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Abstract. We show that applying the methods of the quantum
theory of angular momentum enables us to obtain frequency
equations for vibrational modes of a uniform isotropic elastic
sphere, cylindrical rod, and infinite plate and results in a natural
classification of these modes. We discuss how these models can
be applied to describe vibrations of metal nanoparticles and
semiconductor nanocrystals.

Keywords: quantum theory of angular momentum, theory of
elasticity, vibrational modes, metal nanoparticles, semiconductor
nanocrystals, nanorods, nanoplatelets

In memory of Igor’ Aleksandrovich Merkulov
(1947-2014)

1. Introduction

We discuss free vibrational modes of homogeneous isotropic
elastic bodies: a sphere, an infinite cylindrical rod, and an
infinite plate. The rod and the plate are not assumed to be
thin, in contrast, e.g., to [1]. Problems on finding free vibra-
tion frequencies in such elastic bodies were mostly solved in
the last quarter of the 19th century. The original papers
devoted to their solution by outstanding scientists of that
time [2—-8] are written in an archaic mathematical language if
viewed from the present-day perspective. Granted, there are
accessible surveys of their results, aimed first and foremost at
engineers [9, 10] and seismologists [11]. However, as we show
in what follows, these results can be obtained most naturally
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with the help of the mathematical formalism of the quantum
theory of angular momentum [12]. This mathematical
formalism, developed in the first half of the 20th century, is
a lingua franca for physicists working in very different areas.

Recent progress in nanotechnology has led to wide
dissemination of quasi-zero-dimensional, quasi-one-dimen-
sional, and quasi-two-dimensional structures, produced, for
example, by the methods of colloidal chemistry and used in a
broad spectrum of applications in optoelectronics and
medicine. Low-frequency vibrational modes in these nano-
structures can be approximately described using the models
of a homogeneous elastic sphere, rod, or plate. Quanta of low-
frequency vibrations in nanostructures, or phonons, take part
in many physical processes that respect conservation laws for
angular momentum and/or its projection. Importantly, the
conservation laws deal with the total phonon angular
momentum. We demonstrate that the indices used to classify
vibrational modes in classical problems of elasticity theory
correspond to quantum numbers of the total angular
momentum or its projection for quanta of respective vibra-
tions.

On the other hand, problems on free vibrational modes in
ideal elastic bodies are of independent interest. For example,
even though in modern seismology Earth is described with
essentially more complicated models that take gravity and
rotation into account, the classification of modes proposed in
the original work of Lamb [3] is still used to describe
vibrations excited in earthquakes ! [11].

2. Notion of angular momentum
for a classical vector field

The notions of orbital momentum and spin, as applied to
classical vector fields, are frequently introduced by consider-
ing electromagnetic fields [13—15]. We begin with a scalar field

!'The site https://saviot.cnrs.fr/terre/index.en.html, maintained by Saviot,
proposes a computer animation of Earth vibrational modes based on the
model of a homogeneous elastic sphere.
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f(r) and analyze its behavior under the rotation of coordinate
axes of a Cartesian system through a small angle 66 about the
direction defined by a unit vector n. This rotation transforms
the coordinate unit vectors in the first order in 30 as

e, =e,+d0nxe,, (1)

where o = x, y, z. In the new coordinate system, the point r
has the Cartesian coordinates (x',y’,z’):

r = xe, + ye, +ze. = x'e, + y'e}’, +z'el. (2)

If we now consider the coordinates and unit vectors as
functions of the coordinate system rotation angle 6, we obtain

r=x(0)e.(0)+y(0)e,(0) +z(0) e.(0) = const. (3)
Equation (1) implies that

de,

@ =nxe,. (4)
Using it and differentiating (3) yields

dr Or

@—@-’-HXT—O. (5)

The rotation of the coordinate system does not affect the
value of a scalar field at a point r, but the coordinates change
and hence the functional dependence of the scalar field on the
coordinates also changes. We can therefore write

fo(x(0),»(0),2(0)) = const, (6)

where the subscript in fy emphasizes this dependence.
Differentiating equality (6) with respect to 0, we find

df of or_. of . of N
36" 30 @ija—g—(nxr)ijaH n(rxVf)=0,
(7)
where we used (5). The last equality in (7) can be rewritten as
N
—1 0= nLf, (8)
where the differential operator
L=—irxV 9)

coincides with the quantum orbital angular momentum
operator up to a factor of . In particular, it follows from (8)
that

(10)

where ¢ is the azimuthal angle of a spherical or cylindrical
coordinate system.

As is well known [12, 13], the common eigenfunctions of
the operators L? and L. are the spherical harmonics

N r r ~ r iy
L? v, <;> =I(l+1) Yy (;) , LYy <’—) =LY, (;) .

