
Abstract. The latest results on the study of collective plasma
excitations in two-dimensional electron systems based on
AlGaAs/GaAs, AlGaAs/AlAs, and MgZnO/ZnO nanostruc-
tures and graphene are considered. Special attention is paid to
the interaction of two-dimensional plasma with light. The
results of experimental work on the discovery of a new family
of plasma oscillations are presented. Possible avenues for the
further development of experiment and theory are discussed.
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1. Introduction

When studying a solid, we are always dealing with a system of
many interacting particles. To date, there are no approaches
to an exact solution to this many-body problem. Therefore,
approximate models are to be used in constructing a theory.
The use of approximate models is one of the attractive
features of solid-state physics. Due to the relative simplicity
of experimental verification of ideas, solid-state physics is a
unique site for testing new concepts and approaches. One of
the most fruitful ideas of solid-state physics is the concept of
elementary excitations [1]. The complex correlated motion of
many particles in a solid appears to be describable in terms of

elementary excitations (quasiparticles) weakly interacting
with each other.

Elementary excitations are divided into single-particle
and collective. First, a number of quantum mechanical
operations are performed in the theory: the gas of single-
particle elementary excitations (quasiparticles), referred to as
`electrons' with a complex dispersion law reflecting the crystal
lattice symmetry, is introduced. Then, due to Coulomb
interactions, collective oscillations of electron density, so-
called plasma oscillations, arise in the system of interacting
electrons [2±5]. A quantum of plasma oscillations is called a
plasmon. In the large wavelength limit, the frequency of these
oscillations is equal to the plasma frequency

op �
�������������
4pne 2

m �

r
; �1�

where n is the concentration of electrons, and m � is the
electron effective mass. Plasma excitations in a three-dimen-
sional plasma possess weak quadratic dispersion. They are
analogous to the oscillations in the classical gas discharge
studied by Langmuir and Tonks [6]. It should also be noted
that plasma oscillations cannot exist in a system of noninter-
acting electrons.

The concept of elementary excitations successfully applies
to the description of two-dimensional (2D) multielectron
systems on surfaces of liquid helium, silicon-based metal±
dielectric±semiconductor (MDS) structures, semiconductor
heterostructures with quantum wells, and new layered
materials of the graphene family. The two-dimensional
properties of electrons in most of these materials are ensured
by the fact that the energy related to the transverse quant-
ization exceeds all other characteristic energies (thermal
energy and Fermi energy). The properties of two-dimen-
sional plasma excitations were first described theoretically
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in [7] in 1967. 2D plasmons were first discovered in the system
of electrons on the surface of liquid helium [8] and a year later
in silicon-based metal±oxide±semiconductor (MOS) split-
gate transistors [9, 10]. The spectrum of plasma excitations
of a 2D electron system (2DES) is described by the following
expression:

q 2 � e
o2

c 2
�
�

o2

2pnse 2=m �e

�2

; o4 v0q ; �2�

where ns is the surface concentration of 2D electrons, v0 is the
Fermi velocity, and e�q� is the effective permittivity of the
medium surrounding the 2DES. The second term on the
right-hand side of Eqn (2) is responsible for electron±electron
Coulomb correlations, while the first term describes the
retarded transmission of these correlations. In the long-
wavelength limit, when the retardation can be disregarded
(electrostatic approximation), we arrive at the square-root
gapless dispersion law for two-dimensional plasmons:

op �
�������������������
2pnse 2

m �e
q

r
: �3�

The condition for resonant excitation of 2D plasmons is
opt4 1, where t is the energy relaxation time of two-
dimensional electrons [11, 12]. Note that this time can differ
by more than two orders of magnitude from the transport
relaxation time of charge carriers, measured in the same
structure.

In the limit of small wave vectors, q5 2pnse 2=m �c 2, the
main role is played by electrodynamic effects, and the
dispersion law (2) takes the form characteristic of a light
wave propagating in a medium with the refractive index

��
e
p

:
o � cq=

��
e
p

. The hybridization of light and plasma waves
leads to the formation of a new collective excitation in 2DES,
a plasmon±polariton. Electrodynamic effects become sub-
stantial at small wave vectors of plasmons, when their phase
velocity approaches the velocity of light. For typical para-
meters of a semiconductor heterostructure, this happens at
q � 10 cmÿ1 and a frequency of 10±30 GHz. The observation
of two-dimensional plasmons at such frequencies became
possible due to significant progress in molecular beam
epitaxy technology. As a result, two-dimensional plasmon-
polariton excitations were discovered [13±16].

A dielectric environment can strongly modify dispersion
law (3). In the absence of screening by a gate, e�q�most often
is a half-sum of permittivities of the vacuum and the GaAs
substrate �eGaAs � 12:8�: e�q� � e � �eGaAs � 1�=2. In the case
of practical importance, when an ideally conducting gate is
located below 2DES at distance h, the effective permittivity is
expressed as e�q� � �1� eGaAs coth �qh��=2. For a majority of
semiconductor heterostructures used in experiments, condi-
tion qh5 1 is valid. With such strong screening, the spectrum
of two-dimensional plasmons acquires a linear behavior [17]:

og �
������������������
4pnse 2h
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q : �4�

In a magnetic field, free electrons periodically move along
the cyclotron orbit with frequencyoc � eB=�m �c�, where B is
the magnetic field magnitude. The phenomenon of cyclotron
diamagnetic resonance was first observed in bulk low-doped
germanium and silicon semiconductors [18, 19]. This techni-
que allowed the first reliable establishment of band structures

of most semiconductors. The application of an external
magnetic field perpendicular to the 2DES plane gives rise to
a hybridization of the plasma and cyclotron oscillations. As a
result, a cyclotron magnetoplasma mode arises with the
frequency [20, 21]

omp �
�����������������
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p � o2
c

q
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Two-dimensional cyclotron magnetoplasma excitations have
a gap in the spectrum: their frequency omp exceeds the
cyclotron frequency oc.

In a laterally restricted two-dimensional electron system,
e.g., a disc-shaped one, subjected to a perpendicular magnetic
field, alongside the cyclotron magnetoplasmon, one more
plasma mode is observed, referred to as an edge magneto-
plasmon [22±26]. Edge magnetoplasmons (EMPs) are collec-
tive excitations of electron density propagating along a 2DES
in only one direction specified by the magnetic field and the
external normal to the 2DES edge. The gapless dispersion law
and the possibility of making observations at relatively low
frequencies in theot5 1 regime are characteristic features of
EMPs. The latter feature allows observing EMPs at frequen-
cies as low as 1 kHz [27]. In the semi-infinite plane model with
a sharp edge, the EMP dispersion is expressed as [28]

oEMP � 2psxyq
e

�
ln

2

ql
� 1

�
; oct > 1 ; �6�

where sxy / ns=B is a nondiagonal component of the 2DES
conductivity tensor, and l � isxx=2ee0o is a characteristic
dimension of the charge variation domain in the magneto-
plasma wave. In the limit of high magnetic fields, when l
becomes smaller than the depletion domain size w, it is w that
should be substituted in Eqn (6) rather than l. It is worth
particular attention that the charge of an edge magneto-
plasmon is strongly localized near the 2DES edge. That is
why in strong magnetic fields the EMP spectroscopy proved
an efficient tool for studying edge current states in the modes
of integer and fractional quantum Hall effects [29±34].

The aim of the present review is to present new experi-
mental results and fields of research of collective plasma
excitations in high-quality two-dimensional electron sys-
tems. The paper is organized as follows. In Section 2, we
describe the original optical technique used to measure the
resonant heating of 2D electrons under the excitation of a
plasma wave. Section 3 discusses the behavior of 2D plasma
oscillations in samples of different shapes (discs, rings, and
strips) and dielectric environments. In Section 4, the spectrum
and damping of plasma oscillations are studied in the long-
wave limit, when a new plasmon±polariton excitation arises
due to the hybridization. Section 5 describes experiments that
led to the discovery of a new family of 2D plasma oscillations,
metal-induced plasmons. In Section 6, plasma and magneto-
plasma excitations in novel 2Dmaterials (graphene,MgZnO=
ZnO and AlGaAs=AlAs heterostructures) are studied. In the
Conclusion, we discuss possible avenues of further develop-
ment of experiment and theory in the field of two-dimensional
plasmonics.

2. Experimental technique

To investigate the absorption of microwave and terahertz
radiation, an optical technique was developed based on the
high sensitivity of the luminescence spectrum of two-dimen-
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sional electrons to resonant heating [35, 36]. This technique
allows detection of 2DES heating that occurs due to the
relaxation of resonantly excited plasma oscillations in the
system. An important feature of this technique is the absence
of any metallic electrodes (gates, contacts) near the studied
structure that would inevitably affect the spectrum and damp-
ing of plasma oscillations. This property makes optical detec-
tion one of the most delicate methods of studying collective
and single-particle excitations in semiconductors.

