
Abstract. A review of many-body effects in exciton ensembles in
semiconductors is given with the emphasis on two-dimensional
systems: structures with single and double quantum wells and
with quantum microcavities. The Bose±Einstein condensation
effect, an accumulation of a macroscopic number of excitons in
the ground state of the system, is discussed. The known prohibi-
tion on condensation in low-dimensional systems can be lifted
due to the disorder resulting from the chaotic potential. Mani-
festations of the finite exciton lifetime and, correspondingly, of
the nonequilibrium of the excitonic system caused by processes
of excitons entering and leaving the condensate state are ana-
lyzed. Other collective phases of excitons, namely, two-dimen-
sional crystals of dipolar excitons and an electron±hole liquid,
formed as a result of interparticle interactions, are discussed.

Keywords: exciton, Bose±Einstein condensate, superfluidity, disor-
der, dipolar exciton, exciton polariton

1. Introduction

Among the wide range of phenomena covered by condensed-
matter physics, collective and many-body effects occupy an
important place. A special role is played by effects where the
quantum properties of particles are essentially manifested.
Bose±Einstein condensation is the most striking among them.
This effect, predicted in the 1920s, consists of the following. In
a gas of noninteracting identical particles with integer spin
(bosons) at a sufficiently low temperature, a certain fraction

of particles occupies the ground state, i.e., condenses [1±3]. In
a Bose gas, a phase transition occurs and an order parameter
arisesÐ the condensate wave function [4]. Physically, con-
densation occurs under the condition that the characteristic
distance between particles is of the order of or less than their
de Broglie wavelength. A simple estimate of the order of
magnitude in a three-dimensional gas shows that condensa-
tion is possible at temperatures

T < Tc � �h 2N 2=3

mkB
: �1�

Here, N is the concentration of bosons and m is the boson
mass. Below, we set the Planck constant �h and the Boltzmann
constant kB equal to unity.

An interesting feature of Bose condensation is that the
effect is possible in a noninteracting gas, in contrast to other
phase transitions of both the first and second kind [3], where
the interaction in the system is a driving force of the phase
transition. Another exception is the transitions of the 2 1

2 kind,
associated with a change in the topology of the Fermi surface
[5, 6]. Convincing observations of Bose±Einstein condensa-
tion and pioneering studies of the condensate properties were
carried out in the 1990s in atomic vapors of rubidium [7] (see
also [8]) at ultralow temperatures of� 170 nK. It is important
to note that the repulsion between bosons does not destroy
the condensate, but gives rise to a linear spectrum of
elementary excitations in a Bose systemwith weak interaction
[9]. Due to this fact, the condensate becomes superfluid.

Bose±Einstein condensation is possible not only in atomic
systems but also in crystals for quasiparticles that obey Bose
statistics. ExcitonsÐelectron±hole pairs in semiconductors
and insulators, bound by Coulomb interactionÐare inmany
respects analogs of atoms; thus, for example, the spectrum of
the relative electron±hole motion in the Wannier±Mott
exciton turns out to be hydrogen-like, and the exciton as a
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composite quasiparticle has an integer spin [10, 11]. In the
1960s,Moskalenko [12], Blatt, B�oer and Brandt [13], Keldysh
and Kozlov [14], and Gergel, Kazarinov, and Suris [15] drew
attention to the possibility of condensation of large-radius
excitons in semiconductors, and Agranovich and Toshich
investigated the collective properties of Frenkel excitons, i.e.,
excitons of small radius comparable to the lattice parameter
[16]. Since, at a given temperature, the wavelength of a
particle is greater, the smaller the particle mass, excitons
should condense at significantly higher temperatures than
atoms (see Eqn (1)), and the possibility of generating and
detecting excitons in relatively simple optical experiments
opens up wide prospects for the study of exciton condensates.

Despite a number of studies carried out in the 1980s±
1990s in bulk semiconductors, evidence of the condensation
of excitons was inconclusive. A second wave of interest in
collective phenomena in excitonic systems arose in the
21st century, when, due to advances in technology, research-
ers' interest shifted from bulk materials to nanostructures. It
became possible to synthesize two-dimensional and quasi-
two-dimensional structures, in which the motion of charge
carriers is free in two directions and restricted in one
direction. It is in two-dimensional systems, including struc-
tures with single and double quantum wells and quantum
microcavities, that more convincing evidence of the forma-
tion of a collective state of these quasiparticles was obtained
[17±23].

Nevertheless, despite the significant progress achieved in
experimental and theoretical studies of collective and coher-
ent effects in exciton systems, fundamental questions
remained open about how the concept of Bose±Einstein
condensate is generally applicable to experimentally studied
structures. As is well known, condensation in ideal two-
dimensional systems is impossible, but superfluidity of
excitons is expected. The presence of potential fluctuations
caused by structural imperfections, on the one hand, leads to
the appearance of localized states, when the energy spectrum
of excitons becomes discrete and condensation is formally
possible, and, on the other hand, due to localization, super-
fluidity can be suppressed. Such a formulation of the problem
has been discussed in the literature for two-dimensional [24±
26] and one-dimensional [27, 28] systems; however, this
analysis did not take into account another key feature of
real systemsÐ the finite lifetime of excitons and, accordingly,
the need for optical or electrical pumping of the system.
Recently, we have proposed amethod that allows considering
these circumstances within the framework of a unified model
[29]. It was shown that the presence of disorder makes
condensation possible, and the finite lifetime of excitons
makes it difficult to thermalize excitons in a disordered
system, leading to an additional limitation on the critical
transition temperature. Note that the suppression of con-
densation due to the finite lifetime of excitons in bulk
semiconductors was predicted in Ref. [30].

Excitons are interacting particles. The interaction may
turn out to be quite strong, because of what other collective
phases can be realized in exciton ensembles. In bulk
semiconductors, the formation of an electron±hole liquid is
possible, which can be collected in droplets [31±35]. In quasi-
two-dimensional systems, the gas±crystal transition was
predicted in the case where the repulsion between excitons is
sufficiently long-range [36].

The purpose of this review is to present the main
theoretical research of collective phenomena in exciton

systems. Section 2 briefly discusses the Bose±Einstein con-
densation of excitons in bulk semiconductors, presents the
main results for the spectrum of elementary excitations,
analyzes the optical properties of the condensate, and
discusses the role of disorder. Section 3 is devoted to
collective phenomena in two-dimensional systems; the for-
mally forbidden condensation in two-dimensional systems
and the possibility of superfluidity of excitons are discussed.
The same section presents the key results of the theory, which
takes into account both disorder and the finite lifetime
of excitons. The electron±hole liquid and the gas±crystal
transition are briefly described in Section 4.

2. Bose±Einstein condensation of excitons
in bulk semiconductors

2.1 Prediction
Theoretical predictions of the possibility of Bose±Einstein
condensation for excitons [12±16] were made in the 1960s
shortly after the pioneering discovery of large-radius excitons
in the optical spectra of semiconductors by Gross and
Karryev [37]. For noninteracting excitons with an isotropic
parabolic dispersion law,

Ek � k 2

2m
; �2�

where k is the wave vector of the exciton, m is the mass of
motion of the exciton as a whole, the density of particles
accommodated by excited states �Ek > 0� under the condi-
tions of thermodynamic equilibrium is expressed as

N �
�
f �E;T; m�D3D�E� dE : �3�

Here,

D3D�E� �
����������
m 3E
p ���
2
p

p2
/

����
E
p

�4�

is the density of states (here and below, we omit the factor
associated with the possible spin and valley degeneracy of
exciton states),

f �E;T; m� � 1

exp
��Eÿ m�=T �ÿ 1

�5�

is the equilibrium distribution function of the particles, T is
the temperature of excitons, and m4 0 is their chemical
potential. At a fixed concentration of excitons and decreas-
ing temperature or a fixed temperature and increasing exciton
concentration, the chemical potential increases, and at the
critical temperature [3]

Tc�N� � 2pN 2=3

z 2=3�3=2�m � 3:31
N 2=3

m
�6�

becomes zero �z�x� is the Riemann z-function�; see the inset in
Fig. 1. At temperatures T < Tc�N� or at concentrations
greater than the critical one (compare with estimate (1)),

Nc�T � � z
�
3

2

��
mT

2p

�3=2

; �7�
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the state with E � 0 turns out to be macroscopically
populated: the excitons that `did not fit' into the excited
states of the system condense in the state with zero energy and
zero momentum. Their concentration is given by the formula

N0 � NÿNc�T � � N

"
1ÿ

�
T

Tc�N�
�3=2

#
: �8�

The temperature dependence of the condensate density is
shown in Fig. 1; there is no condensate for T5Tc. Thus,
excitons, like any other bosons, can form a Bose±Einstein
condensate.

From the point of view of the theory of exciton
condensation, the main questions are as follows:

(1) What is the spectrum of elementary excitations in an
exciton condensate and to what extent are the Bose±Einstein
statistics applicable to electron±hole pairs? In other words,
what is the role of the exciton Bose gas imperfection?

(2) What are the manifestations of the exciton condensate
in experiments?

(3) What is the role of the exciton system nonequilibrium
and energy disorder in the effect of exciton condensation?
Both of these factors are inevitable in experimentally studied
semiconductor systems.

The basic difficulty from the point of view of theory lies in
calculating the spectrum of elementary excitations in an
exciton condensate. Possibilities of condensate manifesta-
tions in experiments are discussed in Section 2.3. The third
issue will be discussed in detail below in Section 3, devoted to
two-dimensional systems, where the disorder and nonequili-
brium play a particularly important role. We now turn to an
analysis of the effects associated with the exciton gas
imperfection.

