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Abstract. The authors’ view on the development of theoretical
concepts of collisionless plasma is presented. The review begins
with studies by Lord Rayleigh, who established the basics of
multi-electron system theory in 1906 as a development of
J J Thompson’s atomic theory. His study was based on the
concept that electrons move in a self-consistent electric field
produced by the electrons themselves. Rayleigh then used this
concept to predict the oscillatory motion of electrons and
obtained a formula for the frequency of a system’s collective
oscillations. Those studies established a foundation for Ray-
leigh’s model of a multi-electron system, and his formula for
the frequency of collective oscillations may be considered the
first analytical result of the science pioneered by Lord Rayleigh.

Keywords: Rayleigh model, Langmuir — Tonks model, self-consis-
tent field, Boltzmann kinetic equation, Landau collision integral,
Vlasov equation

In memory of
Leonid Veniaminovich Keldysh

1. Introduction

Twenty years after Lord Rayleigh had published his paper[1],
the experimental results of Langmuir [2, 3], Dittmer [4], and
Penning [5, 6] appeared. The subject of their studies was gas
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discharges, in which they observed high-frequency oscilla-
tions of an electric field that were hardly understood at that
time. The frequency of those oscillations coincided with that
predicted by Rayleigh [1]: Rayleigh himself had long ago
explained the field nature of those oscillations whose
frequency depends on the density of electrons. Langmuir [7]
introduced a concept of plasma as a generally neutral gas that
consists of electrons, ions, and neutral particles, atoms and
molecules. Langmuir and Tonks [8, 9], developing Lang-
muir’s concept and using Rayleigh’s model of a self-consis-
tent field [1], suggested a model to interpret the experimental
results that now looks simple and generalizes the Rayleigh
model. It was assumed in that new model that charged
particles move in a self-consistent, but this time electromag-
netic, Maxwell field, owing to which the model becomes
electromagnetic, rather than merely electric one. The model
was quite successful in explaining experimental data on
plasma oscillations in regions of not only high (electron) but
also low (ion) frequencies. Studies [8, 9] thus showed the
efficiency of using the concept of a self-consistent Maxwell
field for describing plasma.

Development of the kinetic theory of plasma was,
however, slowed down due to the belief that the Boltzmann
equation is not applicable to a gas with Coulomb interaction,
i.e., plasma. This opinion stemmed from the long-range
character of Coulomb interaction, as a result of which the
collision integral in the Boltzmann equation diverges for a
pair of charged particles provided that they interact in a
vacuum. As early as in his paper [7], Langmuir noted,
however, that the Coulomb potential is screened in a
plasma, unlike a vacuum, at distances larger than the Debye
radius [10, 11] and showed that account of the Debye
screening eliminates the divergence in cross sections of pair
collisions of charged plasma particles.

In his approach [12], Landau while not abandoning
pairwise collisions, took into account Debye screening in the
Coulomb potential to derive the Boltzmann equation with a
finite collision integral, thus introducing the collective effect
into the kinetic theory of plasma.

A crucial step was made by A A Vlasov [13—15]: following
[1-9], he added to the kinetic equation, which describes
plasma particles, self-consistent electromagnetic fields, while
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Anatolii Aleksandrovich Vlasov
(20.08.1908 —22.12.1975)

fully ignoring pair particle collisions. It is this equation that
was named after Vlasov, whose star rose.

(1) We begin our brief and largely personal presentation
by describing Rayleigh’s role in the development of physical
concepts of plasma, including those still little known.
Rayleigh redesigned in 1906 [1] the Thompson model of the
atom into what is now called the plasma atom model. The key
point of that transformation was the concept of the self-
consistent field introduced by Rayleigh. It is therefore quite
natural that already Vlasov’s first publication [13] contains a
reference to Rayleigh’s study [1].

In 1925, Langmuir started in [2, 3] to methodically explore
in his experiments the properties of plasma, including spectra
of oscillations of plasma charge density using a high-
frequency probe he designed (Langmuir probe). He discov-
ered that there is a limiting frequency of long waves that had
been predicted by Rayleigh as early as the early 20th century
[1]. That frequency was shown earlier by Rayleigh and
afterwards by Langmuir to depend on plasma electron
density.