The essence of the technique is the following. The sample
to be studied is irradiated by a stabilized semiconductor laser
with the wavelength l � 780 nm via a silica optical fiber
0.4 mm in diameter. The photoluminescence signal from the
2DES is collected by the same optical fiber and analyzed
using a monochromator with a charge-coupled device (CCD)
camera. Figure 1 illustrates the technique. As mentioned
above, under heating, the luminescence spectrum of the
2DES drastically changes. An integral of the absolute value
of the luminescence difference spectrum can serve as a 2DES
heating measure (Fig. 1a). Figure 1b shows a schematic
diagram of transitions between the energy levels that occur
in the 2DES under laser exposure.

3. Plasma excitations
with various dimensionalities

The physical properties of plasma oscillations can be varied
within wide limits by changing the 2DES sample shape and its
dielectric environment. In contrast to three-dimensional (3D)
plasmons, two-dimensional plasmons are low-frequency
oscillations of electron density with a gapless dispersion law.
The same relates to one-dimensional (1D) plasmons imple-
mented in 2DES stripsÐcollective low-frequency excitations
whose dispersion dependence is linear rather than quadratic
root (as for 2D plasmons). Note that for plasma waves

the condition of dimensionality reduction is very soft. A
characteristic dimension, a comparison with which deter-
mines the dimensionality of a given sample, is the plasmon
wavelength lp. For example, a strip of two-dimensional
electrons with the width W5 lp from a point of view of
collective plasma motion is an object of reduced dimension
1D, although the motion of each individual electron remains
two-dimensional.

3.1 Two-dimensional plasmons in discs
Disc-shaped 2DES samples have the simplest topology and
are most convenient for studying plasma excitations. The
classification of plasma modes for disc geometry was first
presented in the theoretical paper [37]. The modes are
described by the radial l and azimuthal m numbers
�l � 1; 2; . . . ; m � 0;�1;�2; . . .� that characterize the num-
ber of nodes in the oscillating potential of a standing plasma
wave along the radius and perimeter, respectively. Oscilla-
tions with l � 1 and m � 1 are considered the fundamental
plasmamode. Inmost experiments on studying the properties
of plasma excitations in 2DES, only themodes withm 6� 0 are
observed, since their dipole moment is nonzero, thus making
possible their efficient excitation by a plane electromagnetic
wave incident on the sample.

Figure 2b shows the experimentally obtained magneto-
dispersion for several modeswith l � 1 and different azimuthal
numbers m [38]. The sample was a disc with diameter
d � 0:5 mmwith electron concentration ns � 2:6� 1011 cmÿ2.
In a perpendicular magnetic field, the fundamental magneto-
plasma resonance (blue dots in Fig. 2b) splits into two
branches. The upper one �m � �1� has positive magneto-
dispersion, and, with the increase in the magnetic field
magnitude, its frequency asymptotically tends to that of the
cyclotron resonance oc � eB=�m �c� (m � is the electron effec-
tive mass). This branch corresponds to the excitation of the
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Figure 1. (Color online.) (a) Characteristic luminescence spectrum excited by microwave radiation with a power of 50 mW and a frequency of 22.5 GHz

(blue curve) and without radiation (red curve). The response of a disc-shaped 2DES 1mm in diameter with a 2D density of electrons of 0:9� 1011 cmÿ2 in
amagnetic field of 60mTwas studied. Near the Fermi energyEF, the spectrum substantially changes under microwave excitation because of heating. The

lower (green) curve plots the differential luminescence spectrum. The integral of the absolute value of the differential spectrum is a measure of microwave

radiation absorption. (b) Schematic energy diagram illustrating optical transitions in the 2DES under laser irradiation.
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cyclotron magnetoplasma mode. The lower branch demon-
strates negative magnetodispersion and corresponds to the
edge magnetoplasmon, an analog of surface plasma waves in
three-dimensional electron systems. The EMPs propagate
along the 2DES boundary and localize near this boundary in
strong magnetic fields [22±25].

The experimental results for magnetoplasmons �m 6� 0�
are well described by theoretical magnetodispersion depend-
ence (blue curves in Fig. 2) [22, 39]

o � �oc

2
�

���������������������������
o2

p �
�
oc

2

�2
s

; �7�

whereop is the plasma frequency in a zeromagnetic field. The
behavior of the multiple harmonic with m � �2 (black dots)
is described by a similar dependence. Indeed, Fig. 2a shows
three typical absorption curves obtained for microwave
radiation frequencies 64, 70, and 80 GHz. The absorption
curve measured at f � 64 GHz exhibits a series of already
identified resonances with m � 1, 2, and 3. A separate
resonance of an axisymmetric plasmon (AP) is also seen,
whose amplitude is comparable to that of the fundamental
magnetoplasma resonance. Thismeans that theAP resonance
corresponds to a special type of plasma excitation in a 2DES.
Below, we will show that the AP resonance corresponds to the
excitation of a plasma mode with m � 0, which has a zero

dipole moment. For this reason, such modes are called `dark'
or axisymmetric plasmons [37]. Figure 2b shows themagneto-
dispersion of the mode with m � 0 (red dots). The magneto-
dispersion (red curve) is described well by the standard
expression

o2 � o2
p � o2

c : �8�

A characteristic feature of an axisymmetric plasma mode
is that it has no edge branch in magnetodispersion. This
is explained by the lack of electron density nodes along
the sample perimeter �m � 0�. Because of the zero dipole
moment, such plasma oscillations cannot be excited using a
uniform electromagnetic field. Therefore, the axisymmetric
plasma modes are observed using near-field techniques [23,
38, 40]. The `dark' modes are excited by metallic electrodes or
optical fibers, near which an electromagnetic field with strong
local nonuniformity is formed. The AP frequency in a zero
magnetic field is determined by Eqn (3), where the wave
vector is q � 7:9=d [37].

Axisymmetric plasma excitations have a number of
unique physical properties that determine their special posi-
tion in the family of plasma oscillations. First, `dark' plasma
excitations have a specific magnetodispersion law without an
edge branch in a perpendicular magnetic field. Second, due to
the zero dipole moment, the hybridization with light and the
radiative damping of axisymmetric plasmons are substan-
tially smaller than in dipole-active 2D plasmons [40, 41].
Therefore, the `dark' plasma modes possess a much greater
Q-factor than that in ordinary plasma excitations with
m 6� 0, which makes them an attractive subject for systems of
classical and quantum plasmon electronics.

3.2 One-dimensional plasmons in strips
If a 2DES has the shape of a narrow strip with L4W, where
L is the strip length andW is its width, then the dispersion of
plasmons experiences a considerable modification due to the
changed configuration of Coulomb interaction in the system.
Indeed, the force of Coulomb attraction between opposite
charges in a 2D plasma wave is F � 1=lp, whereas in a strip it
is F � 1=l2p. Thus, it becomes possible to observe one-
dimensional plasma oscillations. The main difference
between 1D plasmons and 2D plasmons is their linear
dispersion law (with a logarithmic correction in the region
of small wave vectors). The behavior of 1D plasmons is
considered in theoretical papers [42±45]. The dispersion law
for 1D plasmons in the model of the semi-elliptic profile of
electron density distribution across the strip with width W at
qW5 1 has the following form:

o2 � 2nse
2W

m �e
q 2

�
ln

�
8

qW

�
ÿ 0:577

�
; �9�

where ns is the concentration of electrons, e is the effective
permittivity of the medium, and m � is the electron effective
mass. The deviation from a linear dispersion law manifests
itself at small wave vectors and is described by a logarithmic
correction, which becomes significant in 2DES strips with a
very large aspect ratio L=W of about 1000/1 [46].

The first experimental work on the detection and
investigation of one-dimensional plasmons was carried out
using the methods of inelastic light scattering [48] and
infrared spectroscopy [47]. A drawback of these experiments
was that, in order to enhance the plasma response, the
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Figure 2. (Color online.) (a) Dependence of microwave absorption

intensity on the magnetic field for three frequencies of microwave
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measurements were taken in periodic arrays of nanowires
rather than in individual strips. As a result, many effects
characteristic of 1D plasmons were suppressed in such
systems because of the interaction between the strips. More-
over, the experiments were complicated by the quantization
of electron motion in the 2DES plane. Relatively recently,
the optical detection method allowed observing plasma
oscillations in single macroscopic electron strips [46, 49].
Figure 3 shows the spectrum of 1D plasma excitations
measured in a single strip with length L � 2 mm, width
W � 0:1 mm, and concentration of two-dimensional elec-
trons ns � 1:2� 1011 cmÿ2 [49]. The spectrum was found to
have a linear form op � v1Dq, which is a characteristic
property of one-dimensional plasma oscillations. The circles
on the dispersion plot correspond to the excitation of stand-
ing 1D plasma waves along the long side of the strip with the
wave vector q � Np=L �N � 1; 2; . . .�. The inset in Fig. 3
presents the measured dependence of velocity v1D on
parameter

���������
nsW
p

. Thus, the velocity of 1D plasmons can be
tuned by varying the strip width W and electron concentra-
tion ns.

In a magnetic field, the longitudinal 1D plasma mode
demonstrates negative magnetodispersion, and in the limit of
strong magnetic fields, it becomes an edge magnetoplasmon
(Fig. 4). In addition to the 1D plasmon, in a 2DES strip one
can observe standing plasma 2D waves corresponding to an
oscillation of electron density across the strip. Such long-
itudinal-transverse splitting is characteristic of plasma oscilla-
tions in strip geometry. The transverse plasma 2D mode is
much higher in frequency and possesses a positive magneto-
dispersion (see Fig. 4). Its frequency asymptotically tends to
the cyclotron resonance (CR) frequency in the strong
magnetic field limit. Such a behavior is characteristic of a
cyclotron magnetoplasmon.

