
Abstract. We discuss spin excitations in a degenerate 2D elec-
tron gas in a perpendicular quantizing magnetic field: spin-wave
and `Goldstone' excitons in a quantum Hall ferromagnetic
(filling factor m� 1), and spin-cyclotron excitons in a quantum
Hall insulator (m� 2). The latter exhibit record-setting long
lifetimes, up to 1 ms, owing to which a transition to a basically
new collective state, a magnetofermionic condensate, is obser-
vable at temperaturesT< 1 K. The condensate's propertiesmay
be explained in terms of a coherent state being formed due to the
emergence of a dense ensemble of photoexcited long-lived spin-
cyclotron excitons obeying Bose statistics in a nonequilibrium
system of 2D fermions.

Keywords: magnetoexcitons, quantum Hall insulator, quan-
tumHall ferromagnet, collective excitations, magnetofermio-
nic condensate

1. Introduction

Almost all recent innovative achievements in solid state
technologies are based in one way or another on the creation

of new materials and material systems (quasi-two-dimen-
sional, quasi-one-dimensional, and quasi-zero dimensional
heterostructures, layered structures, carbon low-dimensional
systems, etc.) or the development of new physical approaches
to seemingly known phenomena (superconducting and
semiconductor qubits, single-photon radiation sources,
quantum cryptography, etc.).

A great amount of recent attention of researchers has been
devoted to spintronicsÐ the field of technological applica-
tions involving the manipulation of the spin degree of
freedom [1]. Magnonics based on using spin waves (mag-
nons) for manipulations and transfer of signals has also been
developed [2]. Even more exotic applications assume the
involvement of vortex spin excitations, skyrmions, in spin
dynamics. Experimental studies on the control of skyrmions
and measurements of their mass and mean free path have
appeared [3]. It is expected that nondissipative spin transport
can be achieved in a system of skyrmions.

The study of spin-dependent phenomena in two-dimen-
sional electron systems (2D ESs) is attracting great interest
due to the widening possibility of developing new devices for
manipulating electron spins. An electron can be in two spin
states, which is very convenient for coding data bits. The
control of electron spin states can be used in the future to
create high-speed logic gates and memory arrays with low
energy consumption and great information capacity.

One of the most interesting ideas of spintronics is the
creation of a spin transistor based on the control of the spin
precession of charge carriers by an external electric field using
the modulation of the spin-orbit interaction energy by a gate
voltage [4]. The fundamental possibility of controlling the
spin polarization by an electric field couldmake an invaluable
contribution to the development of spintronics. However, this
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beautiful idea has not been fully realized in practice so far,
despite its attractiveness, in particular because of problems
related to the fast relaxation of spin excitations.

Single-particle spin relaxation channels are determined by
the presence or absence of inversion symmetry in an electron
system. For symmetric systems, the main one is the Elliot±
Yafet relaxation mechanism, and for nonsymmetric systems
it is the D'yakonov±Perel' mechanism. These two relaxation
mechanisms were recently combined within the framework of
a unified theory in papers [5, 6], which gives grounds to expect
the appearance of a more general theory considering a
quantizing magnetic field and many-particle Coulomb inter-
action. A reduction in the system's dimensionality (quantum
confinement) and a quantizing magnetic field substantially
reconstruct a single-particle energy spectrum, making it
effectively zero-dimensional. In this case, standard single-
particle relaxationmechanisms are suppressed, resulting in an
increase in the spin relaxation time. Simultaneously, new
mechanisms arise which, in turn, reduce the spin relaxation
time. For example, spatial fluctuations of the external
electrostatic potential not only lift the degeneracy of Landau
levels but also cause weak and smooth spatial fluctuations of
the g-factor. The latter, however, can be sufficient to produce
a dephasing of coherent spin precession with respect to the
magnetic field, because electron spins at different spatial
points precess at different rates.

Fundamentally new spin relaxation channels appear when the
Coulomb interaction between particles is taken into account.
Although the transport, optical, and magnetic phenomena in
strongly correlated 2D ESs have been well studied, so far no
definite physical model of spin relaxation in quantizing magnetic
fields has been developed, which is explained by a great number of
competing spin relaxation mechanisms and the difficulty of
describing the influence of the Coulomb interaction on relaxation
mechanisms. On the one hand, two-dimensionality substantially
increases the spin-orbit interaction for conduction electrons in
GaAs=AlxGa1ÿxAs heterostructures. 1 On the other hand,
Coulomb correlations dramatically reconstruct the energy
spectrum, which can result in deceleration of the spin
relaxation rather than its acceleration. Spin relaxation times
measured by indirect transport and optical methods vary in a
very broad range [7±10], which complicates the choice of a
certain relaxation mechanism for explaining the experimental
data available.

Nevertheless, this question has been attracting theoretical
interest for a long time (see, for example, paper [11], in which
Coulomb correlations were disregarded). Later, the spin
relaxation was theoretically investigated mainly in a quan-
tum Hall ferromagnet [12±14] formed after the filling by
electrons of one Landau spin sublevel (the electron filling
factor n � 1; 3; . . .) and recently in a quantum Hall insulator
[15] formed upon the complete filling of Landau levels by
electrons (n � 2; 4; . . .).

A quantum Hall ferromagnet is, in fact, a test system for
studying the influence of the Coulomb interaction (both direct
and exchange) on the spin excitation spectrum, because the
agreement between experimental data and theoretical calcula-
tions describing the spectrum of excited states proves to be so
close that it is often within the experimental error [16]. In this
case, the multiparticle Coulomb interaction is included in the
theory directly ab initio without using any models (applied in

the theory of usual `classical' magnetics). Therefore, for
example, the study of a nonequilibrium spin system in a
quantum Hall ferromagnetic is the most direct method for
estimating the influence of multiparticle Coulomb correla-
tions on the spin relaxation in 2D ESs.

The main theoretical approach for solving problems
discussed in this review is the exciton representation (ER)
method. The idea, which was proposed by L V Keldysh back
in the 1960s [17±20], consists of passing from the single-
particle basis set of states of the ideal gas to the basis of single-
exciton states created by the action of exciton operators on a
conditional vacuum (i.e., the ground state). This transforma-
tion is sometimes called bosonization, because the exciton gas
actually obeys the Bose statistics. At the same time, exciton
operators themselves are neither bosonic nor fermionic. They
represent a sum of two operators, each of them, in turn, being
a product of the electron and hole Dirac creation operators.

In due time, the idea of the exciton basis applied to
problems related to classical semiconductors was not devel-
oped for a number of reasons, whose explanation is irrelevant
here. However, this idea was revived in the 1980s, when the
study of two-dimensional electron-hole ensembles in strong
magnetic fields began to attract interest [21, 22]. An exciton
operator applied to quantum Hall systems represents a
certain `correct' combination of the products of the electron
annihilation operator in a state below the Fermi level and the
electron creation operator in a state above the Fermi level.

The basis states of the ER are magnetoexcitons, which
were considered for the first time for a 3D space by
L P Gor'kov and I I Dzyaloshinskii [23]. Magnetoexcitons
in a quantum Hall system are excitations in the conduction
band formed by an electron vacancy at the lower Landau
level, i.e., below the Fermi level (hereafter for brevity, a Fermi
hole), and an electron in some other state (orbital or spin)
with a higher energy. While in the basis of single-particle
states only the single-particle part of the system Hamiltonian
is diagonal, in the basis of exciton states a considerable part of
the Coulomb interaction Hamiltonian is also diagonalized.

In a certain sense, the exciton representation for the
Coulomb interaction is a `correct' basis set for zero-order
approximation. In particular, exciton basis states are classi-
fied by a natural quantum number, the wave vector of a
magnetoexciton, i.e., an invariant appearing because of the
translation symmetry of the system in a homogeneous
magnetic field [23]. The degeneracy of the basis proves to be
lifted to a considerable degree (only the degeneracy over the
wave-vector directions remains).

The exciton representation has a number of other obvious
advantages. It is independentof theparticular calibrationof single-
electron wave functions in a magnetic field. The four-operator
Coulomb interaction Hamiltonian transforms into the two-
operator expression. This representation gives eigenstates in the
explicit form, allowing us to calculate the matrix elements of
transitions with the help of some quite definite commutative Lie
algebra for exciton operators, thereby finding the probabilities of
various kinetic processes in an electron (exciton) gas. 2 Finally,
exciton states or their combinations in many important cases
are asymptotically exact eigenstates of the Hamiltonian of a

1 GaAs=AlxGa1ÿxAs structures are the most interesting for verifying the

spin relaxation theory in strongly correlated high-mobility 2D systems.

2 These transitions may be related, for example, to the `interexciton'

interaction due to the presence of `exciton-nondiagonalized' terms in the

Coulomb Hamiltonian and to the electron±phonon, electron±impurity,

and other interactions, which are renormalized, respectively, to exciton±

exciton, exciton±phonon, exciton±impurity, etc. interactions.
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quantum Hall system in the first approximation with respect
to the Coulomb interaction.

Note that the commutation algebra of exciton operators is
not related to bosons, which can be associated with the
appearance of some `kinematic' interaction between excitons
not related to the Coulomb (i.e., dynamic) interaction, but
explained, of course, by the Fermi nature of an electron and a
hole forming a magnetoexciton [24]. In a `diluted' gas of
magnetoexcitons, whose number is much smaller than the
number of states at the Landau level, we can ignore in the
zeroth-order approximation both kinematic and dynamic
interactions, but consider them perturbative in problems
related, for example, to the scattering of magetoexcitons by
each other or in external fields (by phonons or a random
electrostatic potential existing in a quantum well [see, for
example, Section 3 and references therein]).

At the same time, problems concerning calculations of the
magnetoexciton energy determined by the Coulomb interac-
tion require, of course, the use of exact commutation relations
for exciton operators. This makes it possible to calculate in
some important cases the excitation energy in such a strongly
correlated multiparticle system, which is determined even by
the second-order Coulomb interaction (see Section 5 and
references therein). The exact commutation algebra is also
used in studies of a magnetoexciton condensate, i.e., when a
macroscopically large number of excitations are in the same
state with the same wave vector. Such calculations were first
performed for a condensate in a conditional symmetric two-
component electron-hole system [25]. Magnetoexciton con-
densates are considered in Sections 6 and 8.

In the theory of a quantumHall ferromagnet (n � 1), as in
the case of a usual exchange ferromagnet described, for
example, by the Heisenberg Hamiltonian, the deviation of a
spin system from equilibrium can be microscopically repre-
sented as the appearance of spin excitations. These excitations
are, for example, spin waves (Bloch magnons in an exchange
ferromagnet [26]) reducing by unity the total spin S of the
system and the component Sz directed along the magnetiza-
tion axis. At the same time, if the wave vector of a spin wave/
magnon is strictly zero, such an excitation becomes qualita-
tively different, still changing the component Sz by unity, but
preserving the total spin. This property is common tomagnets
of all types and is independent of the method used to describe
the interaction: either with the help of the total Coulomb
Hamiltonian or by a model with the Heisenberg operator.
The spin-wave creation operator for the wave vector k � 0 is
equivalent simply to the total operator Sÿ � Sx ÿ iSy [26],
while the excitation itself causes the transition to the eigenstate
of the system with the previous orbital wave function but with
the spin globally deviated from the magnetization axis,
because now S > Sz.

The simplest excitation in a quantum Hall ferromagnet
(n � 1) consists of a Fermi hole at the filled lower spin
sublevel of the zero Landau level and an electron with the
opposite spin excited up to the unfilled upper spin sublevel of
the same Landau level. This is just the case corresponding to
spin-wave excitation, i.e., for the nonzero wave vector, both
the total spin of the electron system and its projection on the
magnetic field direction decrease by unity.

The appearance of a spin wave with a strictly zero
momentum similarly changes the spin projection on the
magnetic field direction but preserves the total spin of the
electron system. Such a `zero' spin magnetoexciton corre-
sponds to elementary excitation describing the global devia-

tion of the total spin of the electron system from the magnetic
field direction by some angle. For a macroscopically large
number of excited `zero' spin magnetoexcitons or even for a
superposition of states with different numbers of `zero'
magnetoexcitons, the orbital state of a quantum Hall system
does not change. However, the macroscopic state represents a
Goldstone modeÐ the deviation of the total spin by some
angle from the direction ẑ (see [13] and the beginning of
Section 4).

We will call `zero' spin magnetoexcitons Goldstone
excitons (XG) and denote spin-wave excitons by Xq. The spin
relaxation process in both cases can be described in terms of
annihilation of spin magnetoexcitons. In experiments related
to the creation of nonequilibrium systems using optical
methods, a situation is realized in which the total spin of the
electron system is always directed along themagnetic field, but
its value differs from the spin of the equilibrium system. In
this case, the number of Goldstone excitons is, obviously,
negligibly small compared to the total number of spin (in fact,
`nonzero' spin-wave) magnetoexcitons in the system.

The relaxation or annihilation process of spin-wave magne-
toexcitons is determined by the Rashba and Dresselhaus spin-
orbit interactions. In addition, these processes highly depend on
a long-wavelength random potential, which is always present in
2D systems. Therefore, studies of relaxation problems for
localized and delocalized spins should be separated.

Theoretical estimates of the relaxation time of spin
excitations in a quantum Hall ferromagnet vary from a few
hundred nanoseconds to a few tens of microseconds. In
addition, these estimates were not consistent with indirect
experimental data giving relaxation times not exceeding 10 ns.
Such a drastic discrepancy between theory and experiment
can be explained by the fact that spin relaxation times were
not directly measured in experiments where only the dephas-
ing time of the spin precession was estimated, which can be
considerably shorter than the energy relaxation time related
to the change in the Zeeman energy.

Electron excitations in the theory of a quantum Hall
insulator (n � 2) are magnetoexcitons formed by an excited
electron at the first unfilled Landau level and a Fermi hole
(electron vacancy) at the completely filled zero Landau level.
The excitation spectrum of a quantumHall insulator contains
two types of magnetoexcitons: a spin-singlet magnetoexciton
with zero total spin and a cyclotron spin-triplet magnet-
oexciton with a total spin of unity. A spin-singlet magnetoex-
citon is nothing but a magnetoplasmon (spinless excitation)
with energy at the zerowave vector equal to the single-particle
cyclotron energy, according to the Kohn theorem [27, 28].

At the same time, the components of a triplet spin exciton
(for which S � 1 and Sz � ÿ1; 0;�1) are separated from each
other by the Zeeman gap. Note that for the zero wave vector
(q � 0) and even for other actual values q91=lB (where
lB �

�������������
�hc=eB

p
is the magnetic length), the entire triplet in

GaAs=AlxGa1ÿxAs proves to be lower than the unfilled
Landau level, i.e., its energy is smaller than the cyclotron
gap by some additional `coupling energy' determined by
Coulomb correlations in 2D ESs [29±31].