The spectrum of excitations in a Bose gas with weak
repulsion was obtained by Bogoliubov [9]; for small wave
vectors, it corresponds to the spectrum of sound:

ok � sk ; �9�

where the effective velocity of sound s is determined by the
force of interaction between bosons. Direct application of the
Bogoliubov method to an exciton condensate encounters
certain difficulties. As noted by Keldysh and Kozlov [38],
for large-radius excitons, deviations from the Bose±Einstein

statistics (associated with the fact that the commutator of the
annihilation and creation operators of these composite quasi-
particles contains contributions of � Na 3

B, where aB is the
Bohr radius of the exciton) manifest themselves at the same
exciton densities as the effects of interparticle interaction.
This difficulty can be overcome both by a detailed analysis of
the four-fermion interactions (two electrons and two holes)
[38, 39] and by introducing the effective amplitude f of
exciton±exciton scattering with zero momentum transfer
[15, 40]. Calculations show that the spectrum of elementary
excitations has the form

ok �
����������������������������������������
k 2

2m

�2

� 4p fN
m 2

k 2

s
: �10�

For small k, the spectrum is linear (see Eqn (9)), and the
velocity of sound is

s �
������������
4p fN
m 2

r
: �11�

With a properly chosen scattering amplitude f , this expres-
sion fully corresponds to the answer for a weakly imperfect
Bose gas [4, 9]. Here and below, it is assumed that
N f 3;Na 3

B 5 1; we also disregard the formation of exciton
molecules (biexcitons). Naturally, Bose±Einstein condensa-
tion of excitons is only possible if they repulse, i.e., when
f > 0. Generally, the interaction between the excitons has a
complex character: depending on the orientation of their
spins, both attraction and repulsion between these quasipar-
ticles are possible, and their bound states (biexcitons) may
arise. Hence, the collective states of excitons are not restricted
to the Bose condensate; other possible phases are discussed in
Section 4.

It is interesting to note that for small-radius excitons
(Frenkel excitons) Eqn (10) for the spectrum remains valid,
and the effective repulsion between the electron±hole pairs
arises in accordance with the Pauli principle [16].

The spectrum of excitons in the form (10) meets the
Landau superfluidity criterion [4]: in the plane �k;o�, the
dependenceok lies above the straight line passing through the
origin of coordinates with a nonzero slope. Therefore, the
Bose±Einstein condensation of excitons in bulk semiconduc-
tors should be accompanied by a transition of excitons into a
superfluid state [40], and the collective behavior of excitons
will be described by the standard hydrodynamic equations for
a superfluid liquid. The presence of weak disorder does not
destroy the condensate, but leads to the damping of phonons
gk / k 4 [41]. A detailed discussion of disorder effects is given
in Section 3 for the case of the two-dimensional system of
interest.

2.2 Optical properties
Excitons in semiconductors interact with the electromagnetic
field: the absorption of light leads to the formation of
excitons, and, vice versa, excitons have a radiative recombina-
tion channel.1 Therefore, it is natural to look for manifesta-
tions of exciton condensation in the optical properties of
semiconductors. The theory of the exciton condensate optical
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Figure 1. Fraction of excitons in the ground state as a function of

temperature in the three-dimensional case, calculated using Eqn (8). The

inset shows the temperature dependence of the chemical potential found

from condition (3).

1 Generally speaking, in bulk crystals, exciton polaritons should be

considered; however, as a rule, the anticrossing region of dispersion

curves for light and excitons plays an insignificant role in the condensa-

tion effect.
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response was developed in [15]. It was shown that the
imaginary part of the optical susceptibility of a crystal, in
which the excitons have formed a condensed state, has the
form

w 00�o; k� / �Nk � 1�d�oÿ O0 ÿ ok� ÿNkd�oÿ O0 � ok� :
�12�

Here,

Nk � m 2s 4

2ok�ok � Ek �ms 2� �13�

is the population of above-condensate states [4, 9, 15], andO0

is the frequency of the exciton resonance (which includes the
total energy shift due to exciton±exciton interaction). For-
mula (12) has a simple physical meaning: the first term
corresponds to the absorption of a photon, due to which an
exciton is created in the condensate together with a phonon,
an above-condensate excitation. The second term describes
the emission of a photon (amplification of an incident
electromagnetic wave) due to stimulated annihilation of
excitons. The appropriate susceptibility singularities are
spaced apart in frequency by the doubled phonon energy
2ok. Dependence (12) plotted in Fig. 2 has two peaks
corresponding to the absorption and gain of the electromag-
netic field. We emphasize that, with an increase in the exciton
concentration, the energy gap between the gain and absorp-
tion lines increases as the square root of the exciton
concentration, and the line width for scattering by inhomo-
geneities decreases as the inverse square of the concentration
due to the phonon character of the excitations and the
Rayleigh law of their scattering [41].

2.3 Briefly about experiments
Note that, in a perfect crystal, single-photon recombination
of a condensate exciton (with a wave vector k � 0) is
forbidden by the laws of conservation of momentum and
energy. That is why, in optical transitions that contribute to
the susceptibility (12), above-condensate excitations are also
involved.2 An interesting situation can be realized in semi-

conductors, where the ground state of the exciton is optically
forbidden, e.g., for a para-exciton in copper oxide [42]. In this
case, the exciton recombination from the condensate can be
accompanied by emission of a host-lattice phonon, and the
luminescence spectrum will be determined by the distribution
function of excitons [11]. Moreover, the lifetime of `for-
bidden' excitons can significantly exceed the time of their
energy relaxation, which facilitates the achievement of a
thermodynamic equilibrium state.

These circumstances motivated researchers to search for
the condensation of excitons in bulk semiconductors [43±46]
(see also reviews [47, 48]). Both spectroscopic studies aimed at
detecting condensate luminescence [43, 44] and transport
measurements aimed at searching for superfluidity were
carried out [45, 49, 50]. However, the question of the
discovery of a Bose±Einstein condensate in bulk Cu2O (and
in other bulk semiconductors) is still open. The effects of
narrowing the luminescence line can be interpreted in
alternative models that do not require condensate forma-
tion, but take into account the nonradiative recombination of
excitons via the Auger mechanism [47, 51]. Some of the
transport data can be described in terms of the phonon wind
modelÐ the drag of excitons by nonequilibrium phonons,
arising due to intense sample heating [52, 53]. Much more
convincing evidence of exciton condensation was obtained
in two-dimensional systems, which will be discussed in Sec-
tion 3.

3. Condensation of excitons
in two-dimensional systems

3.1 Brief review of experimental systems
From the point of view of experiments on condensation of
excitons, two-dimensional or quasi-two-dimensional semi-
conductor systems are the most attractive, in which the
motion of charge carriers in the plane is free, and in the
perpendicular direction, it is quantized. Two fundamentally
different types of systems are being actively investigated:
(1) structures with dipolar (spatially indirect) excitons
(Fig. 3a,b) based on single or double quantum wells, or on
van der Waals heterostructures with bilayer transition metal
dichalcogenides [54, 55], where electrons and holes are
separated in space; (2) structures with quantum microcav-
ities, similar to those shown in Fig. 3c.

Dipolar excitons (Fig. 3a, b) have a significant radiative
lifetime, since the overlap integral of the envelope wave
functions of an electron and a hole, which describe the size
quantization of charge carriers along the growth axis of the
structure, is relatively small. As a result, the lifetimes of such
excitons vary within a range from tens of nanoseconds to a
few microseconds [56]. In such systems, excitons during their
lifetime reach a state of thermodynamic equilibrium, which
facilitates the realization of collective effects.

The situation is quite different in structures with micro-
cavities, where a regime of strong coupling of excitons with
photons trapped in microcavities is reached. In this case, new
quasiparticles are formedÐexciton polaritons [57, 58]. Their
lifetime varies from unity to hundreds of picoseconds,
depending on the sample [59], and are comparable to the
thermalization time; therefore, exciton polaritons can be in a
substantially nonequilibrium state. However, the small
effective mass of exciton polaritons (m � 10ÿ4 m0, where m0

is the mass of a free electron) allows reaching degeneracy in a

2 In two-dimensional systems, the situation is different, since the absence

of translational symmetry along the structure growth axis removes the law

of the momentum normal component conservation. Such systems will be

considered below in Section 3.
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two-dimensional Bose gas of polaritons, when

T2D � N

m
; �14�

even at room temperature (T2D � 300 K) and reasonable
concentrations of quasiparticles N �1010ÿ1011 cmÿ2 [57]. It
is interesting to note that in structures with microcavities the
condensation of photons can be observed, too [60].

3.2 Bose condensation and superfluidity
in ideal two-dimensional systems
Before proceeding to the analysis of realistic structures, let us
briefly dwell on the question of what exactly is understood by
Bose±Einstein condensation in two-dimensional or quasi-
two-dimensional systems, in which quasiparticles can only
propagate in two dimensions. It is well known [4] that in
perfect two-dimensional systems condensation is not possi-
ble. This statement is a result of theMermin±Wagner theorem
(sometimes referred to as the Mermin±Wagner±Hohenberg
theorem or the Coleman theorem) [61±63] on the absence of
phase transitions breaking continuous symmetries in systems
with two or fewer dimensions (systems with an analytical
spectrum) at a finite temperature. The appearance of a Bose±
Einstein condensate leads to the appearance of a long-range
order, which is characterized by correlations in a single-
particle density matrix:

r�r1; r2� �


c y�r1�c�r2�

�
; �15�

where c y�r� and c�r� are the exciton creation and annihila-
tion operators, and angle brackets denote averaging over an
ensemble of particles. Condensation implies a nonzero limit
[4, 9, 64, 65]

lim
jr1ÿr2j!1

r�r1; r2� � Nc 6� 0 ; �16�

corresponding to nonzero first-order coherence in the system

g �1� � lim
jr1ÿr2j!1

g �1��r1; r2� ;
�17�

g �1��r1; r2� � r�r1; r2����������������������������������
r�r1; r1� r�r2; r2�

p :

In two-dimensional and one-dimensional systems,Nc � 0 for
T > 0; therefore, relation (16) is not valid, there is no long-
range order, and, accordingly, there is no condensation.

