
Abstract. We review the physical models of nonclassical trans-
port processes in highly heterogeneous media with different
types of the spatial distribution of characteristics. We discuss
transport in regularly heterogeneous, fractal, and statistically
homogeneous sharply contrasting media, as well as in liquid
media under the condition of Rayleigh ± Benard convection.
The behavior of the impurity concentration in the main localiza-
tion region and at asymptotically large distances from the
source is analyzed. The effect on the transport regimes arising
due to the presence of colloids, as well as barriers surrounding
the impurity source, is investigated. An asymptotic approach to
the calculation of the concentration in a medium with large-
scale heterogeneities in the distribution of transport character-
istics is presented.

Keywords: superdiffusion, subdiffusion, concentration asymptotic
form, percolation media, double porosity, sorption

1. Introduction

Tracer transport is commonly referred to as nonclassical
(or anomalous) if the size of the tracer localization domain
grows with time according to a power law with an exponent
g 6� 1=2,

R / t g ; �1�

deviating from the square-root law of classical diffusion. The
case g > 1=2 is referred to as superdiffusion, and the case
g < 1=2, as subdiffusion. Anomalous transport is encoun-
tered in very different branches of the natural sciences, such as
plasma physics [1, 2], the physics of semiconductors [3, 4],
astrophysics [5], biophysics [6, 7], hydrogeology [8, 9], and
many others [10]. A special place in this field is occupied by
geological applications, in particular, those related to the
practical problem of radioactive waste disposal. An extensive
set of field observations has been accumulated over recent
years, indicating that in many cases the transport of tracers
dissolved in ground waters of geological media cannot be
described by the classical theory based on Darcy's and Fick's
laws, with deviations possibly reaching several orders of
magnitude [11]. This set of problems is the subject of research
covered in this review, although the models developed have a
much wider range of applicability.

Historically, the first models describing nonclassical
transport date back to the 1930s. The first study was
apparently that by Khintchine and Levy [12], who treated
particle walk as occurring via successive hops of various
lengths and durations. If the probability distribution func-
tions for these hops decayed sufficiently slowly with the
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length and duration, the resulting mean square displacement
of the particle increased with time according to an anomalous
law.

Subsequently, this approach was actively used in other
models of nonclassical transport, for example, the contin-
uous-time random walk (CTRW) model. This model is based
on an averaged description of the migration of a particle
ensemble based on the distribution function mentioned
above. It is assumed that the medium properties (the
probability of hops) are uniform in space. The form of the
distribution function has to be derived for concrete physical
mechanisms governing the migration of individual particles.
Such a model was proposed in [13] and used afterwards to
solve numerous anomalous transport problems in very
different variants (see, e.g., review [14] and the references
therein). We mention recent work [15], which applies this
approach to pollution migration in fractured rocks.

Models of `fractional diffusion' are in fact based on the
same principles (they rely on a probability distribution of
hops) [16±22]. In CTRW models, the distribution of concen-
tration is derived by summing probabilities of individual
hops, but in models of `fractional diffusion' conservation-
law equations are derived to describe the evolution of
concentration; however, they contain fractional-order deri-
vatives in time and space. Augmented with boundary
conditions, this formulation allows transport problems to be
treated in domains composed of subdomains with different
properties, and also accounts for the presence of external
fields. We emphasize that in CTRW models, as well as in
models described by equations with fractional derivatives, the
concentration decays as a power law at asymptotically large
distances if the tracer transport in the main cloud occurs in an
anomalous superdiffusive regime. Applications of these
approaches to the analysis of specific physical phenomena
can be found in Ref. [10] (see also Refs [23±28]).

An approach to the description of nonclassical transport
has been actively developed in recent years, with the system
dynamics (the probability and characteristics of hops)
possibly dependent on the tracer concentration [29]. In this
case, the Fokker±Planck equation is considered as a master
equation; its solution can also lead to anomalous transport
regimes. In a more general case, models of this type take
interactions between tracer particles, including their possible
annihilation, into account [30]. The plausibility of this
approach can be substantiated if the concentration of
migrating particles is sufficiently large.

A number of papers (see, e.g., Ref. [31]) develop an
approach where correlations in realizations of successive
hops of migrating particles (or more generally, correlations
in particle motion [32, 33]) are taken into account. In this case,
the nonclassical character of transport is the result of non-
Markovian dynamics.

We note that a description of transport based on
elementary hops of migrating particles in heterogeneous
media is in a certain sense an abstract mathematical tool. In
such an approach, it is assumed that the probability
distribution functions already incorporate information on
the properties of correlations in the distribution of these
heterogeneities when the length of an individual hop
considerably exceeds the characteristic size of medium
heterogeneity. However, when the size of heterogeneities
is much larger than the physical mean free path of particles,
it seems more natural to base the modeling on specific
physical transport mechanisms (advection and diffusion),

by taking significant spatial variations in transport con-
stants and actual medium geometry into account. Just such
an approach underlies the research leading to the results
reviewed here.