3.3 Two-dimensional plasmons with screening
In recent times, the attention of researchers has been attracted
to the properties of 2D plasma waves in semiconductor
structures with a gate. Such an architecture is present, e.g.,
in high-electron-mobility transistors (HEMTs), widely used
in modern electronics. The presence of a gate near the two-
dimensional channel leads to the screening of Coulomb

interaction between charge carriers. This circumstance can
be taken into account through the effective permittivity of
the medium e�q�Ðthe function that enters expression (3) for
the dispersion of two-dimensional plasma excitations. In
the presence of a metallic gate placed at distance h below a
2DES, the effective permittivity is expressed as e�q� �
�1� eGaAs coth �qh��=2. In most experiments with modern
semiconductor microstructures, the condition qh5 1 is
satisfied. Under such strong screening, the velocity of 2D
plasmons significantly decreases and the spectrum acquires a
linear character [20]:

og �
������������������
4pnse 2h
m �eGaAs

s
q : �10�

This dispersion law is confirmed in many experiments
[50±56]. For example, Fig. 5a illustrates the dependence of
the resonance frequency on the external magnetic field
magnitude [55]. The measurements were carried out in
2DES samples, where, under a quantum well at distance
h � 840 nm, there was a back gate formed by a strongly
doped (2� 1018 cmÿ3) n�-GaAs layer 600 nm wide. The
mobility of two-dimensional electrons in the quantum
well was m � 10� 106 cm2 (V s)ÿ1 for the concentration
ns � 1011 cmÿ2 (T � 4:2 K). Two samples in the form of disk
arrays with the disc diameters d � 30 mm and 100 mm were
studied. It was found that the magnetodispersion of upper
and lower screened magnetoplasma modes is best described
by Eqn (7) (solid lines in Fig. 5a). In the field B � 0, the
plasma frequency is described by Eqn (10) with the effective
wave vector q � 3:7=d [37], which substantially differs from
the wave vector of a plasmon in the unscreened case
q � 2:4=d [13, 37].

Figure 5b shows the measured dependence of plasma
frequency on the wave vector q � 3:7=d in a zero magnetic
field. The dependence is linear, which is typical exactly for
plasma excitations in strongly screened 2DESs. The solid line
shows the theoretical prediction for the dispersion of a
screened plasmon according to Eqn (10). In relation to the
experimental data presented in Fig. 5, we would like to direct
the reader's attention to a peculiar feature of 2D plasma
excitations in systems with strong screening. According to
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Eqn (7), which perfectly describes experimental data, the
cyclotron magnetoplasma mode frequency in the limit
oc 4op is determined by the expression o � oc � o2

p=oc.
Substituting the screened plasmon frequency op from
Eqn (10) into this expression, we find

�ho � �hoc � �h 2q 2

2mp
;

�11�
mp � �he0e

2nsea
B :

From (11), it follows that the dependence of energy
on the wave vector for a cyclotron screened plasmon is
quadratic and has a gap oc. Therefore, a screened magneto-
plasmon can be associated with a quasiparticle having the
mass mp. The mass of such a quasiparticle can easily vary
within a wide range by changing the external magnetic field.
As an example, Fig. 5c presents the experimental depend-
ence of the frequency difference D f � fÿ fc on the plasmon
wave vector q in the magnetic field B � 86 mT. In the same
figure, the solid line shows an approximation of the experi-
mental data by a quadratic function. The plasmon quasi-
particle mass value extracted from this approximation
amounts to mp � 1:2� 10ÿ5m0. Since plasma excitations
obey the Bose±Einstein statistics, such a small mass makes
the new quasiparticle a promising candidate for studying
various effects, e.g., Bose±Einstein condensation.

One more frequently used method of changing the
velocity of 2D plasma excitations is 2DES lateral (side)
screening, implemented, for example, in a gap diode, where
a two-dimensional channel is gripped in a plane between two

well-conducting contacts. Theoretical consideration shows
that the lateral screening considerably modifies the position,
width, and amplitude of the plasma resonance [57±60].
Indeed, in experiment [61], it was demonstrated that the
presence of a lateral (side) metallic gate markedly `softens'
the frequency of two-dimensional plasma excitations (up to
oexp=op � 2). In this case, the lateral screening effect is shown
to increase with a reduction in 2DES size, which is evidence of
a difference between the dispersion law of laterally screened
plasmons and the square root law (3). The effect turned out to
be related to the electrodynamic renormalization of the
plasmon spectrum in a laterally screened 2DES [60].

4. Plasmon±polariton excitations

Electrodynamic effects in a two-dimensional plasma caused
by the finiteness of the speed of light c � 3� 108 m sÿ1 are
increasingly attracting the interest of researchers. On the one
hand, the retardation effects become significant when the
wavelength of the electromagnetic radiation appears compar-
able to the structure size. In this case, plasmon polaritons, i.e.,
coupled states of light with 2D plasmons, appear [13±16, 62,
63]. The influence of the electrodynamic effect can be
quantitatively described by the retardation parameter A
defined as the ratio of the 2D plasmon frequency op in the
quasistatic approximation to the light frequency olight �
cq=

��
e
p

in the medium with the same wave vector q [7].
Therefore,

A � op�q�
olight�q� �
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q

r
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On the other hand, the interaction of the two-dimensional
plasmawith light can be essential also because of the radiative
damping of the synchronous oscillation of charge carriers in
the plasma wave. The radiative damping mainly affects the
plasma resonance width. Theoretical calculations predict
that, for an infinite-plane 2DES in a vacuum, the plasma
resonance width is determined by the sum of the incoherent
collision contribution g � 1=t, characterized by the scattering
time t, and the radiation term G � g2ps2D=c [11, 12, 64±67],

Do � g� G � 1

t

�
1� 2ps2D

c

�
: �13�

As seen from Eqn (13), the effect of radiative damping on the
plasmon resonance width is determined by the dimensionless
relativistic parameter 2ps2D=c. Here, s2D � mnse is the
static two-dimensional conductivity of the 2DES. When
2ps2D=c4 1, the radiative effects become appreciable. Note
that, for typical parameters of current heterostructures
ns � 1011 cmÿ2 and m � 107 cm2 (V s)ÿ1, we get
2ps2D=c � 30. Thus, the radiative effects are virtually
always to be taken into account [62].

4.1 Retardation effects
Retardation effects become substantial at q � 2pnse 2=m �c 2

ando � 2pnse 2=m �c
��
e
p

, when the phase velocity of plasmons
fromEqn (3) becomes comparable to the velocity of light. For
typical parameters of semiconductor AlGaAs/GaAs hetero-
structures (ns � 3� 1011 cmÿ2, m � � 0:067m0, e � 12:8),
such a situation takes place at q � 10 cmÿ1 and the frequency
o=�2p� � 30 GHz. The observation of 2D plasmons at such
low frequencies was impossible in the early years of two-
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dimensional plasmonics (1970s±1980s), becauseÐ in the
structures used at that timeÐ the relaxation time determined
the lower boundary of the plasma excitation frequency at the
level of 100 GHz. In the few last decades, the quality of
samples has radically improved, making possible the observa-
tion of hybrid plasmon±polariton modes [13±16]. These
experiments revealed interesting and unexpected properties
of plasmon±polariton 2D excitations. In the regime of strong
influence of retardation effects, a considerable decrease in the
resonance plasma frequency was demonstrated, alongside the
extremely unusual zigzag magnetic-field behavior of the
dispersion.

Figure 6 presents the magnetic field dependences of the
absorption resonance frequency of 2DES discs with diameter
d � 0:1 and 1 mm and with an electron concentration of
�0:42ÿ6:6� � 1011 cmÿ2 [13]. Arrows indicate the frequency
values calculated using the quasistatic approximation (3).
With the increasing retardation parameterA, several features
are observed: (1) the plasmon frequency in a zero magnetic

field considerably decreases compared to op calculated in the
quasistatic approximation; (2) the slope jdo�=docj at B! 0
becomes significantly smaller than the standard value of 1=2;
(3) the upper magnetoplasma mode crosses the cyclotron
resonance line and demonstrates unusual zigzag behavior.
Let us consider these features one by one.

Figure 7 shows the frequency of a plasmon±polariton 2D
excitation in a zero magnetic field measured as a function of
the wave vector q � 2:4=d. The dependences are obtained for
two discs with electron concentrations ns � 2:5� 1011 cmÿ2

and ns � 6:6� 1011 cmÿ2. The same figure shows the disper-
sion of light o � 2pf � cq=

��
e
p

(solid curve) and 2D plasmon
o � 2pf � �2pnse 2q=m �e�1=2 (dashed curve). In the limit of
small wave vectors (large wavelengths), the spectrum of
plasmon±polariton excitations is seen to tend to the disper-
sion of light, whereas in the short-wave limit the plasmon±
polariton spectrum is well described by the electrostatic
approximation (3). It is because of the hybridization with
the light wave in the limit of small wave vectors that the
considerable decrease in the plasmon frequency in a zero
magnetic field occurs. The hybridization with light also
explains the decrease in the slope jdo�=docj of magneto-
dispersion curves at B! 0. Indeed, the light wave magneto-
dispersion plotted as f �B� is a horizontal straight line.