It is easy to verify the absence of condensation in two-
dimensional ideal systems without resorting to general
statements. Instead, let us analyze the convergence of an

integral similar to (3), which describes the filling of excited
states. Since for particles with a parabolic law of dispersion in
two dimensions the density of states D2D does not depend on
the energy, then the integral�1

0

f �E;T; m�D2D dE � ln

�
T

jmj
�

diverges at m! 0. This means that the excited states of the
system can accommodate an unlimited number of bosons;
therefore, the macroscopic population of the state with k � 0
is impossible at finite temperatures. Condensate can be
formed only at T � 0.

We emphasize that the above reasoning applies only to an
ideal system, possessing translation invariance. A natural
opportunity to allow condensation is to create a potential
well (trap) for particles, in which the ground state of the
particles is separated from the excited states by the energy gap
DE [66].3 In this case, the sum of the occupation numbers of
excited states remains finite at any value of the chemical
potential, and condensation (in the sense of ground state
macroscopic population) turns out to be possible. Let us
make sure of this with a simple example. Consider a potential
well so small that it contains only one energy level of size-
quantization. A more general case is considered below in
Section 3.4. Then, the population of excited states with E > 0
is described by a converging integral (the maximum permis-
sible value being m � ÿDE )�1

0

D2D dE

exp
��E� DE�=T �ÿ 1

< �1 :

The rest of the particles, as in a three-dimensional system,
condense in the ground state, in this case at the level of size-
quantization in the trap. In the pioneering work [18, 19], this
very experimental configuration was used, and the traps were
formed due to large-scale spatial variations of the potential in
the system. The thermodynamic properties of bosons in a trap
are considered in Section 3.4.

There is also another possibility of implementing collec-
tive effects in a two-dimensional system of excitons. Two-
dimensional Bose particles with weak repulsion at sufficiently
low temperatures can transit to the superfluid state [4, 67±70].
The corresponding transition, called the Kosterlitz±Thouless
or Berezinskii±Kosterlitz±Thouless (BKT) transition, is not
strictly a phase transition; however, the boson system at
temperatures T < TBKT and T > TBKT behaves differently,

DBR DBRPhoton

2
2

2

1

1
1

Â b c

h
h

Figure 3. Basic systems in which the exciton condensation is experimentally studied: (a) a wide quantum well, (b) a double quantum well structure, (c) a

structure with a microcavity containing a quantum well. It is assumed that an external or built-in electric field directed along the growth axis is applied to

structures (a) and (b) to ensure spatial separation of charges. Parameter h is the characteristic distance between an electron and a hole along the normal to

the plane of the wells. Red (1) and blue (2) circles denote a hole and an electron bound to an exciton by Coulomb interaction. DBRÐdistributed Bragg

reflector.

3 We recall that traps are used to observe the condensation of atoms [7, 8].
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where TBKT is the transition temperature. When T < TBKT,
the single-particle density matrix (15) decreases slowly
according to the power law; when T > TBKT, it decreases
exponentially. The temperature of the BKT transition and the
degeneracy temperature coincide with the accuracy of a
logarithmic factor, which depends on the concentration of
bosons and the interaction magnitude [4].

Lozovik and Yudson [71, 72] drew attention to the
possibility of superfluidity of excitons in two-dimensional
and quasi-two-dimensional systems. Note that at zero
temperature all excitons are naturally in the ground state
with k � 0, and the spectrum of elementary excitations for
small k is given, as in the three-dimensional case, by formula
(9): ok � sk (we consider the case of repulsion between
excitons; see also [73±75]). Such a spectrum satisfies the
Landau criterion of superfluidity [4]; therefore, a two-
dimensional exciton gas with a weak repulsion is superfluid.
At a finite temperature T < TBKT, the density of the super-
fluid component of the exciton gas is less than that at T � 0,
and at T5TBKT, the superfluid component completely
disappears.

Thus, collective effects can be expected in two-dimen-
sional exciton systems: first, Bose±Einstein condensation in
the presence of energy disorder or traps leading to localiza-
tion of particles, and second, superfluidity, which, however,
can be suppressed due to the presence of potential fluctua-
tions.4 The competition between these two effects results in a
nontrivial phase diagram including superfluid, delocalized,
and localized phases [26]. There is one more feature of
excitons: these quasiparticles have a finite lifetime; therefore,
the implementation of collective effects requires the presence
of pumping. It was shown in [29] that the finite lifetime of
excitons complicates the thermalization of excitons in a
disordered system and leads to an additional restriction
imposed on the critical transition temperature.

Next, we will consider the thermodynamic properties of
two-dimensional excitons, taking into account disorder and
the finite lifetime. Then, the effects of interaction will be
discussed, as well as fluctuation effects associated with the
nonequilibrium state of the system caused by the competition
of the pump and the finite lifetime.

3.3 Thermodynamics of two-dimensional excitons
and effects of disorder
We will consider two-dimensional systems with single or
double quantum wells similar to those studied in [18, 56, 76,
77], where the disorder can be caused, for instance, by
monolayer fluctuations of the well width (Fig. 4a). The
regions where the well is wider effectively localize the exciton
[78, 79]. Such areas of localization are potential wells for the
lateral motion of excitons. A similar situation may be
implemented in other two-dimensional or quasi-two-dimen-
sional exciton systems and exciton±polariton systems, e.g., in
the presence of repulsing impurities, the chaotic distributions
of which in the structure plane can induce the formation of
potential wells. For exciton polaritons, the fluctuations of the
cavity widthmay also serve as a source of energy disorder [57].

In a two-dimensional disordered system, all single-
particle states are localized [80]. We will consider the

situation where the energy spectrum of localized states is
limited from below [29]. In what follows, for simplicity, we
will count the energies from the edge of the spectrum E � 0.
Near the edge of the spectrum, the density of exciton states
can be presented in the form [81, 82]

D�E � �
NpEn

E 2
exp

�
ÿEn

E

�
; E > 0 ;

0 ; E < 0 :

8<: �18�

Here, En is the characteristic width of the band of localized
states, and Np is the concentration of wells. The density of
states is normalized by the relation�1

0

D�E � dE � Np ; �19�

which corresponds to taking into account only one
localized state per potential well. The exponential factor
exp �ÿEn=E � � exp �ÿpR 2Np� in the density of states
describes the probability of finding a well of radius R with
the exciton localization energy E � �mR 2�ÿ1, where m is the
mass of motion of the exciton as a whole. Here, we omit the
factor of the order of unity, which depends on the geometry of
the well. In the well model, En � pNp=m, and the prefactor
in Eqn (18) can be easily obtained using the relation
R dR � ÿ�2mE 2�ÿ1 dE. The density of states is shown in
Fig. 4b. Relation (18) for the density of states is valid for not
too high energies E9En, but if E4En, then the exponent
becomes of the order of unity and the density of states ceases
to depend on the exciton energy. However, such energies are
insignificant for discussing the condensation of excitons.

The vanishing of the density of states at the edge of the
spectrum is because the presence of a state at E! 0 would
require the existence of a well of infinitely large radius R; the
probability of finding such a well is negligibly small. This is
the key difference between a disordered two-dimensional
system and an ideal one, where the density of states at the
edge of the spectrum undergoes a jump. The fact that D�E �

4 In this section, we consider the interaction between excitons to be fairly

short-range. The presence of a long-range part in the exciton±exciton

interaction potential leads to a number of additional effects, discussed in

Section 4.
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becomes zero at E! 0 opens up the possibility of Bose
condensation of excitons in two-dimensional systems. First,
let us analyze this possibility within the framework of the
thermodynamic approach, assuming the lifetime of excitons
to be so long that the particles are described by the
equilibrium distribution function (5). It can be shown that
the critical temperature Tc and the concentration Nc of
excitons are related as [29]

Nc �
�1
0

f �E;Tc; 0�D�E � dE : �20�

The concentration of wells is considered quite high, the
temperature is low, and the density of excitons is low, so
that the interaction between the particles can be ignored.
With a logarithmic accuracy, the condensation temperature
can be represented as

Tc � 4En

ln2
ÿ ���

p
p

Np=Nc

� : �21�

The logarithmic factor in (21) is assumed to be large, so
that Tc 5En; in this case, the critical temperature logarith-
mically depends on the concentration of excitons. This is
due to the exponentially low density of states at E! 0.
Note that the critical temperature Tc, determined by
Eqn (21), turns out to be significantly higher than the
degeneracy temperature of the ideal two-dimensional Bose
gas without disorder, T2D � Nc=m. Such a seemingly
unexpected relationship between the degeneracy tempera-
ture and the condensation temperature is a consequence of
exciton disorder. Indeed, at T � Tc, the average distance
between the occupied wells is large, and the overlapping of
de Broglie waves of excitons is insignificant, but inside a given
well the ground state is occupied by a macroscopically large
number of excitons. Figure 5 shows the dependence of the
critical temperature on the density, found by exact calculation
from Eqn (20) (solid curve), and the logarithmic asymptotic
behavior (21) (dotted line).

Thus, the presence of disorder leads to Bose±Einstein
condensation of excitons in two-dimensional systems, which
is quite analogous to the formation of condensate in traps [66,
83, 84].

3.4 Statistics of bosons in a single trap
To complete the picture, we present a brief thermodynamic
description of the statistics in a single potential well (trap).
For a discrete spectrum characterized by a set of energy levels
Ei, the relationship between the number of particles and the
chemical potential is similar to Eqn (3):

N �
X
i

f �Ei;T; m� : �22�

Naturally, the chemical potential m for any finiteN lies below
the ground state of the bosons, m < E0, and approaches E0

when N!1. Excited states of the system with energies
Ei > E0 can accommodate only a limited number of particles
N 0, since the sum

P
i 6�0 f �Ei;T;E0� � N 0 converges. When

N > N 0, the remaining number NÿN 0 of particles turns out
to be in the ground state.