The negative `Coulomb shift' allows one to assume that
the component of such a spin-cyclotron exciton correspond-
ing to Sz � �1 is the lowest-energy 3 excitation for n � 2.

3 This is a component with the positive projection Sz on the magnetic field

direction (which we assume to be positive), because the electron g-factor in

GaAs is negative.
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Unlike a magnetoplasmon, a spin-cyclotron exciton is
optically inactive. It represents the so-called dark exciton
because its radiative recombination is spin-forbidden. Never-
theless, using resonance interband transitions, namely,
dipole-allowed optical transitions between the discrete states
of heavy holes in the valence band (corresponding to Landau
levels with numbers nL > 1) and electron states in the
conduction band, it is possible to create a nonequilibrium
ensemble of such magnetoexcitons [32].

The change in the spin in 2D ESs is mainly caused by the
spin flip of a photoexcited hole due to a strong spin-orbit
interaction in the valence band of GaAs. During the
subsequent transformation of the photoexcited heavy hole
from the valence band to a Fermi hole of the electron system,
which occurs due to recombination of electrons from the zero
filled Landau level with the photoexcited hole of the valence
band, the electron system changes its spin. Since the direct
relaxation of spin-cyclotron excitons to the ground state
followed by the simultaneous change in orbital and spin
quantum numbers is forbidden, the lifetime of these excita-
tions becomes extremely long [15]. These times exceed the
recombination times of a photoexcited hole by approximately
107 times (in a standard 2D ES, they are about 100 ps).
Because of such long lifetimes, it is possible to produce the
high densities of nonequilibrium spin-cyclotron excitons of
� 1010 cmÿ2 with the help of comparatively low-power
continuous photoexcitation. 4

Spin-cyclotron excitons are purely electron excitations,
but they can be called composite bosons because they have the
integer spin (S � 1) and follow in fact the Bose statistics: a
macroscopically large number of excitons can be found in one
quantum state. In a collective of spin-cyclotron excitons, the
formation of nonequilibrium boson condensates, which were
formally studied already in [33], could be expected. However,
it is known that thermal fluctuations in two-dimensional (and
one-dimensional) spatially infinite systems destroy the long-
range order at any arbitrarily low but finite temperature [34,
35]. For this reason, a Bose condensate in such systems can
exist only at T � 0, which is of no more than theoretical
interest.

Nevertheless, thermal fluctuations in the 2D case do not
destroy completely the long-range order. Spatial electron±
electron correlations are preserved, although they decrease
with distance not exponentially, as in a gas phase, but
according to a power law. This proves to be sufficient for a
transition to a new phase which can exhibit superfluidity at a
finite temperature. The superfluidity effect in 2D systems
without Bose condensate formation was predicted by Bere-
zinskii [36, 37] and, independently, later by Kosterlitz and
Thouless [38] (the Berezinskii±Kosterlitz±Thouless (BKT)
transition). According to the theory, the transition to the
superfluid state in this case is caused by the formation of
topological defects: vortex±antivortex pairs. By now, the
BKT transition has been observed in many quasi-two-
dimensional systems: liquid helium films [39, 40], Josephson-
contact arrays [41], cooled atomic gases [42, 43], and a gas of
interacting exciton polaritons [44]. A high-density ensemble
of spin-cyclotron excitons in a quantumHall insulator (n � 2)
at temperatures below 1Kmay be another example of a dense
Bose system in a degenerate two-dimensional Fermi gas

demonstrating collective Bose properties along with elec-
tron±electron bilayers [45].

Note that the search for Bose±Einstein condensates is one
of the central focuses in modern physics, first and foremost in
condensed state physics. Although nontrivial phase transi-
tions in solids that can be treated as transitions to a condensed
state have been observed in many experiments, the reliably
established cases of Bose±Einstein condensate formation are
not numerous.

Condensate states can be divided into two fundamental
groups. One of them is determined by the phase transition in
the ground, thermodynamically equilibrium state, as, for
example, in superfluid 4He. At present, however, special
interest is attracted by so-called nonstationary conden-
satesÐ systems disturbed from equilibrium by an external
action. Although the detailed equilibrium in such systems is
not established, they can, in turn, be divided intomacroscopic
subsystems in which local (dynamic) `quasi-equilibrium'
appears and nonequilibrium subsystems can be in the `quasi-
equilibrium' state long enough to use the concept of
temperature, while Bose±Einstein condensation could occur
in the subsystem itself. Quasi-equilibrium systems include
exciton-polariton condensates [46], the Bose condensate of
three-dimensional magnons [47], atomic Bose condensates
[48, 49], Bose condensates of 2D magnetoexcitons [33, 50],
and spatially indirect dipolar excitons [51±53].

Fermion condensates, which take a special place among
condensate states, can also be divided into thermodynami-
cally equilibrium superconductors (including high-tempera-
ture superconductors), 3He [54], the state with the total filling
factor n � 1 in double electron layers [45], and nonequili-
brium systems such as a condensate of cooled 40K atoms
initially following the Fermi statistics [55].

In this review, we discuss a condensate in a system of 2D
fermions (2D electrons in the conduction band) disturbed
from equilibrium due to the formation of an ensemble of
long-lived spin-cyclotron excitonsÐcomposite excitations
with the Bose statistics.

Note that purely electron magnetoexcitons of all types
considered here also possess electron-hole symmetry: the
mass and charge of the excited electron are equal to the
mass and charge (with the opposite sign) of the effective
Fermi hole. Thus, the spatial transfer of magnetoexcitons
involves neither the charge transfer nor the mass transfer
(the local electron density does not change during the
transfer process) but is related only to the magnetoexciton
excitation energy and spin transfer. Upon condensation of
such excitations into a coherent collective state, a nondissi-
pative propagation of the spin over macroscopic distances
can be expected. The experimental study of the nondiffusion
spreading of a magnetoexciton condensate is discussed in
Section 8.

In this review, we discuss optical methods that we
developed to form dense ensembles of spin excitations and
to measure their relaxation times in a quantum Hall
ferromagnetic (n � 1) and a quantum Hall insulator (n � 2).
The formation of dense boson subsystems of spin excitations
in a strongly correlated 2D ES is considered. The main
research methods are resonance Rayleigh scattering, photo-
induced resonance reflection, and photoluminescence.
Because neither of these methods can be applied for studying
the relaxation of Goldstone excitons in a quantum Hall
ferromagnet (n � 1), their relaxation times were measured
by the method of time-resolved Kerr rotation [56].

4 The power is low compared to that required for heating a 2D ES to a

temperature exceeding the GaAs lattice temperature.
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2. Rayleigh scattering of light
by two-dimensional electrons
in a strong magnetic field

Since its very discovery, Rayleigh scattering [57] has been one
of the most powerful spectroscopic methods for studying the
local properties of inhomogeneous media [58], in particular,
for determining the critical fluctuations of the order para-
meter during phase transitions in liquids and solids [59]. In
resonance Rayleigh scattering (RRS), when the scattered
light energy coincides with the energy of the allowed optical
transition, the scattering cross section drastically increases.
Resonance Rayleigh scattering at magnetoexciton transitions
is successfully used to study inhomogeneously broadened
optical transitions in quantum wells (QWs) [60±62]. The
RRS method was recently applied for observations of new
correlated phases in the ground state of 2D ESs [63±65].

Resonance Rayleigh scattering was used for the first time
in [66] tomeasure the spin polarization of electrons in 2DESs.
The RRS and photoluminescence (PL) spectra were obtained
using the two-beam method (see the inset in Fig. 1a). The
radiation from a Ti-sapphire laser was delivered through a
fiber onto a sample placed in a helium cryostat. The second

fiber collected Rayleigh scattering and PL signals and
delivered them to a spectrometer. Measurements were
performed at temperatures from 0.4 to 4.2 K in magnetic
fields from 0 to 14 T. A set of samples with high quality doped
single GaAs=AlxGa1ÿxAs QWs with the same width of 19 nm
was studied. The electron concentration ne in the QWs was
varied in the range of �0:5ÿ2:4� � 1011 cmÿ2 with the
mobility me � 5�106 cm2 Vÿ1 sÿ1. The electron density was
measured by the PL signal from the 2D ES.

In the measurement of RRS, the contribution of scatter-
ing from the sample surface was suppressed with the help of a
pair of crossed linear polarizers placed between the ends of
the fibers and the sample. Because the polarization of photons
scattered by the surface is the same as for exciting photons,
while a 2D ES in a magnetic field absorbs (emits) circularly
polarized light due to the breakdown of time reversal
symmetry, the signal of linearly polarized nonresonance
Rayleigh scattering from the sample surface decreased by
almost two orders of magnitude. To remove the remnants of
Rayleigh scattering from the sample surface, thereby addi-
tionally suppressing the background signal of nonresonance
Rayleigh scattering, a differential method was used. A sample
under study was irradiated by an He-Ne laser, reducing the
electron density [62]. The He-Ne laser radiation was tuned so
that RRS lines for the photodepleted and nondepleted states
do not overlap. By subtracting one signal from another, it was
possible to increase the signal-to-noise ratio by a further order
of magnitude (Fig. 1c).

Photoluminescence and RRS spectra have much in
common. However, a significant difference is that intermedi-
ate states are real for PL and virtual for RRS. In the lowest-
order perturbation theory, RRS corresponds to the absorp-
tion of a photon and the creation of a virtual electron-hole
(e±h) pair. Then, the e±h pair is annihilated, emitting a
scattered photon [67, 68]. Scattering of this type is possible
only for localized e±h pairs with the localization length L
much smaller than the wavelength l of scattered light, i.e.,
kkL5 1 (where kk is the projection of the photon wave vector
on the 2D ES plane). This condition is fulfilled for the
localized states of a 2D ES in a magnetic field [69]. In
addition, the condition lB 5L is fulfilled in a strong magnetic
field B. The value of L for most of the states at the Landau
level is in no way related to amagnetic field, being determined
by the correlation length of spatial fluctuations of a random
smooth potential inevitably present in the 2D channel of a real
semiconductor heterostructure. For this reason, the matrix
element of the radiative (dipole) transition to a virtual state
determined by the scaleL is independent of themagnetic field.
If localized states are distributed randomly, the RRS cross
section is proportional to the number of scattering states and
the probability of an individual process [67, 68].

Apart from the obvious light scattering process involving
localized electron states, Rayleigh scattering involving delo-
calized states is not forbidden either. The law of conservation
of momentum is fulfilled for the system, consisting of the
incident photon, the scattered photon, and 2D electrons, due
to Coulomb interaction of the electron of a virtual electron-
hole pair and electrons of the 2D gas. Therefore, Rayleigh
scattering involving delocalized states can be active only for
partially-filled electronic levels.

Experimental data [66] unambiguously indicate the
RRS mechanism in 2D ESs in quantizing magnetic fields.
Resonance Rayleigh scattering was studied in a 2D ES with
one partially filled spin sublevel of the zero Landau level at
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Figure 1. (Color online.) (a) Logarithm of the PL intensity for a 2DES in a

magnetic field.Magnetic fields determined fromPL spectra corresponding

to integer filling factors are indicated. The inset shows the geometry of

experiments. (b) The RRS amplitude measured in the same spectral and

magnetic field ranges as PL in Fig. 1a. The Ti:sapphire laser power density

is 10mW cmÿ2; the RRS spectra were recorded with an accumulation time

of 0.1 s. The inset shows an RRS spectrum for n � 1 with the correspond-

ing PL line. (c) The differential RRS signal amplitude. The inset shows a

differential RRS spectrum for n � 1 with the corresponding PL line.
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temperatures considerably lower than single-particle Zee-
man splitting EZ. The presence of the only intense Rayleigh
line with the participation of electronic states at the empty
upper spin Landau sublevel and the absence of scattering
with the participation of states at the partially filled lowest
spin Landau sublevel suggests that scattering occurs on
localized electrons. The decrease in the contribution to the
RRS intensity caused by the states at the upper spin
Landau sublevel with increasing temperature (Fig. 2a) is
explained by the partial filling of localized states at the
upper Landau level, while the appearance of scattering
caused by the states at the lower spin Landau sublevel is
related to the partial depletion of localized states at the
lower Landau level.

From relative integral intensities of two RRS lines from
two different spin states at the zero Landau level (Fig. 3) it is
possible to determine the spin polarization of electrons
ssp��n" ÿ n#�=n in the ultraquantum limit n4 2 [66] (here,
n"=# are filling factors for up/down spins at the zero Landau
level; n � n" � n#). Indeed, since the integrated intensities
(areas under RRS lines) are proportional to the number of
vacancies at spin sublevels of the zero Landau level, I" �
Cf"�1ÿ n"� and I#�Cf#�1ÿ n#� ( f" and f# are scattering cross
sections for corresponding transitions, which are assumed to
be constant because the RRS lines are narrow), we find

ssp � 2ÿ n
n

I# f" ÿ I" f#
I# f" � I" f#

:

Resonance Rayleigh scattering cross sections were obtained
directly in RRS experiments for a similar sample without
electrons in the conduction band of a QW (see the inset in
Fig. 3b), so that, to determine ssp, it is sufficient to know only
the ratio of f" and f#. In the magnetic field range from 8 to
14 T, this ratio changes linearly from 2.2 to 1.8. The spin
polarization ssp can be obtained from the known ratio f"=f#
(Fig. 4).

Thus, RRS can be used as a noninvasive optical method
for probing the spin polarization of 2D ESs [70]. This is very

important because, formeasuring the absorption or transmis-
sion of a 2D ES, a sample with a high-quality epitaxial
heterostructure grown on a single-crystal substrate should
be greatly modified [71, 72].
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Figure 2. (a) RRS spectra at three temperatures for n � 0:36. (b) Spin
polarization of delocalized 2D electrons as a function of temperature:

experiment (circles) and an analytic curve for the thermodynamic electron

distribution among spin sublevels � exp �ÿEZ=�kBT �� (solid curve).