The physical reason for the unusual zigzag behavior of the
cyclotron magnetoplasma mode is the interaction between
the fundamental mode and the multiple magnetoplasma
harmonics [63]. Indeed, it is experimentally shown that with
the increase in the magnetic field when approaching the
cyclotron resonance the amplitude of the fundamental mode
decreases, whereas the second harmonic amplitude, on the
contrary, increases [13, 14]. This is due to the competition
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between the collisional g and radiation G contributions to
the plasma resonance width. Since in the experiments the
magnetic field is swept while the frequency of microwave
radiation is fixed, the predominance (`winning') of amplitudes
of different magnetoplasma modes manifests itself as a zigzag
in the magnetodispersion dependence. Note that the discov-
ered zigzag behavior is a delicate effect and can be observed
only in top-quality samples, when g5op < G [63].

A characteristic of plasma oscillations of primary impor-
tance is their damping, which manifests itself through the
plasma resonance linewidth. This issue is closely related to the
problem of practical application of 2D plasmonics in detect-
ing and generating terahertz radiation. Two-dimensional
plasma modes are resonantly excited only when opt4 1.
This circumstance allows resonant excitation of plasmawaves
in modern semiconductor heterostructures only at cryogenic
temperatures. One of the ways to avoid this limitation is to
increase the effective scattering time t by coupling the plasma
wave with light.

In Fig. 8, the red dots show the dependence of the
plasma resonance half-width normalized to 1=t on the
retardation parameter A obtained in [16]. Blue squares
demonstrate the normalized plasmon frequency oexp=op

versus the retardation parameter. Here, oexp is the
experimental value of the plasma frequency in a zero
magnetic field, and op � �2pnse 2q=�m �e��1=2 is the plasma
frequency calculated in the electrostatic approximation.
The measurements were performed with a sample of a
2DES with the electron concentration ns � 6� 1011 cmÿ2

and relaxation rate 1=t � 5:6� 1010 sÿ1. According to the
data presented in Fig. 8, the plasmon resonance experi-
ences significant narrowing even at minor hybridization
with light. Solid curves in the figure show the theoretical
dependences, obtained under the assumption that the
2DES dimensions in the plane are infinite [68]. In the
limit A5 1, these dependences are described by the
expressions

o2 � o2
p

1� 0:5A2
; Do � 1

t
1

1� 0:5A2
: �14�

The experimental points for oexp=op are perfectly
described by the theory, whereas the half-width of the
plasmon±polariton resonance Dot experiences a much

greater decrease than predicted by theory. Such anomalous
behavior is probably because the studied 2DES disc-shaped
sample has a finite size, which is not taken into account in the
theoretical model.

It is interesting to construct a qualitative theory of the
observed plasma resonance narrowing. In the direction
perpendicular to the 2DES plane, the plasma wave field is
concentrated in the region lz. If the retardation can be
disregarded, then lz � lp � 2p=q and the plasma resonance
half-width is Do � 1=t. When the retardation is great, the
plasma wave delocalization lz greatly exceeds the region
lp � 2p=q where the dissipation occurs [68]. Hence, the
damping of a 2D plasmon±polariton excitation can be
estimated using the expression

Do � 1

t
lp
lz
: �15�

The delocalization of a plasmon mode in the direction
perpendicular to the 2DES plane is defined as qz �������������������������
q 2 ÿ o2=c 2

p
. This expression is a direct consequence of the

Maxwell equations for a bounded electromagnetic wave
propagating along a two-dimensional electron system, DE �
�o2=c 2�E. Combining equations (2) and (15), it is possible to
reproduce exactly Eqn (14) for the half-width Dot and
frequency o=op of the plasma resonance. It is worth noting
that Eqn (15) resembles the famous law of suppressing the
spontaneous radiation of atoms placed in a resonator. This
effect was first predicted by Purcell [69]. Such a coincidence is
not accidental; it follows from the universal nature of all
electrodynamic phenomena.

To conclude, note that a distinctive feature of plasmon
polaritons is the very strong coupling between the electro-
magnetic field of light and the plasma (see Fig. 7). If a 2DES is
placed in a resonator, it is possible to observe the ultra-strong
coupling regime, when the energy of light-plasma coupling
(the Rabi frequency) becomes comparable to the frequencies
of noninteracting waves [70±72]. Currently, the physics of the
ultra-strong coupling regime is a subject of intense studies.
Particular interest in this issue is related to numerous
applications in quantum optics and quantum computing [72].

4.2 Radiative damping
The secondmanifestation of electrodynamic effects in a 2DES
is the radiative damping of plasma excitations. As shown in
Section 4.1, the plasma resonance width is determined by the
sum of the incoherent collisional contribution g � 1=t and the
radiation part G � g2ps2D=c: Do � g� G. Here, the electro-
dynamic term describes the coherent dipole radiation of
electromagnetic waves by oscillating two-dimensional elec-
trons. The quantity G determines the probability of electron±
photon scattering and plays a fundamental role in the light±
matter interaction. Since radiative damping is due to a
coherent collective radiative process, it is in full analogy with
the Dicke `superradiance' decay [73].

An expression for the radiative damping G can be qualita-
tively derived from the following considerations [65]. Let the
studied sample have the shape of a disc with diameter d. The
incident electromagnetic wave forces the 2DES electrons to
oscillate coherently with the frequency o. Each oscillating
electron is a dipole that radiates with the intensity I �
�p 2=c 3 � o4e 2a 2=c 3, where a is the oscillation amplitude,
and p � ea is the corresponding dipole moment. The
magnitude of radiative damping G0 for an individual
oscillating electron is determined by the ratio of dipole
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radiation intensity I to the electron energy m �o2a 2, which
yields G0 � e 2o2=�m �c 3�. For N coherently oscillating
electrons, the radiation intensity should be multiplied by N 2,
and the mean energy by N, so that Gdisk � NG0. The total
number of coherent electrons in the 2DES isN � nsd

2, which
yields the expression

Gdisk � G
d 2

l2p
; d5 l ; �16�

where G � g2ps2D=c is the frequency-independent radiation
width. In the case of an infinite-size 2DES, for the funda-
mental plasmon±polariton mode d � l, then Gdisk � G.

Figure 9a presents typical dependences of microwave
absorption on the magnetic field, measured in a sample with
diameter d � 1mmand electron density ns � 0:9� 1011 cmÿ2.
At low frequencies ( f � 18 GHz), one peak of resonance
microwave absorption is observed that shifts towards greater
magnetic fields as the frequency grows. This resonance
corresponds to the excitation of the cyclotron magneto-
plasma mode in the disc studied. The second peak arises in
the frequency region above 20 GHz and the third one in the
region above 30 GHz. These peaks correspond to the

excitation of higher harmonics of the cyclotron magneto-
plasma resonance withm � 2 andm � 3.When proceeding to
higher magnetic fields and higher frequencies, all observed
modes strongly broaden due to radiative damping.

For quantitative studies of the observed broadening of
magnetoplasma modes, their half-width D f was calculated
from the half-width DB of resonances with respect to
magnetic field and the slope qf=qB of the magnetodispersion
curves (Fig. 9b). The D f dependence on the plasma resonance
frequency obtained in this way is presented in Fig. 9c. The
circles correspond to the fundamental magnetoplasma mode,
and the squares correspond to its second harmonic. It is seen
that in the region of low frequencies the half-width values of
both the fundamental mode and the second harmonic tend to
the fixed nonzero value D f � 1 GHz. The relaxation of
magnetoplasma excitation in this limit is apparently due to
incoherent collisional scattering and Do � g � 1=t. How-
ever, when moving to the frequency region f � c=nd (n is the
effective refractive index of the medium surrounding the
2DES), an unexpectedly rapid increase in the width of
magnetoplasma modes is observed, in which the first mode
rapidly broadens and vanishes, giving way to the second one,
etc. The broadening of plasma modes with the increase in the
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microwave frequency is well described by the theoretical
quadratic dependence (16) depicted in Fig. 9c for each of the
modes by solid curves.

At higher frequencies, when d5l, in high-quality
samples the relaxation of plasma oscillations is determined
by the radiation relaxation channel. Figure 10 shows the
absorption curves measured in three geometrically similar
samples (discs with diameter d � 2:5 mm) having different
electron concentrations, ns � 1:6�1011 cmÿ2, 3:2�1011 cmÿ2,
and 6:6�1011 cmÿ2. Themagnetoplasma cyclotron resonance
undergoes significant broadening under the increase in the
electron density. The inset in Fig. 10 shows the half-width
extracted from these curves versus the electron density. The
experimental points perfectly coincide with the theoretical
dependence

Do � G � 2psxx
�nc

g � 4pnse 2

m ��1� nGaAs�c : �17�

Here, we have taken into account the presence of a GaAs
semiconductor substrate that forms the dielectric environ-
ment of the 2DES with effective refractive index �n �
�1� nGaAs�=2.