The dependence of the frequency on electron density
enabled Langmuir to make an important conclusion regard-
ing the collective nature of those oscillations that were later
named plasma (or Langmuir) oscillations. In developing this
approach, Langmuir and Tonks applied a simple mechanical
model, in which electrons moved in self-consistent electro-
magnetic fields described by Maxwell equations, to explain in

qualitative terms the spectrum of longitudinal (potential)
waves observed by Langmuir. Moreover, the model also
enabled them to explain in qualitative terms both the
dispersion of Langmuir waves they observed and the
presence in plasma of a low-frequency (involving ions) ion-
acoustic oscillation branch, as well as possible propagation of
transverse electromagnetic waves in plasma.

It should be noted that Langmuir used in his study [7]
dated 1928 an important provision that the Coulomb
potential in plasma is screened at distances larger than the
Debye radius to show that the cross section of scattering of a
particle on such a potential is finite. This conclusion allowed
him to see how transport coefficients and relaxation times
may be determined in the description of phenomena in non-
uniform and non-stationary plasma based on the kinetic
equation.

(2) The work by Landau [12] may be considered the next
important step in the development of the basic science of
plasma. Landau made the Boltzmann kinetic equation
applicable to a description of the gas with Coulomb
interaction between particles where the total cross section of
elastic scattering of the pair of charged particles in a vacuum
is infinite. The Boltzmann collision integral is in this case
naturally senseless. Landau used the known result of Debye
and Huckel [10] and took into account the Debye screening of
the Coulomb potential of interaction between charged
particles at large distances, owing to which the cross section
of Coulomb scattering in a plasma becomes finite.

Landau thus took into account the static self-consistent
field that involves many particles to obtain a meaningful
integral of pair Coulomb collisions in the Boltzmann
equation. Although this problem seems at first glance to be
beyond the topic of collisionless plasma that we are discuss-
ing, its solution was a significant achievement with implica-
tions for practice. Namely, taking into account the effect of
collective phenomena of pair Coulomb collisions according
to Debye enabled Landau to describe many important
phenomena in plasma similar to those that had been studied
and explained by that time in the physics of gases. This result
extending the physical kinetics of plasma beyond Boltz-
mann’s concept of pair collisions was emphasized by Vlasov
in his lecture course delivered to students in the Physics
Department of Moscow State University.

(3) An important step that essentially determined the
development of the basic theory of collisionless plasma as
the physics of collective phenomena was made by Vlasov in
[13—15]. He asserted in [13, p. 292] that ““the kinetic equation
method that only takes into account pair interaction, i.e.,
interaction by means of impact, is for the system of charged
particles an approximation that is, strictly speaking, unsatis-
factory; an essential role in the theory of such phenomena
should be played as well by interaction forces operating at
large distances, and the system of charged particles is
therefore not a gas but a kind of system drawn together by
long-range forces.” We continue the direct quotation from
Vlasov: “The account of ‘long-range forces’ naturally results
in the properties that are missing in a normal gas medium
whose properties comply well with the standard scheme of the
kinetic equation. They include unusual oscillation properties
of electron plasma, the existence of which was noted by
Rayleigh in 1906 in a special problem of the behavior of an
array of electrons in the old Thomson model of the atom and,
independently in 1929, by Langmuir and Tonks, who used a
similar approach to gas plasma.”
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In accordance with his assertion made in [13], Vlasov
proposed a kinetic equation to describe a fully ionized plasma
in which pair collisions of particles are fully ignored, and
interaction between the particles is considered, following
Langmuir and Tonks, to be due to self-consistent electro-
magnetic fields. To describe the self-consistency, the Vlasov
equation was complemented, similarly to Langmuir’s and
Tonks’s model in [8, 9], by a system of Maxwell equations in
which the field is generated by the plasma particles themselves
that move at the same time in the electromagnetic fields they
generate. This plasma model became to be referred to as self-
consistent field approximation for collisionless plasma or
Vlasov plasma. The model not only confirmed the concepts
on which the Rayleigh-Tonks—Langmuir theory is based but
also provided a quantitatively correct description of disper-
sion of Langmuir oscillations, which was discussed in
qualitative terms by Langmuir and Tonks [8, 9].

