
Abstract. The equivalent photon approximation is used to cal-
culate fiducial cross sections for dimuon production in ultraper-
ipheral proton±proton and lead±lead collisions. Analytic
formulas taking experimental cuts into account are derived.
The results are compared with the measurements reported by
the ATLAS collaboration.
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1. Introduction

This year marks the 111th anniversary of the birth of
L DLandau.We here review the modern state of the problem
that Landau andYeMLifshitz considered for the first time in
1934 in calculating the cross section of production of e�eÿ

pairs in collisions of ultrarelativistic heavy ions [1]. We show
that this problem is still of interest.

Despite all efforts, the Large Hadron Collider (LHC) has
so far failed to find any signatures of a New Physics. For this

reason, those scenarios of the emergence of the New Physics
that seemed to be less plausible when the LHC was
constructed are now becoming increasingly attractive. The
LHC was designed as a hadron±hadron collider, but it can
also be considered a photon±photon collider in which
photons are produced in ultraperipheral collisions of
hadrons. This idea is far from new: it was analyzed in detail
during construction and operation of the RHIC (Relativistic
Heavy Ion Collider) and the LHC [2±16]. But because it was
generally believed that the probability of the emergence of a
New Physics signal is significantly higher in collisions of
hadrons, especially regarding Higgs boson properties,
hadrons were discussed much more actively and were
prioritized in the LHC experimental program. Given that a
two-year maintenance period began at the LHC in late 2018,
it is now an appropriate time to examine photon±photon
collisions at the LHC as a source of possible New Physics
events: if required, it will enable making changes to the design
of detectors and possibly, allocating more time in the LHC
experimental program to the exploration of heavy ion
collisions.

The Feynman diagram of an ultraperipheral collision in
the leading approximation is shown in Fig. 1; lead nuclei can
be replaced with any charged particles. A specific feature of
the ultraperipheral collision is that charged particles maintain
their integrity after the collision. They do not acquire a large
transverse momentum, and it is therefore difficult to detect
them at the main detectors, ATLAS (A Toroidal LHC
ApparatuS) and CMS (Compact Muon Solenoid); however,
additional detectors are available that are designed for small
scattering angles for both ATLAS and CMS (the ATLAS
forward proton detector [17] and the CMS±TOTEM preci-
sion proton spectrometer [18]). Nevertheless, ultraperipheral
collisions can be observed without these additional detectors
by detecting the particles that are produced in the collisions.
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We compare collisions of protons and collisions of lead
nuclei as potential sources of New Physics events. The LHC
integrated luminosity in collisions of protons that has been
gathered during the second stage of LHC operation (Run 2) is
now more than 150 fbÿ1 [19, 20]. The integrated LHC
luminosity in collisions of lead nuclei gathered in heavy-ion
runs was 0.7 nbÿ1 in 2015 [21] and 1.8 nbÿ1 in 2018 [19]. The
cross section of an ultraperipheral collision is proportional to
Z 4, whereZ is the particle charge. The charge of lead isZ � 82,
and therefore, if a New Physics exists that manifests itself in
collisions of photons, the number of events where it will be
exhibited at Run 2 is �150 fbÿ1�=�824 � 2:5 nbÿ1� � 1:3 times
larger than in heavy ion collisions in 2015 and 2018. However,
the duration of Run 2wasmore than 500 days (excluding 2015,
when the luminosity gathered in proton collisions was a mere
4.2 fbÿ1), while heavy ion collisions occurred for about 45 days.
Because the cross section increases asZ 4, the search for a New
Physics in ultraperipheral collisions of heavy ions at the LHC is
very attractive; the luminosity in ion±ion collisions can also be
increased.

The cross section of particle production in ultraperipheral
collisions is usually calculated using the equivalent photon
approximation (EPA) [1, 22±24] (see also [25±28]). To make a
comparison with experimental data, the phase volume of
produced particles should be constrained with experimental
cutoffs that are introduced to reduce the background and take
blind spots of detectors into account. The cross section with
the cutoffs taken into account (the fiducial cross section) is
usually computed on the basis of the total cross section using
the Monte Carlo method (see, e.g., the SuperCHIC Monte
Carlo event generator [29]). The EPA enables application of
the experimental cutoffs in an analytic way, and hence the use
of the Monte Carlo method is often not needed.

We here use the EPA to calculate the cross section of
the pp�gg� ! ppm�mÿ reaction. Experimental constraints of
three kinds are then applied to the phase space of this
reaction:

1) on the invariant mass of the muon pair
��
s
p

:
ŝmin < s < ŝmax;

2) on the transverse momentum of a muon pT: pT > p̂T;
3) on muon pseudorapidity Z: jZj < Ẑ.