1.530

E
n
er
gy

,e
V

In
te
n
si
ty

1.525

1.520

0

1.533 1.528
Energy, eV

Energy, eV
1.535 1.530

5 10 15
Magnetic éeld, T

2 1

(0ë0)
a

b

Figure 3. (a) PL (filled circles) and RRS (empty circles) line energies for a

sample with the electron concentration ne � 2:4� 1011 cmÿ2. The dashed
line shows the energy of 0±0 electron-hole transitions for electron and hole

masses of 0:067me and 0:2me, respectively. The electron filling factors are

shown by vertical lines. The inset shows RRS spectra measured in

magnetic fields of 10 T (n � 1) and 13 T (n � 0:83) (circles) and their

Gaussian approximations (solid curves). (b) Magnetic field dependences

of the integrated RRS signal intensities for optical transitions involving

electronic states with different spins: states from the lower (circles) and

upper (squares) spin sublevels of the zero Landau level. The inset presents

the RRS spectrum of a sample with an undoped QW in the field 13 T

(circles) and its Gaussian approximation (curve). The ratio of areas under

the RRS lines gives f"=f#.
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Figure 4. Spin polarization of a 2D ES (Sz) calculated using experimental

data presented in Fig. 3 (empty circles). For comparison, the values of Sz

from [71, 72] are presented (filled circles and crosses, respectively). The

dashed line shows the degree of spin polarization of the 2D ES for

noninteracting electrons.
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At present, high-quality transmission spectra are obtained
either by etching a hole in a substrate to remove parasitic bulk
scattering [71, 73] or by growing a Bragg mirror separating
the 2D ES from the substrate [72, 74].

Among noninvasive optical methods for measuring the
spin polarization, we mention elegant experimental methods
using the recombination of free electrons with localized
acceptors [75] and magnetoexciton dichroism measurements
[72]. However, these methods have a number of significant
limitations complicating the interpretation of experimental
data. An argument in favor of RRS is that the spin
polarization is measured without any preliminary processing
of samples, and experimental results are consistent with other
known data on 2DES polarization in the ultraquantum limit.
In addition, as shown in Section 3, the RRS method for
measuring the spin polarization can be readily used for time-
resolved measurements to control the evolution of the spin
polarization of 2D ESs after pulsed excitation in the real-time
regime.

3. Spin relaxation in a quantum Hall
ferromagnetic state with the electron
filling factor m� 1

The spin relaxation time in a spin-polarized quantum Hall
ferromagnetic state was measured using an original optical
method developed for creating nonequilibrium spin magnet-
oexcitons (see the experimental setup in Fig. 5a). A special
feature of this method is the possibility of creating systems
with in fact an arbitrary initial spin polarization (from 0 to 1)
and observing the spin relaxation dynamics in real time. The
spin state of the electron system is monitored using time-
resolved RRS.

A system of nonequilibrium spins is created by 532-nm,
1-ns laser pulses producing a peak power density of
' 400 W cmÿ2 on a sample. Photoexcited high-energy
electrons relaxing to the ground state heat the 2D ES.
Therefore, the experiment itself is meaningful when the
characteristic time required for cooling the 2D ES to the
ambient temperature is considerably shorter than the spin
relaxation time t (otherwise, the relaxation time cannot be
measured accurately). It was found that this condition can be
satisfied in magnetic fields B > 8 T. The optically heated 2D
ES cools down and relaxes during cooling to a partially
polarized quasi-equilibrium state, which then relaxes to the
ground spin-polarized state. Aside from pulsed excitation, the
2D ES is excited by cw resonant laser radiation (see Fig. 5).

As mentioned in Section 2, the intensity ratio of the
RRS lines from electronic states with different spins allows
one to control in real time the spin relaxation dynamics by
varying the time delay of RRS recording with respect to the
532-nm exciting laser pulse. The spin relaxation time
measured in this way (Fig. 6) proved to be at least an
order of magnitude longer than relaxation times obtained
by alternative experimental methods [7±10]. The method
presented here measures directly the energy relaxation of the
spin from the upper spin sublevel to lower spin sublevels,
whereas other experimental methods measure the dephasing
(stochastization) of the spin of one or several noninteracting
spin magnetoexcitons.

It is important that the experimental method described
here does not cause any rotation of the spin of the whole
system, i.e., the initial spin deviation from the ground spin-
polarized state is related only to the change in the total spin,

which nevertheless always remains directed along the mag-
netic field. As pointed out earlier, such a deviation corre-
sponds to excitation of only spin-wave excitons Xq in the
system, but not Goldstone excitons (XG).

Theoretical studies of the spin relaxation in quantumHall
systems [11±15, 76±81] have shown that this process involves
a variety of different relaxation mechanisms, which greatly
complicates the determination of the dominating relaxation
channel. Moreover, the relaxation picture can substantially
change depending on the magnetic field strength, tempera-
ture, and filling factor. At the same time, it is clear that the
relaxation/annihilation of spin magnetoexcitons requires the
presence of interactions of two types: (1) interactions not
preserving the system spin and (2) interactions providing the
irreversibility of the relaxation process.

Analysis shows that the interaction of the first type can
be the spin-orbit interaction in the 2D channel [12±15, 76±
79, 81] and/or the hyperfine interaction with lattice nuclei
[14, 80].

The dissipative mechanism can be realized: (1) in the
efficient Coulomb (in fact, electric dipole-dipole) interaction
of magnetoexcitons resulting, e.g., in the coalescence of spin-
wave excitons (when two excitons transform into one with
addition of their energy and momentum (see [77, 79])); (2) in
the interaction of electrons with an external smooth potential
also leading to coalescence, but with the increased phase
volume involved in the relaxation of magnetoexcitons due to
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Figure 5. (a) Diagram illustrating the experimental setup. (b) PL and RRS

spectra recorded 5 ms after a laser pulse after the end of all relaxation

processes. B � 11 T; reservoir temperature is T � 1:6 K.
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nonconservation of momentum in this process [13, 78, 79];
and (3) in the electron-phonon interaction leading to energy
dissipation due to emission/absorption of phonons [12, 14,
15, 76, 79, 80].

A comparative analysis of various temperature-indepen-
dent channels of spin-wave exciton relaxation in a quantum
Hall ferromagnet (i.e., corresponding to the longitudinal spin
relaxation of the electron system) was performed in [14]. The
estimate showed that, for the filling factor n � 1 in sufficiently
large magnetic fields up to B � 15 T, the relaxation channel
should be determined by the spin-orbit interaction providing
the spin change and by interaction with a smooth random
potential breaking the conservation of momentum. At the
same time, it was assumed that the random potential is fairly
weak and does not affect the energy spectrum of spin-wave
excitons or their energy distribution. In this case, the two-
exciton mechanism of scattering dominates, which leads to
the nonexponential relaxation law � 1=�1� t=t� [13, 14].

Later experiments performed using the above method [83]
showed that the observed relaxation nevertheless has an
exponential time dependence. This required additional
theoretical study taking into account more realistic condi-
tions, in particular, obviously a greater role of spatial
fluctuations of the external potential present in the 2D
channel. (A considerable role of `disorder' is also indirectly
demonstrated by a comparatively low dark mobility of
�1ÿ3� � 106 cm2 Vÿ1 sÿ1 in samples with wide QWs studied
in these experiments.)

The theoretical method, as in Refs [12±15, 76±80], is based
on the use of the `exciton representation' basis playing the role
of the `correct zero-approximation basis' and simplifying the
perturbative approach in calculations of spectra and relaxa-
tion processes in integer quantum Hall systems.

Note that the mechanism considered here and in [83] is
temperature-independent, i.e., it dominates at quite low
temperatures (an estimate will be presented below). Experi-
ments also showed that the relaxation rate was independent of
temperature (Fig. 6b).

In our opinion, the most efficient mechanism under
experimental conditions [83] is based on the elementary
process corresponding to a transition in the continuous
spectrum of a quantum-mechanical system, namely, to the
two-exciton scattering Xq1 �Xq2 ! Xq 0 at which, instead of
two spin-wave excitons Xq1 and Xq2 , a third one appears with
the total energy Eq 0 � Eq1 � Eq2 . If nq is the spatial exciton
density, then for fixed q1 and q2, the probability of such an
event occurring per unit time inside the domain l� l � A of
the two-dimensional space is

w�q1; q2� �
nq1nq2A

2

t�q1; q2�
�1�

(we ignore any correlations between excitons and the spatial
inhomogeneity of the density nq within the domain). The
quantity t�:::� is calculated from the known expression

1

t�q1; q2�
� 2p

�h

X
q 0
jM�q1; q2; q 0�j 2d�Eq1 � Eq2 ÿ Eq 0 � : �2�

The matrix element M�. . .� is determined by the spin-orbit
interaction in the 2D channel and the external field whose role
is reduced to the nonconservation of momentum upon
scattering. This matrix element was in fact already calculated
in Refs [12, 76], where the nonconservation of momentum
was caused by phonon emission or absorption.

In [13], an external field was represented by a smooth
random potential j�r� that, generally speaking, is poorly
known, except the fact that its characteristic amplitude in
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Figure 6. (Color online.) (a) RRS dynamics at temperatures of 0.4, 1.6, 2.2,

and 4.2 K. The RRS signals at different T are normalized to obtain equal

intensities 50 ns after the heating laser pulse. (b) RRS kinetics after the

subtraction of the saturation signal on a logarithmic scale at different T

(colors of symbols are the same as in Fig. 6a). (c) Nonequilibrium (empty

circles) and equilibrium (filled circles) RRS spectra measured 50 ns and

5 ms after the heating laser pulse, respectively. The arrow shows the

position of the maximum of PL line for the e±h transition related to the

lowest Landau electron spin sublevel where the RRS signal dynamics is

measured. B � 11 T, T � 1:6 K. (d) Equilibrium spin polarization (large

circles) obtained using the RRS saturation amplitude at different T (the

equilibrium polarization at 0.4 K is assumed equal to unity). For

comparison, we present the equilibrium spin polarization measured by

the nuclear spin resonance (NSR) method in [82] for the same Zeeman

splitting of spin sublevels (small circles connected by a thin line). The thick

line is the equilibrium one-particle spin polarization disregarding the

Coulomb interaction. (e) Magnetic-field dependence of the relaxation

time t�B�: experiment (circles) and calculation (curve).

872 L V Kulik, A V Gorbunov, S M Dickmann, V B Timofeev Physics ±Uspekhi 62 (9)



modern structures is 5±12 K and the spatial fluctuation scale
(correlation length) L ' 30ÿ50 nm.

It is convenient to introduce the correlation function
K�r� � hj�r� R�j�R�iR (angle brackets h. . .iR mean aver-
aging in the 2D space of the system under study, i.e., at scales
larger than L; it is also assumed that the condition
hj�R�iR � 0 is fulfilled). Correspondingly, the Fourier
component

K�q� � 1

�2p�2
�
K�r� exp �ÿiqr� d2r

can be introduced. Then, the square of the modulus of the
matrix element of the transient process under study will have
the form

��M�q1; q2; q 0��� 2 � 32p 3K�q ���a2 � b2�
�

q �lB
A�hoc

�2

; �3�

where q � � q1 � q2 ÿ q 0, oc is the cyclotron frequency, and a
and b are theRashba andDresselhaus constants, respectively,
determining the spin-orbit interaction for 2D electrons. This
result was obtained assuming that l4 lB. Therefore, the basis
states of electrons inside the domain are the usual states of a
degenerate Landau level.

The scattering matrix element (3) proves to be inversely
proportional to the domain area A, which follows from a
simple circumstance: the smaller the region where quantum-
mechanical excited states are considered (i.e., the smaller the
scale at which these states are normalized), the more efficient
the overlap of these states. At the same time, the substitution
of (3) into (2) gives after summation over q 0 an additional
factor/ A, so that the total probability (1) of the annihilation
of a spin-wave exciton inside a domain is, as it should be,
proportional to the domain area.

If the temperature is low enough, the calculation of the
total relaxation rate requires knowledge of the quasi-equili-
brium distribution of `cold' spin-wave excitons determined in
the state when they are `cooled' but not annihilated yet,
because energy relaxation processes not related to the spin
flip occur much faster than the spin relaxation. The problem
of finding this distribution in the real space cannot be exactly
solved. We will present only an estimate, based on allowing
for the more substantial role of the external random potential
than simply its influence on the value of the matrix element of
the transition (3).

Note that in the presence of the potential j�r�, the
momentum of a magnetoexciton is not an exact quantum
number. However, assuming that the potential is smooth and
considering a domain with the characteristic size l5L (but at
the same time, l4 lB), we can use the `gradient approxima-
tion'. This means that the field ee � ÿHHj inside the domain
can be considered homogeneous. In the gradient approxima-
tion, the potential does not change the states of magnetoexci-
tons and conserves the quantum number q. It is well known
[23, 28, 29, 33] that any magnetoexciton has the dipole
moment d � l 2Bq� ẑ. Therefore, the total energy of a spin-
wave exciton for small momenta qlB 5 1 has the form

Eq � EZ � q 2l 2B
2MX

� l 2B �q� ee�z : �4�

After `cooling' (but before annihilation), this energy should
be close to its minimal value. From the condition qEq=qq � 0,

equivalent to the zero group velocity of the spin wave, we find
the `equilibrium' exciton momentum qm � ÿMXee� ẑ and
the corresponding energy Em � Eqm � EZ ÿ 1=2MXl

2
Be

2 (here
e�jeej). Thus, the energy of a spin-wave exciton `trapped' in a
smooth random potential proves to be even smaller than the
Zeeman gap. Taking into account theoretical [28, 29] and
experimental [84, 85] data on the exciton mass MX, the
negative correction is approximately 20±30% of the value of
EZ.

Now, we estimate for the chosen domain the time t�q1; q2�
determined by expression (2). First, we set q1�q2�qm�R�,
where the coordinate R gives the domain position (for
example, its center position) and specifies the field strength
ee�R�. Second, we assume that the correlator form is specified,
for example, it is described by a Gaussian function: K�R� �
D2 exp �ÿR 2=L 2�. Assuming that the argument of the d
function is equal to 2Em ÿ Eq 0 , taking into account expres-
sion (4) for energy, and passing in (2) from summation to
integration , we find 1=t�qm; qm� �w�R�=A, where

w�R� � 4p�a 2 � b 2�MX

�h

�
DL

�hoclB

�2

�
�xmax

xmin

exp
�ÿ ��x��L=�2lB�� 2	��x� x dx�������������������������������������������������������������
x 2
mx

2 ÿ �x 2=2� x 2
m ÿ EZMX�2

q : �5�

Here, xm�R� �MXlBe�R�, xmin � j
����������������
2MXEm
p ÿ xmj, xmax �����������������

2MXEm
p � xm, and ��x� � 4EZMX ÿ x 2. The spin relaxation
rate determined experimentally is calculated by multiplying
the probability w=A by the probability of finding two
excitons within the considered domain (1) and then by
summing over all such domains, naturally turning into
integration with the help of the substitution A! d2R:

ÿ dNX

dt
�
�
n 2�R�w�R� d2R : �6�

Here, NX�t� is the total number of spin-wave excitons and
n�R� is the local density equal to nqm �NX�

�
n�R� d2R�.