The first such approach to the description of nonclassical
transport was apparently realized in Ref. [1], where a layered
mediumwas considered with the tracer advected at a constant
speed along each layer but with the velocity direction varying
randomly from layer to layer. The exchange between the
layers was due to diffusion. The resulting mean transport
along the layers proved to be a superdiffusive type at times
when the tracer cloud occupies many layers. Namely, the
growth of the tracer cloud followed the law

R / t 3=4 : �2�

It is noteworthy that this process was used in Ref. [1] to
describe particle transport in a magnetized plasma. Later
(after approximately 10 years), it was `rediscovered' for
problems of transport in geological formations [34].

A special feature of transport in geological media is that it
occurs as the transport of solute carried by ground waters
along channels formed by voids in rock (pores or cracks). The
transport mechanisms are advection, i.e., transport with the
speed of local flow, and molecular diffusion in the solution.
As a result, an equation for the concentration in channels
takes the form of the mass conservation law with a classical
flux, including advection and diffusion.

To advance the theory further, it is necessary to average
the equation for concentration over an ensemble of realiza-
tions. Two factors are of key importance here: the channel
geometry and strong contrast in the distribution of medium
properties.

As concerns the first factor, all media can be divided into
three classes depending on correlations in the distribution of
heterogeneities: (1) the simplest class comprises regularly
heterogeneous media, for example, a crack in a porous
medium; (2) statistically homogeneous and sharply contrast-
ing media; (3) percolation media or media having fractal
properties within some large spatial scale.

The essence of the second factor lies in the following. If we
have a fractured, porous (for example, geological) medium
with sufficiently long cracks, a fluid percolates through the
cracks much more efficiently than through the surrounding
porous matrix. The difference is typically so large that in the
first approximation we can disregard filtration through the
porous matrix and consider only diffusion. It can be assumed
that the medium consists of two subsystems of high and low
permeability. Such an approximation bears the name of the
dual-porosity medium. Examples of suchmedia are furnished
by isolated cracks in a porous matrix, fractured porous media
with a continuous distribution of cracks, or sand±clay
formations.

This review is structured as follows. In Sections 2±4, we
consider nonclassical transport in regularly heterogeneous,
percolationandstatisticallyhomogeneousmedia. InSection5,
we analyze the effect of sorption on transport. Transport
processes in periodic flows caused by Rayleigh±Benard
convection are considered in Section 6. In Section 7, we
discuss the role of a weakly permeable protective barrier
bounding a tracer source. In Section 8, we present an
asymptotic approach to computations of concentration for
transport in a medium with large-scale heterogeneities. Brief
conclusions are formulated in Section 9.
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2. Regularly heterogeneous media

2.1 Problem statement
We consider transport in a regularly heterogeneous medium
in the following geometry. The medium consist of two
domains: a geometrically regular, strongly permeable
domain I, referred to as a crack for convenience, and the
remaining space (domain II) filled with a porous matrix of
low permeability. Furthermore, we consider cracks shaped
like a planar layer of thickness a (Fig. 1a) and an infinite
cylinder of cross-sectional area s � a 2 (Fig. 1b).

We first assume that the transport in both domains is
determined by diffusion, and therefore the concentration
n�r; t� in domain I satisfies the equation

qn
qt
� DDn ; �3�

and the concentration c�r; t� in domain II satisfies the
equation

qc
qt
� dDc : �4�

A sharp contrast in properties implies that a strong inequality
holds,

D4 d : �5�

Concentrations and normal components of fluxes are equal at
the boundary between the domains. Initially, the tracer is
entirely localized in the crack at the coordinate origin. This
model was first proposed by Dykhne [36], and we therefore
call it the Dykhne model.

2.2 Tracer behavior in the main localization domain
Aqualitative analysis shows that the character of transport in
such a system depends on the time interval. At small times
t5 t1, where

t1 � a 2

4d
; �6�

the fraction of tracer leaving the crack is negligibly small and
transport along the crack follows the classical diffusion law
with the coefficientD. For t > t1, particles walking randomly
leave the crack temporarily, and as t increases, they spend
progressively less and less time in the crack and for t4 t1
mainly stay in the matrix. In this case, during a certain time
interval, just as for t < t1, the transport is governed by
diffusion in the crack. The fraction of time particles spend in
a planar crack and hence diffuse in the plane of the crack with
the coefficient D, can be estimated as t�t� � a=

����
dt
p

. There-
fore, the size of the tracer cloud containing the main portion
of the tracer grows in the plane of the crack in accordance

with the law

R 2�t� �
� t

t1

Dt�t 0� dt 0 � D
������
t1t
p

: �7�

Transport in the matrix along the crack makes very small
contribution at this stage and thus the matrix acts as a trap.
This is the reason for the anomalous, subdiffusive regime
R / t 1=4.