Numerical values of these constraints vary depending on the
specific experiment and measurement setup. The analytic
formulas derived here are used to describe the experimental
data obtained by the ATLAS collaboration [30]. In that
measurement, the bound ŝmin was set equal to 12 GeV to
exclude the contribution from decays of vector mesons to

m�mÿ (the heaviest vector mesons belong to the family of U
mesons); ŝmax � 70 GeV, p̂T � 6 or 10 GeV depending on the
invariant mass; and the bound Ẑ � 2:4 ensures that the muon
hits the muon spectrometer.

The same formulas are used to calculate the cross section
of the PbPb�gg� ! PbPbm�mÿ reactionwith the experimental
cutoffs used in [31].

2. Cross section of l�lÿ production without
experimental cutoffs

The distribution of equivalent photons produced by amoving
ultrarelativistic particle with the charge Ze has the form

n�q� d3q� Z 2a
p 2

q 2
?

oq 4
d3q � Z 2a

p 2o
q 2
?

�q 2
? � �o=g�2�2

d3q ; �1�

where q is the photon 4-momentum, q? is its transverse
component, o is the photon energy, and g is the Lorentz
factor of the particle. For a proton with the energy E �
6:5 TeV, g � E=mp � 6:93� 103. To derive the equivalent-
photon spectrum, Eqn (1) must be integrated over the
transverse momentum up to a certain value of q̂. The value
of q̂ should be chosen such that the initial particle does not
disintegrate as a result of emitting a photon with this
momentum. For a proton, q̂ � 0:20 GeV (see Appendix A).
In the limit o5 q̂g, the equivalent-photon spectrum acquires
the form

n�o� do � 2Z 2a
p

ln

�
q̂g
o

�
do
o

: �2�

This simple expression allows deriving analytic formulas for
the cross section of muon pair production taking experi-
mental cutoffs into consideration.

The muon pair production in an ultraperipheral collision of
protons is described in the leading approximation by the
Feynman diagrams in Fig. 2. The corresponding cross section is

s�pp�gg� ! ppm�mÿ�

�
� q̂g

m 2
m =q̂g

do1

� q̂g

m 2
m =o1

do2 s�gg! m�mÿ� n�o1� n�o2� ; �3�

where o1 and o2 are the energies of the photons,
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Figure 1. Feynman diagram for an ultraperipheral collision of lead nuclei.
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Figure 2. Leading Feynman diagrams for the pp�gg� ! ppm�mÿ reaction.

September 2019 Equivalent photons in protonëproton and ionëion collisions at the Large Hadron Collider 911



is the Breit±Wheeler cross section [32], and
��
s
p � ��������������

4o1o2

p
is

the invariant mass of the muons. The integration domain in
Eqn (3) is shown in Fig. 3. It is helpful to change the
integration variables as o1, o2 ! s; x, where x � o1=o2.
The integrals in Eqn (3) can then be represented in the form

s�pp�gg� ! ppm�mÿ�

�
� �2q̂g�2
�2mm�2

ds s�gg! m�mÿ�
� �2q̂g�2=s
s=�2q̂g�2

dx

8x
n

� �����
sx

4

r �
n

� ������
s

4x

r �

� a 2

2p2

� �2q̂g�2
�2mm�2

ds

s
s�gg! m�mÿ�

� �2q̂g�2=s
s=�2q̂g�2

dx

x

� ln
�2q̂g�2
sx

ln

� �2q̂g�2
s

x

�
�5�

(the integral over x is invariant under the substitution
x! 1=x). As a result, we obtain

s�pp�gg� ! ppm�mÿ�

� 16a2

3p2

� �2q̂g�2
�2mm�2

ds

s
s�gg! m�mÿ� ln3 2q̂g��

s
p : �6�

Because s�gg! m�mÿ� decreases as 1=s if s4 4m2
m, in the

leading logarithmic approximation the logarithm in Eqn (6)
should be taken at s � 4m2

m. We then obtain 1

s�pp�gg� ! ppm�mÿ� � 8� 28

27

a4

pm 2
m
ln3

q̂g
mm

: �7�

If the mass of produced particles is significantly less than q̂,
the latter must be replaced withm in Eqn (7). 2 This is just the
case of e�eÿ-pair production considered in [1]. Another
difference from Eqn (37) in [1] is that the collision is
considered in [1] in the laboratory frame where the nucleus
is at rest and g � gCM � �glab=2�1=2.

For collisions of protons with an energy of 13 TeV at the
LHC,

s�pp�gg� ! ppm�mÿ� � 0:22 mb: �8�

3. Cross section of l�lÿ production with
experimental cutoffs taken into account

3.1 Constraints on the invariant mass of a l�lÿ pair
The invariant mass can be constrained in a trivial way: it is
sufficient to change the limits of integration over s in Eqn (5).
For �2mm�2 4 ŝmin < s < ŝmax 4 �2q̂g�2,
s�ŝ�fid�pp�gg� ! ppm�mÿ�

�
� ŝmax

ŝmin

ds s�gg! m�mÿ�
��2q̂g�2=s
s=�2q̂g�2

dx

8x
n

� �����
sx

4

r �
n

� ������
s

4x

r �
: �9�

If ŝmin 4 4m 2
m , an inequality that holds for the experiments

considered in Section 4, a simplified formula can be used for
the Breit±Wheeler cross section:

s�gg! m�mÿ� � 4pa2

s

�
ln

s

m 2
m
ÿ 1

�
for s4 4m 2

m : �10�

In this case,

s�ŝ�fid�pp�gg� ! ppm�mÿ�

� 64a4

3p
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s 2
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s
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2q̂g��
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According to Eqn (6.27b) in [28], the inaccuracy of Eqn (11)
related to the virtuality of photons is

Z �
�

q̂ 2��
s
p

minmm

�2 �
ln

4E 2

smin

�ÿ1
; �12�

whereE is the energy of the colliding particles. The accuracy is
very high for the production of muon±antimuon pairs, but it
significantly deteriorates for the production of electron±
positron pairs.

3.2 Constraints on the transverse momentum of a muon
To impose a constraint on the transverse momentum of a
muon pT > p̂T, the formula for the cross section of the
gg! m�mÿ reaction differential in pT [34, (88.4)] must be
substituted in Eqn (9):

ds�gg! m�mÿ� � 2pa2

s 2

�
s� t

t
� t

s� t

�
dt

� 8pa2

spT

1ÿ 2p 2
T=s��������������������

1ÿ 4p 2
T=s

q dpT ; �13�

where t is the Mandelstam variable, t � ÿs=2� s=2�
�1ÿ 4p 2

T=s�1=2, and muons are regarded as ultrarelativistic
particles. We then arrive at the formula

s�ŝ; p̂T�fid �pp�gg� ! ppm�mÿ�

�
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ŝmin

ds
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dpT
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ln
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q ÿ
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T

s

r �
: �15�

1 An incorrect spectrum of equivalent photons was used in Eqn (1.4) in [33]

�the term ln2�E=me� in the integrand should be replaced with the product

ln�E=o1� ln�E=o2��, which resulted in a wrong factor 3=2 in Eqn (5.4) and

reference [23] in that paper. This error was reproduced later in Eqn (5.4)

in [26]. A discussion of such errors, which frequently occur in applying the

EPA, can be found in the second footnote on page 256 in [28].
2 If t-leptons are produced, the q̂=mt factor persists and suppresses the

cross section.
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q̂g

q̂g
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s � 4o1o2

Figure 3. The integration domain in (3). The dashed line corresponds to

s � 4m 2
m . The integration domain is contained within the square above the

dashed line.
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3.3 Constraints on the muon pseudorapidity
The pseudorapidity is defined as Z � ÿ ln tan �y=2�, where y is
the angle between the muon momentum and the beam.
Experimental pseudorapidity constraints are related to specific
features of detector geometry. TheATLASmuon spectrometer is
not able to detect muons with y910� or y0170�, the angles that
correspond to the pseudorapidity cutoff jZj < 2:4

If the invariant mass s of a muon pair is fixed, muon
pseudorapidity values are determined by the ratio of photon
energies x. If x � 1, then in the phase space region bounded
by the pT and s cutoffs used in [30] (Table 1) sin y � 2pT=

��
s
p

is
always larger than 2/7. This value corresponds to the interval
17�9y9163�. Thus, the Z cutoff does not result in a reduction
in the number of detected events of muon pair production.
But if x5 1 or x4 1, muons move parallel to the proton
beam and escape from the detector undetected. Consequen-
tially, the pseudorapidity cutoff can be converted in a natural
way into an x constraint:

jZj < Ẑ) 1

x̂
< x < x̂ ; �16�

where

x̂ � exp �2Ẑ�
1ÿ

��������������������
1ÿ 4p 2

T=s
q

1�
��������������������
1ÿ 4p 2

T=s
q �17�

(see Appendix B). From this equation, we obtain a formula
for the fiducial cross section with all the experimental
constraints taken into account:

s�ŝ; p̂T; Ẑ�fid �pp�gg� ! ppm�mÿ�

�
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ds
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4
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n
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s

4x
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� 4a4

p
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T=s
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dx

x
ln
�2q̂g�2
sx

ln

� �2q̂g�2
s

x

�
: �19�

4. Comparison with experimental data

4.1 Production of a muon pair in proton collisions
The ATLAS collaboration has measured the fiducial cross
section of the pp! ppm�mÿ reaction at a proton collision
energy of 13 TeV (g � 6:93� 103) with the integrated
luminosity 3.2 fbÿ1 [30]. The experimental constraints are
displayed in Table 1. The result of measurements is

sexperfid �pp! ppm�mÿ�
� 3:12� 0:07 �stat:� � 0:10 �syst:� pb : �20�

The results obtained if the experimental constraints are
applied one by one to the cross section of this reaction are
shown in Table 2. The fiducial cross section is

s�ŝ; p̂T; Ẑ�fid

ÿ
pp�gg� ! ppm�mÿ

� � 3:35 pb ; �21�

which agrees with Eqn (20). Figure 4 displays a comparison of
the cross section for several invariant mass ranges with the
experimental data contained in Table 3 in [30]. 3