Thus, the spin relaxation rate depends on the spatial
distribution of the random field �e�R�� 2 � �HHj�2, which
should be known for calculating the probability w�R�, and
on the quasi-equilibrium distribution n�R�. The latter is
established due to fast transient processes preceding the
annihilation of spin-wave excitons, namely because of their
cooling caused by electron±phonon interaction and simulta-
neous drift in a smooth random potential.

We will estimate integral (6) in two stages. First, we will
replacee 2 in (5) by the average he 2iR � h�HHj�2iR � �2D=L�2
�this relation is valid for the Gaussian distribution of j�R��.
In this way, we replacew in integral (6) with the quantityw
independent of R: ÿdNX=dt �w

�
n 2�R� d2R. Second, for a

spatially fluctuating density n�R� � hniR � dn�R�, we evalu-
ate the integral

�
n 2�R� d2R�NXn�

� �dn�R�� 2 d2R (here
n � hniR is the average density of spin-wave excitons,
hdniR � 0�. The term

� �dn�2 d2R is proportional to the
spatial correlator hdn�r� R� dn�R�iR for r � 0. For ideal
exciton gas in homogeneous space, this correlator would
correspond to so-called white noise and would be equal to
d�r� n [86]. In our case, correlations are mainly determined by
spatial fluctuations of the field e 2 (we ignore the interaction
between excitons); namely, if it is energetically advantageous
to find a spin-wave exciton at the pointR0, the density should
be higher than the average value, dn�R0� > 0, in the vicinity

September 2019 Spin excitations in two-dimensional electron gas 873



jRÿ R0j9L 0. To estimate d�r�, we replace it by a `cap',
exp �ÿr 2=L 02�=�pL 02�. We assume that the correlation
length of the spatial distribution �HHj�2 is approximately half
of that of the potential j : L 0 ' L=2. As a result, we obtain
the estimate

� �dn�r�� 2 dr � 4NX=�pL 2�.
Thus, the relaxation rate ÿdNX=dt has two components:

quadratic and linear in n. For the unit area, we obtain the rate
of annihilating spin-wave excitons

ÿ dn

dt
�w

�
n 2 � 4n

pL 2

�
: �7�

As mentioned above, the theoretical approach used here
ignores correlations between excitons. We assume that n is
small, and therefore the second term in (7) dominates. The
experimentally observed relaxation is exponential in time
even if the initial value n�0� ' 0:5=�2pl 2B� is used (1=�2pl 2B� is
the density of spin-polarized electrons in a quantum Hall
ferromagnet).

Thus, we conclude semiempirically that the characteristic
relaxation time is determined by the expression
T � pL2=�4w�. As for the parameters of the material, we
can estimate themusing data for similar QWs [87] and varying
poorly known quantities D and L in the vicinity of their
experimentally estimates values. The amplitudeD is borrowed
from experiments [88, 89].

To compare theoretical results with experimental data,
we can choose the following material parameters, which are
quite realistic under our experimental conditions: a �
0:25 nm meV, b � 0:12 nm meV, EZ � 0:02B meV, 1=MX �
0:87B 1=2 meV (where B is measured in tesla), D � 1:05 meV,
andL � 38 nm.As a result, the dependence T �B� is obtained,
which well describes the experimental data (Fig. 6e). Finally,
note that the real temperature at which the temperature-
independent relaxation channel operates should be of the
order of or lower than the `localization energy' of a spin-wave
exciton in a smooth random potential: T9MXl

2
Be

2 �
4MX�lBD=L�2 ' 0:8ÿ1:3 K.

Thus, we have shown for the first time that the relaxation
times of spin magentoexcitons in a quantum Hall ferro-
magnet (n � 1) are consistent with their theoretical values
(Fig. 6e) and exceed experimental relaxation times measured
earlier by more than an order of magnitude. However, these
results do not give to date a complete picture of the spin
relaxation, because the excited states of a quantum Hall
ferromagnet are not only the spin-wave excitons considered
above but also Goldstone spin excitons changing the spin
quantum numbers of the electronic system by dS � 0 and
dSz � ÿ1, which corresponds to the deviation of the total
spin by some angle from the magnetic field direction.

4. Relaxation of the transverse spin component
in a quantum Hall ferromagnet.
The stochastization of a Goldstone mode

The deviation of the total spin of an electron system by some
angle 0 < y < p from its direction in the equilibrium state,
close to the ground state, is a macroscopic Goldstone mode.
In this case, the rotational symmetry of the spin system
changes spontaneously from the continuous C1v group
(with respect to rotations around the ẑ k B axis) to the trivial
cyclic C1v group. It is important that such a purely spin
deviation does not change the orbital state of the 2D ES. The
excited mode energy is EZ�1ÿ cos y�S�0� (where S�0� is the
total spin at the initial moment of time), i.e., it macroscopi-

cally becomes gapless in terms of the parameter y. This state is
nonstationary even in the absence of any dissipative pro-
cesses: the spin evolution in the principal approximation
represents precession described by the equation qS=qt �
ÿgmBS� B, which is reduced to qSz=qt � 0 and qS?=qt �
ÿgmBS?� B. Historically, like the relaxation of spin waves,
the transverse spin relaxation in a quantum Hall ferromagnet
was studied only theoretically in the absence of any real
experimental data. Here, we also first consider some main
theoretical concepts required for a microscopic description
and study of the further evolution of the Goldstone mode.

The transverse component S? � �Sx;Sy� appears when
microscopic excitations correspond to changes in the spin
quantum numbers at which jdSj < jdSzj. Obviously, these are
not spin-wave excitons but states generated by the action of
the operator Ŝÿ � Ŝx ÿ iŜy on the ground state of a quantum
Hall ferromagnet,

j0i � j """ . . . "
z�����}|�����{N f

i ;
whereN f is the number of states at the Landau level with the
same spin. The n-fold action of this operator creates the
stationary eigenstate jni � �Ŝÿ�nj0i with the same orbital
wave function and the same total spin S � Nf=2 as for j0i,
but Sz � Nf=2ÿ n, and the energy is E0 � EZn, where E0 is
the ground state energy. (This statement is valid, of course, if
any perturbations not conserving spin numbers S and Sz are
disregarded.)

Moreover, any combination of such states
P

n Cnjni
specified by a set of coefficients fCng is also a state with the
orbital wave function and the total spin S equal to that in the
ground state. At the same time, if the number of terms in this
sum is greater than one, it no longer corresponds to any
eigenstate of the Hamiltonian even if the interaction in it not
conserving spin is disregarded. Generally speaking, for this
superposition of different eigenstates, even no direction ẑ 0 in
the spin space exists for which the spin projection Sz 0 on it
would be the eigenstate quantum number (i.e., the spin would
have a certain value in this direction 5).

Nevertheless, such a combination can be used as the initial
condition for solving the nonstationary Schr�odinger equation
iqjN; ti=qt � ĤjN; ti (hereafter, we assume that �h � 1). As a
result, by ignoring all the Hamiltonian terms not commuting
with operators Ŝz and Ŝ

2
, we obtain a solution in the form

jN; ti � exp �ÿiE0t�
XN
n�0

Cn exp �ÿinEZt� jni : �8�

(j0; 0i � j0i). This expression gives the most general micro-
scopic description of the Goldstone mode in the absence of
decay. The number N4Nf is the number of the `leader' of
the basis states jni used. By calculating the quantum-
mechanical average of the operator Ŝ� � Ŝx � iŜy in state
(8) (which we assume to be normalized, ht;NjN; ti � 1, due to
the proper choice of coefficients Cnn), we find the transverse
spin at the moment t:

S?�t� �


t;NjŜ�jN; t

�
� exp �ÿiEZt�

XNÿ1
n�0

C �n Cn�1


n� 1jn� 1

�
; �9�

5 Such states in quantum mechanics are called partially spin-polarized

states [90].
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which corresponds to precession with the frequency EZ=�h.
The tilt angle with respect to the ẑ-axis is defined as
y � arcsin �jS?j=S � � arcsin �2jS?j=Nf�. Various micro-
scopic states (8) can macroscopically formally correspond to
the same Goldstone mode. Indeed, the same value of y can be
obtained for completely different sets fCng, because, for the
specified value of the angle for a macroscopically large
number of coefficients Cn, only two conditions exist: (1) the
condition

P
n C

�
n Cn�1hn� 1jn� 1i � �Nf=2� sin y and (2) the

normalization condition
P

n jCnj 2hnjni � 1.
Particular cases of the state (8) were theoretically

considered, of course, earlier as well. In [12, 76] and later in
[13], the relaxation of an arbitrary basis state was studied
(the case Cn � dn; n0 ). Formally, there is no any precession
dynamics for such a state, because it is stationary
(S? � hnjS�jni � 0). At the same time, the relaxation
problem in such a formulation makes sense. It is clear
intuitively that for the macroscopic Goldstone mode corre-
sponding to deviation by the angle y, themain contribution to
superposition (8) is made only by a small vicinity of quantum
states near some value n0 � jdSzj � Nf�1ÿ cos y�=2, i.e., the
norm jCnj 2hnjni should have a sharp maximum at n � n0.
Therefore, it is sufficient to solve a kinetic problem of
annihilation of Goldstone excitons XG in a condensate,
which is described quantum-mechanically by some state jni
with the number n close to the maximum. In [13, 76], the
transformation of two Goldstone excitons of a condensate
into one spin-wave exciton was considered:

nXG ! �nÿ 2�XG �Xq : �10�
Spin states were not conserved because of spin-orbit interac-
tions, and process irreversibility was provided by accounting
for phonon emission/absorption [12, 76] or by translation
invariance breakdown due to the presence of a smooth
random potential [13]. The nonexponential relaxation law
was predicted. The calculated characteristic time in the first
case was 1±10 ms, and in the second case 100 ns. Indirect data
and subsequent direct experiments [8, 9, 56] have shown that
this time is much shorter (910 ns).

Another particular case is considered in paper [91], where
the relaxation of mode (8) was studied under the condition that
it corresponds to the complete polarization of all spins along
some ẑ 0-axis tilted with respect to the ẑ-axis by a certain angle b.
Then, the spin state of each polarized electron (see [90]) is

��% � � cos
b
2

ÿsin b
2

0B@
1CA ; rather than

�� " � � 1

0

� �

and as the initial state, which is completely `obliquely'
polarized, the state

j%%% . . .%
z����������}|����������{Nf

i
was considered. We can show that in terms of our jni vector
basis this state is equivalent to jNf; 0i�

PNf

n�0 Cnjni, where
coefficients Cn � �cos �b=2��Nfÿn�ÿ sin �b=2��n=n! : (By calcu-
lating S? from expression (9), we see that in this case the tilt
angle y is exactly equal to b.) In this purely theoretical paper,
the possibility of creating such a completely `obliquely'
polarized state in a quantum Hall ferromagnet was not
discussed, and only the relaxation problem was considered.
It seems unlikely that the mechanism involving the direct
actions of phonons on the spin chosen by the authors can be

efficient in real 2D ESs. For correct numerical estimates, this
channel gives even longer relaxation times than those
predicted by mechanisms considered in papers [12, 13, 76]
(see the discussion in [92, 93]).

The main experimental difficulty is the creation itself of
such a `spin-rotated' Goldstone mode in which the transverse
component S? would be sufficiently noticeable. The excita-
tion time of such a macroscopic but nonequilibrium state
should be at least much shorter than the spin-precession
relaxation time in 2D ES and be comparable with the
precession period h=EZ or even shorter. Therefore, the use of
optical excitation in experiments [8, 9, 56] is natural. The
initial state is produced by a short laser pulse directed at an
angle b with respect to B k ẑ. All photons in this pulse are
circularly polarized and coherent (Fig. 7c). The 2D ES state
with the zero momentum (q � 0) (i.e., orbitally the same as
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Figure 7. (Color online.) (a) PL spectrum corresponding to the optical

transitions (1=2;ÿ3=2) (red curve) and (ÿ1=2; 3=2) (black curve) from the

zero Landau level of the conduction band of the 2DES to the zero Landau

level of heavy holes in the valence band in a magnetic field of 4.3-T

(n � 0:96). (b) Time-resolved Kerr rotation signal excited in resonance

with optical transitions (1=2;ÿ3=2) (red curve) and (ÿ1=2; 3=2) (black
curve). (c) Time dependence of the Kerr rotation signal amplitude. The

straight lines are obtained using the exponential approximation of

experimental data. The inset shows the lay out of experimental measure-

ments of theKerr rotationwith temporal and spectral resolution. (d, e) The

long-lived component of theKerr rotation signal excited at the wavelength

of the electronic transition to the lower (d) or upper (e) spin sublevel of the

zero Landau level for the filling factor of a quantum Hall ferromagnet

close to n � 1.
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the ground state; see (8)) appears if the condition
lkphoton k5 1 is fulfilled for the parallel plane of the system
of the component of the wave vector of the absorbed photon.
Here, l is the characteristic of spatial fluctuations of the
electron density in the 2DES. This condition is in fact fulfilled
by a large margin. The elementary absorption process is one-
photon and one-electron: after the fast `vertical' recombina-
tion transition,6 a `spin-tilted' electron appears instead of the
electron spin-polarized along the ẑ-axis:

��% � � cos
b
2

ÿ sin
b
2

0B@
1CA :

At the same time, the indistinguishability of absorbed
photons and the indistinguishability of electrons in 2D ESs
pose the fundamental problem of the correct modeling of the
quantum-mechanical state (8) (the determination of a set of
coefficients fCng) adequately to the given method of creating
aGoldstonemode. In fact, to study slow transverse relaxation
(the precession rotation decay), it is sufficient to consider only
the evolution of one of the basis states jni, because, as we will
see, the relaxation decay is the same for all terms in sum (8). In
addition, as was mentioned, for a macroscopic mode, only a
small vicinity of states near a value n0 (jnÿ n0j5 n0) specified
by the macroscopic parameter jS?j or y is important.