5. New family of two-dimensional plasma
excitations induced by metal proximity

The problem of electromagnetic wave propagation along a
metallic wire was solved more than 100 years ago by
Sommerfeld [42], who showed that an electromagnetic wave
propagates along a wire with the speed of light. It is these
plasmon polariton waves that carry alternating signals along
present-day transmission lines. Recently, it was found that if a
metallic wire is placed near a 2DES, then in such a hybrid
system a new family of plasma excitations arises [74±80].
These so-called proximity plasmons possess a number of

unique physical properties. In particular, their dispersion
combines characteristic features of both screened �opr /

���
h
p �

and unscreened �opr/ ���
q
p � two-dimensional plasmons [78]:

opr�q� �
������������������������
8pnse 2h
m �e

q

W

r
; qW5 1 ; �18�

where W is the width of the metallic gate strip placed above
the 2DES at distance h, q is the wave vector of the plasma
wave directed along the strip, and e is the permittivity of the
semiconductor substrate.

There are two reasons for which the observation of
proximity plasma modes has been hindered over the past
50 years. First, the new plasma oscillations have no nodes
in the direction perpendicular to the metallic strip, which
makes it impossible to excite these modes with an electro-
magnetic wave whose electric field is directed across the strip.
Note that this is exactly the configuration used in pioneer-
ing 2D plasmonics experiments [9, 10, 81, 82]. Second, the
theoretical studies preceding the discovery of the new family
of plasmon modes mainly considered the finite-size 2DES
geometry with an infinite screening gate [37]. This geometry is
opposite to that needed for the proximity plasmon observa-
tion. That is why there were no theoretical predictions of the
existence of new waves for a long time.

5.1 Proximity plasma excitations
As mentioned above, new plasma excitations are observed in
a hybrid system where a metallic gate is placed in the
immediate proximity of the 2DES. In experiments on
detecting new modes, a gate (70 �A Ni, 1000 �A Au) with
width W � 20ÿ100 mm and length L � 0:5ÿ1:7 mm was
used. On both sides of the strip at a distance of 0.2±0.5mm the
grounded contacts to the 2DES were made (see the inset in
Fig. 11b). Figure 11a shows the curves of microwave
absorption versus the magnetic field measured at frequencies
of 6.7, 7.7, and 11 GHz. The curves demonstrate a
pronounced resonance corresponding to the excitation of
new plasma modes with the transverse wave number N � 0.
The measurements were carried out on a structure with
the gate length L � 0:5 mm and width W � 0:1 mm
(ns � 2:7� 1011 cmÿ2). Additional experiments have shown
that, without a central metallic gate, this mode is not
observed. This observation shows that it is the metal
proximity that gives rise to the new plasma mode. The
magnetodispersion of the discovered resonance is shown in
Fig. 11b by red dots. In accordance with the theoretical
prediction, the detected plasma mode has no edge branch,
and the magnetodispersion of the cyclotron mode has a
standard quadratic form (sold curve in Fig. 11b):

o �
�������������������
o2

pr � o2
c

q
: �19�

Extrapolation of dispersion to the region of the zero
magnetic field yields the plasma frequency fp�0� � 4:8 GHz.
This value is in perfect agreement with the theoretical
prediction (18), provided that the longitudinal wave vector
q � 2p=L and e � eGaAs � 12:8.

In addition to the fundamental longitudinal plasma mode
�N � 0� described above, transverse plasma harmonics are
also observed in experiment (circles in Fig. 11b). The trans-
verse modes have N nodes in the variable potential of the
standing plasma wave for the same longitudinal wave vector
q � 2p=L. The spectrum of the transverse plasma modes in
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the limit qW5 1 is described by the following expression [78]:

o2 � 4pnse 2h
m �e

�
q 2
tr �

4

W
q

�
; �20�

where qtr � Np=W �N � 1; 2; . . .� is the transverse component
of thewave vector, and q � 2p=L is longitudinal component of
the wave vector. Note that, in the limit of large longitudinal
wavelengths, Eqn (20) transforms into a standard expression
(10) for a screened 2D plasmon. It is exactly this plasma mode
that was observed in many experiments [50, 52±54, 56].
However, the fundamental plasma mode with N � 0 was
missed in all these experiments.

In Fig. 11b, the transverse plasma mode corresponds to
the excitation of a harmonic with the number N � 2. In the
coplanar waveguide under study, due to the axial symmetry of
the electric field, only the plasma modes with even transverse
wave numberN � 2; 4; . . . are excited. The experimental data
for the mode N � 2 can be extrapolated to the region B � 0
using theoretical expression (19). The resulting plasma
frequency of 18 GHz agrees fairly well with the theoretical
prediction of 21 GHz in accordance with Eqn (20).

The most remarkable physical property of the discovered
plasma excitation is its square root dispersion law [78]. At first
glance, this seems unnatural, since the plasmon has a one-
dimensional character of propagation along the gate, which
screens the Coulomb interaction. Both of these factors should
favor a linear dispersion of the plasma excitation [49, 52]. The

spectrum of the new plasmon was experimentally determined
in a series of structures with different lengths of the central
gate, L � 0:5, 1.0, and 1.7 mm, the width being fixed at
W � 100 mm. The dispersion found in these experiments is
shown in Fig. 12. For each of the experimental points, the
wave vector was calculated as q � 2p=L. In the same figure,
the solid line shows the theoretical dependence corresponding
to Eqn (18). The experimental data are seen to completely
confirm the root dispersion law predicted by theory. The inset
in Fig. 12 presents the measured dependence of the new
plasma mode N � 0 frequency on the parameter 1=W. Each
of the experimental points corresponds to a measurement on
an individual structure with a definite gate width W � 100,
50, or 20 mm for the fixed lengthL � 0:5 mm. The experiment
confirms the theory (18), according to which the plasmon
frequency opr is proportional to 1=

�����
W
p

(solid curve in the
inset in Fig. 12).

It is remarkable that the semiconductor structure geome-
try studied in the present experiments closely resembles the
HEMT geometry. The HEMT is shown to be applicable to
the detection and generation of radiation in the terahertz
frequency region (0.1±1 THz) [83±87]. The idea of the
approach is that the electromagnetic wave incident on the
structure transforms into a standing plasma wave localized
under the gate. The alternating potential of the plasma
excitation is rectified in the same structure into the measured
DC photovoltage signal. However, in spite of many years of
experimental efforts, terahertz plasmonic components are
still far from practical implementation. Thanks to their
unique physical properties, the proximity plasma excitations
can play an important role in implementing systems of
terahertz electronics. Indeed, their plasma frequency for
typical HEMT parameters L � 10 mm, W � h � 0:2 mm,
and ns � 1012 cmÿ2 amounts to fpr � 0:7 THz.

5.2 Relativistic plasma excitations
In the structures with a closely located metallic gate described
in Section 5.1, one more kind of plasma excitation, namely, a
relativistic plasmon, was found [74±76]. The most important
distinctive feature of the discovered mode is that its width Do
is significantly smaller than the inverse relaxation time of two-
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dimensional electrons, 1=t. The usual plasmamodes observed
in the same structure possess a frequency width an order of
magnitude greater. For example, Fig. 13a shows the absorp-
tion spectrum of a strip of two-dimensional electrons with a
width of 100 mm and a length of 1 mm, on both sides of which
ohmic contacts C are fabricated. Above themesa at a distance
of 10 mm from the contacts across the strip, metallic gates G
30 mm wide are placed to excite plasmons. The spectrum is
obtained in a zero magnetic field with frequency varied in a
sample with concentration ns � 1:9� 1011 cmÿ2 and distance
from the crystal surface to the quantum well h � 200 nm.

Figure 13a demonstrates four peaks, two of them (pointed
to by arrows) at frequencies f � 13 and 23.5 GHz correspond
to the excitation of a longitudinal 1D plasma mode along the
strip. Equation (9) yields values for the frequencies of the two
lowest one-dimensional plasma modes that agree well with
the experimental data.A small peak at the frequency of 7GHz
(pointed to by the hollow arrow) corresponds to the plasma
resonance excitation considered in detail in Section 5.1. The
position of this resonance perfectly agrees with Eqn (18).

The fourth peak at frequency f � 0:8 GHz is an
unexpected observation. First, its frequency is much lower
than that of any possible plasma excitations in the system
being studied. Second, the revealed plasma resonance has a
substantially smaller frequency width (2D f � 0:4 GHz) than
the width 2D f � 3 GHz of the resonance attributed to a one-
dimensional plasmon. The unusual narrowing of the new
plasma excitation becomes understandable after measuring
its magnetodispersion. Figure 13b shows the dependence of

the resonant plasma absorption frequency on the magnetic
field magnitude. In a finite magnetic field, two modesÐ the
edge one and the cyclotron oneÐare observed. The tiny
slope of the cyclotron magnetoplasma branch evidences the
abnormally strong influence of retardation effects on it. This
is surprising, because, if we estimate the retardation para-
meter value for the new plasma mode from the size of its
localization in the structure and the density of two-dimen-
sional electrons, we will get A � 0:1. It is the strong
hybridization with light that explains so weak a damping of
the new low-frequency plasma excitations.