Experimental results are compared in [30] with the
theoretical predictions obtained using the Monte Carlo
method: the SuperCHIC program [29] yields

sfid � 3:45� 0:05 pb �29; 30� ; �22�

while the EPA taking corrections due to absorption effects
[35] (see Appendix C) into consideration yields

sfid � 3:06� 0:05 pb �30; 35� : �23�

4.2 Production of a muon pair in collisions of lead nuclei
The ATLAS collaboration has measured the fiducial cross
section of the PbPb! PbPb m�mÿ reaction at a collision
energy of 5.02 TeV per nucleon pair �g � 2:69� 103�with the
integrated luminosity 515 mbÿ1 [31]. The following experi-
mental constraints were used:
� on the invariant mass of a muon pair: 10 <

��
s
p

<
100 GeV;
� on the transverse momentum of a muon: pT > 4 GeV;
� on the muon pseudorapidity: jZj < 2:4.
The result of the measurement is

s exper
fid �PbPb! PbPb m�mÿ�
� 32:2� 0:3 �stat:��4:0ÿ3:4 �syst:� mb : �24�

A heavy nucleus can be disintegrated more easily than the
proton. The maximummomentum that a proton can transfer
without disintegration is q̂ � 0:20 GeV [see (A.8)]. The
corresponding value for 208Pb strongly depends on the
nucleus form factor but in any case is about an order of
magnitude smaller. The maximum photon energy in the
leading logarithmic approximation is 2q̂g. This quantity for
protons colliding with an energy of 13 TeV is 2.8 TeV, while
for collisions of lead nuclei that are considered in this section,
it is about 100 GeV. The collisions of lead nuclei are therefore

Table 1. Phase-space constraints of the pp�gg� ! ppm�mÿ reaction used
in [30].

Range of invariant masses
of muons

Transverse
momentum of muon

Muon
pseudorapidity

12 <
��
s
p

< 30 GeV
30 <

��
s
p

< 70 GeV
pT > 6 GeV
pT > 10 GeV

jZj < 2:4

Table 2. Cross section of the pp�gg� ! ppm�mÿ reaction with the
experimental constraints, calculated using the equivalent-photon spec-
trum in Eqn (2) and Eqns (6), (11), (15), and (19).

Constraints Cross section, pb

Without constraints 1:7� 105

12 <
��
s
p

< 30 GeV
30 <

��
s
p

< 70 GeV
54.1
5.66

59.7

12 <
��
s
p

< 30 GeV, pT > 6 GeV
30 <

��
s
p

< 70 GeV, pT > 10 GeV
5.38
0.91

6.29

12 <
��
s
p

< 30 GeV, pT > 6 GeV, jZj < 2:4
30 <

��
s
p

< 70 GeV, pT > 10 GeV, jZj < 2:4
2.85
0.50

3.35

3 In calculating the cross section displayed in Fig. 4, equivalent-photon

spectrum (2) is used. If the dipole form factor is taken into account (see

Eqn (A.6) in Appendix A), the cross section increases by less than 0.5% in

the energy range under consideration. Themagnetic form factor [see (A.3)]

increases the cross section by � 6%.
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much more sensitive to the momentum dependence of the
form factor of colliding particles.

To calculate the fiducial cross section, Eqn (18) was used
with several equivalent-photon spectra n�o� that correspond
to various form factors [36, 37]. Figure 5 displays a
comparison of calculated results with the experimental data
shown in the left-hand plot in Fig. 3 of [31].4 The spectrum
with the form factor determined by the Fourier±Bessel
parameters from [37] (see Table 4 in Appendix A) and the
spectrum with the monopole form factor with the parameter
L � 50 MeV compare well with the experimental data. The
leading logarithmic approximation with q̂ � 18 MeV
[see (A.14)] exhibits good accuracy in the region of small
invariant masses, while in the region of large invariant
masses, it underestimates the number of equivalent photons.
The reason is that the assumption o5 q̂g � 50 GeV used in
deriving Eqn (2) fails in this region. The form factor described
by the Fourier±Bessel parameters from a previous study [36]
(see Table 4 in Appendix A) and its approximation with the
monopole form factor with the parameter L � 80 MeV,
which is used frequently [38±40], yield a fiducial cross section
that is 1.5 times larger than the measured one.

The fiducial cross section calculated using the equiva-
lent-photon spectrum with the form factor determined by
the Fourier±Bessel parameters from [37],

s �ŝ; p̂T; Ẑ�fid �PbPb �gg� ! PbPb m�mÿ� � 34:4 mb ; �25�

compares well with experimental result (24). Results of a
successive application of the constraints are presented in
Table 3.