It should be noted that Vlasov and Landau in the mid-
1940s virtually independently of each other theoretically
predicted (with the point of a pen) a phenomenon that was
quite new in the physics of plasma: collisionless damping of
plasma waves (CDPW). The simplicity of the prediction made
by Vlasov was due to the smart choice of the model function
for electron velocity distribution. Vlasov also made the first
step to understanding the physical nature of the phenomenon
he predicted, indicating that collisionless damping is due to
absorption of waves by plasma electrons. The Vlasov plasma
model later became a basis for a broad range of explorations
of new plasma phenomena and applied research and devel-
opment that generated a plethora of publications. Landau
published his prediction of CDPW in 1946 virtually simulta-
neously with Vlasov. His elegant method for predicting
CDPW rapidly became generally accepted; the Vlasov vs.
Landau priority problem has, however, emerged, distressing
romantics of Russian science. This is, however, an issue that is
‘beyond science’.

2. The formation of first theoretical concepts
of plasma

The first theoretical concepts of plasma as a gas of charged
particles were formulated in [1, 8, 9]. They were based on
Rayleigh’s simple arguments and Langmuir’s experiments
[2, 3]. Those experiments explored spectra of plasma
oscillations in the glow discharge in mercury vapors and
air under a pressure of Py ~ 107*—10~3 Torr at distances
from electrodes that are much larger than the Debye radius
of field screening. This choice of experimental conditions
ensured a high uniformity of the plasma and its quasineu-
trality. Two experimental techniques were used: the method
of plasma oscillation eigenfrequencies that manifest them-
selves in the spectra of resonance absorption of external
radiation and the probe method, in which eigenfrequencies,
the temperature of clectrons, and plasma density are
measured. This Langmuir probe later gained popularity in
scientific laboratories.

The first phenomenon experimentally discovered by
Langmuir was that plasma exhibits high-frequency oscilla-
tions whose frequency spectrum depends on plasma electron
density in the way predicted by Rayleigh [1] in 1906. The
oscillation frequency varied with changes in discharge
current, i.e., depended on electron density. Langmuir sug-
gested for that frequency an approximate formula that
describes the main dependences of the observed frequency v

on experimentally measured physical parameters. According
to [3], this qualitative formula has the following form:
2

v2zen:le . (1)

The dependence of the oscillation frequency on charge e and
mass m of the electron that follows from Eqn (1) enabled
Langmuir to conclude that the oscillations he observed were
electron ones; he also considered the dependence on the
electron density n, (number of electrons per cubic centi-
meter) a manifestation of collective phenomena.

It was noted above that the formula for the electron
oscillation frequency was derived by Rayleigh [1] as early as
1906. Rayleigh predicted in that paper collective oscillations
of electrons in the model of the multi-electron Thomson
atom, in which positive charge is assumed to be uniformly
distributed over a small spherical region while electrons are
embedded in that charge (so-called plum pudding model).
Each electron may oscillate around its equilibrium position.
The atom as a whole is electrically neutral.

Rayleigh analytically described oscillations of the electron
in the multi-electron Thomson atom in the following way
(modern notations are used [16]): if a minor displacement of
the electron from the equilibrium position is denoted as S, he
presented the uncompensated electric charge that emerged as
a result of that displacement in the form

p = 4ndiv (en.S) . (2)

The electric field created by that charge, E = 4menS, acts on
each electron with the force F = —¢E = 4ne’sS that tends to
bring the electron back to the equilibrium position. As a
result, the electron oscillates, and Rayleigh described that
oscillation motion using the equation
’S

maa + 4me’n.S =0. (3)
This equation describes oscillations of electrons and the field
they create with a frequency of

V3 x 100, [s7]. (4)

It was in the studies by Langmuir and Tonks [8, 9] that Eqn (1)
found a rigorous justification, was named Langmuir fre-
quency, and yielded an estimate of its value.