(11)

We now turn to the transformation of a vector field A(r).
By analogy with (6), we can write

or
0A(r) or B
4 +(@V>A+nxA_0, (13)
whence it follows that
. 0A . . . R
—1@:( L)A+inx A= (nL)A+ (nS)A. (14)

The last term in the right-hand side of (14) occurs because the
Cartesian components of a vector field mix under a rotation
of coordinate axes. It can be readily seen that S, up to 7,
coincides with the quantum spin operator for a particle with
the spin s = 1. In particular, if A(r) is written as a column
vector, we obtain

inxA=mSA=i| »n 0

2 : (15)
—n, Ny 0 A

The matrices corresponding to the components Sy, S'y, S.
coincide with the matrices of Cartesian spin operator
components for a particle with s =1 in a Cartesian basis
[12]. The equalities

S?=8I+8+82=2I=s(s+1)1 (16)
hold, where ] is the unit matrix. The operator S. has the
eigenvalues +1, 0; their eigenvectors can be conveniently
chosen as cyclic unit vectors [12]:

e __&tie ey =e e _&ie (17)
+1 \/§ P 0 ) -1 \/-2— .
Expression (14) can be rewritten as
0A 5
—i—=(nJ)A 18
i5; = (A, (18)

where J =L + S is an analog of the operator of the total
angular momentum. .

We emphasize that I:, S, and J are dimensionless
operators related to the operator of infinitesimal rotation
acting on a classical vector field. They are identified with the
angular momentum only in quantum mechanics through
their redefinition by multiplication by /%, whereby they
acquire the required dimension. However, having the estab-
lished quantum mechanical terminology in mind, it is difficult
to resist calling these operators angular momentum operators
if they are also applied to classical vector fields. We take these
liberties in what follows.

Depending on the symmetry of the elasticity theory
problems to be solved, the conservation law for either the
total angular momentum or its projection on the z axis holds.
The vector displacement field for free vibrational modes is an
eigenvector of the operator J? and/or the operator J., and the
respective eigenvalues are analogs of quantum numbers that
can be used to classify the modes. Because all commutation
relations among the components of the angular momentum
operator are the same as in quantum mechanics (up to %), the
notion of a ‘good quantum number’ is generally very
productive in the problems of our interest. Finally, as is
known [13], the properties of eigenvalues of the angular
momentum operator are fully defined by the commutation
relations for these operators. Thus, the eigenvalues of J? can
be written asj (j + 1), where jis a nonnegative integer number
(in general, half-integer values are possible for j; however,
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they are ruled out for the spin s = 1), and eigenvalues of J. are
the integer numbers in the range from —j to ;.

The eigenvectors (strictly speaking, they are vector fields,
but we call them vectors for brevity) of the operators J> and
J. (and also of the operators L? and S?) can be constructed
from the eigenfunctions of L? and L. and eigenvectors of S>
and S. with the help of the Wigner 3jm symbols [12]:

(T _ s—lm_ /57 s Jj r
ij<r> —(71) VZ]+1§;(G 7m)Y/1__(;) [
ol

(19)
These eigenvectors are known as vector spherical harmonics
or spherical vectors [12]. Just like ordinary spherical harmo-
nics, they depend only on the angles of the vector r.

In the same way as the operators L. S, and J are related to
the behavior of scalar and vector fields under coordinate
system rotation, the notion of parity is related to their
behavior under coordinate system inversions [16]. The action
of the inversion operator on a scalar field f(r) amounts only
to the change of sign of the coordinates, IA’f(r) =f(-r). For
the action on a vector field A(r), it has to be additionally taken
into account that the reversal of the axes also changes the sign
of all vector components. Hence, PA(r) = —A(—r) [16].
Accordingly, the parity of vector spherical harmonics is such
that [12]

P (f) = o ()

Ignoring this trivial property of vector spherical harmonics
can lead to ambiguities [17].

The eigenfunctions of L? and L. can be refined such that
they contain a radial part and in addition satisfy the
Helmholtz equation and are finite at » = 0. This is achieved
by multiplying spherical harmonics Y. by

\/% Jilkr),

where ji(x) is the spherical Bessel function, k is the wave
number, and /2/n is the normalization factor. Then the
eigenvectors of the operators J2, J., L?, and S? that we
construct take the form

et = 2tk v ()

3. Spherical waves
in a homogeneous isotropic medium

(20)

(1)

The equations of motion of an isotropic elastic medium [1]
can be conveniently written in the operator form [18]

Au= [(cl —c2)(SV)? fclzlAA}u:aﬂm (22)
where u(r,7) is the vector displacement field, which is
supposed to vary harmonically with time at a frequency o,
¢ and ¢, are the longitudinal and transverse speeds of sound
[1], and A is the scalar Laplacian. Just as in Eqn (15), u(r, ¢) is
here understood as a column vector, but we should keep in
mind that Eqn (22) holds for any coordinate system, not only
Cartesian ones. Because we are only interested in monochro-
matic solutions of the equations of motion, the time
dependence of u(r, ¢) is suppressed.