Before proceeding to the solution of the microscopic
relaxation problem, it is necessary to elucidate the physical
meaning of the quantity N in sum (8). Note that the operator
Ŝÿ acting on j0i flips the spin of one electron, leading to the
result corresponding to the indistinguishability principle. The
correct normalized state of a system with one electron spin
flip has the form N ÿ1=2

f Ŝÿj0i � N ÿ1=2
f j1i. The state of one

electron with the `tilted' spin can be represented as a
combination of the spin up and spin down states,��% � � cos

b
2

�� " �ÿ sin
b
2

�� # � :
Therefore, the correct normalized state of the total multi-
electron system with one `spin-inclined' electron is the
combination

cos
b
2
j0i ÿ sin

b
2
N ÿ1=2

f j1i :

In this state, as it should be, the probability of the spin
projection Sz having the value Nf=2 is cos2 �b=2�, the
probability of having the value Nf=2ÿ 1 is sin2 �b=2�, but
the probability of having a value smaller than Nf=2ÿ 1 is
identically zero. It is clear that, if a system contains not one
but N `spin-tilted' electrons, then the nonzero probability
should always exist for the projection Sz to have the value
Nf=2ÿN, but the probability of having any smaller value is

strictly zero. It follows that the numberN of the leading term
in the expansion is nothing but the number of `spin-tilted'
electrons. Or, in other words, this is the number of efficiently
absorbed photons, so that, as a result, N electrons from the
total numberNf pass from the j"i state to the j% i state. The
relation of the number N to the deviation angle y is
determined from simple geometrical considerations: because
the mean value of the spin projection on the ẑ-axis of each of
the `spin-tilted' electrons is �1=2� cos b, the mean value of the
projection of all Nf electrons is

hSzi � Nf ÿN

2
�N

2
cos b :

This gives

cos y � 2hSzi
Nf

� 1ÿ 2N

Nf
sin2

b
2
:

The number N is determined by the optical pulse power, i.e.,
the deviation angle depends both on the angle of incidence b
of the laser beam and on the laser pump power. The rotation
of all spins as a whole would correspond only to a particular
case when N � Nf.

Finally, we will study the slow evolution of a Goldstone
mode that occurs with perturbations acting on spins taken
into account. Consider one of the stationary states jni, which
is also an eigenstate for spin operators Ŝ 2 and Ŝz. This
condensate of n Goldstone excitons can be destroyed not
only in processes changing the total number of magnetoexci-
tons [see (10)] but also in a simpler one-exciton transition
nXG ! �nÿ 1�XG �Xq, when the Goldstone exciton trans-
forms into a spin-wave exciton. In this case, the total number
of magnetoexcitons is conserved and, therefore, the value of
Sz is conserved. The perturbation responsible for this
transformation (i.e., in fact, for the elementary process
XG ! Xq) conserving the projection Sz should not conserve
the total spin, which decreases by unity according to the
above discussion of the spin numbers of the Goldstone and
spin-wave excitons. In addition, this perturbation should
break the spatial translation symmetry and lead to the
appearance of a nonzero momentum q in the system. All
these conditions correspond to the spatial fluctuations of the
g-factor in 2D ESs: g � hgiR � g1�r�, i.e., now the term

V̂g � 1

2
mBB

X
i

g1�ri� szi

is added to the Zeeman interaction operator, where i is the
electron number and szi is the Pauli operator acting on the
spin of the ith electron. The kinetic approach to the solution
to the problem involves the transition from the state
j1i � Ŝÿj0i to the state j fqi � Qyqj0i, where Qyq is the spin-
wave exciton creation operator (see [12, 13, 56, 76] and
references therein). Here, we will not consider in detail
routine quantum-mechanical calculations performed by the
exciton representation method.7 The general scheme, as
usual, requires the calculation of the matrix element
Mfq � h1jV̂gj fqi and then the transition time

1

t
� 2p

�h

X
q

jM fq j2d�EZ ÿ Eq� : �11�

7 The substantiation of the kinetic approach based on the general

representation for the Goldstone mode (8) and calculations of the

transformation time of the Goldstone exciton to a spin-wave exciton will

be published later [94].

6 The photon absorption process is mainly reduced to the `gemini'

recombination at which a photon-created pair consisting of an electron

and a heavy valence hole is annihilated before quasi-particles are separated

by a distance exceeding the scale of their wave functions. However, a

recombination channel also exists in which a hole is annihilated (due to the

radiative transition) not with its `own' electron created simultaneously

with the hole but with an electron from the conduction band located in the

hole's `quantum vicinity'. In this case, its `own' electron having an `tilted'

spin (%) due to the conservation of the total angular momentum will

occupy a vacancy produced at the Landau level in the conduction band. In

this way, the
��"�!��%� transformation is realized. Recombination transi-

tions take place simultaneously with fast nonradiative processes. In

particular, the fast spin relaxation of the created valence hole occurs.
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Here, the spin-wave exciton energy Eq is determined by
expression (4), where we can pass to the limit e! 0 in the
principal approximation. The characteristic destruction time
of a condensate of Goldstone excitons can be estimated by
introducing the correlator K�r� � hg1�R� g1�R� r�iR para-
metrized by the fluctuation amplitude Dg and the correlation
length Lg. Assuming, as for a smooth random potential, that
this correlator is Gaussian, K�r� � D 2

g exp �ÿr 2=L 2
g �, we find

1

t
� pMX

�h

�
mBBLgDg

2lB

�2

: �12�

Microscopically, this result gives the characteristic destruc-
tion time for each of the Goldstone condensates jni
independent of n. This time can be called the dephasing time
or the stochastization time of the coherent precession
rotation, because the effect is related to the fact that the
precession of individual spins in different regions of the 2D
space occurs at a frequency somewhat different from the
Larmor frequency EZ=�h.

Note that the mass MX of a spin-wave exciton is the only
physical quantity responsible for the multiparticle Coulomb
interaction (the stronger the Coulomb coupling, the smaller
the mass of the spin-wave exciton). Thus, the exchange
`consolidation' of electrons in a quantum Hall ferromagnet
prevents the stochastization of precession: the time increases
upon increasing the Coulomb coupling.

We can assume that spatial fluctuations of the g factor
reflect in some way the spatial disorder of the smooth
electrostatic potential and, therefore, set Lg � L � 50 nm
for the estimate. As for the amplitude Dg, its ratio to the
vacuum value g0 � 2 should be of the order of the ratio of the
amplitude D to the bandgap. Assuming Dg ' 0:005, which
seems realistic, we can estimate the Goldstone exciton
stochastization time as t� 1ÿ10 ns (Mÿ1X � 2 meV in the
field B � 3ÿ10 T).

Themacroscopic stochastization picture is as follows. The
mean quantum-mechanical value of the longitudinal compo-
nent Sz is invariable. The considered process corresponds to
the change in the transverse component S?�t� of the total
spin, which follows at small deviations (jS?�0�j5Nf=2) the
equation djS?j=dt � ÿjS?j=t, i.e., decays exponentially as
jS?j � jS?�0�j exp �ÿt=t� (large deviations would mean that
the concentration of magnetoexcitons is high, n � Nf=2, i.e.,
the number of spin-wave excitons also becomes large for t0t,
and their interaction with each other proves to be significant,
which, of course, was ignored here). The estimated time
t � 1ÿ10 ns corresponds, according to the generally
accepted terminology, to the spin transverse relaxation time
T2. In turn, the longitudinal relaxation process describing the
relaxation of Sz to its equilibrium value was considered in
Section 3. The theoretical and experimental values of the
longitudinal time prove to be considerably longer:
T1 � 100 ns. Note that the relation T2 5T1 is also valid for
spin relaxation in classical exchange ferromagnets. At the
same time, the theory of transverse relaxation in 2D ESs
presented here is not related to any previously described
mechanism.

Direct measurements of the precession stochastization
time were performed with high-quality GaAs=AlxGa1ÿxAs
heterostructures with single QWs containing highly mobile
2D ESs (me ' 5� 106 cm2 Vÿ1 sÿ1) with concentrations
ne ' 0:7� 1011 cmÿ2 (sample A) and ne ' 2:4� 1011 cmÿ2

(sample B). A Kerr rotation signal was excited by a tunable

picosecond Ti:sapphire laser. The mean excitation power did
not exceed' 1 mW. The laser beam spot diameter was 1 mm.
The circularly polarized pump pulse specified the orientation
of the spin of the excited 2D ES. The rotation angle of the
polarization plane was measured with the help of a linearly
polarized probe beam reflected from the sample. Measure-
ments were performed in the degenerate regime when the
pump laser wavelength coincided with the probe radiation
wavelength. Samples were placed in an optical cryostat with a
superconducting solenoid at an angle of 45� with respect to
the magnetic field direction. The excited electron spins were
oriented approximately normally to the sample surface
because of a large difference between the refractive indices
of GaAs and liquid helium. The experimental setup repro-
duced that used in [8, 9]. The difference was that the spectral
width of our excitation source was smaller (0.7 meV). This
allowed us, by varying the pump wavelength, to change upon
excitation the proportions of optical transitions into two
different spin states of the zero Landau level (i.e., thereby
changing the effective angle between excited spins and the
magnetic field). The generated spin excitations had zero
transverse (along the QW plane) momentum because of the
reflection geometry used. Thus, excitation generated mainly
Goldstone excitons.

The decay of the beat amplitude of the Kerr rotation
signal (the difference between the signal maximum and
minimum) is divided into two time intervals (Figs 7b, c): the
short interval T e

S1 (a few hundred picoseconds) and long
interval T e

S2 (a few nanoseconds). In addition, the beat signal
is modulated by long-term oscillations observed in samples
with the highest mobility (Figs 7d, e). We assign long-term
oscillations to the collective degrees of freedom of the total
electron system, whose nature is still unknown. The relaxa-
tion time T e

S1 is independent of the filling factor, while the
dependence of T e

S2 on the filling factor becomes essentially
nonmonotonic near quantum Hall ferromagnetic states with
filling factors n � 1 and n � 3. Since the initial phase
relaxation (T e

S1) is not related to the filling factor, it is
explained by one-electron spin relaxation. The electron
system is overheated after the pump pulse and the relaxation
time T e

S1 appears due to the fast cooling of the electron system
[74]. This assumption is confirmed by the fact that the
increase in the pump power increases the proportion of states
relaxing with the time T e

S1 in the Kerr rotation signal. Below,
we will consider the long relaxation channel (T e

S2) sensitive to
the spin ordering of the ground state.

The transverse spin relaxation times measured in a
quantum Hall ferromagnet (n � 1) agree well with the
stochastization times of Goldstone spin excitons estimated
theoretically above for high-mobility GaAs=AlxGa1ÿxAs
heterostructures. In addition, it was found that spin relaxa-
tion times in the vicinity of values n � 1 and n � 3 changed
nonmonotonically and more than an order of magnitude
(Fig. 8). Such a great variation in the spin relaxation time is
perfectly consistent with the result of Ref. [95] about the
influence of the spin transformation in a quantum Hall
ferromagnet on the nuclear spin relaxation time. This effect
is explained by the following reason. When the electron
system undergoes a quantum phase transition from a
quantum Hall ferromagnetic state to a less rigid spin
ordering (spin-texture liquid or a skyrmion crystal), new
phase-destruction mechanisms of the coherent spin preces-
sion begin to play a role due to the appearance of spin
excitations with an energy smaller than the Zeeman energy

September 2019 Spin excitations in two-dimensional electron gas 877



[88, 89]. Spin relaxation times also decrease on passing from a
more `rigid' (strong exchange interaction between electrons)
quantumHall ferromagnetic state with n � 1 to a softer (weak
exchange interaction) quantumHall ferromagnetic with state
n � 3.

5. Spin relaxation in a quantum Hall insulator
with the electron filling factor m� 2

As mentioned in the Introduction, the lowest-energy collec-
tive electronic excitations in a quantum Hall insulator with
n � 2 are magnetoexcitons formed by an excited electron at
the unfilled first Landau level and a Fermi hole (electron
vacancy) at the completely filled zero Landau level (Fig. 9a).
In other words, this is a cyclotron magnetoplasmon with zero
spin (S � 0) or a spin-cyclotron triplet excitonwith unity total
spin (S � 1). The radiative lifetime of a magnetoplasmon is
determined by the dipole-allowed electron recombination
from the first Landau level (neL � 1) with emission of a
photon with an energy equal to the cyclotron energy. The
characteristic recombination time is about 1 ns [96]. Unlike
magnetoplasmons, spin-cyclotron excitons are `dark', their
radiative annihilation being strictly forbidden due to spin
conservation.

The energy of all three components of a spin-cyclotron
exciton in GaAs=AlxGa1ÿxAs structures is lower than the
magnetoplasmon energy for any value of the momentum,
including the particular case of q � 0 [30, 31]. These
components are always equidistantly separated by the Zee-
man gap EZ. In other words, the energy of triplet components
is described by the expression

Et � �hoc ÿ EZSz � eq

(the negative value of the Lande g-factor is taken into
account), where eq is the part of energy determined by the
Coulomb interaction. In the ultra-two-dimensional case in
the first approximation in the interaction, this quantity was
calculated in [29]. Taking into account a finite width of QWs,

in the first approximation in the dimensionless parameter
rs � e 2=��lB�hoc�, this energy is �hocrse1�q�, where

e1�q� �
�1
0

ds exp

�
ÿ s 2

2

�
F�s�

�
1ÿ s 2

2

��
1ÿ J0�sqlB�

�
;

J0 is the Bessel function, and F�s� is the form factor
depending on the size quantization wave function w�z� of an
electron in the QW,

F�s� �
� �

dz1 dz2 exp

�ÿsjz1 ÿ z2j
lB

���w�z1�w�z2��� 2 : �13�
In addition, because e1 vanishes for q � 0, the second-order
correction in rs becomes essential for small values of the wave
vector (qlB 5 1), i.e.,

eq � �hoc

ÿ
rse1�q� � r 2s e2�q�

�
:

The function e2�q� does not vanish for q! 0. On the
contrary, this function determines the negative Coulomb
shift of the triplet observed in Raman spectra [30]. This
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occupying its lower spin sublevel in the spin-flip state. This electron is
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the zero Landau level (n e
L � 0) to form a triplet state (schematically shown

by ellipses). The bent arrows illustrate the virtual absorption and
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quantity was calculated in [31]:

e2�0� � ÿ
X1
n�2

2ÿ 22ÿn

nn!�n 2 ÿ 1�
�1
0

ds s 2n�1F 2�s� exp �ÿs 2�

(in the ultra-two-dimensional case when F�s� � 1, we find
e2�0� � �ln 2ÿ 1�=2 � ÿ0:1534:::). A specific calculation
shows that the first-order correction (/ e1), which is negative
for qlB91, is quite numerically small even for qlB � 1. As a
result, for all the actual values of qlB91, the second-order
correction that makes a considerable contribution to the total
Coulomb shift should be taken into account. By simply
extrapolating the principal approximation (for conditionally
small parameters rs and qlB) and estimating the Coulomb
energy depending on q as

eq � e 2

�lB
e1�qlB� � 2Ry e2�0�

�here, 2Ry � �e 2=elB� 2=��hoc� � m �e e
4=�e 2�h 2��, we obtain the

total negative shift of a spin-cyclotron exciton with respect to
the level �hoc consisting of the Zeeman and Coulomb parts
ÿEZ � eq. This quantity calculated for a particular QW is
shown in Fig. 9b (red curve). For comparison, the figure also
shows the `positive' spectrum of a magnetoplasma wave (blue
curve), which is determined only by the Coulomb interaction
of electrons.

