
Abstract. Arrays of quantum dots (QDs), i.e., semiconducting
nanoparticles with typical sizes of 3±10 nm, have become more
thanmerely an object of scientific research; they are now used in
electronic devices. They are appealing mainly due to their
optical properties, which depend on the QD size. Here, we
consider the electronic properties of such arrays. These proper-
ties typically inherit the properties of bulk semiconductors, but
in some cases can be substantially different due to the discrete-
ness of sizes and a particular type of disorder in the array: the
difference in size and spacing amongQDs, as well as the number
of donors. Notably, in such arrays, the metal±dielectric transi-
tion occurs at a much higher concentration of donors than in the
bulk material. The nature of hopping conductivity in the di-
electric phase strongly depends on the disorder type, quantum
confinement effects, the Coulomb blockade, and the overlap
integral of QDs.

Keywords: quantum dot, nanoparticle, quantum confine-
ment, electron transport, metal±insulator transition, Cou-
lomb interaction, Coulomb blockade

1. Introduction

This review is devoted to a discussion of modern approaches
to describing the conductivity of arrays of quantum dots
(QDs)Ð semiconducting nanoparticles with typical sizes D
less than 10 nm.

In recent decades, the continuing interest in these objects
is motivated by the possibility of varying the optical proper-
ties of QDs by changing their size, as well as by the
technological ease of their industrial production [1]. Just the
spectral dependence of optical absorption on the QD size
initially triggered the start of investigations of these objects.
This dependence has been demonstrated for various semi-
conducting materials, including in silicon QDs [2].

Quantum dots made their appearance more than 40 years
ago, when their optical properties were for the first time
described experimentally [3, 4]. A theoretical explanation of
the observed optical effects followed almost immediately [5].
Today, despite the many years of investigations and the
results achieved, this area of physics is blossoming. New
areas for QD applications are solar panels [6], LEDs [7, 8],
biomarkers [9], and transmitters and receivers of infrared
radiation [10, 11]. Progress in studying the optical properties
of QDs is described in a number of reviews [9, 12±14]. We also
note that displays based on QDs have outgrown the
development stage [15] and are now produced by Samsung
(South Korea).

At the same time, in many applications in optoelectronic
devices, not only the optical properties but also the electric
conductivity of QD arrays is essential. In particular, the
efficiency factor of QD-based solar elements is limited by
the mobility of holes and electrons [16]. But the electric
conductivity of QD arrays is studied much less.

In analyzing the optical properties, we can safely restrict
ourselves to considering a single QD, but describing the
electronic properties requires considering collectionsÐ
arraysÐof QDs. From the physical standpoint, this is the
current problem to be investigated about the conductivity of
QD arrays.

We note that the electronic properties of individual
nanoparticles have been broadly studied over the last
20 years. It was shown, for example, that the principal

K V Reich Ioffe Institute,

ul. Politekhnicheskaya 26, 194021 St. Petersburg, Russian Federation

E-mail: Reich@mail.ioffe.ru

Received 4 July 2019, revised 25 August 2019

Uspekhi Fizicheskikh Nauk 190 (10) 1062 ± 1084 (2020)

Translated by S Alekseev

REVIEWS OF TOPICAL PROBLEMS PACS numbers: 71.30.+h, 72.10. ± d, 72.15.Rn, 72.20.Ee, 72.80.Ng,

73.21.La, 73.22. ± f, 73.23.Hk, 73.40.Gk, 81.07.Bc

Conductivity of quantum dot arrays

K V Reich

DOI: https://doi.org/10.3367/UFNe.2019.08.038649

Physics ±Uspekhi 63 (10) 994 ± 1014 (2020) #2020 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

Contents

1. Introduction 994
2. Producing a quantum dot array 996
3. Model and main parameters of a quantum dot 997

3.1 Kinetic energy; 3.2 Electrostatic energy; 3.3 Model applicability conditions

4. Array of quantum dots 999
4.1 Dielectric constant; 4.2 Overlap integral; 4.3 Disorder in a QD array; 4.4 Density of states; 4.5 Localization length

5. Metal±insulator transition 1005
5.1 Geometric disorder in a QD array; 5.2 Doped QD array

6. Insulating phase 1007
6.1 Temperature dependence of conductivity; 6.2 Doped QD arrays; 6.3 Charge distribution in a field transistor;

6.4 Disorder in sizes and in distances between QDs; 6.5 Conductivity in a field transistor; 6.6 Doping from the surface

7. Conclusions 1012
References 1013

https://doi.org/10.3367/UFNe.2019.08.038649


element of electron transport through a nanoparticle is the
Coulomb blockade [17]. This classic effect refers to the simple
fact that an additional electron can only be added to a
nanoparticle if its energy suffices for overcoming the
Coulomb repulsion of other electrons. As a logical continua-
tion, two nanoparticles were considered [18] and, eventually,
an array of nanoparticles. An analysis of electron transport
in an array of metallic nanoparticles is presented in
reviews [19, 20]. In contrast to metallic nanoparticles, an
essential role is played in an array of semiconducting QDs by
the quantum confinement effect, entailing quantization of the
kinetic energy of electrons in such QDs. The quantization
energy can be much higher than the Coulomb blockade
energy. In addition, the number of electrons in such QDs
can vary in a broad range and reach 50 electrons per QD [21].

In what follows, we focus on the analysis of recent results
obtained in investigating the conductivity of semiconducting
QD arrays. We mainly consider theoretical results; experi-
mental data are discussed in reviews [22±24].

We discuss here two types of QD arrays. The first is where
the QDs are separated from each other by ligands that cover
their surfaces (Fig. 1a). Obviously, increasing the conductiv-
ity of an array requires decreasing the distance s between
QDs, i.e., decreasing the length of these ligands [25]. In the
limit, the ligands can be eliminated and QDs can merge
epitaxially so as to touch each other with their faces [26±28].
This leads us to the second case: arrays of QDs whose faces
touch each other, the typical size of the face being r � 1 nm
(Fig. 1b). It is obvious that increasing the contact area leads to
an increase in the conductivity of the array, but suppresses its
unique optical properties.

As in the case of a bulk semiconductor, changing the
conducting properties requires introducing electrons into
semiconducting QDs, which otherwise would be insulating.
The doping of QDs is the main problem here [29], which was
solved only very recently. This explains some difficulties in
comparing the theory that has been developed and a limited
amount of experimental data.

Several strategies have allowed inducing electrons into the
conductivity band of QDs. First, the doping of QDs in a wide
range of concentrations has become possible [21]. Second,
electrons can be induced using the field effect, i.e., by creating
a field transistor with QDs [30±32]. Third, sufficiently large
numbers of electrons can be induced into a QD electrochemi-
cally, i.e., using an ionic liquid [33].

In Section 2, the role of ligands, the difficulties encoun-
tered in doping QDs, and the methods for measuring the
conductivity of arrays are discussed in more detail.

Evidently, the properties of a QD array are determined by
the properties of individual QDs, and in Section 3 we
therefore consider an isolated QD. From the standpoint of
transport properties of a QD array, two energy values are
important: the Coulomb energy EC that is necessary for
transferring one elementary charge onto a QD and which is
related to the Coulomb blockade, and the kinetic energy
quantum of the electron in such QDs, D. We mainly focus on
the case where D4EC, because the properties of a QD array
then differ greatly from the properties of an array of metallic
QDs.

The parameters of an array can be strongly different from
the parameters of a single QD. For instance, the permittivity
kQD of a single QD can be much greater than the permittivity
k of the entire array. The most substantial, and fundamental,
difference between an array and a single QD is the appearance
of disorder. QDs can differ from each other in size, in the
number of donors in each QD, and in the distance s between
neighbors. The density of states g�e� in an array and the
position of the Fermi level eF are therefore quite different
from those for a single QD. Disorder typically leads to
localization of electrons in QDs when the spread of energy
levels in the system, g, is greater than the overlap integral t of
QDs. In Section 4, we discuss these parameters of QD arrays.

If t ' g, a transition from the insulating to the metallic
state occurs in a QD array. The possibility of such a transition
is still being doubted by some researchers [34]. We consider
conditions for this transition in the presence of disorder in size
and distances between QDs, when electrons in the array are
induced due to the field effect in a field transistor structure.

For doped QD arrays, these conditions change substan-
tially, because an additional type of disorder appears, one
related to variation in the number of donors from one QD to
another. It is known that in a bulk semiconductor with a
permittivity kQD and effective electron mass m, the transition
occurs at the concentration of donors na 3

B � 0:02 [35], where
aB � �h 2kQD=me 2 is the Bohr radius (here and hereafter, we
use the CGS system of units). For doped QDs whose faces
touch, with the donor concentration n, the insulator±metal
transition can be observed at the critical size of the face rc
such that [21]

nr 3
c ' 1 : �1�

It hence follows that, for rc � 1 nm, the doping level must be
enormous: n � 1021 cmÿ3. No such transition has been
observed so far, but a characteristic scaling of conductivity
is observed experimentally near the transition [36], which is
similar to what is known for the bulk material. Details of the
insulator±metal transition in an array of semiconducting
crystals are discussed in Section 5 below.

Because of the Coulomb blockade effect, even the arrays
of metallic nanoparticles are typically insulating: their
conductivity G decreases exponentially with temperature
T [37]. It is therefore unsurprising that, in most cases, the
arrays of doped semiconducting QDs are insulating, their
conductivity following the law

G / exp

�
ÿ
�
E0

kT

�p�
; �2�
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Figure 1.Outline of QD arrays. (a) Due to ligands, QDs with a typical size

D � 10 nm are separated by a distance s � 1 nm, with the distance

between QD centers D 0 � D� s. (b) QDs without ligands touch each

other with their faces with typical size r � 1 nm.
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where the coefficients E0 and p are determined by the
transport mechanism, which in turn depends on the para-
meters of the array and the temperature interval.

For example, in an array of doped QDs, the Efros±
Shklovskii (ES) law with the power-law exponent p � 1=2 is
typically observed at low temperatures, activation transport
p � 1 sets in at high temperatures, and Mott transport
p � 1=4, at intermediate temperatures (Fig. 2).

In a field transistor, the conductivity (andmobility) is also
significantly dependent on the number of induced electrons.
In such a device, we focus on how the electric conductivity
depends on disorder in the distances between QDs. We
discuss the features related to electrochemical doping. As in
bulk semiconductors, this process is analogous to doping
from the surface [41]. Interestingly, in the case of electro-
chemical doping, dependence (2) can be observed with the
exponent p � 2=3 (see Fig. 2, the case p � 2=3), which defies a
generally satisfactory explanation. These problems are dis-
cussed in Section 6 below.

In passing to themain contents of this review, we note that
we are actually dealing with electron transport in QD arrays,
but all our conclusions are also applicable to hole transport.

2. Producing a quantum dot array

The technology of growing QDs has been discussed in a
number of reviews [22, 42±45]. In this section, we expound the
principal theoretical concepts regarding the production of
QD arrays and illustrate the difficulties in doping such
materials and possible strategies to overcome these difficul-
ties.

A major part of the QDs investigated today are obtained
in the liquid phase from A2B6 and A3B5 compounds. As rule,
the precursor (salt A) is rapidly introduced into a strongly
heated solvent containing the B component. Subsequent
cooling produces QDs [46]. Importantly, this process
requires the presence of organic surface-active substancesÐ
ligandsÐ in the solution, which attach to the growing QDs
and prevent them from sintering. We emphasize that just the
ligands govern the kinetics of QD growth. This technology is
broadly developed and allows growing QDs of any shape and
size [45]. In addition, ligands allow reducing the number of

surface states in a QD, which are a hindrance to electron
transport processes.

The drawbacks of this method stem from its advantages.
On the one hand, the surface of obtained QDs is covered with
ligands and, therefore, the distance s between adjacent QDs is
sufficiently large, which, as noted above, hinders electron
transport. This problem can be partially solved if, after the
synthesis of QDs, the ligands are chemically replaced with
shorter ones. This method leads to an increase in the
conductivity of the system [22].