It is known that in the strongly retarded regime a key
parameter that determines the behavior of plasma waves is
the ratio of the two-dimensional conductivity 2ps2D and
the velocity of light c [68]. Two-dimensional plasmon±
polaritons in the strongly retarded regime exist when the
relativistic parameter 2ps2D=c > 1. That is why the new
weakly damped plasma mode was called a `relativistic
plasmon' [75]. To investigate the influence of parameter
2ps2D=c on the properties of the relativistic plasma mode,
measurements of edge mode magnetodispersion were carried
out at various temperatures T � 4:2ÿ188 K (Fig. 14). The
experiments were performed in the identical geometry of the
structure with ns � 2:4� 1011 cmÿ2 and h � 400 nm. It is
seen that the frequency of the relativistic plasma mode in a
zero magnetic field remains practically unchanged in a wide
range of parameter 2ps2D=c > 1 values. However, when
2ps2D=c < 1, the amplitude and frequency of the plasma
mode begin to decrease sharply, and near 2ps2D=c � 0:3 the
mode vanishes (see the upper inset in Fig. 14). It is shown
that a similar behavior of two-dimensional conductivity is
demonstrated by the higher-frequency cyclotron mode [76].

Note that the condition 2ps2D > c for the excitation of
relativistic plasma oscillations is much softer than the
condition opt4 1 for the standard two-dimensional plasma
excitations. The latter restricts the observation of plasma
waves in present-day high-quality nanostructures to the range
of cryogenic temperatures. For a typical mobility of up-to-
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date GaAs-HEMT structures at room temperature, m �
8000 cm2 (V s)ÿ1, the two-dimensional conductivity 2ps2D
becomes greater than the velocity of light already at the
concentration ns > 3� 1012 cmÿ2. Thus, due to abnormally
strong interaction with light, relativistic plasma excitations
can be observed at temperatures up to room temperature.
This fact is extremely attractive for various applications in
plasmon electronics.

To illustrate, we carried out an experiment in the same
microstructure geometry as in Fig. 13, but with an electron
density of 4:4� 1012 cmÿ2. The measurements showed that
for the studied disc at the excitation frequency f � 1:3 GHz
the value of 2ps2D=c is 13.2 �ot � 0:15� at temperature
T � 4:2 K and 2ps2D=c � 2:6 (ot � 0:017) at T � 300 K.
The lower inset in Fig. 14 shows the magnetoplasma
relativistic resonance measured at T � 4:2, 160, and 300 K.
The resonance is significantly broadened but is still observ-
able even at a room temperature of 300 K, when ot5 1.

The physical nature of the discovered relativistic plasma
mode is still not completely clear. However, the collection of
experimental observations allows considering it a close
relative of the new plasmon induced by metal proximity
mentioned above [77, 78]. The main evidence of this analogy
is that the relativistic plasmon arises only in the gated 2DES.
Moreover, the frequency of bothmodes is a similar functional
dependence on the dimensions of the gate and the distance
from the gate to the quantum well.

6. Plasma excitations
in two-dimensional materials

In recent times, interest in the investigation of plasma
excitations in two-dimensional electron systems has signifi-
cantly grown.Most early experiments were devoted to physical
properties of plasma excitations in single-valley isotropic
2DESs based on MOS structures of AlGaAs=GaAs hetero-
structures [9, 13, 22]. During the last few decades, significant
progress in epitaxial growth technology has led to the
appearance of a new class of high-quality two-dimensional
systems based on AlGaAs=AlAs and MgZnO=ZnO nano-
structures.

Substantial drawbacks of AlGaAs=GaAs heterostructures
include a small bandgap of 1.5 eV and, as a consequence, a low
breakdown electric field and poor resistance to harsh environ-
ments. MgZnO=ZnO semiconductor heterostructures are free
of these drawbacks. Their bandgapamounts to 3.4 eVwhich, in
particular, enables using these structures as laser sources in the
ultraviolet range. Moreover, ZnO-based structures are non-
toxic and chemically stable. Therefore, MgZnO=ZnO hetero-
structures have promising potentialities for applications [88].
A distinctive feature of 2DESs based on AlAs quantum wells
is the number of unique properties of the electron energy
spectrum. The strong anisotropy of the effective masses of
two-dimensional electrons and the controllable filling of
different valleys make the heterostructures based on AlAs
quantum wells a unique subject for studying new plasmonic
phenomena [89].

Beginning in the 2000s, the development of nanotechnolo-
gies has been associated with a new two-dimensional material,
graphene, which is a sheet of carbon atoms arranged in a
hexagonal lattice. Themain breakthrough in graphene produc-
tion technology was the method of its micromechanical
chipping from bulk graphite by means of adhesive tape [90,
91]. Graphene possesses a number of unique physical proper-

ties and is presently considered the most promising two-
dimensional material. Sections 6.1±6.3 are devoted to compar-
ing the physical properties of plasma excitations in various
two-dimensional materials.

6.1 Plasma excitations of a two-dimensional electron
system in MgZnO/ZnO nanostructures
Oxides, such as ZnO and its alloys, are one of the most
promising types of new materials for the analysis of
Coulomb correlations. Of primary interest are materials in
which, by doping the ZnO oxide with magnesium Mg, it is
possible to vary the bandgap width. Due to different
spontaneous polarization in MgZnO and ZnO, it is possible
to create a high-quality 2DES at their heterointerface. Over
the past few years, it has been possible to obtain very high
quality MgZnO/ZnO heterostructures. This is confirmed by
the high mobility of two-dimensional electrons up to
8� 105 cm2 (V s)ÿ1 [92, 93]. ZnO-based low-dimensional
systems are of particular interest, because the Coulomb
interaction of two-dimensional electrons in such systems is
much stronger than in low-dimensional structures based on
GaAs semiconductor compounds. The significance of
Coulomb correlations in two-dimensional systems is
usually characterized by the dimensionless parameter rs,
defined as the ratio of Coulomb interaction energy EC to
Fermi energy EF:

rs � EC

EF
� m �e 2

e�h 2 �������
pns
p : �21�

Due to the large value of the electron effective mass in
ZnO �m � � 0:29m0� and the relatively small value of permit-
tivity �e � 8:5�, the value of parameter rs describing the
Coulomb interaction in an electron system in ZnO-based
structures appears to be almost an order of magnitude greater
than in GaAs. In spite of the prospects of MgZnO=ZnO
nanostructures for studies and applications, their energy
band structure remains poorly studied. Microwave spectro-
scopy allowed the determination of the main conduction
band parameters in the new two-dimensional electron
system [94].

Figure 15a shows the magnetodispersion measured by
the optical method in a 2DES sample of MgxZn1ÿxO=ZnO
�x � 0:02� having the shape of a rectangle with the sides
a � 1:1 mm and b � 0:9 mm [94]. The experiments were
performed on a heterostructure with the density of two-
dimensional electrons ns � 3:7� 1011 cmÿ2. The inset in the
figure shows the microwave absorption spectrum of the
studied structure obtained in a zero magnetic field. From
the spectrum, the resonance half-width is found to be D f �
5 GHz, which corresponds to relaxation time t � 30 ps. To
establish reliably the value of electron effective mass from
the data presented in Fig. 15a, it should be noted that the
upper cyclotron magnetoplasma mode can be described by
the expression o2 � A� o2

c . Here, the constant A is the
value of the shift caused by the plasma frequency, depending
on the sample geometry. From the cyclotron frequency
oc � eB=�m �c�, an unambiguous determination of the
effective mass value is possible. The dependence of the
electron effective mass in MgZnO=ZnO nanostructures on
the two-dimensional concentration obtained in this way is
shown in Fig. 15b. The dependence was obtained in six
samples with different concentrations of two-dimensional
electrons. The effectivemass demonstrates substantial linear
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growth with an increase in the electron density. At present,
this effect has no satisfactory explanation. Apparently, the
observed increase in effective mass is related to the influence
of Coulomb correlations under the conditions of Kohn
theorem violation because of the conduction band non-
parabolicity.

6.2 Plasma excitations of a two-dimensional electron
system in AlGaAs/AlAs nanostructures
In recent decades, thanks to major progress in epitaxial
growth technology, the appearance of high-quality two-
dimensional structures of a new class based on AlAs
quantum wells became possible [89]. Their distinctive fea-
tures are themulti-valley structure and the natural anisotropy
of the effective masses of two-dimensional electrons. Bulk
AlAs is a nondirect band semiconductor that has three energy
valleys in X points of the Brillouin zone. The Fermi surface of
AlAs consists of three ellipsoids arranged along the principal
crystallographic directions. InAlAs quantumwellsmore than
5 nm wide grown on GaAs (001) substrates, only the valleys
Xx [100] and Xy [010] in the heterojunction plane are filled
with electrons. This is due to biaxial compression of the AlAs

layer, which arises due to the differences among the lattice
constants in materials forming the heterojunction, namely,
AlAs andAlGaAs. The effectivemass values in the Xx andXy

valleys corresponding to the principal semiaxes of the ellipse
are ml � 1:1m0 and mtr � 0:2m0.