In essence, according to Eqn (7), the tracer is transported
with the effective (time-dependent) diffusion coefficient,
equally weighted over the domains occupied by the tracer,
including both the fast and slow subdomains. The validity of
this reasoning relies on the transport in both subsystems being
concerted owing to the conditions on the boundary between
them.

Similarly, for the fast medium shaped as an infinite
cylinder, the size of the tracer cloud along the cylinder axis
grows as

R�t� �
������������������
Dt1 ln

t

t1

r
; �8�

where t1 � s=�4d�.
Such (subdiffusive) regimes of transport take place for the

current time t1 5 t5 t2, where

t2 �
�
D

d

�2

t1 �9�

for a planar layer and

t2 � t1
D

d
ln

D

d
�10�

for a cylinder. For times t4 t2, the fraction of time particles
spend in the crack is so small that it no longer influences the
transport, which is now determined by the properties of the
matrix. As a result, for t4 t2 the transport regime corre-
sponds to slow classical diffusion with a small coefficient d.
Thus, the Dykhne model exhibits fast classical diffusion at
times t5 t1, subdiffusion in the interval t1 5 t5 t2, and slow
classical diffusion at times t4 t2.

Similarly, a generalized Dykhne model was considered,
which adds advectionwith a constant velocity u in the crack to
the diffusion (the vector u either lies in the plane of the crack
or is directed along the cylinder axis) [37]. In this case, the
system behavior depends on the Peclet number Pe � ua=d
characterizing the relative importance of advection and
diffusion. For Pe5 1, the tracer behavior is described by the
same laws as in the original Dykhne model. For Pe4 1, new
nonclassical, quasidiffusive regimes take place [38]. In these
regimes, the mean particle displacement X�t� increases with
time by the same law as the tracer cloud size R�t�. The front
propagation speed depends on the crack shape. For a planar
crack, the front displacement is proportional to the square
root of time,

X�t� � R�t� �
��������
Dut

p
; �11�

where

Du � u 2t1 �12�
is the so-called quasidiffusion coefficient. For an infinite
cylinder, quasidiffusion is logarithmic,

X�t� � R�t� � ut1 ln
t

t1
: �13�

a

a

D4 da b

Figure 1. Regularly heterogeneous media.
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2.3 Asymptotic behavior of concentration
at large distances
All the regimes listed in Section 2.2, obtained previously from
qualitative estimates [39, 40], can be derived from the exact
problem solution. The exact solution also enables computa-
tions of concentration behavior at asymptotically large
distances from the source, r4R�t�. This behavior also
depends on the time interval. At small times, the concentra-
tion decays as aGaussian curve and is characterized by a large
diffusion coefficient. When the regime in the main part of the
cloud is superseded by a subdiffusive one, the asymptotic
behavior becomes two-stage. The closer stage is described by
a stretched exponential and corresponds to subdiffusion, and
the further stage by a Gaussian exponential with a large
diffusion coefficient (as in the regime over the preceding time
interval). At the latest times, the asymptotic behavior
becomes three-stage: its two distant parts are the previous
ones, and the closest part is determined by the current regime
of slow classical diffusion.

Such a structure of asymptotic behavior at large times for
a planar crack is shown schematically in Fig. 2.

Thus, the following conclusions can be drawn from the
Dykhne model: in media with sharp property contrast, low-
permeability domains serve as traps that considerably slow
the tracer transport. This slowdown leads to the occurrence of
subdiffusive regimes that depend on the medium geometry
and transport mechanisms. The change of transport regimes
in the main cloud leads to an asymptotic behavior for the
concentration that combines several stages. The following
law is observed: more distant parts of the asymptotics are
governed by earlier transport regimes in the main cloud. The
closest stage corresponds to the current regime.

3. Percolation media

We turn to media in which the system of high-permeability
channels has the form of a percolation cluster [41, 42]. In
nature, this situation is encountered in fractured geological
formations [43] and in porous media characterized by a large
spread of pores over sizes. A specific feature of percolation
media is that in the range of large spatial scales, starting with a
certain scale denoted by a and up to the correlation radius x,
they are fractal and have the property of scale invariance. At
scales larger than x, these media become statistically homo-
geneous.

We note that percolation clusters have their own internal
structure [41]: they consist of a backbone permeating all the
structure and facilitating transport over long distances, and
traps, which are of finite size, being connected to the

backbone at a single point. An example of a percolation
cluster in the framework of the random connection model is
given in Fig. 3.