FollowingRef. [66] (see also [85]), let us briefly analyze the
statistics of excitons in a trap described by a harmonic
oscillator potentialÐa harmonic trap. The simplest case
corresponds to an equidistant set of energy levels

Ei � o
�
i� 1

2

�
; i � 0; 1; . . . : �23�

Here, o is the harmonic frequency corresponding to the
parabolic potential of the trap. Such a trap is referred to as a
one-dimensional trap [66]. Note that such traps are often used
to describe condensation in two-dimensional extended
systems [66], since the density of states, averaged over the
energy band DE4o, does not depend on energy. Let us
define the critical temperature Tc for a given number of
excitons N in such a way that, at T � Tc, the population of
the ground state is equal to the total population of all other
states of the trap. In other words, at a temperature equal to
the critical one,5

f �E0;Tc; m� � 1

exp
��E0 ÿ m�=Tc

�ÿ 1
� N

2
; N 0 � N

2
:

The dependence Tc�N� is shown in Fig. 6a. With logarithmic
precision, Tc � oN lnN, which coincides with the Bose gas
degeneracy condition in a one-dimensional harmonic poten-
tial. Figure 6b shows the temperature dependence of the
proportion of excitons in the ground and excited states for
the total number of excitons N � 10 and N � 100. With
increasing N, the curves become slightly sharper at
T > Tc�N�. The transition becomes more pronounced in a
three-dimensional harmonic trap (see inset in Fig. 6b).

Despite the fact that such a behavior of the ensemble of
bosons can be called condensation in the wide sense of this
notion, strictly speaking, with finite N the phase transition in
the system is absent, and the level populations (as well as
thermodynamic parameters, e.g., heat capacity) behave
smoothly, depending on temperature. For N!1, the
transition turns out to be abrupt, but the transition
temperature Tc�N� also tends to infinity.

3.5 Role of finite lifetime
Let us now return to a two-dimensional disordered system.
The consideration in Section 3.3 does not take into account an
important circumstance, namely, excitons, like other quasi-
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Figure 5.Critical temperature of Bose condensation of excitons depending

on density. Solid curveÐexact calculation by formula (20), dotted

curveÐasymptotic expression (21). The dashed horizontal line shows

the temperature Tk (29) corresponding to the lower bound of condensa-

tion temperature due to the finite lifetime of particles, calculated at

Np=K 2 � 0:3, w0t0 � 107 (see Section 3.5 for details). (From [29].)
5 In Ref. [66], a different condensation criterion was used, which coincides

with the one used here by an order of magnitude.
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particles, have a finite lifetime. Therefore, the possibility of
describing an ensemble of excitons by the equilibrium Bose±
Einstein distribution function (5) requires an analysis of the
competition between the processes of thermalization of
excitons and their elimination from the system. In particu-
lar, as shown in Ref. [30], the finite lifetime of an exciton in a
bulk semiconductor gives rise to a lower bound for the
condensate concentration even at T � 0. In a two-dimen-
sional disordered structure, the low density of low-energy
states (18) hinders relaxation, which imposes restrictions on
the exciton condensation temperature [29].

Figure 7 illustrates exciton kinetics in a disordered system.
Let us introduce the lifetime of an exciton t0, caused by the
processes of both radiative and nonradiative recombination.
We will ignore its dependence on the exciton energy. The
transitions between localized exciton states in the wells are
characterized by the probability per unit time of hopping
between the wells with energies E and E 0, separated by
distance r from each other [86±89]:

w�E! E 0; r� � w0 exp �ÿ2Kr�
1 ; E 04E ;

exp

�
Eÿ E 0

T

�
; E 0 > E :

8><>:
�24�

Here, K is the inverse length of the sub-barrier tunneling
between the wells, and w0 is a parameter determined by the
specific form of the wave functions of localized excitons and
by the mechanism of exciton±phonon interaction, where the
energy dependence of w0 is ignored. The exponential factor
exp ��Eÿ E 0�=T � at E 0 > E describes the contribution from
the hops upward in energy with absorption of a phonon. We
denote by G the rate of excitons entering the wells due to the
pumping and energy relaxation of excitons in the region of
states with energies E0En.

In disordered systems, the rates of transitions between
localized states w�E! E 0; r� have an exponentially wide
distribution, which does not allow introducing a single
energy relaxation time for excitons [86, 90]. However, due to
this exponential scatter, all wells can be divided into two
categories: those that the exciton can leave during its lifetime,
and those from which the departure time is greater than the
time t0. The latter will be referred to as traps. The probability
that a well with energy E is a trap is described by the

expression

Ptr�E � � exp
�ÿK�E �� ; �25�

where

K �
�
w�E!E 0; r�t0>1

dE 0 dr 2prD�E 0� : �26�

Formulas (25) and (26) describe the probability that near a
given well there are no such wells to which the exciton could
jump during its lifetime. For E! 0, the probability that a
given well is a trap tends to unity, Ptr�0� � 1. The release of
excitons from traps occurs only due to recombination, and
the rate G of excitons entering the traps can be considered
independent of localization energy in a rough but sufficient
for a qualitative analysis approximation. Thus, the popula-
tion of the traps does not depend on the energy E. As a result,
the energy distribution function of excitons in the traps takes
the form

ftr�E � � Gt0Ptr�E � ; �27�

which differs significantly from equilibrium distribution (5).
In this case, the traps turn out to be in no way connected, and
the phases of the exciton functions in them are uncorrelated.
This means that the criterion for the condensation of excitons
in a disordered system must be modified.

The analysis carried out in Ref. [29] shows that the
function Ptr�E � falls rather sharply with an increase in the
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exciton energy, and it is possible to introduce the character-
istic critical energy Ec, above which there are practically no
traps:

K�Ec� � 1 : �28�
This energy may be associated with the edge of the `hopping
mobility' of excitons. If the edge of the hopping mobility of
excitons falls into the thermal band Ec 9T, then the
restrictions (27) on the distribution function of excitons
associated with their finite lifetime are insignificant, and the
condensation of excitons can be assumed to be possible. If the
temperature is sufficiently low, T5Ec, then the distribution
function of excitons is strongly nonequilibrium, and it is
impossible to talk about their Bose±Einstein condensation
in the strict sense of this term. Thus, the condensation of
excitons is possible at a temperature

T > Tk � Ec � En

ln
��pNp=4K 2� ln2 �w0t0�

� : �29�

For excitons in a disordered system, the diagram of states in
the coordinate axes `lifetime logarithm±temperature', calcu-
lated in [29] with restriction (29) taken into account, is shown
in Fig. 8.

3.6 Interaction and superfluidity of excitons
Until now, we have assumed that there is no interaction
between excitons. This is acceptable under the condition that
the energy shift of the exciton level remains small in
comparison with the separation between the levels in the
well. In a well of radius R for exciton density N, the energy
level shift because of exciton±exciton interaction can be
estimated in the single-scattering approximation as

dE � ER ÿ ER � T N ; T � 2p
m

1

ln �E0=ER� : �30�

Here, ER � �mR 2�ÿ1 is the size-quantization energy in a
well,6 ER is the energy taking into account the interparticle

interaction, T is the amplitude of the exciton±exciton
scattering. The interaction is assumed to be short-range, we
assume T > 0, which corresponds to the repulsion between
excitons. The situation of a more complex exciton±exciton
interaction, in particular, dipole±dipole repulsion, is analyzed
in Section 4. As is known, in a two-dimensional system at low
energies, the amplitude T has a logarithmic singularity [92];
correspondingly, the cutoff energy E0 � 1=�ma 2� is intro-
duced into Eqn (30), where a is the radius of the exciton±
exciton interaction potential. For the exchange interaction
between excitons, a is of the order of the Bohr radius of the
exciton, and E0 is of the order of the exciton binding energy
[93]. Accordingly, in Eqn (30), the logarithmic factor is
considered large:

ln

�
E0

ER

�
4 1 ;

m

2p
ln

�
E0

ER

�
4Gÿ1 ;

where G is the bare interaction constant. Thus, with a
logarithmic accuracy, the solution to Eqn (30) is written in
the form

ER ÿ ER � 2pN
m

1

ln �mE0=�2pN�� �
2pN
m

1

ln
�
1=�Na 2�� : �31�

The requirement for a small energy shift corresponds to
restriction

NR 2 5 ln

�
mE0

2pN

�
: �32�

Thus, at low concentrations, the wave functions of excitons,
when they are distributed over virtually independent wells,
are correlated within each well.

With an increase in the concentration of excitons,
condition (32) is violated and the distribution of excitons
over a random potential becomes determined by the competi-
tion of potential fluctuations that localize excitons and by the
repulsion of excitons from each other, which leads to an
effective distribution of excitons over a large area. As a result,
the random potential is effectively screened (a similar
situation takes place in the three-dimensional case [41]).
Qualitatively, the following behavior of an ensemble of
excitons can be expected: an increase in the concentration of
excitons in the wells leads to a blue shift of the energy level in
these wells, and in deeper wells, where the concentration of
particles is higher, the shift also appears to be larger (see the
schematic illustration in Fig. 9). This leads to effective
equalization of energies ER in wells with different radii R. If
for wells with radiiR andR 0 the energy difference becomes of
the order of or less than the tunnel coupling constant between
the wells JRR 0 ,

jER ÿ ER 0 j9 JRR 0 ;
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Figure 9. Illustration of the energy shifts of exciton levels in wells. In wells

with a larger number of excitons, the shift turns out to be larger.

6 As above, we do not take into account the numerical factor associated

with the shape of the well; calculations for specific well shapes are given,

e.g., in Ref. [91].
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then the exciton condensates in different wells begin to unite
efficiently. In this case, the synchronization of condensates
becomes possible; their wave functions turn out to be
correlated on the scale of coupled wells [94±96]. Thus, with
an increase in the concentration of excitons, the interaction
between them leads to the spread of coherence over a larger
and larger area. Ultimately, all the wells become occupied,
and the `extra' excitons fill the entire space (compare with the
scenario considered in [97]). The picture becomes the same as
in the absence of impurities. Excitons are distributed in space
with such a concentration N�r� that allows complete screen-
ing of the random potential V�r�. Namely, their chemical
potential,

m � T N�r� � V�r� for
������������
T Nm
p

4Vÿ1
���� qVqr

���� ; �33�

does not depend on the coordinate [4, 98]. The situation in this
case is completely analogous to the classical percolation
problemÐthe fluid flow in a potential relief V�r� [90, 99].
The chemical potential at which the wells are coupled
corresponds to the percolation threshold in the system
m � Vc [97] (Fig. 10). If the concentration of excitons N is
large enough so that m4Vc, then the interacting excitons can
be described as an ideal (superfluid) liquid [4, 29, 40, 100];
however, even at zero temperature, there are fluctuations in
the exciton system due to pump fluctuations (see Section 3.7
below).