The strong anisotropy of the effective masses of two-
dimensional electrons and the controlled filling of valleys
make 2D structures based on AlAs quantum wells a unique
subject for studying new plasmonic phenomena. The first
experiments with AlAs heterostructures showed that the
magnetoplasma excitation spectrum in such systems has a
number of unique properties: the presence of a gap in the
spectrum of plasma excitations in perfectly symmetric disc-
shaped samples, as well as the nontrivial transformation of
the plasmon spectrumwhen there is a redistribution of charge
carriers between different valleys [95±98].

Measurements of plasma excitation dispersion for elec-
trons with an anisotropic energy spectrum were performed
using the coplanar technique [95]. In these measurements, the
sample consisted of six equidistant 2DES discs, d � 0:5 mm
in diameter, placed in the gap of a matched microwave
coplanar waveguide (Fig. 16). The transmission of a micro-
wave signal through the coplanar waveguide was measured.
The experiments were performed using 2DESs based on an
AlAs quantum well grown by molecular beam epitaxy on an
undoped GaAs substrate along the [100] crystallographic
direction. The quantum well width amounted to 15 nm, the
electron concentration ns andmobility m being 1:7� 1011 cmÿ2

and 2:0� 105 cm2 (V s)ÿ1, respectively.
The magnetodispersion dependence obtained in these

experiments is presented in Fig. 16. The magnetodispersion
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has two branches separated by a gap in a zero magnetic field.
The low-frequency branch having negative magnetodisper-
sion corresponds to the excitation of an edge magneto-
plasmon [22, 28], whereas the high-frequency branch, whose
magnetodispersion is positive, corresponds to the excitation
of a cyclotron magnetoplasmon mode. In single-valley
isotropic systems based on GaAs �m � � 0:067m0�, the
cyclotron and edge magnetoplasma modes are degenerate in
a zero magnetic field (see the inset in Fig. 16). The anisotropy
of electron masses in AlAs leads to the removal of this
degeneracy and the appearance of a gap in the spectrum (see
Fig. 16). This observation seems particularly surprising, if we
take into account that the degeneracy removal occurs in a
zero magnetic field under perfect symmetry of the disc
geometry [99]. A similar phenomenon was observed in
AlGaAs=GaAs heterostructures [100, 101], where a minor
anisotropy was induced by a strong magnetic field in the
sample plane.

Electric field E oriented along the crystallographic direc-
tion �1�10� can be presented as a sum of two components along
two principal directions, [100] and [010]: E � El � Etr. In a
zero magnetic field, B � 0, each of these components excites
its own plasma wave with the corresponding effective massml

or mtr. The frequencies Ol; tr of these plasma waves are
determined by the standard expression [7]

O 2
l; tr �

nse
2

2ml; tre0e
q ; �22�

where e � �eGaAs � 1�=2 is the effective permittivity of the
surroundingmedium, and q � 2:4=d is the wave vector for the
disc geometry [13]. Using Eqn (22) and the experimental
values for the plasma frequencies Ol � 6:5 GHz and
Otr � 15:3 GHz, the following values of effective masses in
AlAs quantum wells can be obtained: ml � �1:10� 0:05�m0,
mtr � �0:20� 0:01�m0. It is worth noting that this is the first
direct experimental determination of charge carrier effective
masses in semiconductor AlAs nanostructures. The obtained
values of effective masses are in perfect agreement with
literature data [102±104].

One of the most remarkable physical properties of
2DESs based on AlAs quantum wells is the possibility of
controlling the filling of different X-valleys. The control can
be implemented by either a uniaxial deformation [105] or
quantum confinement [106, 107]. This property makes
semiconductor AlAs nanostructures a promising material
for new valleytronic elementsÐ electronic devices using the
degree of freedom related to the energy valley of an electron
rather than its charge.

Let us dwell on the possibility of controlling the valley
degree of freedom by quantum confinement. In wide AlAs
quantum wells (W > 5:5 nm) grown on a GaAs (001)
substrate, electrons fill the values Xx �100� and Xy �010� in
the plane of the quantum well. Each of these valleys has a
strongly anisotropic Fermi contour. This seems somewhat
strange, because the dimensional quantization is expected to
facilitate the Xz valley being the lowest-energy one (since its
effective mass in the direction perpendicular to the quantum
well plane is greater). However, the biaxial compression
arising due to the difference between the AlAs and AlGaAs
lattice constants appeared to cause an inversion of valleys
[106, 107]. In narrow AlAs quantum wells (W < 5:5 nm),
electrons begin to fill the Xz �001� valley, which is isotropic in
the quantumwell plane. The first experiments on studying the

energy GÿX transition in AlAs narrow quantum wells were
implemented by the indirect transport method using the
temperature dependences of Shubnikov±de Haas oscillations
[107±110].

The most direct and accurate method of studying Fermi
surfaces in semiconductors is microwave magnetospectro-
scopy [19]. This method was applied by the authors of the
present review to the detailed analysis of the GÿX intervalley
transition, as well as plasma dynamics in narrow AlAs
quantum wells [97, 98]. The measurements were carried out
using the double synchronous technique of microwave
absorption transport detection [111]. The studied samples
were prepared from AlAs=AlxGa1ÿxAs �x � 0:46� hetero-
structures with the quantum well widthW � 4:0, 4.5, 5.0, 5.5,
6.0, 6.5, 7.0, and 15 nm. The samples had the shape of Hall
bridges with width L � 100 mm and the distance between the
nearest contacts of 1.0 mm (Fig. 17). A typical value of
the electron density for the studied structures was ns �
4:6� 1011 cmÿ2.

Figure 17a shows the magnetodispersion of plasma
excitations measured for two structures with identical
geometries but different widths of quantum wells, W �
5:5 nm and 6.5 nm. The resonance strictly follows the
cyclotron resonance line fc � oc=�2p� � eB=�2pmcc�, where
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mc is the effective cyclotron mass of the electron,
mc�W � 5:5 nm� � �0:28�0:01�m0 and mc�W � 6:5 nm� �
�0:49�0:01�m0. To clarify what happens, let us consider the
situation when both valleys, Xx and Xy, in the quantum well
plane are filled. The Fermi contour in this case is an ellipse
with two effective masses along the principal crystallographic
axes ml � 1:1m0 and mtr � 0:2m0. Then, the cyclotron mass
of two-dimensional electrons is determined by the geometric
mean value ofmc � ������������

mlmtr
p � 0:47m0. If the electrons fill the

valley Xz located out of the quantum well plane, the Fermi
contour is merely a circle. Therefore, the cyclotron mass
coincides with the effective mass of charge carriers, mc �
mtr � 0:2m0. The effective mass value obtained in the experi-
ment for the AlAs quantum well with width W � 6:5 nm
means that in the structure the planar anisotropic valleys
XxÿXy are filled. The measured value of the cyclotron mass
of electrons in the quantum well withW � 5:5 nm shows that
the isotropic Xz valley is filled in it. Thus, between these two
cases, a uniqueGÿX transition in the energy spectrum of two-
dimensional electrons in narrow AlAs quantum wells is
observed.

Figure 17b presents the photoresponse curvesmeasured at
the frequency f � 93 GHz for three structures with quantum
well width W � 6:5 nm (blue), W � 6:0 nm (red), and W �
5:5 nm (green). A change in the quantum well width severely
affects the observed position and shape of the cyclotron
magnetoplasma resonance. For quantum wells with width
W � 5:5 nmand 6.5 nm, a single resonance is observed arising
in different magnetic fields. As shown above, in these struc-
tures the electrons occupy two different energy valleys. For
the quantumwell with widthW � 6:0 nm, two resonances are
observed at a time. Thus, a unique transient situation occurs
when a balance in filling the Xz and Xxÿy valleys is achieved.
In this case, it is possible to controllably switch the filling of
Xz and Xxÿy valleys by applying external pressure or an
electric field. To switch the filling of different valleys is
the main operation needed for functioning of valleytronic
devices.

Figure 17c shows the resulting dependence of cyclotron
mass of two-dimensional electrons in a quantum AlAs well.
The dashed line in Fig. 17c marks the data for the transient
quantum well withW � 6 nm, where the switching of valleys
occurs. Note that the experimentally obtained value of
the cyclotron effective mass of electrons in the Xz valley
mc�W � 5:5 nm� � �0:28� 0:01�m0 substantially exceeds
the band effective mass of the bulk AlAs m � � 0:2m0 [112].
Additional experiments have excluded nonparabolicity and
retardation effects as possible reasons for the mass increase.
This controversy requires further study.