On the other hand, it is difficult to obtain strongly doped
QDs with this method. At the synthesis temperature of about
300 �C, crystals undergo ``self-cleaning'' [29], with the impu-
rities going out to the surface. This drawback can be partially
overcome if the ligands on the surface are themselves donors
[47, 48].

Several other approaches have been proposed to achieve
higher degrees of QD doping in crystallization from the liquid
phase [49]. However, it has so far been impossible to achieve a
high degree of doping (a dozen donors per QD).

Yet another approach consists of producingQDs from the
gas phase. This method assumes the use of low-temperature
plasma [50]. Electrons in such plasma have a temperature of
about 104 K, and collisions of electrons with molecules lead
to effective dissociation and ionization of the precursor gas.
The produced ions and radicals form nanoparticles.
Although the electron temperature is high, the temperature
of the resultant particles is sufficiently low. Adding a donor
component to the gas phase allows attaining high donor
concentrations in QDs, since the low temperature of QDs is
insufficient for the diffusion of donors to the surface [51].

The high concentration of electrons in the bulk of QDs
can be prevented by surface states, whose concentration in
QDs is high [8]. Therefore, the average number of deep
surface states, which can trap electrons from the conductivity
band, must be much less than the average number of donors
in a QD. Technologies are being developed with the aim to
reduce the concentration of surface states. For instance, the
use of inorganic ligands has allowed reducing the density of
deep surface states by an order of magnitude, to
1010 cmÿ2 eVÿ1 [52, 53]. Progress in technology allows us to
hope that this problem will be solved, and we do not consider
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Figure 2. Examples of typical experimental dependences of the conductivity of a QD array on temperature G�T �. The data for an activation dependence

with the exponent p � 1 are taken from [38], and for p � 2=3, from [39]. The ES dependence for p � 1=2 and the Mott dependence for p � 1=4 are taken
from [40]. In all cases, the experimental data are rectified in the lnG±Tÿp coordinates.
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effects associated with surface states in the theoretical
analysis in what follows.

The next stage in producing a QD array is the deposit of
QDs onto a substrate. The array can then be ordered in
several ways, and the same QDs can be arranged into one-
dimensional, two-dimensional, or three-dimensional struc-
tures [54], depending on the conditions of deposition.
Quantum dots covered with ligands can make up two-
dimensional superlattices [44, 55], as outlined in Fig. 1a.

Themain problem is to ensure the high conductivity of the
resultant array as a whole. When QDs have regular faceting,
oneway to increase the conductivity is to remove ligands from
the QD surface. This method for obtaining a ``clean'' surface
of the faces and ensuring direct contact between faces of QDs
allows creating superlattices of touchingQDs [26, 56±58], as is
outlined in Fig. 1b.

Evidently, obtaining an ordered lattice of QDs is a
complicated technological problem. Typically, a random
close packing is produced in depositing bulk arrays (films)
of QDs [59].

In our theoretical calculations, in what follows, we assume
that QDs are arranged into a cubic lattice; this greatly
simplifies the mathematical derivations. But an important
point is that changing the lattice type does not affect the
derived conclusions and leads to only inessential changes in
the coefficients in formulas.

The conductivity of a QD array can be measured in three
different configurations.

For an array of doped QDs, the simplest configuration
can be used (Fig. 3a): it suffices to place the array on a
substrate and draw the source and drain contacts. We note
that, as we show in what follows, doping a QD introduces
unremovable disorder.

For a doped QD array, it is necessary to induce electrons,
and this can be carried out using the field effect in a field
transistor structure (Fig. 3b). Here, as we show in the
following, electrons are induced only in the first two layers,
the ones closest to the gate.

In both QD arrays and thin films [60], electrons can also
be induced using an ionic liquid [33, 61], which consists of an
equal number of positive (cations) and negative (anions) ions.
As a bias V is applied to the gate (Fig. 3c) at room
temperature, the anions drift toward the gate and the cations
toward the QD array, penetrating into the depth of the array,
which then neutralizes the induced electron charge in the
array. We note that here we are speaking of only an
inconsiderable proportion of additional ions near the sur-
face, whereas in each domain inside the liquid on the whole,
positive ions are balanced by negative ions. Electroconduc-
tivity is then measured at temperatures below room tempera-
ture, when the ionic liquid freezes and becomes nonconduct-
ing. Thus, the use of ionic liquid is, in effect, similar to doping
from the surface [41]. The system involving ionic liquid as the
insulator allows inducing many more electrons into the QD,
which is an important advantage compared with the conven-
tional field transistor structure. The ions, unlike donors, can
be redistributed among the QDs, reducing the associated
disorder.

3. Model and main parameters
of a quantum dot

The band structure of a single nanoparticle inherits the
properties of the band structure of the material it is made of
and can be quite complicated. In particular, an important role
can be played by spin±orbit and crystal-field splitting. Still, in
contrast to optical effects, these factors have not so far been
observed experimentally to affect electron transport. There-
fore, in the theory expounded below, we consider only a
simple parabolic model of the band structure of QDs.

In this section, we focus on a single QD and consider the
main energy parameters of themodel: the kinetic energyEQ of
the electron and the energy Ec necessary for adding one
electron to a neutral QD, which is called the charging energy.

3.1 Kinetic energy
In the conductivity band of a QD, due to its small size, the
possible values of the kinetic energy of electrons EQ are
quantized (Fig. 4).

In the model under consideration, we also assume that the
QDs are spheres of diameter D, and the wave function on the
QD surface is close to zero due to the large value of the work
function j.

Under the assumptions made in the simple band model,
the kinetic energy of an Nth electron added to the QD can be
written as

EQ�N � � �h 2

mD 2

0 ; N � 0

19:74 ; N � 1; 2 �1s�
40:38 ; 34N4 8 �1p�
:::::

8><>: : �3�

Hence, it follows that the first two electrons added to aQD fill
the 1s level, and the next six electrons fill the 1p level. We can
assume for simplicity that the energy gap between quantum
levels is the same, equal to D � EQ�3� ÿ EQ�2� ' 20�h 2=mD 2.

We note that formula (3) is valid in the effective mass
approximation, when D5Eg, where Eg is the width of the
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Figure 3. Different configurations of a QD array for conductivity

measurements. In all three cases, the array is placed on a substrate with

source and drain contacts. (a) Doped QD array. Red dots 1 show the

donors. (b) Field transistor. Under a bias V, electrons accumulate in the

first two QD layers closest to the gate.N1 andN2 are the average numbers

of electrons in the first and the second layers. (c) Field transistor with an

ionic liquid (electrolyte) used as the gate insulator. Under a bias V,

negative ions drift toward the gate (blue dots 2) and positive ions drift

toward the QD array (red dots 1), while electrons are induced in the QD

array.
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semiconducting gap. Otherwise, another approximation
would have to be used, where levels are spaced equidistantly
with the energy gap D ' c�h=D, where c ' 108 cm sÿ1 [13].

At large filling numbers N, EQ becomes equal to the Fermi
energy EF � �3p2�1=3�h 2n 2=3=2m, where n � 6N=pD 3 is the
concentration of electrons in the QD. In making the estimates
in this case, we use the expression EQ ' EF ' N 2=3D, which
remains a good approximation even at N � 1. The electron
wavelengthlF at theFermi level is then related to thewavevector
kF and the concentration of electrons as lF � kÿ1F � nÿ1=3.

For N4 1, the number of electrons in a QD can be
measured based on optical absorption. For small N, indeed,
optical transitions from the occupied 1s level to the 1p level
are possible. The energy of this transition is equal toD, but for
N4 aB=D, plasmon absorption at the frequency op ������������������������������
Ne 2=kQDmD 3

p
can be observed in optics. The transition

between two regimes was experimentally observed in [62]; it
occurs when �hop becomes comparable to D.

3.2 Electrostatic energy
We next consider the energy required to change the charge of
a QD.

Calculating this energy is quite complicated if donors in
the QD are located randomly. But there is a simple
approximation, applicable as long as the QD dielectric
constant kQD is much larger than the average dielectric
constant k of the QD array as a whole, i.e., kQD 4 k.

The large value of kQD implies that any internal charge q is
totally compensated by the dielectric response of the QD,
which leads to a redistribution of most of the charge
q�kQD ÿ k�=kQD ' q on the QD surface. In this sense, in
calculating the Coulomb interaction, each QD can be
regarded as a metal sphere. In particular, the energy of a
QDwith charge q is equal to qe 2=kD, similarly to the constant
interaction approximation [63].

In this approximation, the energy necessary to add one
electron to a neutral QD is

Ec � e 2

kD
: �4�

The calculation of k is described in Section 4.1. As
regards the estimate of kQD, we note that kQD coincides
with the permittivity of the bulk material. An argument in
favor of this approach is that, as the size of QDs decreases,
their permittivity is practically unchanged. For example, it
was shown for a silicon QD in [64] that, as the diameter
decreases from four to two nanometers, the dielectric
constant changes inconsiderably: it decreases from 10 to 8.
The decrease is related in [65] to a dispersion dependence of
the dielectric permittivity k0�k� in the bulk material, with
kQD � k0�1=D�.

To proceed with the discussion of the conductivity of a
QD array, it is helpful to have estimates of the principal
characteristics of arrays of QDs made of some materials. In
the table, instead of the dielectric constant of the QD
material �kQD� and the effective electron mass, we give
geometric means of the corresponding parameters from [66].
For estimates, it is assumed that QDs have a typical size
D � 5 nm and touch each other with their faces of a typical
size r � 1 nm, the dielectric constant of the medium is
ki � 1, aB is the Bohr radius, and D is the energy difference
between the 1s and 1p levels (Eqn (3)). The dielectric
constant k for a QD array is calculated by the Maxwell±
Garnett formula (9). Here, Ec is charging energy (4) and t is
overlap integral (11). In calculating D for a QD made of
PbS, the nonparabolicity of the band structure was taken
into account, and formula (8) was used for dielectric
permittivity.

3.3 Model applicability conditions
If electrons appear in a QD due to doping, then the following
applicability conditions arise for the model under considera-
tion.

The electrons can be localized on donors. For the
applicability of the model, the electron wave functions must
be delocalized in the QD, and the expression for kinetic
energy (3) is valid when D < 6aB [67]. This condition follows
from the simple observation that the kinetic energy D of an
electron in a quantum well must be greater than the Coulomb
potential holding the electron on the donor, e 2=kQDaB.

Energy levels (3) in a QD are multiply degenerate.
However, with strong doping, with the number of electrons

N4

�
aB
D

�3

; �5�

the degeneracy of energy levels is lifted. Under this condition,
the particles can actually be considered metallic, having a
random distribution of energy levels and the typical distance
between them being d � D=N1=3. This case is the subject of

1p

1s

D
Eg

D

Figure 4. Energy levels in a spherical QD in the simple parabolic model.

The conductivity band and the valence band in the bulk semiconductor are

separated by the gap Eg. Because the QD diameter D is small, kinetic

energy levels in a QD are quantized in accordance with (3). The first

quantization level is denoted by 1s, and the next by 1p. The energy gap D
between all quantum levels slightly varies from level to level.

Table. Main parameters of a QD array.

QD aB, nm D, eV k Ec, meV D=Ec t, meV

Si
CdSe
PbS

2.0
4.4
98.2

0.2
0.5
0.1

3.1
2.8
68.7

87.7
97.1
6.3

2.3
5.1
16

1.4
3.4
0.7
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numerous studies (see, e.g., [19, 68]). We comment on the
satisfaction of this condition.

Under strong doping, the average numbers of donors and
electrons coincide. For largeN in (5), the random distribution
of donors in a QD must be taken into account, which
produces a typical electric field E � ����

N
p

e=kQDD
2. In this

electric field, Stark splitting of levels occurs. We note that
the matrix element of the electric field potential is equal to
eED only for transitions with the orbital quantum number
changed by unity; otherwise, it is equal to zero. Because the
energy gap between such levels is of the order of N 1=3D, the
typical Stark splitting in the second order of the perturbation
theory is given by �eED�2=N1=3D. The Stark splitting of levels
starts playing a role and becomes comparable to D when
condition (5) is satisfied.