Note that the complete `phase diagram' of weakly
interacting bosons in a two-dimensional disordered system
under conditions of thermodynamic equilibrium can include,
in addition to the localized and superfluid phases, the phase
of a normal liquid [26]. The possibility of delocalization of
bosons due to the interaction at temperatures exceeding the
degeneration temperature T2D is associated with the appear-
ance of resonant pairs of two-particle states, the matrix
element of the interaction between which exceeds the
difference between their energies. This leads to the many-
particle localization±delocalization transition [26±28, 101]

(see also the analysis of the transition between localized and
superfluid states inRef. [24]).We note, however, that Ref. [26]
considers the states of bosons with energies E0En, i.e., the
effects associated with the density tails of the Lifshitz states
(18) are disregarded, whereas here (see also [29]) the main
focus is on the occupation of low-energy states as well as the
regime of a sufficiently high density, when the random
potential is screened.

3.7 Fluctuations in a nonequilibrium exciton condensate
Let us now proceed to analyzing the fluctuation effects in
exciton condensates due to the presence of energy disorder
and pump fluctuations. First, we will briefly consider the
effects associated with the random potential V�r� at zero
temperature, ignoring also the fluctuations associated with
the kinetics of excitons. On a qualitative level, the presence of
disorder leads to the escape of particles from the condensate
state [41]. The depletion of the condensate can be understood
by representing, according to (33), the single-particle density
matrix (15) in the form

r�r1; r2� � N

*
exp

�
i
ÿ
j�r1� ÿ j�r2�

��
�
��

1ÿ V�r1�
m

��
1ÿ V�r2�

m

��1=2+
;

where N � m=T is the average concentration of excitons, and
j�r� is the phase of the wave function. It is easy to verify that
at large distances, when jr1 ÿ r2j exceeds the correlation
length of the potential, for the single-particle correlator the
following estimate is obtained:

r�r1; r2�4N

�
1ÿ hV

2i
4m 2

�
: �34�

Expression (34) is true for smooth weak disorder, when����������hV 2ip
5 T N. Thus, the random potential leads to a

decrease in the number of particles in the condensate, as well
as to a decrease in the superfluid fraction of excitons in the
system [102±106]. This leads to a decrease in the critical
temperature of the BKT transition in comparison with the
ideal case.

The presence of a random potential also leads to the
damping of Bogoliubov excitations due to their Rayleigh
scattering by disorder. The calculation shows that for quanta
with a wavelength exceeding the correlation length of the
condensate, the decay rate due to the disorder in systems of
dimensions D � 2 and 3 is described by the law [29, 41]

gk / k 3 ; D � 2 ;

k 4 ; D � 3 :

�
�35�

Thus, sound excitations of the condensate with small wave
vectors k! 0 have an arbitrarily long lifetime in relation to
scattering by disorder.

Let us now describe the fluctuation effects arising in
exciton condensates due to the finite lifetime of quasiparti-
cles and the presence of pumping. First, let us consider
fluctuations in the number of particles of condensate N,
caused by random processes of excitons entering and leaving
the ground state. Here and below, the area of the structure is
considered to be unity; therefore, we do not make a
distinction between the density of particles and their
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Figure 10. Schematic illustration of the percolation effect in a random
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number. It is easy to show that

dN

dt
�Win�1�N� ÿ

�
1

t0
�Wout

�
N ; �36�

where Win is the rate of entering the ground state due to the
processes of exciton generation and energy relaxation, the
factor 1�N is due to the Bose statistics of excitons, andWout

is the rate of departure to the excited states due to thermal
excitation. The stationary number of particles in the ground
state can be written as

hNi � Win

tÿ10 �Wout ÿWin

: �37�

Analysis of the terms responsible for the entering and leaving
processes in the kinetic equation shows that the stability
condition tÿ10 �Wout ÿWin > 0 is satisfied [107]; therefore,
hNi > 0. The dynamics of fluctuations dn � Nÿ hNi are
described by Eqn (36) with N replaced with hNi � dn.
Therefore, the relaxation of fluctuations in the number of
particles is characterized by the correlation time tN:

1

tN
� tÿ10 �Wout

1� hNi : �38�

The deceleration of the dynamics of fluctuations is a
remarkable property of Bose systems: stimulated scattering
of particles with a transition to the ground state supports their
fluctuations [107]. In accordance with expression (38), the
greater the number of excitons in the ground state, the longer
the fluctuations in their number persist.

Calculations of the root-mean-square fluctuation of the
number of excitons in condensate because of competition
between the processes of quasiparticle in- and outflow
require the calculation of the full distribution function of
excitons. The corresponding analysis [108, 109] shows that
at hNi4 1 the fluctuations in the ensemble of excitons are
suppressed and

hdn 2i � hNi : �39�

In terms of quantum optics, this relation corresponds to the
second-order coherence equal to unity, g �2� � 1, i.e., the so-
called coherent statistics of excitons. This corresponds to the
fact that, for sufficiently largeN, the exciton condensate, even
in the presence of random processes of in- and outflow of
particles, can be described as the classical field c�r; t�. This is
similar to how in a conventional laser the processes of
stimulated emission into the laser mode suppress fluctua-
tions in the number of photons in the cavity, which allows the
laser to be described quasi-classically in terms of the field
E�r; t� [110]. The corresponding equation for the exciton field
can be written in the form (cf. [111, 112])

i
qc
qt
� 1

2m
Dcÿ T jcj2cÿ V�r�c� i

2
�tÿ10 �Wout ÿWin�c

� i j �r; t� : �40�

On the right-hand side of Eqn (40), we took into account the
effective current j �r; t�, which describes the spontaneous
processes in the system (in particular, pump fluctuations by
analogy with Langevin forces in the noise theory). Equation
(40) is nothing but theGross±Pitaevskii equation for the wave

function of the exciton condensate c�r; t�, supplemented by
contributions describing the in- and outflow of particles from
the condensate. The contribution

/Winc

has the meaning of the gain in the laser terminology, and the
contribution

/ �tÿ10 �Wout�c

describes the loss. We note that, in a number of papers (see
[113, 114]), Eqn (40) is supplemented by a nonlinear term
responsible for the escape, ÿiGjcj2c, which stabilizes the
number of particles in the condensate. Strictly speaking, this
is not required if we write separately the kinetic equations for
the occupation numbers of excited states of excitons, which,
as noted above, automatically imposes restrictions on Win

and Wout corresponding to the physical condition tN > 0 in
(38). In the case of resonant optical excitation of excitons or
exciton polaritons, it is necessary to include in effective
current j �r; t� a contribution proportional to the external
electric field applied to the system [112, 115, 116].

Note that the macroscopic population of the ground state
hNi4 1 leads to a corresponding increase in the temporal
coherence of the first order in the exciton ensemble. The
essence of the result can be seen from formula (40), which
shows that when we ignore the interaction, T jcj2 ! 0, and
the spatial inhomogeneity of the system, V�r� ! 0, the
damping of the fluctuation dc�r; t� is described by the
correlation time

tc � 2tN / hNi : �41�

Result (41) can be obtained in a number of other ways, for
example, by using the Keldysh diagram technique for non-
equilibrium systems, and by analyzing the imaginary part of
the self-energy function of bosons taking into account the in-
and outflow of particles (a general approach to describing the
nonequilibrium condensation of excitons and exciton polar-
itons within the framework of the Keldysh technique is
developed in [117]), or by using the operator equations for c
andc y within the framework of the Langevin approach [118].
Thus, as the ground state is filled, the time of the condensate
correlation increases, and the emission line of excitons is
narrowed by analogy with the narrowing of the laser
radiation line [110, 119, 120]. We note that, with an increase
in the concentration of excitons, fluctuations in the number of
particles (39) lead to a fluctuating shift of the exciton energy
/ T dn and, correspondingly, to a reduction in the correlation
time [118]. In structures with microcavities at a sufficiently
high pumping rate, in addition to the phase of the non-
equilibrium condensate of exciton polaritons, a phase
corresponding to lasing directly from the photon cavity
mode is possible (the system transits to the weak coupling
regime) [121]. A detailed review of nonlinear effects in
microcavities under conditions of resonant excitation is
given in Ref. [122].

The spatial correlations of excitons can be determined by
linearizing Eqn (40). As an alternative, it is convenient to use
the hydrodynamic approach, describing interacting excitons
as an ideal liquid [4, 29, 40, 100]. We will focus on the case of
zero temperature, when thermal fluctuations can be ignored.
Correspondingly, small fluctuations of the particle concen-
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tration, dn, and the velocity v (in a stationary situation v � 0,
N � N�r�� satisfy the system of equations [4, 29, 40, 100, 123]

qdn
qt
� HH �Nv� � dn

tN
� dg ; �42a�

qv
qt
� 1

m
HHdp � 0 ; �42b�

where the pressure fluctuation dp � T dn, and dg � dg�r; t� is
the fluctuation of the exciton generation rate, which maintain
the rms fluctuation of the number of particles hdn 2i,
Eqn (39).7 In the linearized equation (42a), we disregarded
the dependence of the stationary density on the coordinates.
Taking into account the fluctuation potential in this approach
is reduced to replacing N! N�r� in Eqn (42a), while the
relationship between the fluctuations of pressure and con-
centration dp and dn in (42b) remains the same.