The dependence of frequency (4) on plasma electron
density prompted Langmuir and Tonks [8, 9], who operated
with the concept of elasticity as the driver of oscillations, to
hypothesize that the elasticity of plasma is due to the ‘large
number’ of electrons. It is, however, in [8, 9] that they started
to methodically abandon such primitive concepts. They
demonstrated that they had switched to understanding
plasma waves as the plasma’s electromagnetic field and
matter waves by suggesting a new plasma model (that may
be referred to as an electromagnetic model) of their own. The
starting point in the model is the Maxwell equations:

4me?n,
W= WLe = —_— =
m

1 oH 10E 4
rotE = —— — | rotH:___A,__nj’

¢ Ot c ot ¢ (5)
divE =4mn.p, divH=0,

and the required constitutive relations:

1
mE:e<E+—VXH>, j=enV, p=ene. (6)
c
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External electric and magnetic fields are disregarded in the
proposed model; plasma is considered to be an isotropic
medium in which equations for the longitudinal field
(rotE =0) and transverse field (divE = 0) decouple, and
the system of Eqns (5) and (6) splits into two independent
equations:

O’E!  dnme’n, !
Ea =0 )
’EY  4me2n,
5 Ell‘ — C2AEU' ,
ot m

while the conditions under which solutions of those equations
have the form of plane monochromatic waves,
~ exp (—iwt + ikr), are reduced to the following dispersion
relations for the longitudinal and transverse waves:

2 __ .2 2
wH = Wre» w] = COLe

k2 2 (8)
which are the same as the dispersion relations for longitudinal
and transverse waves in a modern model of cold electron
plasma [16]. Experimentally determined absorption spectra
and coefficients of reflection and refraction of electromag-
netic waves in mercury vapor plasma [7-9] for the measured
electron density 7, ~ 10! cm~ also agree with the values
obtained with Eqns (7) taken into account.

Langmuir’s and Tonks’s simple electromagnetic model
thus explained quite satisfactorily the experimental results
and showed that a self-consistent field may be effectively used
to describe plasma.

3. Boltzmann Kkinetic equation
and Landau collision integral

The results and ideas presented in Section 2 clearly demon-
strated that the kinetic model should be developed to describe
the oscillatory properties of plasma. Researchers with a
conservative physical mentality could hardly apply to
plasma the then-standard physical kinetics of gases based on
a kinetic equation with the Boltzmann collision integral.
Indeed, the core of that integral was, for example, the cross
section of the elastic scattering of two colliding particles. If
two particles collide in a vacuum, that cross section is infinite
due to a slow decrease of the Coulomb potential with
distance. In other words, the corresponding collision integral
is meaningless.

On the other hand, the Debye—Huckel effect was known in
a medium containing immobile charges, where the Coulomb
potential exponentially diminishes at distances that are larger
than the Debye radius due to the screening caused by the
particles. Landau showed in [12] that such a multi-particle
effect as Debye screening may be introduced in the Boltz-
mann equation, where the interaction of a pair of colliding
particles alone was earlier taken into account. Landau
reproduced to this end the derivation of the collision integral
based on Boltzmann’s initial assumptions and extended it by
an assumption that the momentum transferred in the process
of collision is small; this assumption corresponds to the
scattering of particles at small angles or collisions at large
impact parameters, which is the same thing. The result
obtained coincides with that found directly from the
Boltzmann collision integral (see [17]). It proves to be
proportional to the following logarithmically diverging

integral over the transferred momentum Ap:

A kgT.
A:Jd_pzln "D ZIHM. (9)
Ap I'min fiv4meZn

Several comments regarding Eqn (9) are relevant. First, in
deriving this equation, the inverse proportionality between
the momentum transferred in the collision and the corre-
sponding impact parameter is taken into account. Second, the
emergence of the minimum impact parameter is not due to the
defectiveness of the Boltzmann collision integral that does not
exist at small impact parameters but reflects the limited
applicability of Landau’s assumption regarding the small-
ness of the momentum transferred in collisions. We used here
the well-known estimate that follows from the Heisenberg
relation. Equation (9) is valid at high temperatures when
kT > e4,u/h2. If the effective mass u is set to be the electron
mass, the last inequality shows that quantum cutoff at small
impact parameters becomes of importance at a temperature
over 27 eV.