Equations (22) have spherical symmetry. As a conse-
quence, they describe motion with conserved total angular

momentum. This can be seen formally from the fact that the
operators A and J? commute. In this sense, j is a good
quantum number. The other good quantum numbers are the
projection of the total angular momentum m on a selected
direction, which is the z axis in our case, and the parity.
Together with the frequency squared «?, they form a full set
of eigenvalues of mutually commuting operators. However,
the orbital momentum is not conserved in the motion
described by Eqn (22). According to the momentum summa-
tion rule in quantum mechanics, the total momentum j and
spin s =1 allow the values of the orbital momentum
!l =j, j£ 1, and the values j and j £ 1 are related to solutions
with different parities. For this reason, in the basis of
functions (21), the operator A splits into 3 x 3 blocks that
correspond to a nonzero j and some definite value of m and
have the following form:

/ j—11j+1 Jj
i — 1 * * 0
/ 7 (23)
j+1 * * 0

J 0 0 *

where asterisks (x) denote nonzero matrix entries. The case
Jj =0 is special; the operator A in basis (21) then takes the
form

(24)

We thus can conclude that in two cases (/ = and j =0,
/= D“,m/»( r) is an eigenvector of the operator A . We now find
its eigenvalues in these cases. As is known [lI], in an
unbounded isotropic elastic medium there are two types of
propagating waves: longitudinal and transverse. Accord-
ingly, the eigenvalues of A can be given by ¢?k? and ¢2k>.
For a plane wave, the notions of ‘longitudinal’ and
‘transverse’ are defined with respect to the direction of the
wave vector. For an arbitrary vector field A(r), this notion
can be generalized by assuming that longitudinal and
transverse vector fields satisfy the respective conditions
V x A =0and V A = 0. It can be easily verified that the field

2
uj§7t1k)( ) ujmk( ) (25)

is transverse, and the field uégk(r) = u, (r) is longitudinal.

It remains to diagonalize the 2 x 2 block in (23). For a
plane elastic wave propagating in a given direction, three
orthogonal linear polarizations are possible: one longitudinal
and two transverse. Obviously, the same degeneration takes
place for a spherical wave with fixed values of the total
angular momentum j and its projection m. We have already
found that solution (25) of Eqn (22) is transverse. Hence, one
of the remaining solutions is transverse and the other
longitudinal. To find them, it suffices to write linear
combinations of u/{;kl( r) and u/_!(r) and require that either

Jmk

their divergence or curl vanish. As a result, for the long-

itudinal solution we have [18]
H 2]+] /mk

j+1 /+l

1
u/(r»zk(r) = 2]+ 1 /mk (26)
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and for the transverse one,

/+l /+ 1
jmk 2]+1 /mk 2]+1 jmk

In addition to solutions (25)—(27), which are longitudinal
and transverse with respect to the operator V, we can
construct eigenvectors of J? and J. that are longitudinal or
transverse with respect to the vector r [12]. The linearly
independent transverse vectors have the form [12]

n(r [J+1 ifr [ J 1 (T
Y/E11) (;) = m‘% <l*) + mY,ﬁj (;), (28)
r
)if)

and the longitudinal vector is

n(ry _ [ J j-1(r [J+1 G (r
Y! )=,/ LY - Y/ -]. (30
jm (V) 2]+ 1 (’) 2] +1 Jm P ( )

It can be readily seen that these spherical vectors also have a
certain parity. On the sphere, vector (30) is directed along the
normal to the surface, and vectors (28) and (29) lie in the
tangent plane.

(27)

(29)

4. Free vibrations of a sphere

To find the eigenfrequencies of free oscillations of a sphere
with radius R, we take a linear combination of independent
solutions of Eqn (22) that correspond to a given frequency w,
the total angular momentum j, its projection m, and parity,
and require that the corresponding traction vector vanish on
the sphere, i.e., at r = R. In our case, the independent
solutions of (22) corresponding to the parity (—1)” are given
by expressions (26) and (27), and the solution with the parity
(—1)-’+l is given by (25). The longitudinal solution should be
taken with the wave number k = @/¢; = ¢ and the transverse
ones with k = w/¢; = Q, as shown schematically in Fig. 1.

The modes coming from solution (25) are purely trans-
verse. They are known as torsional or toroidal vibrations.
These modes are frequently denoted as ,7;" [11], where n is
the ‘principal quantum number’ taking the Value n = 0 for the
fundamental mode and n > 0 for overtones.?