To analyze the role of the finite exciton lifetime in
Eqn (42a), the dependence of the average concentration of
particles N on coordinates and scattering amplitude T on
energy can be disregarded. Writing

v�r� � 1

m
HHj�r�

and performing the Fourier transform in the coordinates and
time for fluctuations of the phase j / jk;o exp �ÿiot� ikr�,
we have

ÿio
�
ÿio� 1

tN

�
jk;o �

T N
m

k 2jk;o � ÿT gk;o : �43�

Hence, putting the Fourier components of the pump fluctua-
tions gk;o � 0, we see that the spectrum of elementary
excitationsÐphonons in the exciton condensateÐaccord-
ing to [29, 111, 112] is described by the relation

o
�
o� i

tN

�
� T N

m
k 2 ; �44�

and in the low-frequency region it is diffusive:

o � ÿiDk 2 ; �45�

where the effective diffusion coefficient is D � T NtN=m. For
sufficiently large k, the frequency acquires the real part sk,
where

s �
���������
T N
m

r
�46�

is the velocity of sound (cf. with (9) and (11)). The dispersion
of elementary excitations is shown in Fig. 11. It can be seen
from the plots that the spectrum does not satisfy the Landau
superfluidity criterion. This is natural, since in the open
system of excitons there is energy dissipation due to the
competition between the processes of excitons entering and
leaving the condensate. On the other hand, as the analysis
performed in Ref. [29] shows, small spatially concentrated
perturbations in such a system propagate with the velocity of
sound.

Equations (42) also make it possible to calculate the
correlator of the condensate phases,

F�r; t� � 
j�r� r 0; t� t 0�j�r 0; t 0�� ;
and, finally, a single-particle density matrix (ignoring fluctua-
tions of the condensate population N),

r�r1; r2� � N exp

�
ÿF�r1 ÿ r2; 0�

2

�
: �47�

The calculation shows that, up to a common factor in a two-
dimensional system [29],

F�r; t� / ÿ ln

�
Dt

r 2

�
: �48�

Thus, the phase correlation function behaves like
ln �Dt=r 2�, which means that the condensate density
matrix (47) at large distances decreases according to a
power law. Note that for t! 0 the factor Dt should be
replaced with kÿ2m , where the wave vector km � ms is
determined from the condition for the transition of the
dispersion of elementary excitations from linear to quad-
ratic [29]. A comparison of Eqn (48) and the corresponding
expressions in Refs [4, 70, 124, 125] shows that Eqn (48) is
applicable to the equilibrium situation with the correspond-
ing replacement of the prefactor with a value proportional
to the temperature T. Thus, in a two-dimensional system,
the pump fluctuations, along with the effects of finite
temperature, destroy the long-range order in the conden-
sate of excitons. Nevertheless, at not too high temperatures
T9T2D, the single-particle density matrix decreases with
distance according to a power law:

r�r1; r2� / jr1 ÿ r2jÿZ ; �49�

where the exponent

Z �
mT
32p
� 1

16 ln
ÿ
mE0=�2pN�

� ; pump fluctuations

mT

2pNs
; thermal fluctuations

8>><>>: �50�
7 The correlator of the Fourier components of the lasing fluctuations has

the form hgk;o gk 0 ;o 0 i � g0dk;ÿk 0d�o� o 0�, where g0 � 4phNitÿ1N . In

Ref. [29], in the system of equations similar to (42), no distinction was

made between t0 and tN.
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(From [29].)
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is determined by the magnitude of exciton interaction and
temperature, and Ns is the concentration of the superfluid
component. The second equality in the upper line is obtained
taking into account expression (31). To numerical factors, the
exponent is determined by the ratio of the characteristic
energy of particle interaction T N (if the pump fluctuations
dominate) or the temperature T (if thermal fluctuations
dominate) to the degeneracy temperature of the gas
T2D � N=m. At relatively small exciton concentrations, the
exponent Z is determined by thermal fluctuations, and at
sufficiently large concentrations by interaction. It is note-
worthy that in this case Z depends on the concentration only
logarithmically. With an increase in the temperature for the
fixed concentration of particles, the exponent Z increases, and
at a certain critical temperature (or concentration of
particles), power law (49) should change to an exponential
one. For equilibrium two-dimensional systems, this corre-
sponds to the BKT transition [4].

For completeness, we present expressions for the single-
particle density matrix of a two-dimensional system of
noninteracting excitons without disorder. In this case, the
simple relation �r � jr1 ÿ r2j� holds [22, 126],

r�r� �
�1
0

f �E;T; m� J0
ÿ ����������

2mE
p

r
�D2D dE ;

where J0�x� is the Bessel function of the first kind; recall that
D2D is the density of states in a two-dimensional system. In
the limiting cases of nondegenerate and degenerate excitons,
we obtain

r�r� / exp
�ÿ�kTr�2� ; T4T2D ;

K0�kmr� / rÿ1=2 exp �ÿkmr� ; T5T2D :

(
�51�

Recall that T2D is the degeneracy temperature of the two-
dimensional exciton gas, kT �

������������
mT=2

p
is the characteristic

heat wave vector, and km �
������������
2mjmjp

is a characteristic wave
vector determined by the chemical potential of excitons.
Note that for a degenerate gas km 5 kT, and the correlation
length of degenerate excitons is noticeably greater than the
correlation length in a nondegenerate gas [22, 126]. The
dependence r�r� for nondegenerate and degenerate statis-
tics of excitons, as well as for interacting particles, is shown
in Fig. 12.

3.8 Manifestations of condensation of excitons
in experiments
A number of papers have reported on the discovery of a
condensate of excitons and exciton polaritons. The first
experimental observations were as follows:

(1) Threshold appearance of an indirect exciton emission
line (I-line) at a fixed pump power and a decrease in
temperature below the critical value, or at a fixed tempera-
ture and an increase in the pump power [18].

(2) Spatial compression of the region from which the
emission of spatially indirect excitons occurs with decreasing
temperature [19].

(3) Threshold growth of intensity and narrowing of the
photoluminescence line of exciton polaritons with increasing
pump power [21].

However, the most convincing experimental evidence of
the condensation of two-dimensional excitons and exciton
polaritons is the observation of their first-order coherence
(17). For this purpose, interference measurements were carried
out (see, e.g., [20, 127]) for structures with spatially indirect
excitons and [21] for exciton polaritons. Interference was
observed between the points of the condensate, spaced apart
at distances from several units to tens of micrometers [20, 22,
125, 127±130] (Fig. 13), which significantly exceeds the
thermal wavelength of excitons. Note that with an increase
in the number of particles, when the two-dimensional Bose
gas becomes degenerate, but no condensate is formed, an
increase in the length of spatial coherence may be associated
with a decrease in the chemical potential of excitons or
exciton polaritons (see (51) and Fig. 12), which somewhat
complicates the interpretation of experiments [22, 126].

Reference [125] reported a power-law decay of the
correlator (49) for exciton polaritons in a microcavity when
the pump power exceeds the threshold value (cf. Fig. 13d and
13e); an analysis of the exponent Z as a function of the pump
power shows that the damping is determined precisely by the
nonequilibrium nature of the exciton±polariton condensate.
As shown in [22], nonequilibrium effects can play a significant
role and increase the spatial coherence of excitons, even if the
interaction between particles is insignificant.

We note that detailed studies of the distribution function
of exciton polaritons were carried out in structures with
microcavities [21, 131]. The possibility of controlling the
detuning between the exciton and photon in one sample,
and hence of changing the dispersion of exciton polaritons
and their lifetimes and energy relaxation rates, allows
observing a transition between strongly nonequilibrium and
practically equilibrium situations [131]. The formation of
vortices in an exciton±polariton condensate was also studied
(see, e.g., [132]); superfluid propagation of the condensate
was observed [133] (review in [134]), as was the emergence of
solitons [135, 136]. However, some of the results obtained can
be interpreted without involving the concepts of condensate
and superfluidity [137].

Another experimental platform for the study of condensa-
tion is electron±hole excitations in the regime of the quantum
Hall effect and like systems [138±141]. A discussion of such
systems is beyond the scope of this review.

4. Other collective phases of excitons

The ideas of Bose±Einstein condensation of excitons dis-
cussed above were based on the simplest model, in which the
interaction between excitons was considered to be short-

Degeneracy
/ K0�kmr�

Condensate / 1=r Z

Thermal
êuctuations
/ exp �ÿ�kTr�2�
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Figure 12. First-order correlation function r�r� for a two-dimensional

nondegenerate Bose gas (dotted curve), degenerate gas (dashed curve),

calculated by Eqn (51), and for nonequilibrium condensate (49) (solid

curve).
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range, and the exciton±exciton scattering amplitude T > 0,
which corresponds to the repulsion between particles.
Generally, this is not the case. In particular, in structures
with spatial separation of charge carriers, the interaction
between excitons is determined by the relatively long-range
/ 1=r 3 dipole±dipole repulsion of particles. Furthermore, as
is well known, excitons can bind like atoms to form excitonic
moleculesÐbiexcitons [142]. Even if the spin configuration
of the excitons prevents the formation of bound pairs, the van
der Waals attraction of excitons is possible at large distances
between particles. All this offers a possibility of implementing
various collective phases of excitons. Let us briefly describe
some of them, which in our opinion are the most realistic.

4.1 Bose systems with short-range repulsion
and long-range attraction
Consider spatially direct excitons within the framework of a
hydrogen-like model. As for two neutral atoms, the effective

potential energy of interaction between excitons can be
approximately divided into two contributions. The `short-
range' contribution, which is manifested at small distances
between the excitons r9 aB (recall that aB is the Bohr radius
of the exciton), is mainly due to the exchange interaction
between identical charge carriers making up the exciton [93,
143, 144]. The `long-range' contribution manifests itself at
r4 aB; it is mainly due to polarization or van der Waals
interaction between excitons [145, 146]. For excitons in the
ground state, the van der Waals interaction has the character
of attraction, since the fluctuation of the dipole moment in
one of the excitons induces the dipole moment in the other
exciton in such a way that the total energy of the pair
decreases [92]. Therefore, attraction is possible at large
distances between spatially direct excitons. Note that the
situation changes dramatically for spatially indirect excitons
in structures with single or double quantum wells, where
dipole±dipole repulsion of excitons dominates at large
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distances (see Section 4.2). The sign of a short-range
contribution to the potential energy of exciton±exciton
interaction is usually positive, which corresponds to repul-
sion between particles.