Results of the measurements are compared in [31] with the
results computed using the STARLIGHT package [41]:

sfid �PbPb �gg� ! PbPbm�mÿ�
� 31:64� 0:04 mb �31; 41� : �26�

5. Conclusion

The LHC can be used to search for a New Physics in photon±
photon collisions. The invariant mass of photons can be as
large as 2q̂g � 2:8 TeV in collisions of protons with an energy
of 13 TeV and � 100 GeV in collisions of lead nuclei with an
energy of 5.02 TeV per nucleon pair.

The equivalent-photon approximation enables analytic
calculation of the cross section taking experimental con-
straints into consideration. The leading logarithmic approx-
imation [see Eqn (2)] yields accurate results and relatively
simple formulas for the invariant masses that are much
smaller than q̂g. If invariant masses are larger, form factors
of colliding particles should be taken into account.

Although the constraints significantly decrease the num-
ber of detected events, the high luminosity of the LHC enables
observation of m�mÿ pair production in ultraperipheral
collisions.

We are grateful to A N Rozanov for the discussion that
attracted our interest to LHC results in photon collision
reactions, I I Tsukerman for the helpful comments,
H Terazawa for providing a reference to studies [26, 33],
I F Ginzburg for a very fruitful discussion, S I Godunov for
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Figure 5. (Color online.) Differential fiducial cross section of the

PbPb �gg� ! PbPb m�mÿ reaction at a collision energy of 5.02 TeV per

nucleon pair with the experimental constraints from [31]. Crosses show

the experimental data from the left-hand plot in [31] (upper curve). The

curves were plotted using Eqn (18). The red dotted line and black solid

line are plotted using the equivalent-photon spectrum with form factors

taken from [36, 37]. The green dashed-dotted line corresponds to the

spectrum with the monopole form factor with the parameter

L � 50 MeV. The dashed blue line is plotted using the spectrum in

Eqn (2) with q̂ � 18 MeV.

Table 3. Fiducial cross section of the PbPb �gg� ! PbPbm�mÿ reaction
with the nuclear form factor approximated using the monopole formula
with L � 50 MeV.

Constraints Cross section, mb

Without constraints 1:92� 106

10 <
��
s
p

< 100 GeV
also pT > 4 GeV
also jZj < 2:4

264
42.5
34.6
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Appendix A.
Constraints on equivalent-photon virtuality

We consider a charged particle at rest. Its electromagnetic
field can be represented as a multitude of virtual zero-
energy photons. Let q � �0; qx; qy; qz� be the momentum of
such a virtual photon. Let then the particle move along the
z-direction with a Lorentz factor g4 1. The photon then
acquires the energy o � �g2 ÿ 1�1=2 qz, which is approxi-
mately equal to the photon momentum in the z-direction,
gqz. The virtuality of such a photon is ÿq2 � q2x � q2y�
q2z 5o2, owing to which it can be treated as real. This is the
essence of the equivalent photon approximation.

To obtain the virtual-photon spectrum n�o� of a particle in
motion, Eqn (2), the virtual photon distribution n�q� d3q in (1)
should be integrated with respect to the transverse momentum
q? � �q 2

x � q 2
y �1=2. Because this integral logarithmically diverges

at large q?, it should be cut off at some value q̂. If a proton (or
nucleus) emits a virtual photon with a rather large momentum in
the collision, the proton (nucleus) disintegrates. A natural estimate
for the proton q̂ is therefore the inverse radius of the proton or the
quantum chromodynamics scaleLQCD, which is in the range 200±
300 MeV [42, Section 9]. If an e�eÿ pair is produced, q̂ � me,
because the contribution from the q? > me region is suppressed
by a power-law function.

A more rigorous derivation of the q̂ value involves proton
form factors. The Dirac form factor of a proton is [43]

F1�q 2� � GE�q 2� � tGM�q 2�
1� t

; �A:1�

where t � ÿq 2=4m 2
p , GE is the electric form factor, GM is the

magnetic form factor,

GE�q 2� � 1

�1ÿ q 2=L2�2 ; �A:2�

GM�q 2� � mp
�1ÿ q 2=L2�2 ; �A:3�

mp � 2:79 is the magnetic moment of the proton, and
L2 � 0:71 GeV2. Equation (A.1) can be represented as

F1�q 2� � GD�q 2�
�
1� � mp ÿ 1� t

1� t

�
; �A:4�

where GD�q 2� � GE�q 2� is the dipole form factor. Because
ÿq 2 � q 2

? cannot be significantly larger than L2
QCD, t5 1,

and the contribution of the magnetic form factor can be
neglected. The derivation of Eqn (1) for the momentum
distribution of equivalent photons in accordance with [34,
æ 99] taking the form factor into consideration yields

ndipole�q� d3q � a
p2

q 2
?

oq 4

�
1ÿ q 2

L2

�ÿ4
d3q

� a
p2o

q 2
?

�o2=g2 � q 2
?�2
�
1� 1

L2

�
o2

g2
� q 2

?