The authors of this review developed experimental
methods [32] for exciting an ensemble of translation-invar-
iant spin-cyclotron excitons with Sz � �1, controlling its
parameters and studying the kinetics of relaxation of these
excitations to the ground state by using the resonance
reflection of light for optical transitions across the bandgap.
A priori, we can assume that, upon testing a quantum Hall
insulator with the filling factor n � 2, the resonance reflection
signal corresponding to the transition from the zero Landau
level of heavy holes in the valence band (nh

L � 0) to the zero
Landau level of electrons in the conduction band (n e

L � 0)
should be absent, because all the electronic states of the
ground electronic cyclotron level are completely filled.
However, with optical pumping, at which excited electrons
undergo transitions to the upper Landau levels (n e

L 5 1), it is
reasonable to expect at a low enough temperature the
formation of these lowest-energy excitations with Sz � �1
(hereafter, we will call them simply spin-cyclotron excitons).

The formation of spin-cyclotron excitons should be
manifested in a decrease in the number of unfilled states of
the first electronic Landau level (n e

L � 1) and in the simulta-
neous appearance of the Fermi-hole states at the zero
electronic level (n e

L � 0). It is reasonable to call the corre-
sponding changes in resonance reflection spectra photoin-
duced resonance reflection (PRR).

PRR spectra should exhibit two peaks: a positive one
corresponding to the optical transition from the zero
cyclotron level of heavy holes (n h

L � 0) to the upper spin
sublevel of the zero cyclotron level of 2D electrons (n e

L � 0)
(the 0±0 transition) and a negative peak corresponding to the
transition from the first cyclotron level of heavy holes of the
valence band (n h

L � 1) to the first electronic cyclotron level
(n e

L � 1) (the 1±1 transition). While the positive peak is
responsible for the appearance of Fermi holes on the upper
spin sublevel of the zero cyclotron level of electrons (n e

L � 0),
the negative peak is responsible for the decrease in the number
of vacancies at the first cyclotron electronic level (n e

L � 1).

Thus, the PRR method allows us to test indirectly optically
inactive spin-cyclotron excitons using optically allowed
resonance transitions between the discrete Landau levels of
heavy holes of the valence band and the discrete Landau levels
of electrons in the conduction band.

In [32], high-quality GaAs=AlxGa1ÿxAs heterostructures
with the dark mobility of 2D electrons in the range of
(5ÿ20��106 cm2 Vÿ1 sÿ1 were used. The high quality of the
structures is extremely important for observing spin-cyclo-
tron excitons. Experiments were performed with two sets of
samples with single GaAs=AlxGa1ÿxAs QWs 17 and 35 nm
wide symmetrically doped on both sides. The QW width in
each set remained fixed, while the electron concentration in
the 2D channel in different samples was varied in the range of
5� 1010ÿ2:5� 1011 cmÿ2. Experiments with an individual
sample with a certain electron concentration provided the
measurement of one point on the experimental plot of the
dependence of the spin relaxation on themagnetic field for the
fixed filling factor n � 2 (one experimental pointÐone
sample).

Samples with a characteristic size of 3� 3 mm were
placed into a liquid 3He cryostat equipped with a helium
vapor pumping system. This cryostat was placed, in turn, into
a liquid 4He cryostat with a superconducting solenoid. Such a
cryosystem provided optical and transport measurements at
temperatures down to 0.45 K in a magnetic field up to 14 T.
Spectral measurements were performed using two multimode
fused silica fibers 400 mm in diameter and having a 0.39
numerical aperture. One fiber was used to deliver laser
radiation to a sample, and the other to collect the light signal
from the sample and to deliver it to the entrance slit of a
diffraction spectrometer equipped with a cooled CCD
camera. Resonance reflection measurements were performed
with the fibers mounted symmetrically at an angle of� 10� to
the sample normal, so that the central axis of a laser beam
reflected from the sample coincided with the receiving fiber
axis. The laser light scattered and reflected from the surfaces
of the sample and fibers was suppressed with crossed linear
polarizers mounted between the ends of the fibers and the
sample.

In [32], two tunable cw lasers were used, one of them for
the resonance excitation of a 2D electron system and the other
for measuring the PRR, PL, and inelastic light scattering
(ILS) spectra. To avoid the overheating of samples, the laser
pump exciting electrons to high Landau levels with quantum
numbers n e

L 5 1 did not exceed 0.3 mW. The probe laser
power introduced to the same fiber was an order ofmagnitude
lower. Resonance reflection spectra were measured by
scanning a probe laser and detecting the laser line intensity
with a CCD camera at the spectrometer exit. The differential
PRR spectrum was obtained as the difference between
resonance reflection spectra obtained with and without laser
pumping.

The PRR spectra were used to control the creation of
photoexcited electrons at the first electronic level (n e

L � 1) and
Fermi holes at the zero level (n e

L � 0). The PRR spectrum
exhibits, as predicted, a positive peak in the 0±0 transition
region and a negative peak in the 1±1 transition region
(Fig. 10). This is caused by the formation of low-energy
magnetoexcitons consisting of electrons at the first Landau
level coupled with the Fermi holes of the zero electronic level.

Although spin-cyclotron excitons are optically inactive,
they can be found directly from ILS spectra (see the inset in
Fig. 10) and then used for determining the singlet-triplet
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splitting of magnetoexcitons for the zero wave vector [30].
The singlet-triplet splitting is measured as the difference
between the magetoplasmon energy and `the center of
gravity' of the triplet (positions of components with S � 1
and Sz � 0 in the spectrum). This splitting proved to be
comparatively large, about 1 meV [32], which may seem
strange, because the singlet-triplet splitting in bulk GaAs
crystals is very small, only � 20 meV [97, 98].

However, first, one should take into account that matrix
elements of the exchange interband Coulomb interaction are
suppressed compared to these for the intraband exchange due
to the difference between electronic Bloch functions in
different bands. Second, in the presence of spatial restrictions
reducing the system dimension (quantum confinement), the
singlet-triplet splitting considerably increases due to an
increase in the exchange electron-hole interaction. Thus, for
example, this spitting in quite narrow GaAs QWs already
reaches about 150 meV [97]. In the case of 2D spin-cyclotron
excitons in a quantum Hall insulator considered here, a
transverse magnetic field (up to 10 T) provides a strong
spatial restriction for carriers resulting in a considerable
increase in the singlet-triplet splitting, up to approximately
1 meV.

The PRR kinetics were measured by modulating the laser
pump radiation with a mechanical chopperÐa rotating disc
with a radial slit. For a disc rotation period of � 11 ms and
laser spot focusing on the disc with a microscope objective,
the duration of the front (decay) of the formed laser pump
pulse was � 2 ms for a total pulse duration of 4 3 ms. The
probe laser wavelength was tuned to the maximum (mini-
mum) in the PRR spectrum for recording the signal decay
(rise) after the pump pulse ended. The testing laser radiation

reflected from the sample surface was transmitted through a
narrowband interference filter (bandwidth of � 1:1 nm) to
reject the pump radiation and then was focused on a silicon
avalanche photodiode operating in the photon counting
regime. The resonance reflection signal was measured with a
gated photon counting system and was accumulated as a
function of the time delay after switching off the exciting laser
pulse. As a result, the PRR decay (or rise) curve was recorded.

The behavior of the nonradiative lifetime of spin-cyclo-
tron excitons, which is directly related to the spin relaxation,
was studied as a function of temperature and a magnetic field
in QWs with various widths. For this, the PRR kinetics were
studied upon pulsed laser excitation. The decay of PRR
signals was found to be exponential with decay times (spin
relaxation times) reaching several tens or even hundreds of
microseconds (Fig. 11a). The PRR signal rise kinetics in the
1±1 transition region proceed at the same time scales, which
indicates the common relaxation dynamics of magnetoexci-
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transition occurs between the first cyclotron levels neL � 1 and nhL � 1. The

PL spectrum exhibits a circularly polarized doublet (s�- and sÿ-compo-

nents), corresponding to 0±0 electronic transitions. The doublet splitting is
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ton states formed from electrons at the first Landau level and
Fermi holes at the zero electronic Landau level. This
commonality is also manifested in the same temperature
dependence of the relaxation rate (Fig. 11b). For T > 1 K,
the temperature dependence of the relaxation rate is expo-
nential, 1=t�T � � exp �ÿD=T �=t1 with the characteristic
time t1 � 1 ns and the activation bandgap D � 11 K.

Such a behavior suggests that in this temperature region
the activation relaxation channel operates, which includes
comparatively slow electron spin-flip processes caused by
spin-orbit interaction and an increase in the excitation energy
up to the cyclotron energy due to phonon absorption,
followed by rapid relaxation due to photon emission with
the cyclotron energy [15]. Under such conditions, the
measured activation gap D is nothing but the binding energy
of a spin-cyclotron exciton equal to the sum of the Zeeman
energy and the Coulomb energy of the spin-cyclotron
splitting, i.e., to EZ � jeqm j, where qm ' 1=lB (Fig. 9b). This
energy measured independently from ILS spectra is close to
the activation gap.

In the low-temperature region T < 0:8 K, the PRR
kinetics become temperature-independent. Therefore, in this
temperature region, the relaxation mechanism changes, and
this mechanism is no longer thermally activated. It is assumed
that in the low-temperature region the nonradiative relaxa-
tion of a spin-cyclotron exciton occurs, followed by the
creation of short-wavelength acoustic phonons receiving the
exciton energy. This decay mechanism was earlier proposed
and analyzed in [15]. The theory predicts, in particular, that
the relaxation time t0 in this case should superlinearly depend
on the electron wave function extension in the QW growth
direction.

To verify this prediction, we studied twoQWswith widths
of 17 and 35 nm and approximately equal 2D electron
concentrations. The half-widths of the envelopes of the
electron wave functions in these QWs differed by approxi-
mately two times. Experimental results qualitatively confirm
the theoretical prediction: (1) the relaxation time increases in
the wider QW because it is more difficult to break the
translation symmetry in the growth direction in the wide
QW; (2) the relaxation rate decreases with increasing
magnetic field because the electron±phonon interaction for
higher-frequency acoustic phonons with frequencies close to
the cyclotron frequency considerably weakens. We conclude
that the qualitative agreement between experiments and the
theoretical relaxation mechanism is good as a whole;
however, the theory predicts longer relaxation times than
the experimental values.

Thus, directmeasurements of the PRRkinetics have shown
that at low temperatures T5TST (kBTST is the spin-cyclotron
splitting), the lifetimes of a spin-cyclotron exciton closely
related to the spin relaxation of the entire electron system are
unusually long, amounting to a few hundred microseconds.
Due to such long lifetimes, it is possible to produce rather high
densities of � 1010 cmÿ2 of such photoexcited magnetoexci-
tons at relatively low optical pump powers, which do not cause
the overheating of the electron system.

6. Condensate of two-dimensional fermions
in a magnetic field

As mentioned in the Introduction, in a dense ensemble of
spin-cyclotron excitons, the Bose±Einstein condensation
phenomenon can be expected. It appeared that, with decreas-

ing temperature, a phase transition having a number of
unusual properties was really observed in an ensemble of
dark triplet magnetoexcitons. The exciton relaxation time in
the vicinity of the phase transition demonstrates a non-
monotonic behavior (Fig. 12b). The lifetime increases
exponentially at temperatures down to 1 K and then
decreases by half in a narrow temperature range from 0.7
to 0.8 K, which suggests a threshold decrease in the viscosity
of the ensemble of spin-cyclotron excitons during their
`transport' from the excitation spot. This also reduces the
lifetime of spin-cyclotron excitons directly in the laser spot.
Such an assumption is natural, because it is difficult to
imagine that such a small change in temperature, only 0.2 K,
can so drastically change relaxation mechanisms. This
assumption is analyzed in Section 8 and confirmed by
direct measurements of the transport of spin-cyclotron
excitons during this phase transition.

It can be easily shown that the relaxation time t�T � upon
stationary photoexcitation is directly proportional to the
exciton density n�T �: t�T � / n�T �. If the temperature
dependence of the spin-cyclotron density is known, one can
eliminate the density from the description of the response of
the exciton ensemble to the resonance high-frequency electro-
magnetic field. By measuring the PRR signal I�T � for the
same photoexcitation level that was used to determine the
relaxation time of a spin-cyclotron exciton (I�T � /
f �T � n�T �, where f �T � is the oscillator strength of the
interband optical transition from the valence band to the
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conduction band), we can obtain the dependence of the
oscillator strength of the optical transition on the electron
temperature: f �T � / I�T �=t�T �. Note that f �T � is indepen-
dent of temperature forT> 0:8 K, as expected for a system of
magnetoexcitons with the Boltzmann energy distribution.
However, as temperature further decreases, a giant threshold
increase in the oscillator strength is observed (see the inset in
Fig. 12c). We can conclude that, for the invariable exciton
density, at the phase transition point the response of Fermi
holes at the zero electronic Landau level involved in the spin-
cyclotron exciton increases, which can be described in terms
of exciton condensation.

Resonance reflection can be divided into two processes:
resonance absorption and the subsequent photon emission
with the transition of the system to the initial state.
Therefore, it is sufficient to consider resonance absorption
with the transition of the excited electron from the valence
band to the conduction band to the vacancy appearing after
creation of a spin-cyclotron exciton (to the Fermi hole at
the zero Landau level). If the initial state of the ensemble of
spin-cyclotron excitons follows the Boltzmann distribution
and their number is considerably smaller than the number
Nf of electronic states at the Landau level, it is easy to show
that the square of the matrix element of the optical
transition is proportional to 1=Nf and is independent of
temperature. In the case of condensation of 1=Nf N spin-
cyclotron excitons to the same quantum state, the square of
the matrix element of the optical transition is proportional
to N=Nf [99].