The modes coming from solutions (26) and (27) are mixed.
They are called spheroidal vibrations and are denoted as ,S"
[11]. The spheroidal modes ,S) are an exception: they are
longitudinal. These modes describe radial vibrations, and the
fundamental mode (S! is also called a ‘breathing’ one.3

Having clarified the structure of solutions, we can put
parity considerations aside in order to obtain the character-
istic equation for the frequencies of all vibrational modes
simultaneously. The force per unit area of the sphere due to
stresses

(31)

ij = 0y€ + T,€) + Trp€p

2 Sometimes the modes are numbered starting from n = 1 instead of n = 0.
3 The site https://saviot.cnrs.fr/lamb/index.en.html, maintained by Saviot,
offers online computations of frequencies of all possible vibrational modes
for spheres made of various materials and visualizes the patterns of the
displacement field associated with these vibrations.

(k) ak

ck

q 0 k

Figure 1. Longitudinal and transverse elastic waves can propagate in a
homogeneous and isotropic elastic medium; therefore, there are two wave
numbers for each frequency of harmonic oscillation.

(where o, 6,9, and o, are the components of stress tensor [1]
in a spherical coordinate system, and e,, ey, and e, are the
corresponding unit coordinate vectors), which corresponds to
the linear combination

2
au) (1) +bul'D () + culD(r)

of solutions (26), (27), and (25), can be conveniently written as
a decomposition in vector spherical harmonics (28)—(30),

2 (T i
Fjm = pr\/; v,," <;> {a [(612 —2¢) 4ji(qR)

¢ M] 0 G — (ij(QR))}

g dR? drR\ OR
ol (e ()
b[Q d(RQ2R)+( L 2)1,-(QQRI§>H

2 2y T d (j;(QR)
+CpM\/;CL ij <;>QR(1_R< QR )7

where p,, is the density of the sphere material. From expres-
sion (32), we can immediately conclude that solutions with
different parities are not mixed via the boundary conditions
on the sphere surface, where force (32) vanishes.

At j = 0, the condition Fyy = 0 yields the equation for the
frequencies of radial vibrations of the sphere [1]:

(32)

tan (¢R) _ 1
qR 1— [clqR/(2ct)]2

(33)

This result was already known to Poisson [19]. A full analysis
of free oscillations of a sphere was given in Refs [2—4].

For the frequencies of torsional or toroidal vibrations, the
condition Fj,, = 0 gives

d (j(OR)\ _

ax'ox) =0 e
or [10, 11]

(j—1)ji(QR) — ORj;11(QR) =0. (35)
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Finally, for spheroidal vibrations with j > 0, it follows from
the condition F;,, = 0 that [10, 11]

(OR)’
2

J(OR) (j—1)(j+2)
2j(j =1 +2)]

D(j+2)]=0.

Ji(gR) ji(OR) (QR)* | (j — 1)(2j + 1) —

+2j5+1(gR)ji+1(QR) (¢R
+ji(gR) ji+1(OR) OR [(QR)*—

)ji(OR) qR [(QR)*— (j* - (36)

+ 2jit1 (qR
As j increases, spherical harmonics entering expressions (26)
and (27) oscillate more and more strongly, such that, starting
with some value of j, the waves described by them become so
short that the sphere curvature is no longer important for
them. It can be shown [10, 11] that as j — oo, Eqn (36)
transforms into the characteristic equation for Rayleigh
waves propagating along a plane interface of an elastic
medium filling a half-space.

The analysis we carried out can be applied to describe free
vibrations of spherical nanoparticles. Nanocrystals of semi-
conductors of a spherical form were first synthesized by
Ekimov and Onushchenko in glass matrices as a result of a
thermally induced diffusive phase transition of an over-
saturated solid solution [20]. Afterwards, methods relying
on synthesis of semiconductor and metal nanocrystals from
colloidal solutions were proposed [21].

Vibrational modes in such nanocrystals can be excited in
experiments on low-frequency Raman scattering. According
to the selection rules [17, 18, 22], spheroidal modes with j = 0
and j=2 are excited in such experiments. Because the
longitudinal speed of sound always exceeds the transverse
one (¢ > ¢) [1], the frequency of the fundamental mixed
mode (S3" is lower than the frequency of the fundamental
‘breathing’ mode (S¢, which is purely longitudinal. Review
[23] is dedicated to the study of vibrations in spherical
semiconductor nanocrystals and metallic nanoparticles with
the help of low-frequency Raman scattering.

Another way of exciting vibrations in metallic nanoparti-
cles is used in pump-probe experiments that study linear light
absorption after the action of a powerful femtosecond laser
pumping pulse. Under these conditions, the excitation of the
electron subsystem in metallic nanoparticles by a short pump-
ing pulse is accompanied by energy transfer from the electron
subsystem to the crystal lattice for several picoseconds. This
time interval is shorter than the period of free vibrations of
spherical nanoparticles. Therefore, heating and fast expan-
sion of the crystal lattice excite the vibrational modes. In
turn, vibrations of nanoparticles lead to the dependence of
absorption of the probing pulse on the time lag relative to the
pumping pulse. This dependence comes from changes in the
volumes of nanoparticles that accompany their spheroidal
vibrations, causing periodic modulation in the frequency of
the nanoparticle surface plasmon resonance. This allows
measuring the nanoparticle free vibration frequency. Radial
vibrations, which have a purely longitudinal character, i.e.,
are accompanied by expansions and compressions, are
excited and detected most efficiently. Such experiments are
described in review [24].