��ÿ4
d3q: �A:5�

The equivalent-photon spectrum is

ndipole�o� do � 2p
�1
0

ndipole�q�q?dq?do

� a
p

�
�4a� 1� ln

�
1� 1

a

�
ÿ 24a 2 � 42a� 17

6�a� 1�2
�
do
o
; �A:6�

where a � �o=Lg�2. This functionmonotonically decreases as
o increases. In the low-energy region o5Lg that contains
most of the photons,

ndipole�o� do ÿ!
a!0

a
p

�
2 ln

Lg
o
ÿ 17

6

�
do
o

: �A:7�

A comparison of this formula with Eqn (2) for Z � 1 yields

q̂ � L exp

�
ÿ 17

12

�
� 200 MeV ; �A:8�

a value that agrees well with the assumption made that
q̂ � LQCD.

The structure of a heavy nucleus form factors is more
involved. The most accurate description of the 208Pb form
factor seems to be provided by the Fourier-transformed
Bessel-function expansion of the charge density in the
nucleus as a function of distance from the center [44]:

r�r� �
PN

n�1 anj0

�
npr
R

�
; r4R ,

0 ; r5R ,

8<: �A:9�

where j0�x� � sin x=x is the spherical Bessel function of the
zeroth order, and the values of the parameters an and R are
displayed in Table 4. The corresponding form factor has the
form

FFourierÿBessel�q 2� �
�
r�r� exp �i qr� d3r�

r�r� d3r

� sin qR

qR

XN
n�1

�ÿ1�nan
n 2p2 ÿ q 2R 2

�XN
n�1

�ÿ1�nan
n 2p2

�ÿ1
: �A:10�

The form factor of a heavy nucleus is often approximated
with the monopole formula

Fmonopole�q 2� � 1

1ÿ q 2=L2
: �A:11�

The corresponding spectrum of equivalent photons is

nmonopole�o� do

� Z 2a
p

�
�2a� 1� ln

�
1� 1

a

�
ÿ 2

�
do
o

: �A:12�

In the low-energy region,

nmonopole�o� do ÿ!
a!0

Z 2a
p

�
2 ln

Lg
o
ÿ 2

�
do
o

; �A:13�

yielding

q̂ � L exp �ÿ1� : �A:14�
ForL � 80MeVused in [38±40], we obtain q̂ � 30MeV. This
value ofL seems to describe outdated data, however. Figure 6
shows a comparison of the monopole form factor with
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L � 80 MeV and form factors calculated using the Fourier±
Bessel expansion parameters that have been selected in such a
way that they describe experimental data available in 1987
[36] and 1995 [37] (see Table 4). For comparison, the same
figure displays the monopole form factor with the parameter
L � 50 MeV (q̂ � 18 MeV).

Appendix B. Pseudorapidity cutoff

To take into account the pseudorapidity cutoff, the ratio of
photon energies x � o1=o2 should be expressed in terms of
the invariant mass of the muon pair s, the muon transverse
momentum pT, and the muon pseudorapidity Z. A collision of
two photons with energies o1 and o2 is shown in Fig. 7. This
collision produces m� with a momentum p� and mÿ with a
momentum pÿ. It is assumed in what follows that pT 4mm

and the muon mass mm can be neglected; this is true for the
experiments considered in this review.

The energy±momentum conservation law yields

p�T � ÿpÿT � pT;

o1 � o2 �
������������������
p 2
T � p�2k

q
�

������������������
p 2
T � pÿ2k

q
;

o1 ÿ o2 � pÿk ÿ p�k :

8>><>>: �B:1�

The last two equations can be re-written in terms of the
transverse momentum pT and scattering angles y1 and y2:

pT
sin y1

� pT
sin y2

� o1 � o2 ;

pT
tan y1

ÿ pT
tan y2

� o1 ÿ o2 :

8><>: �B:2�

The scattering angles and pseudorapidity are related as

Zi � ÿ ln tan

�
yi
2

�
; i � 1; 2 ; �B:3�

whence,

cosh Z1 � cosh Z2 �
o1 � o2

pT
;

sinh Z1 ÿ sinh Z2 �
o1 ÿ o2

pT
:

8>><>>: �B:4�

We now eliminate Z2 from this set of equations. We then
have

exp �2Z1� ÿ
2o1

pT
exp �Z1� �

o1

o2
� 0 : �B:5�

Having substitutedo1�
����������
sx=4

p
ando2�

����������
s=4x

p
, we arrive at

exp �2Z1� ÿ
�����
sx
p
pT

exp �Z1� � x � 0 : �B:6�

A solution of this equation for x is

x � exp �2Z1�
�1�

������������������������
1ÿ 4p 2

T=s�2
q
4p 2

T=s

� exp �2Z1�
1�

��������������������
1ÿ 4p 2

T=s
q

1�
��������������������
1ÿ 4p 2

T=s
q : �B:7�

Table 4. Parameters of the Fourier±Bessel expansion of the 208Pb form
factor.