Third, the most important point for our presentation is
that Landau used the Debye screening radius rp as the
maximum impact parameter. Owing to this, the Coulomb
logarithm L becomes dependent on electron density.

The most important conclusion is that, as a result of
truncating the divergence of Coulomb logarithm at large
impact parameters due to Debye screening according to
Landau, the Coulomb logarithm itself proves to be depen-
dent on electron density. Following the way of thinking that
was promoted by Langmuir, this dependence is a manifesta-
tion of the collective, albeit weak, nature of the Landau
Coulomb logarithm. It is for this reason that Vlasov was
saying to students in the Physics Department of Moscow
State University that Landau had made a breakthrough from
the paradigm of pair collisions, a cornerstone of Botzmann’s
early kinetics, that impeded analysis of the physical picture.
Apart from that event, which is central to our narration, one
should not miss the following useful Focker—Planck form of
the collision integral derived by Landau in [12]:

afa(l',Vm,l) af,((l', le)
ot or

s p) 22V

+V{X

o

o ( PAA)

= _Ax xravfxat ’

(10)

where

Djj= Z Jdp/; Iii{’ﬂ(paﬂpﬁ)ﬁg(p/{) ;
B

Iz 0fp
A7 = jdp 17 (b, pp) L
g p B ap;g

Here, I[-[jﬁ = 2ne eﬁL(u 8;; — uu;)u’, where u=V, — Vg,
o = dr,/d¢, and fl(px,rd, t) is the one-particle distribution
function of type o particles (¢ = e, 1).

Finally, Landau made the diverging Coulomb logarithm
L (Landau logarithm) finite by truncating the interaction at
large distances as a result of Debye screening and, at small
distances, at ryi, = ¢2/T, the distance where the approxima-
tion of small-angle scattering that he used fails. As a result,
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the Coulomb logarithm proves to be

It is this logarithm that Langmuir obtained in 1928 [7].

Landau thus made the Boltzmann kinetic equation
applicable to the description of plasma and significantly
simplified in that way the calculation of transport coeffi-
cients, relaxation times, and other parameters that character-
ize the collisional kinetics of plasma. It should be stressed
once again that, following Rayleigh, Langmuir, and Tonks,
Landau introduced into the kinetic theory of plasma a
collective effect, the manifestation of a self-consistent field,
by replacing pair collisions of particles with collisions of
collective Debye—Huckel-Langmuir—Landau clouds.

It would be relevant here to assess the importance of
Landau’s derivation of the collision integral (which was later
named after him). Landau led physical kinetics in his
systematic derivation of the collision integral of charged
particles away from Boltzmann’s paradigm of pair collisions
to a new paradigm emerging in plasma theory that takes into
account the collective effects related to the Maxwell electro-
magnetic field. If formulated in the language of the earlier
concepts of Boltzmann pair collisions, the collective effect
that Landau takes into account actually removes the error of
his predecessors, who overestimated the role of large impact
parameters: it is of importance if pairs of charged particles
collide in a vacuum but proves to be suppressed as a result of
Debye screening in a plasma.

Unlike Landau, Vlasov did not pursue the path of
cleaning Augean stables. He followed Rayleigh, Langmuir,
and Tonks up to introducing into the physical kinetics the
Maxwell field electrodynamics that identifies, as is clear up to
now, the field as a mechanism of long-range interaction
between plasma particles already within the picture of the
Debye-Huckel screening.

4. Vlasov Kkinetic equation
with a self-consistent field

Shortly after that, the ideas of Rayleigh, Langmuir, and
Tonks about the self-consistent field were revived by introdu-
cing the Maxwell electrodynamics into the physical kinetics.
The bold and significant step that essentially guided the
development of plasma physics as the physics of collective
phenomena was made in Vlasov’s breakthrough work [13—
15].