As noted above, QDs can have a characteristic faceting,
with the faces having a typical size r. Certainly, the strong
level degeneracy, inherent in spherically symmetric QDs, Eqn
(3), is then lifted. This is inessential for low-lying levels. The
effect is significant for higher levels, when the typical level
splitting is comparable to D, which is the case for lF 5 r. As
we show in what follows, under this condition an array of
QDs that touch each other is in the metallic state, in which the
detailed positioning of levels in an individual QD is unim-
portant. Under the same condition, an array of nontouching
QDs cannot be in the metallic state. The estimate for the
highest filled level EQ ' EF still holds, and therefore the
effects discussed here are relevant.

4. Array of quantum dots

4.1 Dielectric constant
In passing from a single QD to a QD array, we must consider
a number of new conditions and parameters. We recall that
for simplicity we here consider an array in which the QDs are
arranged into a simple cubic lattice with the period
D 0 ' D4 s (Fig. 1a).

First of all, it is necessary to take into account that the
dielectric permittivity k of an array can be substantially
different from the dielectric permittivity of the material of
QDs. In the general case, k depends on kQD, the dielectric
permittivity ki of the medium around the array, and the
volume fraction f of QDs in the array. We note that for the
simple cubic lattice of QDs separated by a distance s > 0 (see
Fig. 1), f � pD=6�D� s�.

The dependence k�kQD; ki; f � is sought in a number of
papers [69]. Estimates can be obtained assuming different
relations between the parameters. In [70], the limiting case is
considered that allows an exact solution for any value of f, but
for a small difference between the dielectric permittivities:
kQD=ki ' 1. In this approximation, it is possible to write the
expression for k as

k1=3 � �1ÿ f �k1=3i � fk1=3QD : �6�

At small concentrations f5 1 and any ratio of the dielectric
permittivities,

k � ki � f
3�kQD ÿ ki�ki
kQD � 2ki

: �7�

In those cases where nanoparticles touch each other,
f ' p=6, and the dielectric permittivity is high, kQD=ki 4 1,

another relation was obtained in [71], depending on the
parameter s � D 0 ÿD:

k�s� �
p
2
ki

�
D

2s� 2d

�1=3

; s > 0 ,

kQD

����������������
2
jsj � d
D

r
; s < 0 ,

8>>><>>>: �8�

where d ' 0:8D�ki=kQD�6=5. Here, the domain of negative s
corresponds to QDs whose faces touch each other. The
typical size of the face is r � �������������jsjD=2p

.
These results are exact under the specified conditions,

unlike the frequently used expressions of mean-field theory,
the Maxwell±Garnett approximation [69]

k � ki
kQD � 2ki � 2 f �kQD ÿ ki�
kQD � 2ki ÿ f �kQD ÿ ki� �9�

and the Bruggermann approximation [69]

�1ÿ f � ki ÿ k
ki � 2k

� f
kQD ÿ k
kQD � 2k

� 0 : �10�

It is instructive to compare the applicability of the various
approaches to assessing k with known numerical results [72,
73] obtained for a cubic array of spheres with kQD � 30,
kQD � 10, and ki � 1.

These data are presented in Fig. 5 together with
dependences (6)±(10). We can see that the dependences
describe the numerical results sufficiently well in the range
of their applicability.

In the case of a moderate difference between dielectric
permittivities, kQD=ki � 10, the Maxwell±Garnett formula
works perfectly well, but expression (8) then gives a poor
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Figure 5.Dependence of the dielectric permittivity k of a QD array on the

dielectric permittivity kQD of the QD and the fraction f of QDs, with the

dielectric permittivity of the medium ki � 1. Numerical computations

in [72, 73] are represented with stars: (a) kQD � 30 and (b) kQD � 10.

Dependences (6) to (10) are shown with the respective lines L, S, T, M, B.
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description, not shown in Fig. 5b. In the case of large
dielectric permittivities, only formula (8) gives a satisfactory
result when the QDs touch each other (s � 0, f � p=6).

The approaches discussed in this section are, strictly
speaking, applicable for calculating dielectric permittivities
in a planar capacitor, i.e., at long distances. Just this dielectric
constant enters the conductivities of the insulating state of the
QD array, when hops occur over long distances. At short
distances, the field in the array is strongly inhomogeneous,
and this can significantly affect the energy Ec of charging a
neutral QD. In [71], manifestations of this effect were
considered in the worst-case scenario: for touching QDs and
in the case of large dielectric permittivities, kQD 4 k. It turned
out that the value of Ec is approximately 50% higher than the
one following from (4). The exact coefficient depends on the
lattice type. For example, for the simple cubic lattice, as
shown in [71], this coefficient is equal to 1.6. This is exactly
how the value of Ec for PbS, as given in the table, was
calculated. For simplicity, without losing the generality, we
disregard this coefficient.

4.2 Overlap integral
To describe the transport properties of an array of QDs, the
overlap integral t between two QDs must be known.

In a QD array, each energy level (3) is split, with the
magnitude of the splitting ' t. But even if QDs are touching,
we typically have t5D, and in the first approximation we can
assume that spectrum (3) changes inconsiderably. In the
approximation t5D, under the condition that the electron
is at the lowest, 1s, energy level and the QDs touch one
another with their faces of a typical size r (Fig. 6), the formula

t � 8

3p
D
�

r
D

�3

�11�

was obtained in [74].
Deriving the expression for t requires solving the problem

of a wave with l � D (where l is the wavelength) passing
through an opening of radius r5D. This problem has been
known for a long time: for acoustic waves, it was solved by
Rayleigh [75], and for microwaves, by Bethe [76]. In the
general case, Levine and Schwinger solved it for a scalar
plane wave [77]. We now derive expression (11) up to a
numerical coefficient.

We let c0 denote the wave function of an electron in the 1s
state in an isolated QD (see Fig. 6). Normalization to the bulk
gives the typical wave function c2

0D
3 � 1, with the wave

function vanishing on the QD surface. We now consider two

QDs that touch each other with their faces of size r in the
plane r � 0. Because c0 vanishes at the QD boundary, the
overlap integral between the wave functions c0 in the ``right''
and ``left'' QDs is zero. Hence, to calculate t, we must take
into account that the electron wave function c in the left QD
extends to the neighboring right QD through the area of the
contact. Such an approachwas used, for example, to calculate
the H�2 states in [78, 79]. In the plane r � 0 and in the right
QD, the wave function c does not vanish and decays over a
typical distance r. The derivative qc=qr ' qc0=qr in the plane
r � 0 then weakly depends on r. Therefore, by the order of
magnitude, the wave function in the plane can be estimated as

c�r � 0� ' r
qc0

qr
' r

D 5=2
:

The matrix element t for the electron is given by Bardeen's
formula [80, 81]

t � �h2

m

�
c�

q
qr

c dS ;

where integration is over the contact area S in the plane r � 0.
This actually reflects the fact that the matrix element
t � �h=t � � j dS is related to the time t of electron oscilla-
tions between the QDs and the electron density flux j through
the boundary.

Substituting expressions for the wave function and its
derivatives in Bardeen's formula, we obtain (11).

The result in (11) was generalized in [82] to three
practically important cases: the electrons are not exclusively
located on the 1s level; the QDs do not touch each other with
their faces but are separated by a distance s; and the masses of
the electrons in the QD, m, and in the ambient medium, m�,
are different.

In the first case, we must take into account that the wave
vector of an electron on a higher level is kF � lÿ1F 4Dÿ1;
t can then be written as

t � D�kFr�3 : �12�

In the second case, QDs can be regarded as spheres.
Because of a finite distance s � D 0ÿD between the QDs, the
wave functions decay exponentially, and so does t /
exp �ÿs=b�, where b � �h=

������������
2m �j
p

is the decay length of the
electron wave function in the ambient medium, which is
determined by the finite work function j needed for
extracting an electron from the QD.

In the general case, the result for t can be represented as

t ' D exp

�
ÿ s

b

� k 3
Fb

2D
m �

m
;

m �

m
5

1

kFb
,

kFD
m

m �
;

m �

m
4

1

kFb
.

8>><>>: �13�

We note that for the first energy level, kF � 1=D, and
under the condition of a large work function j4D,
expression (13) reproduces the result in [83] up to numerical
factors.

Qualitatively, the dependence of t on the mass ratiom �=m
and the wave vector kF is shown in Fig. 7. We can see that t is
close to the maximum value only in a narrow range of
parameter values.

We emphasize that, for spherical particles in the case
m �=m5 �kFb�ÿ1, the expression for t can still be written as in
(12) with r � rb � exp �ÿs=3b��b2Dm �=m�1=3. Expression

0 r

cc0

D

2r

Figure 6. QDs of a typical size D touch one another with their faces of a

typical size r in the plane r � 0. If the QDs do not touch, then the electron

wave function on the 1s level, c0, vanishes on the boundary. As the QDs

touch, the electron wave function c `leaks' to the neighboring QD,

decaying over the distance r.
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(12) can also be easily generalized to the two-dimensional
case: for example, for graphene QDs that touch one another,
t � D�kFr�2.

In the general case, increasing the overlap integral
requires increasing the number of electrons in the QDs, for
example, by doping.

All the details of the band structure of the QD material
and the QD shape are disregarded in this approach.

In a number of studies [57, 84, 85], the strong-coupling
method was used to calculate band diagrams for a lattice of
PbSe and CdSe crystals touching one another. We compare
the results of calculating t from expression (11) with those
obtained in [57] for CdSe QDs.

For this, we map the computation parameters in [57] into
the corresponding quantities of the model under considera-
tion. For the energy gap D between quantum levels, this gives
D ' 0:4 eV. The QDs in [57] touch with their faces. Assuming
that the contact area is pr2, we find that r=D ' 0:25. In
accordance with (11), we obtain the bandwidth for the square
lattice 8t ' 0:041 eV, which is only one half the result
obtained in [57]. The difference can be attributed to the
nonsphericity of particles and to the fact that formula (11) is
exact only in the limit r5D.

Knowing the overlap integral between particles, it is easy
to calculate the band structure for electrons in a QD array.
But this approach does not take an important circumstance
into account, the presence of disorder in the system, which is
persistent in some cases. We next proceed to this situation.

4.3 Disorder in a QD array
In the absence of disorder and with an arbitrarily small
overlap integral, the energy bands of an array are formed
from quantum levels of the individual QDs. Disorder is an
obstruction to this. In the simplest case of geometric disorder,
the QD sizes or the distance between QDs changes (cases a
and b in Fig. 8).

We discuss these cases in detail.
We begin with the first case, shown in Fig. 8a. The

diameter of a particle can vary from particle to particle,
D � �D� dD; modern technology allows attaining the root-
mean-square deviation of QD diameters equal to 5%:

a � dD= �D � 0:05 [45, 86]. We note that, for particles 5 nm
in diameter, this precision corresponds to a size variation of
one atomic layer [87]. Such a spread between the diameters
must result in the energy spread EQ � �EQ � gA from particle
to particle compared with the mean �EQ, where

gA � 4a �EQ ' aN 2=3D : �14�

This disorder is similar to the Anderson model disorder.
In the case where the QDs are covered with ligands, the

distance s � �s� ds between them can vary around themean �s,
for example, due to different ligands densities on the faces or
due to temperature fluctuations.

This case of varying distances (Fig. 8b) is close to the
Lifshitz model of disorder [88]. As a similarity to that model,
we note the following. The overlap of the wave functions of
the nearestQDs leads to a shift of quantum levels. These shifts
are different for different QDs because each QD is in a
different environment. The spread of distances must result
in the energy spread EQ � �EQ � gL from particle to particle,
where

gL � t��s� : �15�

In the cases listed above, we addressed the one-electron
problem. Such an approach is applicable when electrons are
induced in a field transistor based on aQD array (see Sections
6.3±6.5 below).

Under doping, another type of disorder can appear, as
shown in Fig. 8c, one associated with the impossibility of
ensuring equal numbers of impurity donors in each QD. We
now discuss this case.