Parameter [36]� [37]

R, fm
a1
a2
a3
a4
a5
a6
a7
a8
a9
a10
a11
a12
a13
a14
a15

11.0
0:62732� 10ÿ1

0:38542� 10ÿ1

ÿ0:55105� 10ÿ1

ÿ0:26990� 10ÿ2

0:31016� 10ÿ1

ÿ0:99486� 10ÿ2

ÿ0:93012� 10ÿ2

0:76653� 10ÿ2

0:20885� 10ÿ2

ÿ0:17840� 10ÿ2

0:74876� 10ÿ4

0:32278� 10ÿ3

ÿ0:11353� 10ÿ3

12.5
1.4396

ÿ4:1850� 10ÿ1

ÿ9:1763� 10ÿ2

6:8006� 10ÿ2

2:6476� 10ÿ2

ÿ1:5307� 10ÿ2

ÿ7:1246� 10ÿ3

2:7987� 10ÿ3

2:3767� 10ÿ3

ÿ1:0125� 10ÿ3

ÿ2:5836� 10ÿ4

6:4297� 10ÿ5

6:5528� 10ÿ5

1:4523� 10ÿ5

ÿ1:4430� 10ÿ5

* Two sets of parameters are reported in [36]. The corresponding form
factors almost coincide.
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Figure 6. (Color online.) Published 208Pb form factors and their approx-

imations. The solid black curve and dashed red curve represent the form

factors described in terms of Fourier±Bessel expansion (A.10). The

expansionparameters an andR for the solidblack curve are taken from [37],

while for the dashed red curve, data from [36] are used. The blue dashed-

dotted and green dotted lines are plotted formonopole form factors (A.11)

with the respective parameters L � 50 MeV and L � 80 MeV.
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Figure 7. Reaction gg! m�mÿ.
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If Z1 varies within the range from ÿẐ to Ẑ, x varies within the
following limits:

exp �ÿ2Ẑ�
1�

��������������������
1ÿ 4p 2

T=s
q

1ÿ
��������������������
1ÿ 4p 2

T=s
q < x < exp �2Ẑ�

1�
��������������������
1ÿ 4p 2

T=s
q

1ÿ
��������������������
1ÿ 4p 2

T=s
q ;

exp �ÿ2Ẑ�
1ÿ

��������������������
1ÿ 4p 2

T=s
q

1�
��������������������
1ÿ 4p 2

T=s
q < x < exp �2Ẑ�

1ÿ
��������������������
1ÿ 4p 2

T=s
q

1�
��������������������
1ÿ 4p 2

T=s
q :

8>>>>>>>><>>>>>>>>:
�B:8�

To satisfy both conditions Z1 < jẐj and Z2 < jẐj, an overlap of
these ranges should be selected. Therefore,

1

x̂
< x < x̂; x̂�exp �2Ẑ�

1ÿ
��������������������
1ÿ 4p 2

T=s
q

1�
��������������������
1ÿ 4p 2

T=s
q : �B:9�

If these inequalities are used to determine the integration
domain for the equivalent-photon spectrum, it must be
checked that the photon energy does not exceed the cutoff
energy q̂g:

x̂ <
�2q̂g�2

s
: �B:10�

This inequality always holds for the pp�gg� ! ppm�mÿ

reaction with constraints on the phase space imposed in [30].
However, in the case of the PbPb �gg� ! PbPb m�mÿ reac-
tion considered in [31], this inequality imposes an additional
constraint on x, which should be taken into account in
calculating the experimental cross sections using the equiva-
lent photon approximation in the leading logarithmic
approximation with a q̂ cutoff.

Appendix C. Survival factor

It is well known that the distribution of equivalent photons in
Eqn (2) can be found when considering the electromagnetic
field generated by a rapidly moving charged particle. A
solution of the Maxwell equations for the electromagnetic
field of an ultrarelativistic particle moving along the z axis has
the form [45, (33.2.3)]

E?�r; t� � ÿ iZeg

�2p�3
�
q?
q 2

exp
�
iq?r� igqz�zÿ vt�

�
d3q ;

H�r; t� � v� E�r; t� ; �C:1�

where E�r; t� andH�r; t� are the electric and magnetic fields at
the point r at the moment t, E? is the component of E
perpendicular to the z axis, v is the particle velocity, and q is
the Fourier transformation parameter.

The electric field component oriented along the z axis is
not enhanced by the factor g. Therefore, if g4 1, the
condition E?4Ez holds, and the electric field is almost
entirely transverse, as it should be in the case of real
photons. Equation (C.1) is therefore an expansion of the
electromagnetic field into monochromatic plane waves with
frequencies o � vgqz � gqz that move along the z axis.