Vlasov formulated in 1938 [13] his own definition of
plasma: “Plasma is a medium with a long-range interaction
in which account for only pair interaction between particles is
apparently insufficient; the interaction should be taken into
account by means of the electromagnetic fields generated by
the particles.” This assertion made by Vlasov corresponds to
using in the kinetic equation the electromagnetic fields that
are determined as self-consistent ones via the Maxwell
equations. In accordance with this definition, Vlasov fully
disregarded pair collisions of particles in deriving his kinetic
equation to represent it in the following form:

Our.Vart) |y 0ol Ve )
ot or

+61{E+1 [VQB}}M:O.
¢ op,,

Vlasov complemented Eqn (11) with the system of Maxwell
equations:

1 0B
rotE=—-—-—, divE=4n eaJ/;dp,
rotB:la—E—&—‘t—Tt e%JVmﬁ(dp7 divB=0.
¢ Ot c <

In 1938, Vlasov used Eqn (11) combined with Eqns (12) as
a foundation for his plasma model. They were named the
system of equations with self-consistent interaction, and
Eqn (11) was named after Vlasov. The plasma model is
referred to as collisionless plasma or, in other words, Vlasov
plasma. In addition to providing a quantitative interpretation
of Langmuir’s experiments where plasma waves were
observed, this model became a basis for a broad range of
explorations of new plasma phenomena and applied develop-
ments.

5. Stationary longitudinal plasma waves.
“The future’ is for Vlasov

One of the results of Vlasov’s study [13] is the dispersion
equation (Vlasov law) that he published in 1938. This
equation describes stationary longitudinal oscillations of
plasma (with real-valued w and k) in terms of the theory of
Cauchy-type singular integrals that are directly related, as is
clearly seen now, to the mathematical apparatus for the
theoretical solution of collisionless plasma problems in the
following form:

_41re2v Jk@fo/ap:
k2 ) w—kv

1 0. (13)

Here, v.p. means that the integral in Eqn (13) should be
understood as the Cauchy principal value that corresponds,
according to Vlasov, to the requirement of stationary
oscillations. This choice of the Cauchy principal value made
by Vlasov helps one to understand the Sokhotskii relations
that had already been known by that time. A single glance at
these relations is sufficient to understand that Vlasov’s choice
for describing stationary oscillations is quite natural.

Not everyone, however, was enthusiastic about that
option. There were opponents who failed to see ‘sufficient
justifications’ for the choice made. Things moved on,
however. Equation (13) was used to obtain the spectrum of
plasma oscillation and dispersion when the electron distribu-
tion function is maxwellian, and the wave phase velocity is
much larger than the thermal velocity of electrons: o > kvre,

o ==+\/oi, +k*i,.

Expression (14) correctly describes in qualitative terms the
volume resonances that Tonks discovered as early as 1931 in
his early studies [18, 19], i.e., long before Vlasov. The volume
plasma resonances were explored after Tonks by a number of
authors. A detailed description of Tonks’s studies may be
found in the review published by Golant and Piliya [20] (it
also contains references on the issue). Dattner’s study [21]
published in 1957 (see also [22]) is the most comprehensive
one. The term ‘Tonks—Dattner resonances’ was coined. A list
of publications by authors from various countries who use
Eqn (14) enables a judgment to be made of how popular this
formula is. We list for illustration some of the publications

(14)
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listed in review [20]: Gil’denburg [23], Parker, Nickel, and
Gould [24], and Vandenplas [25]. These are only some
examples of studies, including experimental ones, in which
stationary plasma waves have been explored.

The future (or more accurately, a careful reading of the
past) has shown that Vlasov’s dispersion equation (13) is also
justified by the experiment, thus refuting the allegations
regarding ‘insufficient justifications’. The discussion that
emerged later in relation to stationary plasma waves has,
however, become a kind of PR campaign for some academics
and a topic to be hushed up for the others, but this is an issue
that is ‘beyond science’.

As a conclusion: an important discovery by our protago-
nists regarding nonstationary waves.