The probability that a QD has exactly Nd donors is given
by the Poisson distribution

P�Nd� � NNd

Nd!
exp �ÿN � : �16�

The variation in the number of donors from one QD to
another is Nd � N� ����

N
p

; we recall that the average number
of donors is equal to the average number N of electrons in
QDs (and we let N denote both these numbers in what
follows). The variation in Nd leads to a variation in the
Fermi level in individual QDs: dEF ' EF=

����
N
p ' N 1=6D.

In an array, the QDs must share a common Fermi level,
and therefore the electrons are redistributed between the

10 ÿ3

10 ÿ2

10 ÿ1

kFb � m=m�

kFDm=m�k 3
FDb2m�=m

k
F

������� D
b

p

���������
b=D

p
m�=m

t exp �s=b�=D
1.0
0.9
0.8
0.7
0.6
0.5

0.4

0.3

0.2

0.1
10ÿ1 100 101 102

Figure 7. Schematic dependence (13) of the overlap integral t on the

electron wave vector kF in a QD; b is the decay length of the wave function

in the ambient medium, m=m � is the ratio of the effective mass in a QD to

the mass in the ambient medium, s is the distance between QDs. Color

shows the domains in which t changes by an order of magnitude. The thick

line shows the parameter at which transition from one regime to another

occurs (kFb � m=m �).
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Figure 8. Three possible types of disorder in a QD array. The typical QD

size isD, the distance between QDs is s. The electron wave function decays

at a distance b, which is illustrated by the blue area around the QD. The

kinetic energy of electrons in a QD is quantized in accordance with (3). A

typical distance between energy levels is D. (a) The first disorder type is

associated with variations in the QD diameters; (b) the second with

variations in distance; (c) and the third with variations in the number of

donors in the QD.
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QDs, which in turn leads to the number of electrons not
matching the number of donors in some QDs, making such
QDs charged (Fig. 8c). As a result, the array consists of
randomly charged QDs in a random Coulomb field.

We estimate the typical QD chargeQwhen the Fermi level
is equalized [82]. The redistribution of electrons stops when
the initial fluctuations of the Fermi level in individual QDs
dEF are compensated by the Coulomb potential of each QD:
QEc ' dEF, whence Q ' N 1=6D=Ec. This expression for Q is
valid in the case where Nÿ1=6 5D=Ec 5N 1=3, the two
inequalities corresponding to two constraints on Q. First, Q
cannot be less than unity. Second, Q cannot be greater than
the initial fluctuation of electrons in QDs,

����
N
p

, which
corresponds to the fluctuation of donors (see above). At a
high ratio D=Ec 4N 1=3, the Coulomb effects are unimpor-
tant, and the electrons redistribute freely, i.e., Q � ����

N
p

.
Finally, for D=Ec 5Nÿ1=6, the Coulomb effects are so strong
that no charging occurs: Q � 0.

We make the estimates under the assumption that
kQD ' k, because no detailed analysis of charge redistribu-
tion has been done in the literature with the difference
between two dielectric constants taken into account. In this
approximation, the condition D=Ec 5N 1=3 is similar to
condition (5), under which QDs can be considered metallic.

We estimate the fluctuation of the random Coulomb
potential in the case of interest where D=Ec 4N 1=3. The QD
array can then be regarded as a strongly doped semiconductor
with the electron concentration n ' N=D 3, the density of
states g � n=EF � N 1=3=DD at the Fermi level, and the
screening radius

r0 �
�������������
k

4pe 2g

r
; �17�

whence r0 � D
���������������������
D=N 1=3Ec

p
4D.

Fluctuations of the potential e 2
�������
nr 30

q
=kr0 lead to a shift of

energy levels in some QDs compared with others by the
quantity

gammaS � N 5=12Ec

�
D
Ec

�1=4

: �18�

From the experimental standpoint, it is interesting to
discuss whether the effect of the redistribution of electrons
can be revealed by the quantum photoluminescence yield of a
QD array.

It is known that the existence of an additional electron in a
QD leads to the nonradiative Auger recombination of a
photoexcited electron±hole pair. In this process, the annihila-
tion energy of the pair is transferred to the additional
electron. Because the rate of nonradiative Auger processes is
much higher than the rate of radiative recombination [89],
even a single extra electron can suppress the photolumines-
cence of QDs with a probability of almost 100%. In other
words, only ``empty'' QDs, i.e., those without an electron,
make a contribution to photoluminescence. This problemwas
investigated theoretically for an array of doped QDs in [90],
where it was shown that at the average number of donors
greater than two, N > 2, the QD array produces no photo-
luminescence. A similar problem of the suppression of
photoluminescence by additional electrons induced in a field
transistor was investigated experimentally in [91].

Among the important types of disorder in QD arrays are
those due to the presence of impurities in the ambient
medium. For example, a QD can be doped via ligands

located on the surface [47, 48]. This type of disorder plays a
decisive role in electron transport in metallic nanoparticles
[19, 92]. We make a brief detour to consider it in somewhat
greater detail (Fig. 9) [92, 93]. The argument adduced here,
strictly speaking, is valid for metallic nanoparticles, but in the
case where the dielectric permittivity k of the array is much
less than the dielectric permittivity kQD of the QD material,
the QDs can be regarded as metallic in the first approxima-
tion.

We consider a donor near the surface of two QDs in a
medium with k5 kQD. The positive charge �e of the donor
creates a negative image charge ÿqA;B in neighboring QDs,
such that qA � qB � �e. Because the QDs must be neutral
overall, an equal but positive charge qA;B appears in the center
of each QD. The potential of the donor and two of its images
are short range, and can therefore be disregarded. The
distribution of electrons is affected only by the potential
created by the charges in the center. Hence, the original
positive charge of the donor is fractionalized (split) into
noninteger charges qA;B. Obviously, when there are numer-
ous donors around the QD, their fractionalized charges are
added up. Finally, we must recall that each donor brings an
electron into the array. These electrons are redistributed in
the QD array so that their total energy is minimal.We see that
this disorder is largely analogous to the are occurring in
doping a QD array.

We have considered the main disorder types, but others
are not excluded. For example, a lattice of touching QDs
made of PbSe can exhibit disorder related to changing the sign
of the overlap integral t [94] fromoneQD to another. This can
also lead to localization of electrons.

It is worth noting that different types of disorder can be
related to each other. For example, disorder in QD sizes
inevitably leads to disorder in the distances between QDs [87].

4.4 Density of states
In a QD, the distribution of the density of states over energies
is given by peaks with the period D (Fig. 10). Geometric
disorder leads to the widening of the peaks; the peak width is
then equal to the larger of two values gA and gL (Fig. 10a).

Under doping, the density of states g�e� of an array is quite
different from the density of states in individual QDs. We
proceed to considering g�e� near the Fermi level eF in this case.

We first consider the case where disorder is absent in the
system, i.e., the numbers of electrons and donors are the same
in all QDs.

ÿqB

qB

ÿqA

qA

1

2

Figure 9. (Color online.) Fractionalized charge of a surface donor in a QD

array. The positive charge �e of the donor (shown in red, 1) due to image

forces induces negative charges qA;B in the neighboring QDs (shown in

blue, 2), which completely neutralize the positive charge of the donor,

qA � qB � �e, because k5 kQD. Positive charges qA;B then form at the

center of the corresponding QDs.
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We discuss this case for a QD containing only five
donors [93] and assume that the Fermi level coincides with
the 1p level of an individual QD, i.e., eF � EQ�n � 5�
(Fig. 10b). As the electron moves from one QD into another
over an infinitely long distance, these QDs acquire opposite
charges, and the energy of each charged QD is equal to Ec.
Hence, the density of states is symmetric with respect to the
Fermi level and consists of two d-peaks with e � eF � Ec.

We now consider a more realistic case where the numbers
of electrons and donors in an individual QD are different. We
want to see how this disorder affects the density of states [93].
Obviously, for a small number of donors, N5 1, the
situations does not change dramatically compared with the
case without disorder. Indeed, under the condition N5 1,
there are practically no QDs with more than three donors:
according to distribution (16), the number of QDs is
N 3=65 1. This means that there are practically no electrons
that can occupy the 1p electron shell, and hence there is no
redistribution of electrons over theQDs. In this case, similarly
to the preceding one, the density of states is also given by two
d-peaks with e � eF � Ec, where the Fermi level coincides
with the 1s level.

Although we have restricted ourselves to the case
D4N 1=3Ec, we can also infer some conclusions as to what
is to happen in the case of the inverse relation, when the QDs
are metallic. In that case, no recharging of the system occurs
either, all QDs are neutral, and moving an electron requires
recharging two QDs, whence g�e� � d�eF � Ec�.

In [93], the general case N4 1 was considered numeri-
cally. The results in [93] agree with those obtained later in a
more general form [82]. In what follows, we restrict ourselves
to only considering the results of this last paper.

Two types of disorder were considered in [82]: in size and
in the number of donors for a system of QDs touching one
another with their faces of a typical size r. We recall that QDs
whose faces do not touch can also be considered to have an
effective touching radius r � rb (see Section 4.2). The
obtained results are illustrated in Fig. 11. We explain the
main conclusions.

We begin with the case a�D=r�2 4 1, which is shown in
Fig. 11a. Four parameter domains can be selected: I (insu-
lator), OI (oscillating insulator), M (metal), and I 0 (insulator
with metallic QDs). Each domain was identified based on the
form of the density of states.

In the domain designated by OI in the phase diagram, we
have gS; gA 5D, disorder is sufficiently low, and hence the
density of states is given by peaks with the period D and with
the width equal to the larger of the two values gS and gA.

In domain I, disorder of one of the types is so strong that
the density of states is practically uniform. For example, if
gA 4D, i.e., N > aÿ3=2, then variation of the energy EQ from
QD to QD is greater than D. The levels EQ in each QD are
positioned practically periodically, and, therefore, irrespec-
tive of the level shift from one QD to another, the difference
between the QD energies cannot exceed D; as a result, the
density of states is uniform over the QD array.

Domain I 0 is similar to domain I, but the QDs exhibit
metallic properties (see Eqn (5)).

In domains OI and I, the QD array is in the insulating
state, but in OI the conductivity properties strongly depend
on the position of the Fermi level. This case is considered in
detail in Section 4.5.

In domainM, withN4 �D=r�3, when D5 t (see Eqns (1)
and (11)), the system is in the metallic state (see Section 5
below). The density of states is practically uniform over the
entire energy spectrum.

Figure 11b illustrates another case: a�D=r�251.
As in the preceding case, there are four domains of the

parameters, I and OI, M, and I 0, but an additional domain
BM, whose boundaries are defined by the conditions gS � t,
gA� t, and D � t, also appears. In this domain, the density of
states exhibits periodic peaks with the width equal to the
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max �gA; gL� 2Ec
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Figure 10.Density of states g�e� in a system of QDs. In an individual QD,

energy levels are distributed practically periodically with the period D.
(a) Without the Coulomb effects, each peak widens due to geometric

disorder. (b) With the Coulomb interaction taken into account, two peaks

with the energies eF appear near the Fermi level �Ec. (c) Under strong

disorder, the density of states is washed out, but a Coulomb gap of the

width DES appears at the Fermi level.

D=Ec

D=Ec

aÿ5=6

aÿ7=3�r=D�

�D=r�5=3

D=r

D=r

1
N

aÿ3=2

aÿ3=2

�D=r�3

1
N

a3�D=r�9 �D=r�3

N1=3 � D=Ec

N 1=3 � D=Ec

I

I

gS � D

gA � D

gS � D

gS � t

gA � t
a5 �r=D�2

a4 �r=D�2

I 0

I 0

a

b

BM

M

M

OI

OI

D � t

D � t

1

1
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larger of the two values gS and gA and with the period D. The
difference between this and the OI phase is that, when the
Fermi level is positioned in the middle of such a peak (in
accordance with t > gS; gA), the electrons are delocalized. For
this reason, this domain was called a blinking metal, because
metallic properties manifest themselves only for a certain
position of the Fermi level. We note that a similar behavior is
also observed in the well-known quantum Hall effect [95].