Nanoparticles are so small that they frequently turn out to
be monocrystals. Crystal anisotropy begins playing a role
then, because the symmetry of the crystal lattice is lower than
spherical symmetry. Strictly speaking, the isotropic model
becomes inapplicable in this case. However, by changing the

degree of anisotropy in numerical modeling, we can learn how
the modes of vibrations evolve under the transition from an
isotropic system to an anisotropic one [23]. In this case,
splitting and shifts in frequencies of individual modes of
vibrations are observed. Some materials have a relatively
weak crystal anisotropy, which justifies the use of the
isotropic model for their vibration analysis. Furthermore,
nanoparticles of some materials, for example, silver, com-
monly consist of several randomly oriented crystallites or
grains [23]. In this case, their vibrations are well described by
the isotropic model that involves the speeds of sound
averaged along various crystal directions as parameters.
Finally, for experiments with ensembles of nanoparticles
characterized by a broad distribution over sizes, the crystal
anisotropy effect might be too fine to take it into account.

5. Cylindrical waves
in a homogeneous isotropic elastic medium

We find linearly independent solutions of Eqn (22) that
correspond to some definite values of the frequency w, the
projection m of the total angular momentum on the z axis,
and the projection k; of the wave vector on the z axis. We start
with the equality J. = L. + S.. The eigenvectors of S. are
given in (17), and eigenfunctions (not normalized) of L.,
according to definition (10), are written as exp (i.¢). As a
consequence, it is convenient to characterize a point in space
with the help of a cylindrical coordinate system r = (p, ¢, z)
and represent the displacement vectors as column vectors in
cyclic basis (17). We require the solutions to be finite on the z
axis (i.e., for p = 0) and refine the eigenfunctions of L. such
that they satisfy the two-dimensional Helmholtz equation
with the wave number k. This is achieved by multiplying the
functions exp (il.¢) by the Bessel functions J;.(k, p). We take
into account that one of the solutions has to be longitudinal
with respect to the operator V, and the two others should be
transverse. It can be readily seen that these conditions are
satisfied by the following solutions [25]:

0 iy exp[(kz+mq>)]
mki

p(p,Z)— \/E\/W

ki .
— exp (—1¢) J—1(k
NG p (i) Jm-1(k1p)

X —i kz Jm(kLp) ) (37)

ki .
—exp (19) S (k
7 p (ip) Jms1(k1p)

(1)

exp [i (k-2 + mo)]
u’77kjk: (p’ (p7Z) =T A= 75

k.
—exp (=) J,_1 (k
b (—i9) Jm—1(kLp)

X ikLJm(kLp) N (38)

k.
—exp (19) S (k
7 p (i9) i1 (kop)

exp [i (k=2 + mo)]
2y/n
eXp (_iq’) Jm-1 (/Qp)
x 0
—exp (@) Jyr1(k1p)

2
u'?, (p.0,2) =

(39)
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Solution (37) is longitudinal: for it, ®* = ¢f(k? + k?2); and
solutions (38) and (39) are transverse: for them,
? = c}(k? +k2).

6. Vibrations of an infinite rod
with a free surface

To find the dispersion relation for a traveling wave propagat-
ing along an infinite circular cylinder of radius R with a free
surface, we take a linear combination
bl +euhd) (40)
of independent solutions of Eqn (22) that correspond to the
given frequency o, the projection of total angular momentum
m, and the wave vector along the cylinder axis k., and require
that the associated traction vector vanish on the lateral
cylinder surface, i.e., at p = R. The solutions entering (40)
are given by expressions (37)—(39). The longitudinal solution
is taken with the wave number

k= ( >2k

and the transverse ones with the wave number

[ 2

The components of stress acting on an element of the lateral
cylinder surface per unit area, expressed in cylindrical
coordinates, are [25]

[}

=q1L,

>1e

5 Puexp [i(kz + me)]
mp \/Q_’E

x { [(cﬁ 262)\Ja2 + K2 T(qLR)

ZCt2 d2Jm(qLR)

2612162

—b
} 0./071 +k?

d*J,(0LR)

VR R ar?
.2mcz d (J,(OLR)
oo g (g
P ipyclexp [i(kzz + mo)]
me — \/E
u 2m Jm(qJ_R) _ dJn1(QLR)
gl +kZR\ R dr
b 2k.m <Jm(QLR) _ dJm(QLR)>
VOT TR R\ R 4R
2 d*J,,(0.R
- CQJ_ <Q_i % + Jm(QJ_R))} ) (42)
o ipyelexp [i(k.z + mo)] {_a 2k, dJu(qLR)
mz — \/E /—qi + kZZ dR
Qi _ kzz djm(QJ.R) _ Jm(QlR)}
+b 0./0 k2 dR cmk;, “O.R | (43)

