributions to the proto-lead potential. / — formula (19),
2—(20), 3—(21).

increased in the case of the proto-1 model:
o, (r) [eV} = 0.438472 + (1.49474—2x 5.488)(2.60—r)
+2.8 x 2{exp [1.96(2.60 — r)} -1},

and diminished in the case of the proto-2 model:

(20)

@2(r)[eV] = 0.438472 + (1.49474 - ﬁ) (2.60 —r)

+?{exp [1.96(2.60 — r)] — 1} . (21)

Three variants of pair contributions to the lead potential
are shown in Fig. 22. It can be seen from Table 26 that the
melting temperature of the models increases as the steepness
of the pair contribution to the potential at small distances
goes up, and decreases with decreasing steepness, while the
sensitivity of the melting temperature to the steepness is
rather high. This suggests that the choice of a proper
steepness of the pair contribution to the potential at r < rpi,
may be instrumental in the improvement of the agreement
between melting temperature of models and the real melting
line.

Taking into account the data from Table 26, it is possible
to improve the agreement between theoretical and measured
lead melting points [129] by increasing the steepness of the
repulsive branch of the pair contribution to the potential.
Table 26 shows melting temperatures of the lead model with a
pair contribution at r < 2.60 A in the form

@(r)[eV] = 0.438472 — 4.83326(2.60 — r)

+2.8{ exp [2.26(2.60 — r)] — 1} (22)
(EAM-2 potential), where the coefficient in the exponent is
increased from 1.96 to 2.26. It follows from Table 26 that the
EAM-2 potential leads to much better agreement with
experiment [129]. Variation of the repulsive branch allows
significantly improving the agreement with the real melting
line.

Note that the transition from expression (19) to (22) has
very little effect on the properties of lead models. At a density
of 18.768 g cm 3 and a temperature of 4012 K, the pressure of
liquid lead increases from 98.75 to 99.95 GPa, and the energy
decreases from 106.21 to 104.79 kJ mol~!.

Similar calculations were made for nickel models. The
steepness of the repulsive branch of the pair contribution to

the EAM-B potential (Morse potential [109]) was increased
by adding to the potential the expression Ag@(r) =
ag(1.85 — r)H(1.85 — r), where H({) is the Heaviside func-
tion and r is expressed in A. Let us denote the potential with
this addition by EAM-D. Ty, values obtained at ayq =
45.0 eV A~2 are presented in Table 24. The addition of
Ag(r) increases the melting temperature in nickel models by
70-800 K to a value close to the analytically calculated
one [110].

To sum up, of primary importance in the context of the
embedded atom model is the choice of the repulsive branch of
the potential at distances r < rpi, to which the melting
temperature of the model is sensitive. The ab initio method
making it possible to estimate the interparticle interaction
forces at distances much less than ry;, can greatly facilitate
the choice. Therefore, the use of the ab initio method to find
the functions setting the EAM potential can be very effective.

6. Conclusion

Returning to the discussion of metal and parametal models
and their parameters considered above, it should be empha-
sized that taking into account/disregarding thermal electron
contributions to the energy and pressure can strongly affect
the results of calculations at high pressures and temperatures.
Therefore, the verification of the EAM potential requires that
its predictive power be estimated and agreement with
experiment evaluated at either 0 or 298 K and under shock
compression conditions (i.e., for a tandem). At the same time,
the melting lines calculated with and without regard for
thermal electron contributions turn out to be very close,
rarely differing in excess of 100 K. This situation is very
favorable for the calculation of melting lines (and indeed
every two-phase equilibrium line), since, in this case, it is
possible to ignore electron contributions, about which little is
known in most cases. A good result was obtained by this
method, e.g., for iron [95]. For this purpose, it is sufficient to
calculate the EAM potential for a parametal from shock
compression data, which is much easier to do than by taking
into consideration thermal electron contributions. This
approach is often used to calculate the state of a planetary
core.

The similarity of melting temperatures in metal and
parametal models at the same pressure is ensured by the
similarity of the amplitudes of interparticle forces arising
from local lattice distortions, leading to melting. Forces with
the same amplitudes control the self-diffusion process in a
fluid. Therefore, it is interesting to compare the self-diffusion
coefficients in the models of liquid metals and parametals at
the same pressure or the same density. Table 27 shows
calculated self-diffusion coefficients for Al, Sn, Bi, Ni, and
their para-twins at the same temperatures and densities/
pressures. Indeed, self-diffusion coefficients in metal and
parametal models at the same temperatures and densities
agree very well. Thus, the self-diffusion coefficients can be
estimated using parametal models in the absence of informa-
tion on thermal electron contributions. This possibility is
most useful for calculating the properties of transition metals
in which electron contributions are especially large.

Bearing in mind the well-known Stokes—FEinstein relation
between coefficients of self-diffusion D and viscosity #,
D = kT/(4nnr,) (r, is the effective radius of an atom), it can
be concluded that the similarity of self-diffusion coefficients
in metal and parametal models accounts for the closeness of



1186

D K Belashchenko

Physics— Uspekhi 63 (12)

Table 27. Self-diffusion coefficients in metal models.

Model Density, Pressure, T,K D x 10°,
gem™? GPa cm? s~!
Al 4.86 205.2 7000 11.92
Para-Al 4.86 197.0 7000 11.86
Para-Al 4.93 205.2 7000 11.76
Sn 12.33 125.0 8500 9.57
Para-Sn 12.33 119.7 8500 10.49
Para-Sn 12.51 124.9 8500 8.64
Bi 15.77 50.19 3000 6.39
Para-Bi 15.77 47.64 3000 6.05
Para-Bi 16.10 50.22 3000 5.72
Ni 15.14 500 5200 6.97
Para-Ni 15.14 465 5200 6.90
Para-Ni 15.37 500 5200 7.07

their shear viscosities. This fact is also beneficial for MD
calculations of the properties of liquid metals.
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