Two approximations for the density of states of a QD
array were used in the foregoing: the density of states vanishes
between the bands corresponding to the 1s and 1p QD levels;
correlations between the electron positions are disregarded.
In reality, even in the OI domain, where the density of states
changes periodically, the density of states at the mid-point
between the bands is small but nonzero.

All the arguments adduced above and the calculations of
the density of states pertained to the one-electron approxima-
tion. Numerical computations in [93] show that in a QD
array, as in bulk semiconductors, taking the electron±electron
interaction into account changes the one-particle density of
states near the Fermi level. Namely, near the Fermi level eF,
the density of states g�e�must tend to zero faster than e 2 [96] if
the reference value is chosen as eF � 0 (Fig. 10c). We clarify
this statement by considering an electron system in equili-
brium, when the energy of all electrons is less than or equal to
eF. We move an electron with an energy e1 < eF over a
distance r from one QD into another. The new electron state
has a greater energy, e2 > eF. The electron transfer creates a
hole, to which the electron is attracted, which decreases the
electron energy by e 2=kr. Therefore, for the equilibrium
condition to be satisfied in the system, we must have
e2 ÿ e1 ÿ e2=kr > 0. This implies that all the electron states
in the bulk r 3 are separated from each other by at least the
energy e � e 2=kr. Then the density of states is

g�e� � 1

er 3
� k 3e 2

e 6
: �19�

It hence follows that, as a result of electron±electron
correlations, a constant density of states g0 in the system
leads to the formation of a Coulomb gap at the Fermi level of
the width DES � �g0e 6=k 3�1=2.

4.5 Localization length
An important characteristic of a QD array is the localization
length x, which shows the typical distance at which an
electron is localized. For example, in a weakly doped bulk
semiconductor, electrons are localized near donors, and
hence x ' aB. In a QD array, this equality is not satisfied,
and we discuss the behavior of x in this section.

Up to now, we have been dealing with the electron wave
function in an individual QD. In a QD array, the electron
wave function decays at long distances r4D from QDs as
C � exp �ÿr=x�. We here note that, as we show in what
follows, x does affect, although it does not determine, the
length of electron hops that make up the hopping conductiv-
ity. The hop length, by its meaning, cannot be less thanD, but
x can be less thanD. Moreover, it might appear that xmust be
of the order of the decay length of the electron wave function
in the ambient medium, outside the QDs x'b5D. But in
fact, even if the QDs do not touch each other with their faces,
x4 b whenever D 0 ' D4 s. Actually, in tunneling over a
distance s from one QD into another, the electron moves over
the distance D 0 ' D. The probability density amplitude then
decreases by t=dE times, where dE is the difference between

the neighboring QD energies. In tunneling over a distance
r4D, the electron tunnels through M � r=D QDs and its
wave function decreases by �t=dE �M times. Rewriting this as
�t=dE �M � exp �ÿr=x�, we obtain

x � D

ln �dE=t� : �20�

Even for an exponentially small overlap integral, t �
exp �ÿs=b�, we then have [93]

x ' D

s
b4 b : �21�

It hence follows that, in the case under consideration,
when the QD size is greater than the distance between QDs,
D4 s and x is greater than the decay length b of the wave
function in the ambient medium x4 b.

We see from (20) that the localization length depends on
the parameters of the system; it is determined by both
disorder in the system, which sets dE, and the overlap
integral t.

The localization length has been analyzed in detail where
an array of touching QDs features only two types of disorder:
by size and by the number of impurities [82].We now consider
this case in detail for large values of D=Ec, which are shown
with a dashed line in Fig. 11. We analyze the result for high
and low disorder in size (Fig. 12).

I M
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OI

BM M

a4 �r=D�2

a5 �r=D�2

ax=D

x=D

�ln �a1=3D=r��ÿ1

�ln �D=r��ÿ1

1
N

aÿ3=2 �D=r�3

b

1

�ln �a1=3D=r��ÿ1

�ln �D=r��ÿ1

1

aÿ3=21
N

a3�D=r�9 �D=r�3

Figure 12. Typical dependence of the localization length x on the number

of electrons N for QDs of size D that touch each other over faces of size r
for (a) high and (b) low disorder a in size. The chosen parameter D=Ec is

shown by a dashed line in Fig. 11; the state of the QD array changes from

OI toM. The expressions for maximum (22) andminimum (23) values of x
are shown by the dashed line. It can be seen that x oscillates between

maximum andminimum values. In approaching theM and BM states, the

maximum value of x diverges.
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In the case of high disorder, a4 �r=D�2, when the Fermi
level is close to the quantum levels of an isolated QD,
dE � gA 5D, the localization length attains a maximum:

x ' D

ln �aD 3=N 1=3r 3� : �22�

When the Fermi level is in the middle of the gap between
quantum levels, dE � D, the localization length reaches a
minimum:

x ' D

ln �1=nr 3� : �23�

Therefore, the localization length oscillates between the
minimum and the maximum with the period N 1=3, as shown
in Fig. 12a. This is why this phase is called an oscillating
insulator, OI. As we show below, the conductivity of a QD
array must also oscillate as N increases. This behavior of the
conductivity was observed, for example, in a CdSe QD
array [40].

In the case a5 �r=D�2, as note above, situations are
possible where the Fermi level is located inside the delocalized
state, t > gA; gS. The localization length then diverges and the
QD array becomes metallic. When the Fermi level leaves one
such state, the localization length becomes finite. This occurs
when a QD array is in the BM state. Finally, when t > D (i.e.,
condition (1) is satisfied), the system becomes metallic and the
localization length diverges (Fig. 12b).

We have discussed the tunneling of an electron from one
QD to another; the QD then remains in the same quantum
state. This case is similar to the process of elastic cotunneling
in metallic nanoparticles [97], for which inelastic cotunneling
has also been considered [68, 98, 99].

Under inelastic cotunneling, the electron leaves an excited
electron±hole pair behind. To date, this case has not been
discussed for QDs. From the analysis of metallic particles, we
can conclude that the effect of inelastic cotunneling starts
playing a role at high temperatures, and the quantity x must
then be temperature dependent.

In principle, expression (20) is invalid near the insulator±
metal transition. It was derived based on the tunneling from
one QD to another via a particular sequence of QDs and does
not take into account that such paths multiply near the
transition. However, as we show below, experimental data
suggest that, near the transition, x��nr3c ÿ nr 3�ÿ1, and hence
x has the same asymptotic behavior as in expression (23).

5. Metal±insulator transition

Although QDs are semiconductors in and of themselves, an
array of QDs can be ametal under certain conditions, and the
insulator±metal transition then occurs. This means that
electron states are not localized in one QD but are deloca-
lized over the entire array. The problem of the insulator±
metal transition in a system of QDs is fundamental [34, 83,
100]. In the case where the QD array features only geometric
disorder, this problem corresponds to the one discussed for
Anderson and Lifshitz transitions [96]. When the QDs are
doped, a new transition criterion emerges, different from the
Mott condition for the insulator±metal transition in doped
semiconductors. In what follows, we consider the conditions
for various types of metal±insulator transitions in an array of
QDs: for geometric disorder and doping.

5.1 Geometric disorder in a QD array
In the presence of only variations in the size D, as we have
noted, the energy of electrons inQDs changes fromoneQD to
another by the quantity gA. Anderson delocalization occurs if
t4 gA, the numerical coefficient in this relation being
determined by the lattice type (Fig. 13).

In the case of only variations in the distance s, the overlap
of wave functions of the nearest-neighbor QDs leads to a shift
of quantum levels. These shifts differ for different QDs,
because each QD is in a particular environment. Quantum
states are distributed in the same way between all QDs only in
the case where all the distances between QDs are the same to
within the decay length b of the electron wave function. In
other words, delocalization of electrons (the Lifshitz transi-
tion) must occur when the root-mean-square fluctuation
distance between QDs is much less than b: ds5 b. Because b
can amount to a few angstroms, this is a rather stringent
condition. The numerical coefficient involved in this criterion
depends on the lattice type (see Fig. 13).

In [101], two geometric disorders were considered jointly
and exact values of the coefficients ds=b and gA=t were
calculated at which the transition from the delocalized to the
localized state occurs. The result of these calculations for
various lattices are also presented in Fig. 13.

We can see from Fig. 13 that the existence of delocalized
states of electrons depends on the number of nearest
neighbors of a QD in the array: the greater the number of
neighbors, the larger the domain of parameters (ds=b; gA=t)
where delocalized states can be realized. For example, in a
face-centered cubic (fcc) lattice, the number of neighbors is
twelve, whereas in a honeycomb lattice, only three, and the
respective domains of the parameters supporting delocaliza-
tion differ seven-fold.

In theoretical paper [83], the overlap integral between
QDs covered with ligands was considered in more detail, and
it was claimed that QD arrays are possible with delocalized
electrons existing in them, i.e., with t4 gA. This claim is
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Figure 13. Boundaries of the domain of the gA=t and ds=b parameters

where delocalized states exist in a QD array for various lattice types. The

data are from [101]. For small gA=t and ds=b, i.e., on the left of the

boundary, delocalized states exist in a QD array. On the right of the

boundary, all electron states in the array are localized. Results are

presented for three-dimensional lattices: rcpÐrandomly close-packed,

fccÐ face-centered, bccÐbody-centered, scÐ simple cubic; and for two-

dimensional lattices: hexagonal, honeycomb, and square. The results

obtained in [101] for the coefficient gA=t at ds � 0 correspond to the data

known from [96].
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partially supported experimentally by the observed mobility
depending weakly on the temperature, i.e., showing no
exponential decrease to zero [59, 102]. But the question of
whether this fact is an explicit proof of the transition of the
array into the metallic phase remains open. For example, it
was stated in [103] that, as the temperature decreases, the
distance s between QDs covered with ligands decreases. The
array conductivity G depends on this distance exponentially
and can therefore increase as the temperature decreases. A
clear indication of the insulator±metal transition or the
approach to it would be given by the array conductivity
obeying the scaling hypothesis, as was shown via the example
of a doped QD array. We now proceed to discussing this
question.

5.2 Doped QD array
It is well known that, in doping a bulk semiconductor, the
metal±insulator transition occurs at donor concentrations nM
determined by theMott criterion nMa 3

B � 0:02 [104], i.e., when
the average distance between donors n

ÿ1=3
M becomes compar-

able to the localization length of an electron on a donor,
x�aB. This dependence works well for many materials and
donors as aB ranges three orders of magnitude [35]. It is clear
that this criterion must be inapplicable in a system of QDs
because of small values of the overlap integral t. If QDs touch
each other, then transition criterion (1) can be obtained.

Qualitatively, criterion (1) can be explained as follows. At
high concentrations of donors, not only individual QDs but
also the entire array has metallic properties. Therefore, the
conductivity between two metallic QDs can be calculated by
the Sharvin formula [105]

G � e 2

�h
�kFr�2 : �24�

Because the transition from the metallic phase to the
insulating phase occurs when the conductivity becomes
comparable to the minimal metallic conductivity, i.e.,
G � e 2=�h [19, 106], we have kFr ' 1 at the transition point.
Thus, the transition occurs when the typical electron
wavelength lF ' kÿ1F is comparable to the typical size of the
contact between QDs. This last assertion can be rewritten as
(1) if we take the relation between the electron concentration n
and kF into account.

We note that we can obtain the same criterion (1) by
considering the case where the overlap integral t given by
formula (11) becomes equal to the distance between quantum
levels D. From an analysis of expression (24), it also directly
follows that, in the metallic phase, the conductivity of the
sample must depend on the concentration as G � n 2=3.

Sharvin formula (24) can be given two explanations as
follows. The first is based on the Landauer formula [107]: due
to the contact between two metallic QDs of area S � r 2,
�kFr�2 conductivity channels occur, each of which makes the
contribution e2=�h. The second explanation is classical: as a
bias V is applied between two QDs, electrons acquire a drift
velocity v in the direction toward the contact v=vF � eV=EF,
where vF and EF are the Fermi velocity and energy in the QD.
Knowing the current envS running through the contact, it is
easy to obtain expression (24) for the conductivity of the
contact.