Vlasov made another rather important discovery in 1945
that significantly enriched plasma physics. Namely, he
published that year [14] a solution of the Cauchy problem
for the relaxation of small potential plasma oscillations on the
basis of linearized Vlasov equation (11) to predict, with the
point of his pen, collisionless damping of plasma waves.

Landau virtually simultaneously with Vlasov published in
JETP a solution to the Cauchy problem containing his
prediction of CDPW [26]. Owing to the result being
published in a renowned journal and the author’s scientific
prestige, the damping phenomenon was named after Landau.
The prediction of plasma wave damping now belongs to the
treasury of Russian science.

Because the articles by Vlasov [14] (the manuscript sent to
the printer’s on May 26, 1945 and signed for publication on
November 13, 1945) and Landau [26] (submitted to the
journal on June 2, 1945) were published at about the same
time, some academics try to reduce the scientific assessments
to discussions typical of a sports contest: who was the first?

A matter of concern is that the very formulation of the
question is reminiscent of the situation of a bull in a china
shop. It may be typical of sports but is it relevant to science?
The answer we suggest is: both were the first (this may occur
in sports as well). The main reason is that, although the old
building of the Physics Department of MSU was crammed
with people, due to which contacts between them were very
close, and it was very difficult to conceal discoveries prior to
publishing, the articles by Vlasov [14] and Landau [26] exhibit
high and instructive standards of scientific creativity typical
of classics. Moreover, today as well, any indelicacy in
assessing scientific activities, especially those of classics,
should be subject to ostracism. This attitude is apparently of
special importance in times like ours, when attempts are being
made to reform science. We would like to hope that ostracism
of that kind will someday become an effective tool of the
scientific journals published by the Russian Academy of
Sciences.

As to the Vlasov vs Landau question, L Keldysh, former
editor-in-chief of Physics—Uspekhi, having met shortly before
his death Silin and learned that he and Rukhadze were
struggling with that problem, said firmly: “It’s time to end
it.” Our suggestion regarding the final resolution of the
problem is: definitely both, but this only refers to plasma
and the times of the mid-20th century. In our opinion,
studying the events of the rapidly passed time that we
witnessed will educate the successors exploring those events.
Interest in the experience of predecessors in both science and
everyday life is growing increasingly strong, as the example of
Yu A Sokhotskii, whose work [27] was ignored by predeces-
sors, shows.

To understand the atmosphere in which discoveries
were made at that time, we briefly describe the history of
Sokhotskii formulas. One can see in the oblivion and later
‘independent’ derivation of the formulas by our compatriot
Sokhotskii, who discovered them in 1873, an omen of that
hard and heroic time, recurrences of which are still alive in
our age of consumerism. (That happened to Landau when
his successors inadvertently used one of the Sokhotskii
formulas, which is now known to everyone, and some of
them declared it the Landau formula with half-residue, a
statement that may be correct according to [28].) This
blunder being eventually identified allows one to hope
that the professional skills of our reading successors will
be enhanced to become the certainty that respect to
ancestors and predecessors will get stronger and firmer.
This is, well, so much needed for Russia and its science to
get revived. We are grateful to those who left us precious
scientific heritage as a memory of them.

Hoping to compose a continuation,

@wfb_,!j A A Rukhadze
P V P Silin
Fall and winter of 2017-2018

One of the authors, Anri Amvrosievich Rukhadze, died
unexpectedly on March 8, 2018. Both authors, however, had
a chance to sign the manuscript. !

Appendix >

Difficult-to-access materials related to Viasov’s creative
activities [14-16].

The two 3D distributions that are competitively used in
applications have the form

mu?
xp | — ——
p 2T, )

_ nevj,/m? 1 1

Ne
folv) = (2nmT)? ‘

(15)
fo(v)

v2+vd, v2+ i v2+ v

The latter formula contains a product of three functions of
independent arguments, three projections of the electron
velocity.