The dispersion relation for vibrational modes in the rod
follows from the condition F,, = F,,, = F,. = 0. Because
of its cumbersome character, we do not write it explicitly in
the general form, and limit ourselves to an analysis of the case
m = 0. For m = 0, expressions (41) and (43) do not contain a
contribution from solution (39), whereas expression (42) does
not contain contributions from (37) and (38). For this reason,
solutions (37)—(39) are mixed via boundary conditions only
partly. Transverse modes coming from solution (39) corre-
spond to torsional vibrations. For their dispersion, we obtain

J2(Q1R) =0. (44)

Notably, this gives the solution @, = 0 or w = ¢ik,, which
corresponds to torsional vibrations with linear dispersion.
The same result for a rod with a circular cross section follows
from the thin rod theory [1].

Dispersion relations for the remaining vibrational modes
corresponding to m = 0 can be found from the equation

c? dJi(g.R)
(-2) st 2. e
dJ R
X (02 ~K2)1(QLR) + 42kl (g, R) TUER) o
(45)

Equation (45) was first published by Pochhammer [5] and
took his name [9]. Vibrations of a cylindrical rod were also
considered in the work by Chree [4] already cited in Section 4.
The left-hand side of Eqn (45) can be regarded as a function of
Q. R. Then, for

C2
0<Qi<hk|5-1,
¢

¢, becomes purely imaginary. In this domain, Eqn (45)
should be modified via the substitution ¢, — ik,
Jn(qLR) — 1" I,(x L R), where I,,(x) is the modified Bessel
function of order m.

We note that in calculating the dispersion relation for a
flexural wave, which has a quadratic character for small &,
and corresponds to |m| =1, both ¢, and Q, become
imaginary.

Among vibrational modes whose frequencies satisfy
Eqn (45), we can single out a longitudinal wave of expansion
with a linear dispersion relation for small k.. This dependence
can be obtained by expanding the Bessel functions in Eqn (45)
up to linear terms,

3¢ — 4c? E

Sl ck: = | — k. = wo,
2 2

o — ¢ Pu

where Eis Young’s modulus. The same dependence occurs in
the thin rod theory [1]. If we now substitute ? = w3 + 4(w?)
in (45) and expand in a series up to the terms linear in A(w?)
and quadratic in Q, R and ¢, R, we obtain 24(w?) =
—w} a2(k.R)* or

(46)

(47)

2 2
W = (1 Bl (]ZR) ) ) (48)
where
2 2
of —2¢
0=——-—"+— (49)
2(012 —¢f)
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Figure 2. (Color online.) Dispersion curves for the first several mixed
modes corresponding to m = 0 (solid red lines), |m| = 1 (blue lines), and
|m| = 2 (green lines) of a gold cylindrical rod with radius R obtained in the
framework of the isotropic model. The red dashed lines plot dispersion
curves for torsional vibrations that correspond to m = 0.

is the Poisson ratio [1]. This result is known as Rayleigh’s
correction to the frequency of longitudinal waves in thin
rods [9].

Figure 2 shows dispersion curves for various modes of
vibrations in a gold rod having the form of an infinite circular
cylinder with a radius R, predicted by the isotropic model.
The values ¢; = 3.24 x 10° ecm s and ¢, = 1.2 x 10° cm s
were taken for the speeds of sound. Shown are the first two
solutions of Eqn (44), the first three solutions of Eqn (45) for
mixed vibrations with m = 0, and the first three modes for
|m| =1and |m| = 2.

A very elegant experiment by Zemanek [26] in which
vibration modes were excited in a macroscopic aluminum
cylinder 3 m in length and 3 cm in diameter is worth
mentioning. Owing to its macroscopic size, the sample was
polycrystalline and was very well described by the isotropic
model. In this experiment, the dispersion curves predicted by
the model were confirmed with high accuracy.

Nanoparticles of semiconductors and metals having a
shape close to a circular cylinder, known as nanorods, can
also be produced by the methods of colloidal chemistry.
Review [24] describes experiments where the longitudinal
expansion mode and radial ‘breathing’ mode were excited
in nanorods of noble metals by femtosecond laser pulses.
The finiteness of the lengths of such nanorods can be taken
into account by quantization of the values of wave number
k. =mn./L., where L, is the nanorod length and n, is a
natural number. What was said in Section 4 about the
applicability of the isotropic model to describing vibra-
tions in spherical particles is equally applicable to nano-
rods.

Vibrational modes in nanowires of GaN with a hexagonal
cross section, produced by the method of molecular-beam
epitaxy, were studied in [27] with the help of Mandelshtam—
Brillouin scattering spectroscopy. Vibrational modes in such
nanowires can also be approximately described with the help
of the isotropic model.