As r increases, criterion (1) must pass into the Mott
criterion. As show in [82], this happens at r ' D.

Near the metal±insulator transition, the localization
length x must be much greater than the distance between

QDs, x4D 0. Consequently, the physics of the metal±
insulator transition must be qualitatively the same as in the
bulkmaterial, andmust follow the scaling hypothesis [108]. In
our case, this means that, as the parameter nr 3 approaches
critical value (1), the localization length must diverge as
x � �nr 3

c ÿ nr 3�ÿn, where n is the critical exponent. Specific
conductivity at the transition point must then have the form
sc � e 2=�hLj, where Lj is the size of the phase coherence
domain, which is determined by electron±phonon or elec-
tron±electron scattering processes: Lj � Tÿ1=z (z is another
critical exponent). This substitution gives the specific con-
ductivity value at the transition point sc � T 1=z, and, near the
transition, the specific conductivity must follow the universal
law

s � scF
�
nr 3

c ÿ nr 3

T 1=zn

�
; �25�

where the function F has two branches corresponding to the
insulating and metallic states.

Experimental data in [21, 36, 109] on the conductivity of
arrays of ZnO and Si QDs near the metal±insulator transition
suggest that the metallic state is not attained in any of the
experiments. In [36], the vicinity of the transition in the
insulating phase could be reached (Fig. 14) as a result of
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Figure 14. (a) Dependence of the specific conductivity s of an array of

touching ZnO QDs on the temperature T at different sizes of the touching

faces r and electron concentrations n. The data are taken from [36]. The

line sc � T 1=2 shows the dependence of the conductivity at the transition

point. We see that, at nr 3 � 1:6, the array conductivity is close to the

theoretically predicted one. (b) For sample with large s, the specific

conductivity is rearranged in accordance with the scaling hypothesis,

Eqn (25). It was assumed that sc determines the sample with the highest

conductivity (nr 3
c � 1:61).
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increasing both n and r (only one branch of dependence (25)
was observed). From an approximation of the data, it was
derived that z ' 2 and n ' 1:6. We note that the metal±
insulator transition in bulk silicon is characterized by z ' 2
and n ' 1 [110]. The quantity z � 2 is characteristic of
electron systems with Coulomb interaction taken into
account [111].

In experiment, the insulator±metal transition is not
observed at a concentration several times greater than the
one given by the estimate in (1). This can possibly be related to
the fact that, in deriving (1), the geometry of a QD array was
assumed ideal. Deviations from the ideal geometry, for
example, rotation of QDs with respect to each other, would
lead to an additional scattering of an electron in contacts
between QDs, a decrease in t, and an increase in the critical
concentration.

We note that the first communication on attaining the
transition to the metal phase in a QD array appeared very
recently [112].

6. Insulating phase

6.1 Temperature dependence of conductivity
The analysis presented above shows why all the experimental
data typically pertain toQD arrays in the insulating phase. As
the temperature T decreases in that phase, the electron
conductivity G tends to zero exponentially, i.e., in accor-
dance with law (2), where the coefficients p and E0 are
determined by the transport mechanism. Most frequently,
experimental conductivity has an activation character, p � 1,
or follows the ES law, p � 1=2, but in some cases a
dependence obeying the Mott law p � 1=4 is observed.
Thus, all types of the temperature dependence of conductiv-
ity for QD arrays in the insulating phase are also shared by
doped bulk semiconductors, where they are explained in the
standard way.

The explanation of these dependences is based on con-
sidering a QD array in the form of a network of effective
resistances. In this network, the resistance between any two
QDs i and j can be defined as the time-averaged rate of electron
transitions between QDs i and j divided by the electric field
strength in the limit of small fields. Just that is done for the
canonical Miller±Abrahams resistance network [96, 113].

From the above considerations, the expression for the
resistance between the ith and jth QDs can be written as

Ri j � R0 exp

�
2ri j
x
� ei j
kT

�
; �26�

where R0 is a preexponential factor, weakly dependent on the
temperature. The first term in the exponent defines how the
tunneling probability is suppressed with distance r, with x
being the localization length described in Section 4.5.

Because the electron is in different energy states in the ith
and jth QDs, its transition from the ith to the jth QD requires
the energy ei j, which can be acquired by absorbing a phonon.
The second term in (26) shows the probability of that process.

After calculating all the resistances Ri j between all QDs,
we can find the resistance of the entire array using the
percolation approach [96].

We recall the basics of percolation theory. We choose a
resistance value Rc, preserve all the resistances in the network
for whichRi j < Rc, and break apart all links betweenQDs for
which Ri j > Rc (i.e., set Ri j � 1). At some instant as Rc

increases from the zero value, an infinite clusterÐa critical
subnetwork connecting all QDsÐ is formed. The resistance
of the entire system is then equal to Rc, the resistance of this
critical subnetwork. A further increase in Rc cannot change
the overall resistance of the network significantly, despite its
increasing density. New chains, although numerous, leave the
resistance virtually unchanged, because they are shunted by
the critical subnetwork with a much lower resistance (in
accordance with expression (26)). Hence, it is the critical
subnetwork that determines the conductivity of a random
network of resistances. We must note that, for a QD array,
this critical subnetwork, as well as its changes with varying
temperature, was observed experimentally in [114]. In
Section 6.4 below, we show how the percolation approach
can be used to derive less known dependences.

We explain the appearance of a type (2) dependence in a
simpler way using Mott's argument.

Temperature dependence (2) is essentially governed by the
density of states near the Fermi level of the system. If the
density of states has a well-defined size of the gap, for
example, consists of periodic delta functions (Fig. 10b), then
the dependence of the conductivity on temperature has an
activation character. In that case, the conductivity is
determined by formula (2) with p � 1 and E0 equal to the
gap between the Fermi level and the first unfilled level. For
QDs, typical E0 are by the order of magnitude equal to Ec or
D. The hops then occur between neighboring QDs, because
hops to distant neighbors are not favored by a lower energy
required for hopping, as in the cases discussed in what
follows.

We consider the case of a constant density of states
g�e� � g0 near the Fermi level. On neighboring QDs, the
energy ei j is quite large compared with the temperatureT, and
therefore the probability of hopping to them is extremely low:
exp �ÿei j=kT �. At the same time, on more distant QDs, the
energy ei j can be small, but the tunneling probability is also
small: exp �ÿri j=x�. Thus, there is competition between two
processes. A ``long-distance hop'' has low probability, but the
longer the hop, the higher the probability of an electron
finding a QD with small ei j.

We clarify why p � 1=4 in this case. We consider electrons
with energies ei j � eM in a narrow strip near the Fermi level.
All these electrons are in QDs whose concentration is
N�eM� � g0eM, the average distance between such QDs
being ri j � N ÿ1=3�eM�. From (26), we obtain the resistance
that can ensure hops over the QDs belonging to the energy
strip:

R � R0 exp

�
2

N 1=3�eM�x
� eM
kT

�
: �27�

Due to the competition between two processes, the resistance
has a narrowminimum at eM � �kT �3=4=�g0x3�1=4. Transport
is effected only by electrons from this narrow energy strip eM,
and the resistance is given by formula (2) with p � 1=4 and
E0 � eM � �g0x3�ÿ1. The coefficient in the last relation is
determined by percolation theory; for a bulk semiconductor,
it is equal to 28.3 [96] andmust be the same for aQDarray. By
the order of magnitude, the length of a typical hop is
rM � Nÿ1=3�eM� � x�eM=kT �1=4.

Near the Fermi level, as we saw in Section 4.4, the
electron±electron correlations result in a Coulomb gap.
Using the density of states near the Fermi level in form (19)
and invoking the same argument as above, we deduce that the
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conductivity is given by formula (2) with p � 1=2 and
E0 � EES � e 2=kx. The coefficient in the last relation is
determined by percolation theory; for a bulk semiconductor,
it is equal to 2.7 [96] andmust be the same for aQD array. The
typical length of a hop is then rES � x�EES=kT �1=2=4, and the
typical energy of the electrons that participate in transport is
eES � �EESkT �1=2=2.

In the general case, the G�T � law governing the con-
ductivity of aQDarray is determined by the parameters of the
array, which we have considered above, and by the tempera-
ture interval. As an example, we consider a system with the
density of states g�e� shown in Fig. 10c. Transport observed in
the QD array depending on the temperatureT and the density
of states g0 is represented schematically in Fig. 15, aswas done
in [40].

At low temperatures kT5E 2
ES=eM, long-distance hops

occur: rES 4 rM in the energy strip eM 5 eES 5DES. In this
energy range, the density of states and the temperature
dependence of conductivity are determined by relations (19)
and (2) with p � 1=2.

At high temperatures, kT4E 2
ES=eM, transition from the

ES conductivity to the Mott conductivity occurs. Most of the
hops are over the distance rM 4 rES in the energy strip
eM 4 eES 4DES. The density of states is constant and the
temperature dependence of conductivity is determined by
expression (2) with p � 1=4.

In both cases, hops are longer than the size of QDs,
rES;M 4D. At high temperatures, rES;M ' D, which means that
the hops land on neighboring QDs and the conductivity typically
has an activation character, p � 1 (see Section 6.4 below).

In the subsequent subsections, we describe the properties
of conductivity in some interesting structures involving QD
arrays.

6.2 Doped QD arrays
The activation dependence of the conductivity of a QD array
on temperature was observed for the average number of
donors N5 1 [38] and the activation energy E0 � Ec (see
Fig. 2).

The explanation of the equalityE0 � Ec is quite simple. In
the ground state of the system, each electron is on one of just a
few QDs that contain a donor, and each QD is then
electrically neutral. When such a QD containing a donor is
ionized and the electron moves to a distant QD, which does
not contain a donor, the electron frees itself from the donor
and ``performs hops'' between the nearest-neighbor QDs.
Such electrons are responsible for the overall conductivity of
the array. In this ionized state, the system contains pairs of
charged QDs: one with a positive donor and the other with a
negative electron. Hence, the ionization process requires the
energy 2Ec. In equilibrium, such ionization processes occur at
the same rate as inverse recombination processes. Because the
recombination rate is proportional to n 2, where n is the
concentration of free electrons on empty QDs, then, as a
result of equilibration, the activation energy is equal to Ec.

We proceed to the case of strongly doped QDs made of Si
and ZnO. For Si (as well as for ZnO), the effective mass is
sufficiently large (see the Table) and the ratioD=Ec'25D=r
is small. Therefore, the random Coulomb potential is the
main source of disorder in such a system. This corresponds to
the lower part of the diagram shown in Fig. 11a, b.We can see
from this diagram that, as N increases, the QD array must
pass from the OI state to the I state.

In the OI state, when the Fermi level is practically in the
middle of the gapD between energy shells (for example, 1s and
1p), the density of states is small, andMott-type conductivity
must be observed at experimentally attainable temperatures.

As N increases, the Fermi level coincides in energy with a
quantum level (for example, 1p), where the density of states is
high. In that case, due to electron±electron correlations, a
Coulomb gap forms on the Fermi level, which then leads to
transport governed by the ES law.

Thus, as N increases, the transition from Mott-type to
ES-type conductivity must be observed simultaneously with a
decrease in the resistance of the sample. Just such a transition
was observed in [115].

The same argument shows that, in the I state, when the
density of states is practically uniform, the conductivity
follows the ES law for any N.

In studies of strongly doped Si [21] and ZnO [36], the
conductivity was observed to follow the ES law, because the
QD array was apparently in the I state. An array of such QDs
can never be in the BM state, because that would require the
condition D=Ec > �D=r�5=3 to be satisfied (Fig. 11b), i.e.,
would require that D � r. We note that in [21], dependence
(21) was also derived for x. An increase in the thickness of the
oxide layer on an Si QD (an increase in s) resulted in a
decrease in x.