6.3 Plasma excitations in graphene
The system of two-dimensional electrons in graphene attracts
significant interest due to its unusual physical propertiesÐ
the linear massless dispersion law corresponding to the Dirac
relativistic spectrum and the absence of an energy gap [90, 91],

E�k� � �hv0k ; �23�

where v0 � 106 m sÿ1 is a single-particle velocity of charge
carriers in graphene. Therefore, the Fermi energy is expressed
as EF � �hv0

����
ns
p

.
However, the overwhelming majority of results obtained

for 2DESs in graphene are explained within a single-particle
picture, while collective effects are barely manifested in

graphene. First, this is due to the high Fermi energy (because
of the linear dispersion law), as well as to the considerable
amplitude of the random potential that inevitably arises in a
single-layered structure. One of the most evident manifesta-
tions of collective properties in an electron system is the plasma
oscillations. In graphene, the plasma frequency is determined
by the expression [113]

o2
p �

2pnse 2

m �e
q � 2v0e

2

�h e
�������
pns
p

q : �24�

Here, we used the following expression for the electron
effective mass:

m � � �h 2

2p

�
qA
qE

�
� �h

v0

�������
pns
p

; �25�

whereA � pk 2 is the area of the Fermi surface in the k-space.
The first experimental studies on plasma excitations in

graphene confirmed the standard dispersion law (24). These
experiments were performed in arrays of strips and discs using
infrared (IR) spectroscopy [114, 115]. Subsequent experi-
mental investigations of collective excitations in graphene
became possible using the innovative technique of near-field
IR nanoscopy and microscopy [116, 117]. However, the first
measurements have shown that the characteristic resonance
width exceeds 10 meV, which is a thousand times greater than
the typical width of analogous resonances measured in
AlGaAs=GaAs nanostructures. Thus, the system of two-
dimensional electrons in graphene is characterized by very
high inhomogeneity and disorder, which leads to abnormally
great broadening of resonance absorption lines and limits the
capabilities of plasma wave investigation.

Inelastic light scattering is one of the methods used to
study collective excitations in graphene [118]. Figure 18a
presents the spectrum of inelastic scattering of light,
obtained in different magnetic fields directed perpendicular
to the graphene plane. The measurements were carried out on
a superhigh-quality sample of free-standing graphene with
the characteristic size of 10 mm. At a concentration of
2� 1011 cmÿ2, the electron transport mobility amounted to
2� 105 cm2 (V s)ÿ1. Figure 18a shows that, as the magnetic
field increases, the line of inelastic light scattering shifts
towards higher energies. The dependence of the Raman shift
of this line on the magnetic field is presented in Fig. 18b. The
figure shows that the magnetic field dependence of the
spectral shift corresponds to the standard dependence,
which is observed for cyclotron magnetoplasma excitations
and is associated with the hybridization of plasma and
cyclotron energies. Although the electron dispersion in
graphene is linear rather than quadratic, at high filling factors
(in the quasiclassical limit) the Landau levels appear
practically equidistant, and the standard law of mode
hybridization o2 � o2

p � o2
c is valid. Indeed, in Fig. 18c, the

dependence E 2 � ��ho�2 on B 2 is shown. The quadratic law
describes well the mode hybridization within the entire range
of magnetic field values.

Figure 19a shows the dependence of electron cyclotron
energy on the magnetic field in free-standing graphene
determined from the magnetoplasma line spectral shift
under a concentration of 3� 1011 cmÿ2 and T � 1:5 K. It is
seen that, in accordance with Eqn (19), this dependence is a
linear function of magnetic field, and from the slope of this
dependence with Eqn (25) taken into account it is possible to
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extract the velocity of charge carriers at different densities,

ECR � �hoc � ev0
c
�������
pns
p B : �26�

At an electron concentration of 3� 1011 cmÿ2, the
velocity of electrons in free-standing graphene appeared to
be v0 � 1:25� 106 m sÿ1, which is somewhat higher than the
generally accepted value of 1:05� 106 m sÿ1. It appears that,
as the density of electrons and holes decreases, their velocity
does not remain constant, but considerably increases. From
Fig. 19b, it is seen that at an electron concentration of about
1011 cmÿ2, the velocity of both electrons and holes increases
to 1:43� 106 m sÿ1, which exceeds the standard value by
almost 40%. The increase in velocity of electrons and holes at
low concentrations means that the dispersion of charge
carriers in graphene at small momenta becomes sublinear,
which is most likely due to interaction effects that lead to
renormalization of dispersion [119, 120].

The resonance line width is one of the most important
parameters of plasma oscillations. It directly determines the
quality of a structure and the relaxation time of charge
carriers Do � 1=t. Figure 19c presents the dependences of
line width of plasma excitations on the concentration,
measured by the inelastic light scattering method in gra-
phene. For comparison, the figure shows the dependences

measured in graphene lying on a silicon dioxide substrate and
in free-standing graphene. First, line broadening in the free-
standing graphene is seen to be almost five times smaller than
in the graphene on an SiO2 substrate, which evidences much
higher perfection of the electron system realized in the former
case. Moreover, the resonance in the free-standing graphene
attains its minimal width of 3.5 meV at the concentration of
electrons and holes of about 2:5� 1011 cmÿ2, whereas in the
graphene on the substrate its minimal line width of 14.8 meV
is observed at much higher densities of 6:5� 1011 cmÿ2. An
important result is that in the free-standing graphene at
concentrations below 2� 1011 cmÿ2 the resonance lines
begin to broaden sharply, which evidences the increasing
inhomogeneity in the electron system and the appearance of
separate domains with different densities of electrons and
holes. The inhomogeneity in concentration manifests itself in
the spatial fluctuations of plasma frequency, which naturally
leads to the broadening of the magnetoplasma line.

To conclude this section, we summarized in the table the
main physical parameters characterizing the properties of
plasma excitations in various two-dimensional materials. We
should note that due to the massless nature of electrons in
graphene the high mobility of charge carriers in graphene

In
te
n
si
ty

10 20 30 40 50 60
Raman shift, meV

B � 1.3 T

B � 0.9 T

B � 0.5 T

Â

30

25

20

15

10
0.5 1.0 1.5 2.0

B, T

Ep � 16.2 meV

E 2 � E 2
CR � E 2

p

b

0

E
,m

eV

800

600

400

200
0 1 2 3

B 2, T2

E
2
,m

eV
2

ns � 3� 1011 cmÿ2

k � 0:73� 105 cmÿ1

c

Figure 18. (a) Spectrum of inelastic light scattering measured at different

magnitudes of a magnetic field in free-standing graphene. The curves

demonstrate well-distinguishable magnetoplasmon resonance. (b) The

magnetoplasmon line Raman shift dependence on the magnetic field.

(c) The same dependence presented in the squared energy±squared

magnetic field coordinates.

B, T

1.2

1.3

1.4

1.5

ÿ3 ÿ2 ÿ1

b

v 0
,1

0
5
m

sÿ
1

0 1 2 3

Holes Electrons

0.5 1.0 1.5 2.0

v0 � 1.25� 106 m sÿ1
Â

25

20

15

10

5

0

E
C
R
,m

eV

ÿ20 ÿ15 ÿ10 ÿ5

c

0

E
w
id
th
,m

eV
25

20

15

10

5

0 5 10 15 20

Density, 1011 cmÿ2

Graphene on SiO2

Free-standing
graphene

Figure 19. (a) Magnetic field dependence of the cyclotron energy of

electrons in free-standing graphene, found from the spectral shift of the

magnetoplasma line at a concentration of 3� 1011 cmÿ2. (b) The

dependences of the velocity of electrons and holes in free-standing

graphene on their concentration. (c) The dependences of magnetoplasma

line width on the concentration of electrons and holes, measured in

graphene lying on silicon dioxide and free graphene hanging on contacts.

October 2020 Collective plasma excitations in two-dimensional electron systems 991



cannot serve as an indicator of 2DES high quality. A specific
feature of graphene is that, when the carrier density decreases
(to zero), the conductivity of the system remains finite, while
the carrier mass according to Eqn (25) tends to zero.
Therefore, it looks as if the mobility of electrons and holes
becomes infinity. Naturally, such a conclusion is wrong, and
the explanation is that in the low-concentration limit the
system becomes inhomogeneous, i.e., divides into domains
consisting of electrons and holes, so that the charge carrier
concentration never becomes zero. Therefore, at low concen-
trations, it is impossible to determine themobility of electrons
and holes. Thus, a real parameter reflecting the purity of
structures is the relaxation time of charge carriers or the
plasma resonance line width.

7. Conclusion

The study of two-dimensional electron systems is one of the
most relevant and rapidly progressing fields of solid-state
physics. Two-dimensional electron systems are mainly
interesting because many physical phenomena observed in
them have direct analogs in the three-dimensional world.
While most three-dimensional many-particle problems have
no analytical solution, in the two-dimensional case, we can
often manage to find a solution to such problems. On the
other hand, one-dimensional systems are too trivial from a
theoretical point of view and far from the real world.

For the physics of two-dimensional electron systems, a
key issue is the study of properties of their collective
excitations. One of the most important representatives of the
class of collective excitation is a wave of charge densityÐ the
plasmon. The response of a 2DES to an electromagnetic wave
in a wide range of practically significant frequencies is
exclusively due to the collective plasma motion of all
electrons of the system. This is because the velocity of two-
dimensional plasma waves significantly exceeds the Fermi
velocity of individual electrons in 2DESs. In contrast to the
velocity of plasma waves in three-dimensional materials, e.g.,
metals, the velocity of two-dimensional plasmons is easily
varied by changing the electron concentration or by applying
an external magnetic field.

All the above properties make the plasma waves in two-
dimensional electron systems a flexible and convenient tool
for physical studies in many different fields. No doubt, this
area of physics will delight us for a long time with its new,
sometimes unpredictable, surprises. We can also assume with
a high degree of confidence that in the near future the next
page will be turned, related to plasmon polaritons and their
numerous applications in the microwave and terahertz
spectral regions.

This studywas supported by theRussian Science Founda-
tion (grant no. 19-72-30003).
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