The total flux of electromagnetic energy along the z axis is
given by the component of the Poynting vector

Pz �
�
d2b

�1
ÿ1

dt �E�H �z ; �C:2�

where b � r? is the impact parameter of point r. The quantity
Pz is equal to the total energy of equivalent photons:

Pz �
�1
0

o n�o� do : �C:3�

Substitution of expansion (C.1) in Eqn (C.2) yields

Pz �
�
d2b

�
dt �E 2

x � E 2
y �

� Z 2e 2 g 2

�2p�6
�
d2b dt d3q d3q 0

ÿqxq 0x ÿ qyq
0
y

q 2q 0 2

� exp
�
ix �qx � q 0x� � iy �qy � q 0y�

� ig �zÿ vt� �qz � q 0z�
�
F �q2�F �q 0 2� ; �C:4�

where the charged-particle form factor is taken into account.
Integration with respect to d2b and dt results in three delta-
functions that are used to integrate with respect to d3q 0. We
thus arrive at the formula

Pz � Z 2ag
2p2

�
q2? F

2�q2? � o2=g2�
�q2? � o2=g2�2 d3q : �C:5�

Changing from the integration variable qz to o and compar-
ing the derived formula with (C.3), we obtain

n �o� do � Z 2a
p2

�
q2? F

2�q2? � o2=g2�
�q2? � o2=g2�2 d2q?

do
o

; �C:6�

where an additional factor of 2 emerges because if qz varies
fromÿ1 to�1, the variableo spans the region �0;1� twice.
Equation (C.6) differs from formula (2) by taking the form
factor into account.

To introduce the survival factor, the integral with respect
to d2b in (C.4) must be calculated last. We define the density
of photons in the impact parameter space n �b;o� as

n �o� �
�
n �b;o� d2b : �C:7�

Integrating (C.4) over dt and integrating over dq 0z using the
delta-function, we obtain

n �b;o� � Z 2a
4p4o

�
d q?dy

q?F �q 2
? � o2=g2�

q 2
? � o2=g2

�
�
dq 0?dy

0 q 0?F �q 0 2? � o2=g2�
q 0 2? � o2=g2

�ÿq?q 0?� cos �yÿ y 0�

� exp �ibq? cos y� exp �ibq 0? cos y 0� ; �C:8�

where y is the angle between q? and b and y 0 is the angle
between q 0? and b.

Using the integral representation of the Bessel function�2p
0

cos y exp �ia cos y� dy � 2 ip J1�a�;
�2p
0

sin y exp �ia cos y� dy � 0 �C:9�
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and the formula cos�yÿ y 0� � cos y cos y 0 � sin y sin y 0, we
obtain

n �b;o�� Z 2a
p2o

� �
dq?q 2

?
F �q 2

? � o2=g2�
q 2
? � o2=g2

J1 �bq?�
�2
: �C:10�

A transition from (C.10) to (C.6) via (C.7) can easily be
performed using the equality�1

0

J1 �ax� J1 �bx� x dx � 1

a
d �aÿ b� : �C:11�

For a standalone particle, its finite transverse size is
taken into account by the form factor F, which tends to
zero as the transverse momentum q? increases. However, if
an ultraperipheral collision of two charged particles is
considered, we should require that the collision is indeed
ultraperipheral, i.e., that the particles remain intact after the
collision. In the case of high-energy hadrons, the particles
can be approximated with black discs. Then the collision is
ultraperipheral if the inequality b � jb1 ÿ b2j > 2R is satis-
fied, where R is the transverse radius of a proton or a
nucleus. To make the description more accurate, a function
P�b� can be introduced that is the probability that scattering
with the impact parameter b is elastic. The cross section of
state X production in ultraperipheral collisions then takes
the form

s�NN! NNX� �
�1
0

do1

�1
0

do2 s �gg! X�

�
�
d2b1

�
d2b2 n �b1;o1� n �b2;o2�P �jb2 ÿ b1j� ; �C:12�

where N denotes the colliding particles and s�gg! X� is the
X production cross section in the collision of two photons.
For pointlike particles, P�b� � 1 and

s �NN! NNX�

�
�1
0

do1

�1
0

do2 s �gg! X� n �o1� n �o2� : �C:13�

(The difference between Eqns (C.13) and (3) is that integrals
with respect tooi are cut off in (C.13) by form factors, while in
Eqn (3) they are cut off by introducing the parameter q̂.) The
survival factor is defined in [35] as

S 2
gg �

�
b1>R

�
b2>R

n �b1;o1� n �b2;o2�P �jb2 ÿ b1j� d2b1 d2b2�
b1>0

�
b2>0

n �b1;o1� n �b2;o2� d2b1 d2b2
;

�C:14�

where R is the radius of colliding particles. Because the form
factor F�q 2

? � o2=g2� cuts off the integral in Eqn (C.10) at
large q? or small b, integration in the numerator should not
additionally exclude regions where b1 or b2 is small. There-
fore, we propose the following formula for the survival factor
of ultraperipheral scattering:

S 2
gg �

�
b1>0

�
b2>0

n �b1;o1� n �b2;o2�P �jb2 ÿ b1j� d2b1 d2b2
n �o1� n �o2� :

�C:15�
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