The considerations presented above show that the square
of the matrix element of the resonance absorption of
electromagnetic radiation at the optical transition from the
valence band to Fermi holes in the conduction band should
increase proportionally to the number of spin-cyclotron
excitons found in the same quantum state. The increase in
the matrix element observed in experiments allows a conclu-
sion that not all excitons are condensed to the same quantum
state, and only a small number of them form coherent clusters
of a finite size. By measuring the threshold temperature of the
phase transition as a function of the photoexcitation
intensity, we constructed the phase diagram for the condensa-
tion of spin-cyclotron excitons to the superabsorbing phase of
such clusters in the pump intensity (or concentration)-
temperature coordinates (Fig. 13).

Obviously, however, Fermi holes themselves contained in
a spin-cyclotron exciton cannot be coherent in the sense that
they are vacancies (empty sites) in the electron Fermi sea. In
other words, it is not Fermi holes themselves that are
coherent, but electrons separating them by forming a
collective state (magnetofermion condensate), so that vacan-
cies in this state behave coherently during interaction with the
external electromagnetic field, providing, in turn, the super-
absorption effect. This canmean that the theory considered in
this section is only an approximate description of the proper-
ties of the nonequilibrium system discussed. Such a theory
would be exact if the electron system under the Fermi level
(electron vacuum) remained unperturbed after excitation of
nonequlibrium excitons, which is equivalent to the replace-
ment of the nonequilibrium electron system by an ensemble of
spin-cyclotron excitons. By studying directly the properties of
the electron vacuum, we show experimentally that such an
assumption is, although reasonable, an inexact approxima-
tion to describe the properties of the nonequilibrium system
considered.

The response of an electron vacuum to external electro-
magnetic excitation was studied by the method of photo-
induced PL, i.e., PL in the presence of a nonequilibrium
ensemble of spin-cyclotron excitons. Unlike one optical
transition in PRR, in photoinduced PL two optical transi-
tions are possible: one of them is related to the recombination
of an electron from the conduction band with a photoexcited
hole from the valence band located far from the spin-
cyclotron exciton (the influence of the exciton on the hole
state in the valence band can be ignored), while the other is
related to the recombination of an electron located in the
immediate proximity to the spin-cyclotron exciton. The first
recombination channel dominates at temperatures above 1K.
The second, nonequilibrium recombination channel begins to
dominate in the PL spectrum when the electron system
temperature is below the phase transition temperature.
Here, it is reasonable to consider in more detail the properties
of photoinduced PL for a small number of spin-cyclotron
excitons.

7. Photoluminescence of electron-hole
complexes in the presence
of spin-cyclotron excitons

The photoluminescence of 2D ES in the presence of an
ensemble of spin-cyclotron excitons is studied under reso-
nance optical excitation, while the additional nonresonance
pumping adds to the exciton ensemble high-energy e±h pairs
consisting of an electron of the conduction band and a heavy
hole in the QW valence band [100]. These pairs dissociate
during relaxation and then return separately to the ground
state. Depending on the number of additional high-energy
pairs and density of spin-cyclotron excitons, some of the
valence holes attach to excitons, forming positively charged
three-particle complexes. The formation of negatively
charged three-particle states is also possible, but such states
are inactive in the experimentally accessible visible range and,
therefore, they are not considered here. Thus, by changing the
density of resonance and nonresonance excitations, it is
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possible to create various stable complexes consisting of a
spin-cyclotron exciton, electrons, and holes.

A system of long-lived spin-cyclotron excitons was
created using two samples with symmetrically doped single
GaAs=AlxGa1ÿxAs QWs 17 and 35 nm wide. At high enough
temperatures (above 1 K), all excitons rapidly relax via the
optical recombination channel. As a result, the interband
recombination spectra of a valence hole and an electron from
the filled Landau level exhibit only a circularly polarized
(s�ÿsÿ) Zeeman doublet corresponding to two dipole-
allowed 0±0 optical transitions of electrons from the conduc-
tion band to the valence band of heavy holes (the lower
spectrum in Fig. 14). The splitting of this doublet is exactly
equal to the sum of spin splitting of heavy holes in the valence
band and electrons in the conduction band. As temperature
decreases, nonequilibrium spin-cyclotron excitons are accu-
mulated in the 2D ES [32], and two additional lines appear in
the PL spectrum.

Consider radiative recombination transitions from the
zero Landau level of electrons in the conduction band to the
zero Landau level of heavy holes of the valence band (Fig. 15).
The spectrum of one-particle states is completely quantized;
the Fermi level lies in the middle of the cyclotron gap between
the zero and first Landau levels of electrons. For each of the
two polarizations of the emitted photon, two transitions are
allowed: the recombination transition in the absence of a
spin-cyclotron exciton observed at higher temperatures and
the transition between the inner states of a trion formed by the
valence hole and the spin-cyclotron exciton. The latter
transition is dipole-allowed when the inner quantum num-
bers of the trion do not change [101]. The final state of the
second transition in the sÿ polarization is a trion formed by
the excited electron and two Fermi holes at the zero Landau

level in the conduction band with opposite spins (Pln). In the
s� polarization, this is a trion formed by the excited
electron and two Fermi holes at the zero Landau level in
the conduction band with parallel spins (the T state). In the
T state, the excited electron from the first Landau level
cannot occupy the site of the Fermi hole because of the
conservation of the 2D ES spin. On the contrary, in the Pln
state, the excited electron can occupy the site of one of the
Fermi holes with emission of a cyclotron photon, which, in
turn, can be absorbed with the creation of an e±h pair with
the cyclotron energy, etc. If the system contained only one
Fermi hole, the described process would correspond to
excitation of a magnetoplasmon [29]. In the presence of
the second Fermi hole, the three-particle Pln state is a
magnetoplasmaron.

The energy of inner transitions for a T trion almost
coincides with the energy of the one-particle transition at
high temperatures. The 0.2-meV red shift is caused by the
difference in the interaction of trion's particles during the
transition of one of the holes from the valence band to the
conduction band. The inner transition energy for the Pln trion
leading to the formation of a magnetoplasmaron proves to be
considerably smaller (by 2 meV) than the energy of the
corresponding one-particle transition. Such a considerable
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decrease in the energy is caused by plasma oscillations of a
magnetoplasmaron.

The calculation of the manetoplasmaron energy is a
complicated problem. To estimate the contribution of plasma
oscillations to the energy, we consider a simplified model of
transition from the initial two-particle state (a p-type
magnetoexciton formed by a hole at the zero Landau
level in the valence band and an electron at the first
Landau level in the conduction band) to the final two-
particle state (a magnetoplasmon with spin 0) by ignoring the
Fermi hole in the conduction band entering into the
composition of a spin-cyclotron exciton. The energy of the
p-type magnetoexciton is minimal for the wave vector
qm ' 1=lB (Fig. 9b). The contribution to the final state
energy caused by plasma oscillations has the form

EMP�qm� � e 2

�
qmF�qm� exp

�
ÿ �qmlB�

2

2

�
:

This expression, equal to the difference between the
Coulomb energies of a magnetoplasmon and a spin-
cyclotron exciton, agrees with the result obtained in [29],
but taking into account the form factor F�q� (13). The
measured magnetoplasmaron shift is smaller than the
calculated energy EMP�qm�. This discrepancy is not surpris-
ing, because calculations disregarded the influence of the
third particle, the complicacy of the wave function of a hole
in the valence band and also the possible influence of
Coulomb corrections of second-order smallness in the
Coulomb/cyclotron energy ratio [30].

The plasma nature of the Pln energy shift is confirmed by
measurements performed for two QWs with different widths
(Fig. 16): the decrease in the QWwidth increases the energy of
plasma oscillations with changing F�qm�. The experimental
magnetoplasmaron shift in the narrower QW is 1.4 times
greater than that in the wide QW, which is consistent with the
calculations presented above. The magnetoplasmaron shift
measured in a broad range of electron densities also agrees
with calculated values except the systematic shift to lower
energies. The probability of magnetoplasmaron recombina-
tion increases upon increasing the number of spin-cyclotron
excitons or additional e±h pairs. However, this recombination
channel is saturated with increasing nonresonance pump
power up to 7.5 mW cmÿ2. As the nonresonance pump
power was further increased, the magnetoplasmaron recom-
bination line was quenched, and a new line appeared with the
plasma shift exceeding that of the magnetoplasmaron line
twofold.

A new Pln� EX recombination line appears only in the
sÿ-polarization, corresponding to the transition of a hole
from the valence band to the lower spin sublevel of the
conduction band. The only possible state, other than a
magnetoplasmaron, which can be formed by a spin-cyclo-
tron exciton and an e±h-pair, is a four-particle stateÐan
exciton±magnetoplasmon molecule. This state is formed at
high photoexcitation densities, when the probability of
finding a photoexcited electron and a photoexcited hole
simultaneously near a spin-cyclotron exciton increases.

The formation of an exciton±magnetoplasmon molecule
can be described as follows. In the initial state, a biexciton
exists consisting of a `valence' p-type magnetoexciton and a
purely electronic spin-cyclotron exciton. Then, a valence hole
passes to the conduction band with the conservation of the
inner quantum numbers of the exciton, and an exciton±

magnetoplasmon molecule is formed. The corresponding
recombination line is shifted to lower energies due to the
presence of plasmon oscillations in the final state. Two
electrons in the magnetoexciton±magnetoplasmon molecule,
unlike a magnetoplasmaron, can occupy one of the empty
states (Fermi holes) at the zero Landau level. The unexpected
result is that the contribution of the energy of plasma
oscillations doubles (within the experimental accuracy)
compared to plasmon contribution to the magnetoplas-
maron energy, although two electrons and only one hole at
the zero electronic Landau level are involved in plasma
oscillations.

Thus, the PL spectra of 2D ESs have been studied in the
presence of spin-cyclotron excitons. The ultralong relaxation
times of nonequilibrium spin-cyclotron excitons in a quantiz-
ing magnetic field makes possible the existence of three- and
four-particle complexes related to collective plasma oscilla-
tions of 2D ESs. The stability of these states (a two-hole
magnetoplasmaron and a magnetoexciton-magnetoplasmon
molecule) has been demonstrated. The existence of a stable
magnetoexciton±magnetoplasmon molecule was not theore-
tically discussed earlier. Therefore, it is necessary to develop
theoretical concepts for the quantitative description of
experimental data. The further development of experimental
studies comprises the investigation of photoinduced PL
spectra in the presence of a dense (1010 cmÿ2) ensemble of
spin-cyclotron excitons.
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8. Photoluminescence and the nondissipative
spreading of a condensate of two-dimensional
fermions and related spin excitations over
macroscopically large distances.
Detection methods

Despite the fact that the maximum fraction of spin-cyclotron
excitons in a dense ensemble of 2D electrons in our
experiments does not exceed 10% of the total number of
electronic states at one spin Landau sublevel [32], all the
oscillator strength of the photoinduced PL transfers to
nonequilibrium recombination channels near a spin-cyclo-
tron exciton (Figs 17 and 18). Note that an increase in the
oscillator strength is observed in the region of the temperature
curve where the number of nonequilibrium excitons in the
photoexcitation spot does not increase but, on the contrary,
decreases. Based on this quite unexpected observation, we can
conclude that a phase transition occurs in the nonequilibrium
electron system in which all the electrons at the upper spin
sublevel of the zero Landau level not directly belonging to a
spin-cyclotron exciton are nevertheless involved in a magne-
tofermion condensate, which is not only superabsorbing, but
also superradiating.

Since superradiation is due to electrons under the Fermi
level of the electron system, we can assume that during the
formation of a nonequilibrium ensemble of spin-cyclotron
excitons the excited electrons above the Fermi level are paired
with electrons with the opposite spin below the Fermi level,
modifying the electron vacuum. Correspondingly, the

assumption about the invariability of the vacuum state to
explain the coherent response of an ensemble of excitons to an
external electromagnetic field is only a reasonable approx-
imation describing the superabsorption effect, whereas a
complete theory of the observed phase transition taking into
account the superradiation effect has yet to be constructed.
Also, it is necessary to find out whether this phase transition is
an example of a topological BKT phase transition or we are
dealing with a fundamentally new physical phenomenon.

Earlier, the unexpected behavior of the relaxation time of
triplet excitons in the low-temperature region T < 1 K was
reported where a new condensed phase appeared. In this
region, the measured temperature dependence of the relaxa-
tion time is nonmonotonic (Fig. 12b). As temperature is
decreased, this time begins to decrease strongly in the region
where a new condensed phase appears. Such a behavior in no
way can be related to the relaxation processes of magnetoex-
citons, but rather indicates the `nondiffusion' nature of the
condensate spreading from the photoexcitation spot where
the condensate is produced. The driving force producing the
condensate spreading from the photoexcitation region to the
boundary region with the unexcited 2D electron gas may be a
large density gradient at the appearing interface. The
hypothesis about the probable `superdiffusion' spreading of
the magnetofermion condensate over macroscopically large
distances can be experimentally verified. To solve this
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problem, we developed and applied two independent meth-
ods. Each of them used the spatial separation of the excitation
and detection regions of the spreading condensate.

In the first method, optical fibers for excitation and direct
detection of spin-cyclotron excitons in a condensed phase by
the PRR method were spatially separated [99]. Figure 19
illustrates the experimental setup and the result of the
experimental observation of the condensate spreading over
macroscopically large distances from the local direct optical
excitation region.

A sufficiently dense ensemble of spin-cyclotron excitons
in the 2D fermion electron system was excited by laser light
via the additional third fiber shown in the left part of Fig. 19.
Magnetoexcitons are excited in a laser spot about 0.4 mm in
diameter located directly under the fiber. Two other fibers
located at a distance of 2 mm from the first fiber (in the right
part of Fig. 19), i.e., sufficiently far from the condensate
photocreation region, are used for PRR measurements
related to Fermi holes (electron vacancies) in triplet magne-
toexcitons created under the remote (left) fiber.8 When the
temperature of the system under study is relatively high,
T > 1 K, the PRR signal related to Fermi holes belonging
to triplet magnetoexcitons is minor, even at high photoexcita-
tion densities and lost in the noise caused by the residual light
scattering in a cryosystem. However, as temperature is
decreased at the same fixed optical pumping in the region
T4 0:75 K, the giant threshold PRR increase is observed.
This observation, consistent with the phase diagram pre-
sented in Fig. 13, proves that a considerable part of
photoexcited spin-cyclotron excitons condensed in a 2D
fermion electron system spreads nondiffusively from the
excitation region over macroscopically large distances.