Transport governed by the ES mechanism was also
observed in [116, 117], where two-dimensional Ge QD arrays
on an Si substrate were investigated, and charge carriers were
introduced by creating a boron delta-layer in Si. As a result,
the holes were transferred toGe and the boron delta-layer was
charged negatively. At the filling N ' 2, the localization
length x sharply decreased. In that case, the ratio D=Ec is
sufficiently large, and hence the system was in the OI state;
characteristic oscillations of the localization length (and also
the conductivity) were observed when varying the average
number of charges N in the system. However, no Mott
transport was observed in the case where the Fermi level was
between the 1s and 1p levels of individual particles. We also
note that, for large N, the system conductivity obeyed the
scaling hypothesis [118].
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�E
c
D

3
�ÿ

1

Ecx=D

g0

T

Figure 15. Schematic representation of the experimentally observed types

of dependences of the conductivity G�T � for a QD array in different

intervals of temperature T and at different densities of states g0. At low

temperatures, transport governed by the ES mechanism, p � 1=2, is

observed; at small densities of states and intermediate temperatures,

transport follows the Mott law, p � 1=4. At high temperatures, nearest

neighbor hops (NNHs) are observed, p � 1. The temperature dependences

pass into each other when the typical hopping lengths rES, rM become

incomparable with each other or with the QD diameter D.
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6.3 Charge distribution in a field transistor
Two types of disorder can be imagined in the structure of a
field transistor: in size and in distances betweenQDs. In [119],
the case of arbitrary disorder in size was considered at the
temperatures kT5Ec such that the conductivity is deter-
mined by hops to neighboring QDs. We focus on the case
D4Ec 4 gA 4 t, which corresponds to low disorder in the
system, D, Ec 4 gA, when disorder does not play any major
role in the distribution of electrons. However, because gA 4 t,
disorder is much greater than the overlap integral between
neighboring QDs, and the metal±insulator transition is
absent.

A property of the system ofQDs in a field transistor is that
only a small part of the QD arrayÐ those QDs that are
located directly under the field electrode (Fig. 3b)Ðpartici-
pate in conductivity. The thickness of this near-surface
domain is actually defined by the screening radius r0, Eqn (17).

In the first approximation, we can use a simplified
approach where the QD array is represented as a conven-
tional bulk semiconductor in the metal±insulator±semicon-
ductor system [32, 120]. If the surface concentration of
electrons is ns, then the characteristic three-dimensional
concentration is n � ns=r0. With the density of states
g � n=EF � mn 1=3=�h2, we obtain

rs �
�
225p
8

�1=5
aB

�nsa 2
B�1=5

: �28�

The numerical coefficient in this expression was found
in [121]. With reasonable experimental values of the concen-
tration ns, we have rs � aB ' 1 nm; this means that all the
electrons are in the first layer of QDs.

In the above derivation of expression (28), the discreteness
of charges and the existence of discrete energy levels were
ignored. Taking these two factors into account has
shown [119] that, under reasonable parameter values, most
of the electrons may be in not one but the first two layers of
the QD array, the layers nearest to the gate. Indeed, if we
estimate the screening radius using expression (17), then we
can consider two cases: D5Ec and D4Ec.

For D5Ec, the parameter Ec is the only characteristic
energy scale in the system, and the density of states at the
Fermi level is g � 1=EcD

0 3; we then obtain r0 ' D 0=2
���
p
p

.
This means that electrons fill only the first layer.

For D4Ec, the energy D gives another characteristic
energy scale, and r0 increases as D 0

����
D
p

=2
���
p
p

. However, for
realistic values Ec 5D5 20Ec, all electrons reside in the first
two layers of the QD array. In that case, relation (17) can be
used to observe the changes that occur as the number of
electrons gradually increases (Fig. 16a). When the number of
electrons is small, they fill the 1s level of the first QD layer,
and the Fermi level coincides with that level. As the number of
electrons increases, the Fermi level lands in the gap between
the 1s and 1p levels of the first QD layer, g � 0, and the
electrons fill the 1s level of the second layer. Upon a further
increase in the number of electrons, the Fermi level lands on
the 1p level of the first QD layer. The density of states on that
level is large, and hence all the electrons return to the first QD
layer.

These estimates allow us to restrict the subsequent
analysis to the conductivity of only two QD layers, those
nearest to the gate.

We letN1 andN2 denote the average numbers of electrons
in QDs of the first and second layers. They are related to the

applied bias on the gate V as

N1 �N2

�
1�D 0

L

�
� Vk

4pd�e=D 0 2� ; �29�

where L is the thickness of the gate insulator (Fig. 3b).
In what follows, we discuss the dependence of the

conductivity of each layer G1;2�N � and the total conductivity
G�N � as functions of N � N1 �N2. In experiment, conduc-
tivity is studied as a function of the bias, and it is therefore
useful to give the relation between N and V. For L4D 0, we
obtain N � Vk=4pL�e=D 0 2�.

To start with, Fig. 16 shows that the second layer is filled
only for N > 2, in full agreement with the argument adduced
above. The second layer starts being filled only when the 1s
level of the first QD layer is filled.

Interestingly, forN > Nr, all electrons again reside only in
the first layer. Indeed, moving an electron under the action of
an electric field from the first layer to the second layer requires
producing work against the external field, which by the order
of magnitude is equal to NEc. The energy gained is then D,
because the electron does not go to the 1p level in the first
layer. Therefore, for N > Nr ' D=Ec, all the electrons reside
in the first layer. A more detailed calculation shows that

Nr � D=Ec

�D=D0��2pÿ a� ÿ 2
; �30�
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Figure 16. (a) Distribution of electrons between the first and the second

layers in a QD array in a field transistor system. N1; 2 are the average

numbers of electrons in the first and the second layers; N � N1 �N2. For

N < 2, only the first layer is filled; for 2 < N < Nm, electrons fill the

second layer; and forNm < N < Nr, electrons return from the second layer

to the first. (b) Dependences of the conductivities G1; 2 of the first and

second layers, and the total conductivity of a QD array in a field transistor

system. It is assumed thatT5Ec, i.e., the processes of electron hopping to

a QD with an extra electron are assumed to have a low probability.
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where a depends on the lattice type, with a ' 2:37 for the
cubic lattice.

The range 2 < N < Nr in which the electrons are located
between the two layers exists only for D > Dc. In this range of
N, the number of electrons in the second layer N2 � Nÿ 2
first increases as long as 2 < N < Nm, where

Nm � D=Ec � 4� 2aD=D 0

2pD=D 0
; �31�

and then decreases linearly to zero.
The value of Dc can be found from the condition that

Nr � 2:

Dc � Ec
D

D 0
�4pÿ 2a� ÿ 4 : �32�

6.4 Disorder in sizes and in distances between QDs
The effect of disorder in the distribution of distances between
QDs on the conductivity of a QD array has not been
addressed in published papers.

Here, we consider the case of such disorder and simulta-
neously take disorder in sizes into account similarly to how
this was done for metallic particles in [122±124]. We analyze
the conductivity G 0 of a QD array in a field transistor system
when the number of electrons is sufficiently small and for high
temperatures such that the hops are to the nearest neighbors.

We assume that the distances betweenQDs are distributed
uniformly from zero to sm, where sm is the maximum distance
between neighboring QDs. We also assume that the spread in
energies of electrons from oneQD to another due to variation
in size is uniform in the range from zero to 2gA. There is no
difficulty in generalizing the approach considered below to
any shape of the distribution.

We right away give the final result for the conductivity of a
QD array with the two types of disorder considered:

ln
G 0

G0
�

ÿ Pc
2sm
x
� 1

2

2gA
kT

� �
; T5Th

ÿ
�������������������������
2Pc

2sm
x

2gA
kT

r
; Tl 4T4Th

ÿ Pc
2gA
kT
� 1

2

2sm
x

� �
; T4Tl .

8>>>>>>>><>>>>>>>>:
�33�

Here, G0 � Rÿ10 is a dimensional factor and Pc is the
percolation threshold depending on the type of lattice
arrangement of QDs; the values of Pc for various lattices are
given in [96]. We restrict ourselves to the approximation
Pc ' 2=Z, where Z is the number of the nearest-neighbor
QDs. This approximation means that in percolation each QD
must be connected with two neighbors. Expression (33) holds
for lattices in which Pc 4 0:5, and the results can easily be
generalized to other lattices. The temperatures Th and Tl are
determined by the condition that the conductivity is a
continuous function of temperature at the points T � Th;Tl:

kTl � 1

2Pc
2gA

x
2sm

;

kTh � 4PcgA
x

2sm
:

The dependence of ln �G 0=G0� on temperature is shown in
Fig. 17b.

To derive expression (33), we use percolation theory for a
network of resistances [96].

We write the resistances Ri j between QDs i and j in the
form (see (26))

Ri j � R0 exp �Zi j� ; �34�

where

Zi j �
2sm
x

xi j � 2gA
kT

yi j ; �35�

with x and y being dimensionless random variables uniformly
distributed in the interval �0; 1�.

We first consider the case of high temperatures
kT4 kTh; gA, when the second term in expression (35) can
be disregarded, and calculate the conductivity of the system
using percolation theory.

We choose Z and replace all resistances Zi j > Zwith infinite
resistances, i.e., break the chain. All the resistances with
xi j2sm=x < Z remain in the resistance network. A random
resistance is unbroken with the probability P�Z� � Zx=2sm.
In other words, P�Z� is the probability that the random
variable x uniformly distributed in �0; 1� is less than Zx=2sm.

If Z is small, thenP�Z� is also small, and the corresponding
resistances form isolated clusters. As Z increases and reaches a

y

1

x1

Z
kT

2gA

Z
x

2sm

a

Pc

2Pc

2Pc �2Pc�ÿ1

gA
T

x
sm

x
2
s m

ln
�G
0 =
G

0
�

b

1

Figure 17. (Color online.) (a) Area of the hatched domain is equal to the

probability P �Z� that the sum of two random variables x; y in (36),

distributed uniformly on [0,1], is less than Z. (b) Dependence of conduc-

tivity G 0 on temperature T for a QD array with a percolation threshold Pc

in the case with disorder in size and in the distance between QDs. It was

assumed in the calculations that the distances are distributed uniformly

from zero to sm, where sm is the maximum distance between neighboring

QDs. The spread over electron energies from one QD to another due to

size variations is uniform in the range from zero to 2gA.
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critical value Zc, an infinite cluster of resistances is formed. At
that instant,P�Z� is equal to the percolation thresholdPc. The
critical value Zc is to be found from the condition Pc �
Zcx=2sm, and for gA=k;Th 5T the corresponding conductiv-
ity is given by formula (33) with the term gA=kT omitted.

We now consider the intermediate case Tl4T4Th, when
the terms in (35) have the same order of magnitude. All the
resistances with

2sm
x

x� 2gA
kT

y < Z �36�

are part of the network and are not broken. In this case, it is
necessary to find the probability P�Z� that the sum
x�2sm=x� � y�2gA=kT � of two random variables x and y
uniformly distributed on �0; 1� is less than Z. This means that
P�Z� gives the probability that a random point with
coordinates x, y is in the hatched triangle in Fig. 17a. This
probability is

P�Z� � Z2

2�2sm=x��2gA=kT �
:

We find Zc from the condition P�Zc� � Pc, and the conductiv-
ity of the resistance network with Tl 4T4Th is then given
by formula (33).

In the case of low temperatures T4Tl, we can have
Zx=2sm greater than unity. Then,P�Z� is the probability that a
random point with coordinates x, y is in the trapezoid domain
shown in green in Fig. 17a.

This probability is

P �Z� � 1

4

kT

gA

�
2Zÿ 2sm

x

�
;

and therefore the conductivity of the resistance network for
T < Tl is given by formula (33).

The same approach can also be applied to high tempera-
tures T > Th. We then eventually arrive at expression (33).