7. Vibrations of an infinite plate
with free surfaces

Dispersion relations for an outgoing cylindrical wave
propagating in an infinite plate confined between two planes
z = +h/2 are obtained by imposing no-stress conditions on
the bounding surfaces for the linear combination

)

o (t1) (t1)
AW g, ta- Wk, —q. + by Uk, 0. +b- Uk, —0.
+cp u,S,fIQ +c_ u,flt,fi 0. (50)

of solutions (37)—(39) of Eqn (22) corresponding to the given
frequency w, the total angular momentum projection m, and
the wave number & in the plate plane. In this case, ¢. and Q.
in expression (50) satisfy the conditions

w2

i-%oi, 1)
i
2
(0]
sz_c—z kt (52)

We need expressions for the force due to stresses acting on a
surface element perpendicular to the z axis, per unit surface.
In a cylindrical coordinate system, the components of this
force corresponding to the terms with subscripts + in
coefficients in expression (50) take the form

g _iowctexnlme) [ 2.
n V2n VI +4?
dJ,(kip) . kf_ — Q.2
X ———————=exp (1g.z) + by ——=—
dp p (i¢:2) +kL *kaerz
dJ,(k . m(k .
X Inlkrp) exp (10.z) — c.mQ. Inkip) exp (IQZZ):| ,
d klp
(53)
2 .
P exp (ime) |: 2mgq.  Ju(kip) :
Fpip = exp (ig.z
+o@ m + m ) p ( q )
m(Q~2 - ka_) Jm(kl_p) :
+b = exp (10:z
WV GEY (10:2)
) QZ dJy”(kJ_p) .
+ Cy kL dp eXp (IQZZ) ’ (54)
_ Pu EXp (ime)J (ko p) 2 /12 5
Fm+z - \/2—11: ay q kL + q_v
2ct2kf ZC[ZQ_JQ

- —) exp (ig-2) — b,

=2t exp (i@z)] - (55)

vk +02

The components F,,_ follow after replacing ¢. — —g¢.,
Q. — —Q., and the subscript + with the —.

We impose the boundary condition that F,, , + F,, _ vanish
at z = =£h/2. It can be readily seen that solutions “;S/fiig.»
describing shear waves, do not become mixed with the other
solutions by these boundary conditions. The dispersion

relation for shear waves takes the form

sin (Q:h) =0. (56)

Its solutions include one with Q. = 0 describing a transverse
acoustic wave with a linear dispersion w = ¢ k. Similar
solutions are obtained in the theory of thin plates [1]. The
shear character of such a wave is reflected in vibrations being
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transverse and taking place in the plate plane. Other solutions
are obtained for Q. = nn/h, where n is a natural number. For
them,

nn?
o= e +k2. (57)
The boundary conditions connecting the solutions u,;l,)q g
and umt,:) 0. lead to the dispersion equation ’
6
{(w2 —2e2432 416 S L (0* = kD) (0 — 7k )kL}
of
x sin (¢:h) sin (Q:h) + 16¢k 1 ¢.0.(w” = 2¢7k7)?
24:h os> Q:h 20:h  2q:h]
X {sm 53 = + sin —5 cos” =0. (58)

It is assumed that when ¢?2 in Eqn (51) becomes negative, the
transformation ¢. — ik, sin (¢.h) — isinh (x./) and so on is
performed. The same concerns the case Q2 < 0.

Waves with dispersion described by Eqn (58) have a
mixed character. Their plane analogs have the name Lamb
waves [28]. Ultrasonic Lamb waves are widely used in
technology [28]. They are used in ultrasonic defectoscopy to
determine elastic and thermoelastic characteristics of plate-
like samples and to construct delay lines.

We divide both sides of (58) by

2 Q 2q:h
cos sin 5

and use Eqns (51) and (52). We find
(k2 = 02)* + 164202k | x
+4k7q:0-(kT — 02 (1 +x%) =0,

(59)
where

_ tan(Q:h/2)
"~ tan(q.h/2)

Solving quadratic equation (59) for x, we obtain two
solutions:

tan (Q. h/2) 4kiquZ

tan(g:-h/2) ~ (k7 - 02" o
tan (0.h/2) (k- 02) 61
tan (¢.h/2) T 4kEQ:Qz ' o

Equations (60) and (61), which were obtained in Refs [6-8],
are known as Rayleigh—Lamb equations [9] for the dispersion
of respectively symmetric and antisymmetric plane waves
(Lamb waves) in a plate.

We return to the analysis of Eqn (58). Substituting
o = vk, in (58) and expanding trigonometric functions in
series up to linear terms, we obtain

62
of =4ct(1--%).
‘

Here, v is the propagation speed of a longitudinal acoustic
wave in the plate plane, known from the theory of thin
plates [1]. If we now substitute » = yk? in (58) and expand
trigonometric functions up to cubic terms, we obtain

y? =2 177 h? _hzvlz
' ¢2) 37 127

(62)

(63)

where 7 is the dispersion coefficient of flexural waves known
from the theory of thin plates [1].