As was pointed out, the decrease in the relaxation time of
these excitations measured by time-resolved PRR proves to
be false in reality. We are not dealing with the acceleration of
relaxation of spin-cyclotron excitons but with their `escape'

from the excitation spot, which was shown in [103] from the
PL study of three-particle complexes: magnetotrions and
magnetoplasmarons. To verify this assumption, samples
with 2D ES were placed in an evacuated insert with liquid
3He having an optical window for input/output of radiation,
which, in turn, was placed into a 4He cryostat with a
superconducting solenoid. The beam of an exciting tunable
laser was split into pump and probe beams. Laser beams were
focused by lenses inside the 3He cryostat on the surface of a
sample into two spatially separated round spots 20 mm in
diameter each. The distance between the centers of the pump
and probe spots was 200 mm (Fig. 20a). The pump power
density was varied within two orders of magnitude from 2 to
200 mW, while the probe beam power was maintained
constant and equal to 3 mW.

For weak pump levels below 6 mW, the shape of the
spectrum and recombination signal from the probe region did
not change, indicating that the ensemble of spin magnetoex-
citons from the excitation region does not affect states in the
probe regions (Fig. 20b). However, as the pump power was
further increased, the PL signal shape in the probe region
changed, namely, the intensity of lines related to optical
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transitions in three-particle complexes (magnetotrions and
magnetoplasmarons) increased [100]. Thus, optical transi-
tions involving three-particle complexes are `signal markers'
indicating the appearance of spin-cyclotron excitons in the
probe region produced in the excitation region.

When the critical pump power (about 6 mW) in the
excitation region is exceeded, spin-cyclotron excitons begin
to arrive at the probe spot, their propagation distance
reaching giant values (up to 200 mm) restricted in the
experiment only by the region size determined by the
aperture of the optical system. The exciton transport can be
stopped by increasing the temperature of the electronic
system (Fig. 21). As the temperature increases by 0.3 K, PL
spectra from the probe region take the same shape as in the
absence of excitation in the pump region, although the pump
itself remains invariable. This means that the transport of
spin-cyclotron excitons and, respectively, the spatial spin
transfer from the excitation region completely cease. This is
consistent with exciton lifetime measurements, which
revealed that the exciton lifetime in the excitation spot
decreased in the same temperature range where the exciton
transport from the pump spot was observed in this experi-
ment.

9. Promising areas of further studies:
the excitation and relaxation of spin-texture
and spin Laughlin liquids

Anumber of problems are still unsolved and poorly studied in
the field of investigations discussed in this review. First of all,
this concerns a theoretical description of the magnetofermion

phase itself in a quantumHall insulator. Experimental studies
of the spatiotemporal coherence of a condensed phase (first-
and second-order correlators) and of the propagation velocity
of spin excitations in 2D electron gas quantized in a magnetic
field could shed light on the microscopic structure and
thereby the description of the order parameter of a magneto-
fermion condensate.

The observation of a condensate spreading with the
integer spin transfer over macroscopically large distances
opens up the unique possibility for spin control with the
help of external actions (gate voltage, temperature, and an
optical pump) for creating a spin transistor. Along with this,
noticeable progress in describing spin relaxation in a
quantum Hall ferromagnet opens up possibilities for solving
more complicated problems such as describing spin relaxa-
tion for small deviations of the electron filling factor fromodd
integer values and in fractional Laughlin states. Problems
complicating the theoretical description of the spin relaxation
in these two cases appear for different reasons. In the case of
small deviations of n from odd integer values, the structure of
the ground state of the electronic system is unknown, whereas
the spectrum of spin excitations is experimentally measured.
In the case of Laughlin liquids [104], the ground-state wave
function is well known; however, the spectrum of collective
spin excitations is unknown.

It is accepted that, when the filling factor deviates from
unity to a larger (smaller) value, the electron spins form
vortex-like topological spin textures called skyrmions (anti-
skyrmions). Skyrmions (anti-skyrmions) appear due to
competition between the Zeeman and exchange energies. In
high-mobility GaAs=AlxGa1ÿxAs semiconductor 2D sys-
tems, the Zeeman energy is rather considerable, while the
number of inverted spins in a skyrmion does not exceed four.
In this connection, the theory of spin-texture particles with
several inverted spins, which are the quantum generalization
of classical skyrmions, was developed.

It was assumed that spin-textured quasi-particles in the
ground state form a crystal lattice [105]. The first experi-
mental data suggesting the formation of a skyrmion crystal
lattice were obtained in 3D MnSi ferromagnetic films and
similar compounds [106]. However, no conclusive evidence
was presented about the existence of a skyrmion crystal in a
quantum Hall ferromagnet with charged defects formed due
to either a deficiency or excess of the electronic density.
Moreover, the entire theory of spin-texture quasi-particles in
2D ESs was subject to doubt. The spin depolarization of the
electron system in the vicinity of the unity filling factor proved
to be completely reproducible for filling factors in the vicinity
of n � 3 (Fig. 22), where the existence of spin-texture quasi-
particles is doubtful, even for the zero Zeeman energy [107].
The effective number of inverted spins determined from new
optical spin-polarization studies in 2D systems is not
consistent with previous experimental data [74]. Nor does
this number agree with theoretical values, despite the fact that
it should be certainly determined by the ratio of the Zeeman
and exchange energies. Finally, it was shown that physical
objects similar to spin-texture quasi-particles exist in the limit
of the zero number of inverted spins [88, 89].

Based on ILS observations of spin-excitation spectra, it
was assumed that the ground state of a quantum Hall
ferromagnet with charge defects caused by a deficiency or
excess of electronic density is a spin-texture liquid. In the
excitation spectrum of the liquid, new gap branches appear
related to the collective precession of the electron spin in the
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effective magnetic field produced by spin textures. New
excitation branches behave similarly to cyclotron excita-
tions, albeit, not in the external magnetic field but in some
fictitious magnetic field proportional to the density of spin-
texture quasi-particles. Correspondingly, the `effective mass'
of collective spin excitations is determined by the polarization
degree of the electronic system and the exchange interaction
strength [88, 89].

The authors of the review performed spin-relaxation
experiments for small deviations of the filling factor from
odd integer values. We found a nonmonotonic dependence of
the spin relaxation time on the filling factor for n close to
filling factors corresponding to quantum Hall ferromagnetic
states. The nonmonotonic dependence is explained by the fact
that the spin-excitation energy of spin-texture liquids can be
either higher or lower than the Zeeman energy. This leads to
the appearance and disappearance of additional relaxation
channels of spin excitons having the Zeeman energy. The spin
excitations of spin-texture liquids are related to transitions
between the `effective Landau levels' of electron spins caused
by the Berry phase [108], which is acquired during the
precession of the electron spin around spin textures. For
odd integer filling factors, the energy of these excitations is
exactly zero, because spin textures are absent. In turn, the
energy increases with increasing density of spin textures and
begins to exceed the Zeeman energy at some density value.
According to theoretical estimates [109], this electron energy
at the Landau level is proportional to the spin texture density
and the exchange energy

ho 0c �
1

2
Ex

1ÿ n
n

;

where Ex is the exchange energy [109]. Experimental spin-
relaxation data agree qualitatively with the results of
Ref. [109]; however, the existing theory ignores the strong
interaction of different spin-excitation branches, which was

found experimentally. It seems that, to obtain quantitative
agreement between experiments and theory, additional
experimental efforts are required, and the theory of spin-
textured liquids should be further developed.

Direct measurements of the spin relaxation and an
explanation for relaxation mechanisms are even more
important for Laughlin uncompressible liquids. Laughlin
liquids [104] formed in the case of the fractional quantum
Hall effect have been discussed in numerous publications. The
attention of the scientific community devoted to this topic can
be compared only to superconductivity and superfluidity
phenomena. However, unlike the theory of these widely
known physical phenomena, so far no consistent micro-
scopic (nonphenomenological) theory exists which could be
used to construct the ground state, even for the most known
and well-studied Laughlin state with n � 1=3. The situation
with other fractional states proves to be even less predictable.
The microscopic theory of composite fermions [110], in the
opinion of its authors themselves, can be applied only in the
vicinity of the filling factor n � 1=2 and cannot be extended to
Laughlin states, whereas phenomenological theories of type
[111] use a number of assumptions which seem to be not
entirely justified.

For example, it was recently shown that the formation of
Laughlin liquids does not require the smallness of the
interparticle Coulomb interaction energy compared to the
cyclotron quantization energy. Laughlin states are observed
not only in high-mobility GaAs=AlxGa1ÿxAs QWs and
heterojunctions for which this assumption is well satisfied,
but also in new 2Dheterostructures such as heterojunctions in
ZnO/MgZnO oxides [112]. Despite substantially different
characteristics of these objects (permittivity and mass of
carriers), the properties of Laughlin states prove to be
universal and weakly sensitive to the specific features of the
systems studied.Moreover, in the ZnO/MgZnO system under
conditions of the fractional quantumHall effect, we can easily
come to the smallness of the ratio of the cyclotron quantiza-
tion energy to the interparticle Coulomb interaction energy.
Nevertheless, all the main Laughlin states are experimentally
observed. The exclusion is fractional states with even
denominators, which are, however, usually related either to
the ground-state anisotropy or to the nontrivial interparticle
ordering.

What hinders progress in the study of Laughlin states?
The answer becomes obvious if we consider experimental
methods used for solving this problem.

The main method for studying Laughlin liquids is
magnetotransport, which is associated with a number of
symmetry restrictions that actually prohibit the use of other
experimental techniques for these purposes. For example, the
Kohn and Larmor theorems restrict the applicability of such
powerful experimental methods as the cyclotron resonance
(CR) and electron spin resonance (ESR). Infrared absorption
spectroscopy, in combination with the formation of a grating
of surface acoustic waves (SAWs), can alleviate symmetry
restrictions. However, such an approach requires consider-
able methodological efforts, which in turn restricts the
applicability of CR and ESR in modulated SAW structures
[85]. The potential of using optical methods such as PL,
optical absorption, and photoexcitation is also restricted.
For optical transitions with zero transfer momenta, a so-
called hidden symmetry exists [113], which makes optical
spectra insensitive to variations in the ground state of the 2D
system in the ultra-quantum limit.
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The main requirements for a system with hidden symme-
try are:

(1) The presence of charge symmetry at which the
interaction potentials of electrons and holes have equal
values (Vee � Vhh � ÿVeh, where subscripts e and h refer to
electrons in the conduction band and holes in the valence
band, respectively);

(2) the electron systemmust be in the quantum limit n4 2;
(3) the mixing of Landau levels is disregarded.
The first condition is violated in wide QWs with one-sided

doping and in two-layer systems when the electron layer is
separated from the layer of photoexcited holes and, as a
result, the envelopes of the electron and hole wave functions
in the growth direction of heterostructures are displaced in
the coordinate space with respect to each other. Even in this
case, the energy of optical transitions weakly depends on the
change in the ground state of the electron system [114].

As for narrow GaAs=AlxGa1ÿxAs QWs in which the
envelope of wave functions of charge carriers is specified not
by the electric field of doping impurities but by the quantizing
potential, condition (1) for them can be assumed fulfilled.
Less obvious is the fulfillment of condition 1 in the QW plane
because of the complicated structure of Landau levels in the
GaAs valence band.

Condition 2 is a formal statement concerning the carrier
concentration, which can, in fact, always be fulfilled.

The situation with condition 3 is not so unambiguous.
Theoretical models describing optical transitions in the ultra-
quantum limit usually take into account the energy contribu-
tions of the first-order smallness in the Coulomb/cyclotron
energy ratio. Such an approach assumes that the higher-lying
Landau levels are ignored in calculations of optical transition
energies. Electron correlations related to the formation of
Laughlin liquids in the ground state are included in the single-
mode approximation, which also ignores the higher-lying
Landau levels, i.e., condition 3 is a priori assumed fulfilled
[115±117]. Thus, condition 3 is usually ignored in theoretical
estimates of the optical spectra of 2D systems; however, in
experimentally implementable systems this disregard is
obviously unjustified, especially in light of experiments with
ZnO=MgZnO heterostructures.

Despite modern theoretical concepts, the authors of the
review have managed for the first time to distinguish in the
resonance optical reflection spectra of 2D ES a line related to
excitation of a Laughlin liquid with n � 1=3 (Fig. 23). The line
is observed in the symmetric electronic system, where
condition 1 is partially satisfied and condition 2 is completely
fulfilled, for the zero transfer momentum in a translation-
invariant system (reflection). The new line is shifted to the
blue by the energy, which is interpreted as the Coulomb gap
required for creating a neutral spin defect in the uncompres-
sible Laughlin liquid.

The observation of an individual line from the Laughlin
liquid in the resonance reflection spectrum of the 2D ES is
important not only from the fundamental scientific but also
from the methodological point of view. This makes possible
the optical probing of uncompressible liquids in translation-
symmetric 2D systems (which has so far been impossible
using optical, CR, and ESR methods) and time-resolved
optical studying of the relaxation dynamics of spin excita-
tions in Laughlin uncompressible liquids, as in [83].

Addition in proofs. During the review preparation for
publication, noticeable progress appeared in the understand-

ing of the physics of `dark' triplet magnetoexcitons and a
magnetofermion condensate. The study of the PRR signal
decay kinetics excited by a pump pulse with the simultaneous
control of the PL spectrum and analysis of PL spectra in the
case of the spatial separation of pump and probe pulses was
used in the method for constructing the distribution of spin
magnetoexcitons over generalized momenta [118±121]. It was
found that only excitons with momenta q � 1=lB spread over
macroscopic distances. Because the laws of conservation of
energy and momentum cannot be simultaneously satisfied,
complete thermalization does not occur in an ensemble of
dark magnetoexcitons. Relaxation to the lowest energy state
proceeds due to two-exciton processes, which become notice-
able only when some critical exciton density is reached.
Because of ultralong thermalization times, the ensemble of
dark magnetoexcitons is substantially nonequilibrium and
consists of two components. One of them is above-condensate
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magnetoexcitons with generalized momenta q � 0 and the
other is magnetoexcitons with momenta q � 1=lB involved in
the formation of amagnetofermion condensate and transport
over macroscopic distances. Thus, a photoexcited system of
spin magnetoexcitons substantially differs from a system of
indirect excitons in the momentum space in 3D semiconduc-
tors (Ge, Si), where long-lived excitons are thermalized during
their lifetime [122]. A closer example of a nonequilibrium
Bose system is parametrically pumped high-temperature
Bose±Einstein magnon condensates in yttrium-ferrum gar-
net films [47]. Pulsed photoexcitation experiments show in
[119] that the spreading rate of a magnetofermion condensate
is no less than 25 m sÿ1, which is not greatly different from
these rates in a magnon condensate [123]. Progress in the
theoretical description of the optical properties of spin
excitons in a Hall dielectric is described in [124].
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