Collective phenomena in a system of bosons with short-
range repulsion and long-range attraction were discussed in
[147, 148] for a three-dimensional system. Here, we give a
simple consideration using the self-consistent field approx-
imation. We represent the potential energy of interaction in
the form

V�r� � Vcore�r� ÿU�r� ;

whereVcore�r� > 0 is the short-range repulsive part andÿU�r�
is the long-range contribution corresponding to attraction.
As above, the short-range part will be characterized by the
scattering amplitude f, and the long-range part by the
effective power U0 �

�
U�r� dr. Let us describe the energy

spectrum of such a system in the low-density approximation
with respect to the short-range part of the potential,N f D 5 1
(D being the dimension of the system), and in the self-
consistent field approximation with respect to the long-
range part. First, consider excitons in a bulk semiconductor.
At zero temperature, the energy of the ground state of the
system, per unit volume, can be written in the form 8 (only
pair interactions are taken into account [4, 149])

e � 2p f
m

N 2
ÿ
1� g3

����������
N f 3

p �ÿ 1

2
N 2U0 ; �52�

where the numerical coefficient is g3 � 128=�15 ���
p
p �, and the

dimensionless parameter
����������
N f 3

p
is considered small. Depend-

ing on the concentration of particles, the energy density e has
a minimum at

N � Ncr �
�

4

5g3 f 3=2

�
mU0

4p f
ÿ 1

��2
; U0 > Ucr � 4p f

m
: �53�

Indeed, when the condition U0 > Ucr is satisfied at a low
concentration of particles, the long-range attraction dom-
inates, and the energy of the excitonic gas decreases with
increasing concentration. When N > Ncr, the short-range
repulsion begins to act, and e�N� begins to increase due to
the term/ g3. IfU0 < Ucr, then e�N� increases monotonically
with growing concentration, because the long-range contri-
bution is less than the short-range one.

To determine the stability conditions for the system
excitation spectrum, it is sufficient to determine the compres-
sibility of an imperfect Bose gas. Writing down the total
energy of the gas E � eV depending on the total number of
bosons NV, where V is the volume of the system, we have for
the pressure p and the sound velocity s [4]

p � ÿ qE
qV � N 2

�
2p f
m

�
1� 3

2
g3

���������
f 3N

p �
ÿU0

2

�
; �54a�

s �
�������������
1

m

qp
qN

r
�
�
N

m

�1=2�
4p f
m

�
1� 15

8
g3

���������
f 3N

p �
ÿU0

�1=2
;

�54b�

in accordance with [148]. Naturally, at U0 � 0 in the low-
density approximation, the formula for the velocity of sound
(see Eqn (59) below) transforms into the well-known expres-
sion (11). Note that for N5Ncr, the pressure is positive, and
the velocity of sound is real, i.e., the system is thermodyna-
mically stable. Correspondingly, for a Bose gas with long-
range attraction and short-range repulsion, the spectrum of
elementary excitations has an acoustic character, and the
system (for N5Ncr) behaves like a condensate.

When N < Ncr, the system breaks up into droplets of
condensate, between which there is a strongly rarefied exciton
gas. The phase equilibrium between condensate droplets and
a gas is illustrated in Fig. 14a: in the simplest model, a rarefied
gas of excitons is described by the free energy density

F id � ÿNT ln

�
Nd

N

�
; �55�

whereN is the concentration of excitons,Nd is the concentra-
tion of the exciton gas degeneracy, T is the temperature, and
for the condensate one can use the approximation of zero
temperature and Eqn (52), F cond � e. The phase equilibrium
condition requires equality of chemical potentials and
pressures, i.e., the existence of a common tangent to the
curves shown in Fig. 14a. The phase diagram of states of such
a system, found in Ref. [147] and shown in Fig. 14b, turns out
to be very rich. In addition to the condensate (BECor liquid II
by analogy with liquid helium physics) and the gas state, there
is a state of a normal liquid (liquid I); between this liquid and

8 Strictly speaking, with the screening of the exciton±exciton interaction

taken into account [41, 98], the power of the potentialU0 in this expression

should be replaced by ~U0 � Nÿ2
�
U�r�K2�r� dr, where K2�r� is the pair

correlation function of bosons.
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the gas there is a phase transition of the first kind (dashed
curve). As in the classical theory of phase transitions, the
transition between the gas phase and liquid I is possible only
at temperatures that do not exceed the temperature of the
critical point. The difference between liquids I and II is that in
liquid II the ground state of the system turns out to be
macroscopically populated.

We emphasize that the issue of the state diagram for a
system of bosons capable of forming a Bose±Einstein
condensate and attracting at large interparticle distances is
rather nontrivial. Two scenarios are possible here. The first
one is realized with a rather weak attraction between bosons
and small values of their masses. In this case, as the
temperature decreases, Bose±Einstein condensation occurs
in the gas phase, and only then does a phase transition from
the gas phase to the liquid occur. The second scenario takes
place for a sufficiently strong attraction of particles and/or
large values of their masses. Under these conditions, when the
temperature is lowered, the gas±liquid phase transition first
occurs, and the macroscopic population of the ground energy
level with bosons occurs already in the liquid phase. In this
case, due to the interaction, the fraction of particles in the
Bose±Einstein condensate is small. Such a scenario (gas±
liquid transition followed by Bose condensation), appar-
ently, is realized in helium, where the fraction of condensate
is about 7%.

Let us roughly estimate the relations between the para-
meters separating these scenarios. In order to realize the first
scenario, the temperature of the Bose±Einstein condensation
Tc � N 2=3=m (Eqn (6)) should exceed the critical temperature
Tcr of the transition in the gas±liquid system at the critical
concentrationN � Ncr. These parameters can be estimated in
the order of magnitude within the framework of the van der
Waals model [3]:

Tcr � 1

a 3

�
U�r�r 2 dr � U0

a 3
; Ncr � 1

a 3
; �56�

where a is the effective radius of the (short-range) potential of
interparticle repulsion; recall that U0 is the power of the
attracting part of the potential. As a result, in the three-
dimensional case, we obtain

a

m
4U0 ) Bose condensation first;

a

m
5U0 ) gasÿliquid transition first:

8><>:
It is important to note that the radius of action of the
repulsive part of the potential a and the scattering amplitude
f in (52) are of the same order. Within the framework of the
above considerations, the minimum of the dependence of the
condensate energy e�N� and the possibility of droplet
formation arise only when U0 > Ucr (see Eqn (53)). Thus,
the described model is adequate only for a sufficiently strong
attraction, i.e., it corresponds to the second scenario: gas±
liquid transition followed by condensation.

In a two-dimensional system, the energy of a Bose gas per
unit volume can be written as

e � 2pN 2

m

1

ln
�
g2=�Na 2��ÿ 1

2
N 2U0 : �57�

Here, g2 is a parameter of the order of unity, and the quantity
U0 �

�
U�r� dr, as above, describes the long-range attraction

in the mean field approximation. We emphasize that the
average density approximation is fulfilled under the
condition that N4 1=a 2

long, where along is the radius of
action of the long-range part of the potential. The first
term explicitly takes into account the logarithmic depen-
dence of the scattering amplitude in a two-dimensional
system; it is assumed that the logarithm in the denominator
is large (cf. Eqn (31)). The calculation of contributions of
the higher orders in Na 2 (as well as determination of g2) is
extremely nontrivial. However, their analysis is beyond the
scope of this review [75, 150±156]. The minimum in the
dependence e�N� is attained when

N � Ncr � g2
a 2

exp

�
ÿ 4p
mU0

�
; �58�

with repulsion dominating for N > Ncr and attraction for
N < Ncr. Expression (58) is valid with exponential accuracy.
In the same approximation, the velocity of sound can be
written in the form

s �
����������������������������������������������������������
N

m

�
4p
m

1

ln
�
g2=�Na 2��ÿU0

�s
: �59�

For N > Ncr, the velocity of sound s > 0, and the system is
stable. A detailed analysis of the behavior of the system at
N � Ncr requires going beyond the approximation
ln �g2=�Na 2��4 1 and is an interesting problem for further
research.

Note, however, that the described model and the phase
diagram proposed in [147] have limited applicability to real
systems: in bulk semiconductors, as a rule, an electron±hole
liquid is formed (see Section 4.3), and in the two-dimensional
case, the formation of a crystal exciton phase is possible,
which we will discuss in Section 4.2.

4.2 Gas±crystal phase transition
Let us consider spatially indirect (dipolar) excitons in the
quasi-two-dimensional systems schematically shown in
Fig. 3a, b. The interaction between these excitons can be
described by the simple law

V�r� � 2e 2

K

�
1

r
ÿ 1����������������

r 2 � h 2
p

�
� e 2h 2

Kr 3
: �60�

Here, r is the distance between excitons in the structure
plane, h is the characteristic distance between an electron
and a hole along the normal to the plane of the wells, eh is
the component of the exciton dipole moment normal to the
plane of the wells, and K is the permittivity of the medium.
Expression (60) is valid for h4 aB (aB is the Bohr radius of
an exciton), and, for r4 h, the potential energy slowly, as
/ rÿ3, decays with an increase in the distance between
particles (see the approximate equality in Eqn (60)). In
Ref. [36], it was predicted that, in addition to Bose±
Einstein condensation, dipolar excitons at temperatures
exceeding the expected condensation temperatures could
form a crystal structure or, more precisely, a structure close
to crystalline (with well-known reservations about the
instability of two-dimensional crystals [3]). Below, for
brevity, we will call this phase a crystal.