Elastic waves whose propagation can be described in the
framework of thin plate theory [1] are limited to transverse
acoustic waves, longitudinal acoustic waves, and flexural
waves with quadratic dispersion. Thus, there are three
parameters in this theory, ¢, v, and y. Accordingly, relying
on symmetry considerations, we can write an analog of the
operator A from Eqn (22) for a thin plate [29]:

_ 2 . .
Aplate = u : (VES-%— + ViSE)
e §2v2 —y2(82-1)v (64)
2 4 1>
whereVy =V, £iV,, VI = V2 + V2 S, = £(S, £iS,)/V2.

These equations of motion can be used to describe low-
frequency vibrations in graphene, taking the parameters ¢,
v, and y from an experiment or microscopic computations.
Next, we can trace how the operator /iplate changes under
rolling a graphene sheet into a nanotube and derive the
corresponding equations of motion [29]. If expression (63) is
used for y, then Donnell’s equations describing vibrational
motion in thin cylindrical shells follow [30]. Dispersion
relations for low-frequency vibrations of nanotubes can be
readily derived from their equations of motion [29].

However, solutions of Eqn (58) are not limited to waves
with linear and quadratic dispersion. For k; = 0, Eqn (58)
becomes

wh wh
sin — sin — =0,
ql Ct

(65)

giving o = ¢mn/h and o = ¢;mn/h. The first of these equa-
tions for n = 1 corresponds to the frequency of the ‘breathing’
mode in a plate. This mode is purely longitudinal. Its
vibrations cause changes to the plate volume and its
displacements are perpendicular to the plate plane. The fact
that the left-hand side of (65) is the product of two factors
implies that the vibrational modes are no longer mixed for
k1 =0 and that their displacement fields are either long-
itudinal or transverse.

Because the Bessel functions have the property J,,(0) = 0
for any integer m except m = 0, it can be concluded from
Eqns (37)—(39) that for k;, =0 the longitudinal modes
correspond to m = 0 and the transverse mode to |m| = 1. In
this limit, solutions (38) and (39) become equivalent. For
k1 > 0, all vibrational modes are degenerate in mz, similarly to
plane waves in a plate, which are degenerate with respect to
their propagation direction.

Recently, chemists have learned how to synthesize
semiconductor monocrystal nanoplatelets with a thickness
of several atomic layers controlled with atomic accuracy [31].
For example, a nanoplatelet of CdSe has a crystal structure of
sphalerite (zinc blende), but in the first approximation its
vibrational modes can be described in the framework of the
isotropic model neglecting crystal anisotropy.

Figure 3 displays dispersion curves for the first several
mixed (red curves) and shear (blue curves) vibrational modes
in a CdSe nanoplatelet with a thickness of three monolayers
(h=9 A). We used averaged parameters for speeds of sound
a=37x10>cms™ ! and ¢, = 1.54 x 103 cm s~! (which give
v = 2.67 x 10° cm s~!) and the value a = 6 A for the lattice
constant. The values of frequencies are given in energy units
and correspond to 7iw. The dashed lines in Fig. 3 show the
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Figure 3. (Color online.) Dispersion curves for the first several mixed (red
curves) and shear (blue curves) vibrational modes in a CdSe nanoplatelet
with a thickness of three molecular layers computed in the framework
of the isotropic model. The dashed lines show the dependences w =
hvlki/\/lvi o =uvk,, o =c¢n/hand v = an/h.

dependences o = hvk? /12, o =wvk,, o =cm/h, and
o =¢mn/h.

8. Conclusions

Using the mathematical formalism of the quantum theory of
angular momentum, the eigenfunctions of the total angular
momentum operator can be constructed from the known
eigenfunctions of the angular momentum operators entering
the sum. We have demonstrated that this allows essential
progress in constructing solutions of the second-order partial
differential equation describing the propagation of elastic
waves in a homogeneous isotropic medium in situations
where the boundary conditions have spherical or axial
symmetry. The subsequent solution of the elastic body
vibration problem reduces to applying standard methods of
elasticity theory. The quantum theory of angular momentum
offers an understanding of the solution structure without
resorting to direct computations and uncovers the physical
meaning of parameters used to classify vibrational modes.
Another advantage of such an approach is the fact that all
vibrational modes follow from a unified treatment, eliminat-
ing the need to consider numerous particular cases.

Models of an isotropic elastic sphere, an infinite cylind-
rical rod, and an infinite plate are best suited to describing
polycrystal bodies. Nevertheless, they prove to be extremely
useful in describing vibrational modes in nanocrystals of
various dimensions, even when the nanocrystals have a
monocrystal structure.

This study was supported in part by the National Science
Foundation (NSF-CREST grant HRD-1547754).
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