It follows from (33) that, even for activation transport,
when hops are performed to the nearest neighbors, the
temperature dependence of the conductivity is determined
by expression (2) with p 6� 1. At much lower temperatures
kT5 gA, the possibility of electron hopping over one, two, or
more QDs must be taken into account. Eventually, this leads
to theMott transport or the ES transport if electron±electron
correlations are taken into account.

The main drawback of the above argument is that the
distribution of inter-QD distances in the array has not been
found either experimentally or theoretically. The distances
between QDs are largely determined by the interaction of
ligands on QD surfaces. Although the problem of a random
packing of hard spheres was solved quite long ago [125], the
packings of spheres covered with ``springs'' have not been
investigated. Using distributions of distances in a QD array,
we can obtain any dependence of the conductivity on
temperature in the range Tl 4T4Th.

6.5 Conductivity in a field transistor
As we have already noted, the dependences N1�N � and
N2�N � are nonmonotonic in a QD array, which leads to a
nonmonotonic dependence of the conductivity (Fig. 16b).We
consider the conductivity in the case of relatively high
temperatures gA 5 kT5Ec, D, when hops to the neighbor-

ing QDs dominate, but the probability of hopping to the QDs
occupied with electrons is low.

As can be seen from numerical computations by the
Kirchhoff method in [119], the conductivity of an entire QD
array is equal to the sum of conductivities of the participating
layers, which can be calculated independently of each other if
the filling numbers are known: G � G1�N1� � G2�N2�. This
result can be understood as follows: the conductivity between
all pairs of neighboring QDs in a given layer is the same.
Accordingly, the same constant gradient of the electrochemi-
cal potential along the layer exists, and no electron transport
between twoQD layers occurs. The situation is very similar to
a balanced bridge circuit.

We consider the first layer with 0 < N1 < 1. Each QD
contains an electron with the probability N1 and does not
contain an electron with the probability 1ÿN1. The prob-
ability of hopping to a neighboring QD that already has an
electron is proportional to exp �ÿEc=kT �5 1, and this
hopping can therefore be ignored. This means that only
hops between occupied and unoccupied neighboring QDs
make a contribution to the conductivity. Therefore, the
conductivity is proportional to the number of occupied and
unoccupied QDs: G1�N1� � G 0N1�1ÿN1�. The temperature
dependence of the conductivity G 0 is discussed in Section 6.4.

For 1 < N1 < 2, all the QDs contain at least one electron,
and only some contain two electrons. Only that second
electron travels between QDs. Repeating this argument, we
can conclude that G1�N1� � G 0�N1 ÿ 1��2ÿN1�. Repeating
the argument forN1 > 2 and also for the second layer, we can
calculate the conductivity of a system of QDs, which is shown
in Fig. 16b.

Taking the disorder in sizes into account [119] makes no
major changes to the results, the qualitative picture being
preserved up to gA ' Ec. The difference is only that, for
N � 1; 3; 4 . . ., the conductivity does not go to zero as shown
in Fig. 16b but just slightly decreases.

In [126], the Monte Carlo method was used to consider a
bulk array of QDs in which the average number of electronsN
was fixed. Disorder in sizes was taken into account, and the
tunneling coefficient between QDs was calculated. The above
analysis is qualitatively applicable to that case as well: the
conductivity in a QD array changes periodically as the
average number N of electrons in the QDs increases.

We next discuss experimental data for QD arrays in which
electrons are induced by the field effect.

From the analysis at the beginning of this section, we can
see that, in the absence of disorder, the activation depen-
dence of the conductivity on temperature must be observed at
integer values N � 1; 3; 4 . . . with the activation energy
E0 � Ec and E0 � D for N � 2. The activation dependence
can be observed due to disorder in sizes, in which caseE0 � gA
(see Section 6.4) or, similarly to the case of weakly doped
arrays (see Section 6.2), due to uncontrolled impurity donors.
We must bear in mind that attaining high filling numbers
N > 2 in a field transistor is a practically infeasible task,
because the gate bias Vg must then be too high.

In experimental work [127], a field transistor with PbSe
QDswas investigated. At smallVg, most of the holes occurred
in the array as a result of activation with uncontrolled
acceptors eA, and, due to size disorder, the holes had to
overcome the energy spread gA from one QD to another. As a
result, the activation energy turned out to be equal to the sum
of these two energies: E0 ' eA � gA. As Vg decreased, the
holes filled the 1s level of the first QD layer. The activation
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energy then decreased, because the holes did not have to be
activated with acceptors: E0 ' gA.

The effect of ligands on transport was also studied
experimentally in similar PbS QDs [128]. A similar depen-
dence of E0 on Vg was observed when the QDs were covered
with the same ligands as in the case of PbSe. Replacing the
ligands with shorter ones, the Mott mechanism of electron
conductivity could be observed at low temperatures, with the
hops occurring over the area formed by the acceptors. A
reduction in s leads to an increase in x, and hops to more
distant neighbors become possible. In that case, theMott type
of conductivity can be explained by the fact that the dielectric
permittivity of QDs is large (kQD ' 170), and, hence, the
dielectric permittivity k of the array is also large. This
suppresses Coulomb effects, and ES transport can be
observed only at very low temperatures.

We note an unresolved contradiction between [127, 128]
and paper [129], where, in the same temperature range, the ES
transport was observed in a field transistor with PbSe QDs
covered with long ligands.

An important characteristic of a field transistor is the
mobility of charges, which for realN5 1 is determined by the
ratio G 0=en. By the order of magnitude, the maximum
mobility in such structures is 10 cm2 Vÿ1 sÿ1 [32, 59, 130]. It
is worth recalling here that mobility depends on the distance s
between QDs exponentially, as was experimentally demon-
strated in [130], where the length of ligands covering the
particles was measured.

At small filling numbersN, transport in QD arrays can be
studied by exploring the dynamics of photoexcited electrons
by measuring the diffusion coefficient [103, 131] and subse-
quently calculating the mobility. It turns out that, by the
order of magnitude, the mobility of such electrons in a QD
array is 10ÿ1 cm2 Vÿ1 sÿ1 [132], which agrees with typical
mobility values inQDarrays [130].We note that the dynamics
of photoexcited electrons can be significantly affected not
only by disorder in sizes but also by disorder in inter-QD
distances [133].

6.6 Doping from the surface
We now describe the properties of transport in a QD array
where electrons are induced by an ionic liquid. As was noted
in Section 2, inducing the electrons this way is similar to
doping from the surface of each QD (Fig. 3c), but there are
two differences. The first is that the Coulomb potential of all
ions in the ionic liquid creates additional disorder in the
system, as was shown experimentally with the example of a
bulk semiconductor [134]. However, we can expect this effect
to be fairly weak and disregard it.

The second difference is that the temperatures at which
the liquid solidifies can be comparable with the Coulomb
potential gS in the system, which leads to correlations in
positions of ions. These correlations diminish the role of
Coulomb disorder and enhance the role of geometric
disorder [82, 93]. In particular, in the diagram in Fig. 11 for
a�D=r�2 4 1, the parameter domain where the OI state exists
widens, and the parameter domain where the I state exists
narrows. For a�D=r�2 5 1, both domains become narrower,
and only the BM state persists.

In [40, 135], the conductivity of a QD array was
investigated experimentally at high concentrations of elec-
trons N96 (see Fig. 2). Overall, the obtained data agree with
the diagrams in Figs 11 and 12. The QD array is in the OI
state, where the density of states is periodic in energy and the

maxima coincide with the 1s and 1p levels of an individual
QD. When the Fermi level coincides with these maxima,
N 6� 2, transport obeys the ES law (see Fig. 2, the case
p � 1=2); otherwise, for N ' 2, the Fermi level is in the
middle of the gap between the 1s and 1p levels, where the
density of states is minimal and transport following the Mott
law is observed (see Fig. 2, the case p � 1=4).We note that the
localization length is then minimal, as follows from the
diagram in Fig. 12.

Finally, for small concentrations N ' 1, as well as in the
considered case of a doped QD array, activation transport
was observed in [136]. The activation energy was E0 � Ec and
changed inversely proportionally to the particle diameter D.
This follows from formula (4).

There are two reports [39, 61] on experiments in which a
nontypical dependence of the conductivity on temperature
with p � 2=3 was observed in a QD array (see Fig. 2, the case
p � 2=3). The mechanisms of its appearance are unknown.
This dependencemanifests itself when inducing electronswith
an ionic liquid [61] or in doping from the surface at relatively
low temperatures [39]. In other words, such dependence is
observed in those cases where repulsion between donors can
be important. Because the p � 2=3 dependence is observed for
conductivity ranging over five orders of magnitude, it can
hardly be explained by a crossover between the ES depen-
dence at low temperatures (p � 1=2) and activation transport
at high temperatures (p�1). In addition, this dependence is
observed at a quite high conductivity of films. In attempting
to approximate these experimental data with the ES depen-
dence, we obtain a localization length x that greatly exceeds
the size D of the particles. This means that the QD array is in
the vicinity of the metal±insulator transition. Possibly, the
appearance of this dependence is an interesting feature of QD
arrays near the metal±insulator transition with correlated
donors.

7. Conclusions

The physical properties of QD arrays have been actively
investigated over the last decade, which has much to do with
the possibility of varying the optical properties by changing
the sizes. However, detailed studies of the electron conductiv-
ity mechanisms have received less attention. In this review, we
offer a systematic theoretical description of conductivity
mechanisms in QD arrays. The main parameters characteriz-
ing such arrays were discussed in sufficient detail. We have
discussed disorder in QDs due to differences in size, distance,
and the number of donors. We also considered the effect of
disorder on the metal±insulator transition and on electron
transport in the insulating phase.

We have shown that QD arrays are essentially different
from metallic QD arrays due to the quantum confinement
effect, which turns out to be more significant compared with
the Coulomb blockade effect. Moreover, the number of
electrons in such QDs varies in a wide range as the result of
disorder in the number of donors in a QD, which is not the
case for metallic nanoparticles. In a certain sense, a QD
system is similar to a system of nanoparticles made of
different metals with different values of the work function.
An important topic of this review was the description of
microscopic quantities, such as the localization length x, the
overlap integral t, and the density of states g�e�. This allowed
describing the metal±insulator transition and the electron
transport in the insulating phase in greater detail than for a
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system of metallic nanoparticles. The strategies to calculate
these quantitiesÐdeveloped in this reviewÐcan also be
used for metallic nanoparticles.

We have shown how the conductivity theory of bulk
semiconductors can be modified so as to describe electron
transport in QD arrays. All the principal theoretical conclu-
sions are compared with experimental results for transport in
QD arrays. This comparison shows that the theoretical
approaches developed in recent years, including those in [21,
82], explain well the regularities observed in the conductivity
of QD arrays.

We must note that theoretical descriptions of the electron
transportmechanism in bulk semiconductors or in an array of
metallic nanoparticles constitute a coherent and finished
landscape. This is currently not the case with the electron
transport mechanism in arrays of semiconducting QDs,
where a number of questions remain unanswered. In
particular, theoretical analysis is needed to explain the
observed linear dependence of magnetoresistance for
strongly doped QDs [137] and features of noise such as the
inversely proportional dependence of the Hooge constant on
the conductivity [138]. Also, electron transport in a QD array
is strongly influenced by surface states [8], but theoretical
analysis of this influence has not been given sufficient
attention.

We also note that the distribution over inter-QD distances
can substantially change the character of electron transport,
as we saw in Section 6.4. Even at high temperatures, the
temperature dependence of conductivity can be given by
expression (2) with p 6� 1. Unfortunately, there are no
experimental data on a detailed study of the packing of QDs
into an array, and the distribution of distances between QDs
is unknown.

The occurrence of dependence (2) with p � 2=3 in a QD
array remains enigmatic (see Section 6.6). This is all the more
surprising because this dependence manifests itself in the
vicinity of the insulator±metal transition when, apparently,
the system must follow the scaling law.

Further development of the theory expounded in this
review leads to the question of approaches to the theoretical
description of transport of other quasiparticles in QD arrays,
for example, excitons [139±142].

We believe that the problems listed here can be solved
based on a theory whose main ingredients are the approaches
described in this review.
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