The possibility of crystallization of excitons with long-
range repulsion (60) can be easily verified by analyzing the
free energy of a weakly nonideal excitonic gas and the crystal.
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For the gas phase, the free energy density has the form

F gas � F id � EC ; EC � 1

2

�
V�r�K2�r� dr ; �61�

where the free energy of a unit volume of the ideal gas is given
by Eqn (57), the second term describes the contribution of
Coulomb repulsion, and K2�r� is the pair correlation
function, which in the quasi-classical approximation9 can be
represented as

K2�r� � N 2 exp

�
ÿV�r�

T

�
: �62�

Under conditions when the exciton gas is not degenerate, but
the interaction is strong enough, T5 e 2=�Kh�, the Coulomb
contribution is strongly suppressed, since a circle of radius
rT � �e 2h 2=�KT ��1=3 near the exciton turns out to be inacces-
sible to other particles. As a result,

F gas � ÿNT ln

�
Nd

N

�
� pG�4=3�

h 2

�
KhT
e 2

�1=3
e 2

Kh
�Nh 2�2 ; �63�

where G�x� is the gamma function.
For the crystal phase, the main contribution to the free

energy density is made by the Coulomb repulsion of excitons
located in the lattice sites. The calculation for a perfect
triangular lattice performed in Ref. [36] yields

F cryst � 2:48

h 2

e 2

Kh
�Nh 2�5=2 ÿNT ln

�
gg

�gÿ 1� gÿ1
�
; �64�

where the second term describes the entropy contribution,
caused by the presence of spin degeneracy in excitons, and g is
the degeneracy multiplicity.

A comparison of expressions (63) and (64) shows that at
low temperatures the ordered distribution of excitons in space
turns out to be energetically more favorable, since for
Nh 2 5 1 the repulsion of excitons in the crystal phase turns
out to be smaller due to the smallness of Nh 2. The phase
equilibrium between the crystal and the gas can be analyzed
using the same considerations as in Section 4.1 (Fig. 15a),
where the free energies of the gas and crystal phases and their
common tangent are presented. The phase diagram of the
system of dipolar excitons, calculated in [36], is shown in
Fig. 15b. The same diagram shows the concentration
dependence of the temperature below which the exciton gas
becomes degenerate (BEC region). Naturally, phonons in a
two-dimensional crystal of excitons lead to the destruction of
long-range order [3, 36]; therefore, an exciton crystal can also
be called a liquidwith a pronounced short-range order. In this
case, the density correlation function hn�r�n�r� R�i, where R
is the distance between the lattice nodes, due to lattice
vibrations, falls off according to the power law Rÿa [36].
The estimate made in Ref. [36] demonstrates that the
exponent a is small.

In Ref. [36], manifestations of an excitonic crystal in
photoluminescence spectra were also analyzed. Using
Eqns (63) and (64), it is possible to express the energy of
interaction of excitons in the gas and crystal phases, which

behave differently: Egas�N� / T 1=3N in the gas phase and
Ecryst�N� / N 3=2 in the crystal phase. The value of the
Coulomb energy determines the shift of the luminescence
line as a function of particle concentration. At a fixed
temperature and low concentrations of excitons, the center
frequency of the exciton luminescence line increases linearly
with increasing concentration. Then, upon reaching the
boundary of the two-phase region, a luminescence line from
the crystalline phase appears, and its intensity grows with a
simultaneous decrease in the intensity of the gas phase line,
the positions of the lines remaining unchanged.With a further
increase in the concentration, the system leaves the two-phase
region; only one line remains, the frequency shift of which is
described by energy Ecryst�N�. This is illustrated in Fig. 16.
Figures 16a and 16b differ in the values of the dimensionless
temperature y: the higher the temperature, the greater the
energy of the Coulomb repulsion of excitons in the gas phase
(the second term in Eqn (63)), in contrast to the repulsive
energy in the crystal, where it does not depend on temperature
(see the first term in Eqn (64)). Therefore, in the two-phase
region, the Coulomb frequency shift in the gas phase at a high
temperature is greater than that in a crystal, while at a low
temperature it is vice versa.

Stern and Bar-Joseph experimentally discovered the
occurrence of two phases in a two-dimensional system of
dipolar excitons; a description of the obtained results is given
in Refs [77, 159]. An important open question is the self-
consistent model description of such a system.

9 Describing two-dimensional systems with dipole±dipole repulsion in the

classical case is a separate problem (see, e.g., [157, 158] and references

therein).
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4.3 Electron±hole liquid
For Wannier±Mott excitons in most typical semiconductors,
the masses of an electron me and a hole mh are rather close,
and the adiabaticity parameter �me=mh�1=4 is not small. In a
bulk semiconductor or structures with quantum wells, where
spatially direct (rather than dipolar) excitons are realized, the
formation of an exciton crystal is impossible. Indeed, from
general considerations [3, 34] it is known that the crystal
phase should arise at the critical exciton concentration
Nc � aÿDB (aB is the Bohr radius of the exciton, D � 2 or 3 is
the dimension of the system). But then the amplitude of zero-
point oscillations of excitons would be of the order of aB,
which would lead to the melting of the crystal.10 Based on
these considerations, Keldysh in 1968 predicted the possibi-
lity of the formation of an electron±hole liquid, i.e., a
degenerate two-component liquid of electrons and holes
[31]. In fact, the behavior of electrons and holes in such a
liquid is analogous to the behavior of a collective of electrons
in a metal: the particles turn out to be delocalized and can
propagate freely and independently over the volume of the
liquid, naturally, without violating the electrical neutrality of
the system. An electron±hole liquid was first observed by
Pokrovskii and Svistunova in Ge crystals [160].

A large number of reviews [31±34], including modern
papers [35, 161], have been devoted to the physics of
electron±hole liquids in semiconductors and semiconductor
nanostructures; therefore, we will very briefly list the main
features of such a phase. The critical temperature and the
concentration of exciton condensation into an electron±hole
liquid can be estimated for a bulk semiconductor as [34]

Tc � 0:1EB ; Nc � 1

a 3
B

; �65�

where EB is the exciton binding energy. The phase diagram of
the electron±hole liquid is shown schematically in Fig. 17. In
the region of parameters of gas and liquid coexistence, the
system breaks up into droplets of liquid phase surrounded by
a gas of excitons (compare with the scenarios considered in
Sections 4.1 and 4.2).

The energy of particles in a liquid consists of the Fermi
energies of electrons and holes, as well as the potential energy
of their Coulomb interaction. Due to Coulomb correlations
in an electron±hole liquid, the energy of the liquid decreases in
comparison with the energy of noninteracting particles, and
the luminescence line of the liquid turns out to be below the
absorption edge of a nonexcited semiconductor. In multi-
valley Si and Ge crystals, exciton recombination is possible
only with the participation of phonons, and the photolumi-
nescence spectrum of an electron±hole liquid acquires the
characteristic `triangular' shape.

5. Conclusion

In this review, we outline the main points in the development
of the concept of collective effects in exciton systems.

In bulk semiconductors, as well as in atomic systems, the
formation of a Bose±Einstein condensate of excitons is
possible. Due to the interaction between excitons, the
condensate will be superfluid, and a weak random potential
does not significantly affect its properties. The formation of a
condensate state can manifest itself in the optical response of
a semiconductor in the form of two spectral lines, correspond-
ing to amplification and absorption of radiation, separated by
twice the energy of a condensate phonon with a wave vector
equal to the wave vector of light at the frequency of exciton
resonance.
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Figure 16. Change in the luminescence spectrum versus dimensionless concentration n � Nh 2 for two different dimensionless temperatures

y � T=�e 2=Kh�: (a) y � 0:02, (b) y � 0:08. Lines of equal luminescence intensity are schematically shown. (From [36].)

10 Note that for dipolar or spatially indirect excitons the situation is richer;

one more parameter, h4 aB (the distance between the layers), appears in

the system, and the short-range order of the exciton arrangement may be

explicitly expressed, as discussed in Section 4.2.
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Figure 17. Schematic phase diagramof an electron±hole liquid. (From [34].)
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The situation turns out to be radically different in two-
dimensional systems. From the general theory for ideal
systems, it follows that, at a finite temperature, the phase
transition to the condensate state is impossible, but a system
of two-dimensional bosons at low temperatures can possess
superfluidity [4]. Real systems inwhich the collective behavior
of two-dimensional or quasi-two-dimensional excitons is
investigated, namely, structures with single and double
quantum wells, as well as with microcavities, possess a
disorder, which makes the picture of collective effects very
rich. Thus, in contrast to the ideal two-dimensional system, in
a system with disorder, the Bose±Einstein condensation of
excitons is possible. The repulsion between particles leads to a
limitation of the number of excitons in potential wells and
screening of the fluctuation potential, due to which the system
can transit to a superfluid state. An additional specificity is
introduced by the finite lifetime of excitons. First, it leads to a
seemingly paradoxical result: the existence of a low-tempera-
ture boundary of the condensation region in the phase
diagram of excitons. Second, due to a finite lifetime, excitons
can exist only in the presence of pumping, whose fluctuations,
along with thermal fluctuations, destroy long-range order.

The review also briefly analyzes the gas±crystal transition
in a system of dipolar excitons, and provides basic informa-
tion about the electron±hole liquid in semiconductors.

Despite the fact that during almost sixty years of
investigating collective effects in exciton systems in semicon-
ductors the main aspects of exciton condensation have
become understood, both theoretical and experimental
studies in this area are far from complete. In theory,
important tasks are to construct the phase diagram of
excitons for realistic systems and to refine the boundaries of
the regions of condensation and crystallization of excitons,
the transition of an excitonic liquid to the superfluid state,
and to study the possibilities of the coexistence of a
condensate and an electron±hole liquid. A relevant problem
is the implementation of the crossover between the exciton
condensate and the condensate of fermion pairs [162] by
analogy with the crossover between the superconducting
states (BCSÐBardeen±Cooper±Schrieffer theory) and con-
densate states of atoms (BCS±BEC) [163, 164]. The emer-
gence of new material systems, in particular, semiconductors
based on atom-thin crystals that demonstrate unusually
strong exciton effects [165, 166], poses new problems for
both experiment and the theory of exciton condensates. Such
studies are now at their initial stages [54, 55, 167, 168].
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