Vlasov used Eqns (11) and (15) to obtain an equation for
the function (v, 7):

0p(v:, 1)

fo(v:)
ot =0

. . (16)

+ ikv.p(v., 1) —ieE;

Here, E. = —0®/0z is the small strength of the potential
electric field of plasma oscillations. Vlasov represents the
initial condition as

@(v;0) = @o(v). (17)

! The second author of the article, Viktor Pavlovich Silin, died on January
12, 2019 (an obituary of Silin was published in Usp. Fiz. Nauk 189 559
(2019) [Physics—Uspekhi 62 524 (2019)]). (Editor’s note.)

2 The appendix was written by A A Rukhadze.
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Using the Laplace transformation (direct and inverse),

(p,,(v) = J deo(v,t)exp (—pt),
0 (18)
+ico+a
000 =5 | dro,mexn (o).

where ¢ > 0 (formulas for the transformation of @(z, f) have
a similar form), Vlasov derives from Eqn (16) with initial
condition (17) at the Poisson equation

ik®, ofo(v)

)

m 61}: (19)

dve,(v).

([7 + ikv)(Pp = (pOfO(v) +

o 00
k*®, = —4ne
0

Vlasov employs these equations and the inverse Laplace
transformation to derive the relation

_ @ofo(v) + ik®, o (v) /Op-
r p+ikv

; (20)

which is further used to find a solution to the Cauchy problem
for the electric field potential:

5 +ico+a
ok, 1) = LJ dp exp (p1)®,

2n —ico+o

Die +ico+a 400 (P()fO (U)
= pj dp eXp (]71) ‘[700 m dv

—ico+o

y 1747562J+°° dv  dfp(v)\ "
km )_ p+ikv v '

(1)

To make the demonstration of the phenomenon he predicted
simpler, Vlasov uses, instead of the one-dimensional model
Maxwell distribution

2
~ e mv
V)= exp (-2, 2
o) = e enn (- 57 ) 22)
a one-dimensional dispersion Lorentz-type distribution, a

substitution that does not affect the Cherenkov nature of
CDPW:

= NeUTe/T

fo(v) = m . (23)

Vlasov used function (23) to handle both integrals in Eqn (23)
in a standard way prescribed by the theory of functions of a
complex variable and obtained as a result the following
formula that describes the time evolution of the perturbation
potential of the equilibrium distribution function [15]:

+ico+0o
®(k,t) = —J exp (pt)®, dp
2mi —ico+o !
Qe J+ioo+(r p +k'UTe
=5 exp (pt)dp ——————5——
k? 0 —ico+a (]7 + kUTe)2 + szc

= @y(k,0)ne exp (—kvret) cos (wret) , (24)
where ®(k,0) and ¢y(k,0) are the initial values of the
potential proportional to the initial distribution function. As
follows from Eqn (24), the Langmuir wave is damping with

time; its frequency has a negative imaginary-valued part,
Im w = —kvre. Vlasov relates the collisionless damping he
found with the absorption of waves by plasma electrons.
However, he only learns about relation of the phenomenon he
discovered to the Vavilov—Cherenkov effect from the Nobel
lecture of his teacher, I E Tamm. Indeed, the ways of Lord are
inscrutable.

Owing to distribution (23) being chosen in a smart way,
Vlasov succeeded in his pioneering work to theoretically show
‘with the point of his pen’ the existence of collisionless
damping of plasma waves. It is not without reason that
distribution (23), albeit a model one, is named after Lorentz.

At present, Vlasov’s approach that implements analytical
simulation of new predicted phenomena may cause objections
if compared with other similar predictions. It yielded,
however, the result (24) that is of importance for plasma
physics: a prediction of collisionless damping of plasma
waves. The fact that Vlasov predicted this phenomenon
virtually simultaneously with Landau has been under a veil
of silence until recently. Meanwhile, it ignited an information
war against Vlasov and his disciples that was waged for a long
time. Delivering a speech at the scientific council of the
Physics Department of MSU, Dmitrii Blokhintsev as early
as the 1940s described the situation at the department with the
following words: “Kings go mad, and the people suffer for
it.” It is only recently that Vlasov’s results have become a
matter of public discussion [29]. If fate is benevolent,
although this is not obvious, we will also write about it.
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