3.1 Isotropic model of random advection
with long-range correlations
In an isotropic model of random advection with long-range
correlations, only advection in the backbone is accounted for
as a transport mechanism in a percolation medium. The
tracer escaping to the traps and matrix is ignored.

The equation for the microscopic concentration ĉ for
transport in a percolation cluster takes the form of the
standard conservation law with the flux determined by
advection in a random velocity field:

qĉ
qt
� div �Vĉ� � 0 : �14�

The theory aims to describe transport for quantities
averaged over an ensemble of realizations, c � hĉi. The
velocity field is taken as incompressible. The correlation
length x in the velocity distribution is set to infinity. The
ensemble mean velocity is assumed to be zero, and hence the
velocity correlation functions become the characteristics
determining transport.

As we have already noted, at scales r4 a, the medium has
fractal properties (a carries the name of the lower fractal
bound). Therefore, there is no spatial scale characterizing the
system in this range, which in turn allows using ideas from the
theory of critical phenomena [44, 45], assuming that at scales
r4 a the transport process has a property of scale invariance.
This implies that under a similarity transformation r! lr, an
arbitrary quantity changes as A! lDAA. The exponent DA

carries the name of the scaling dimension of A. The velocity
pair correlation function for jr1 ÿ r2j4 a then takes the form



V�r1�V�r2�

� / V 2

�
a

jr1 ÿ r2j
�2h

; �15�

where h is the scaling dimension of velocity. We suppose that
an n-point correlation function of advective velocity acquires
the factor l nh under the coordinate transformation r! lr, in
analogy with pair correlator (15).

c�r; t�

R�t� r

c � exp ÿ r2

4dt

� �

c � exp ÿ r2

4Dt

� �
c�r; t� � exp ÿ3 r2

16D
������
t1t
p

� �2=3
" #

Figure 2. Many-stage structure of concentration at asymptotically long

distances from the source for t4 t2 for a crack in the form of a planar

layer.

Figure 3.Diagram of a percolation cluster. The main trunk is marked by a

thick line, traps are shown by thin lines.
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Turning to the description of concentration averaged over
an ensemble of realizations, we start with Eqn (14) and in the
general case obtain an integro-differential equation that has
been studied by different techniques: based on the analysis of
scaling dimensions [46] and with the help of Feynman
diagrams [47]. Both methods lead to identical results consist-
ing of the following. The character of tracer transport
depends on the character of correlation function decay, i.e.,
on the parameter h. If h > 1, transport occurs in the classical
diffusion regime, and hence the concentration is described by
aGaussian profile, also at asymptotically large distances. For
h < 1, a superdiffusion regime is realized, and the size of the
tracer cloud grows with time as

R�t� � �ahVt�g ; g � 1

1� h
: �16�

It is worth noting that the concentration decay is asymptoti-
cally described by a `compressed' exponential,

c�r; t� � B

�4p�3=2R 3�t�

�
r

R�t�
�3�2gÿ1�

� exp

"
ÿ
�
C

r

R�t�
�1=�1ÿg� #

; �17�

whereR�t� is given by formula (16), andB andC are constants
of the order of unity. Thus, the decay at long distances
becomes faster than in the classical case [46].

We stress that the problem statement analyzed here, as
well as other problems with tracer transport, assumes fixed
initial conditions for the concentration distribution.

The medium considered in this section is fractal but also
spatially disordered. The resultant concentration is the mean
over an ensemble of medium realizations, in the same sense as
for correlation functions of the advecting velocity. Estimates
made under the assumption of an infinite correlation radius
indicate that in the statistical description of transport
processes the uncertainty of relative concentration in the
model of random advection can reach the order of unity.

Furthermore, to accommodate the random advection
model for real media, we consider the influence of the
following factors: the finiteness of the correlation length, the
anisotropy of percolation media, and the role of traps (dead
ends and the low-permeability matrix surrounding a percola-
tion cluster).

We note that the model of random advection was
explored previously in Refs [48, 49], where relations for the
main domain of tracer localization were obtained. However,
the question of the concentration asymptotics was left open.

3.2 Percolation media with a finite correlation length
If the correlation length is finite, x <1, the tracer behavior
depends on the time interval [50]. Over the time intervals such
that the tracer cloud size is less than the correlation radius x,
the properties of the medium that govern the transport
remain the same as in an infinite fractal medium. Therefore,
under the condition h < 1, transport occurs in a super-
diffusive regime according to law (16). In time intervals such
that the cloud size exceeds x, t4 tx, the medium becomes
statistically homogeneous and hence transport occurs in the
classical diffusive regime. We note that on a qualitative level,
this result was obtained in numerical simulations of particle
diffusion over a fractal cluster with a finite correlation length
in Ref. [51], where at large times the transition from
subdiffusion to classical diffusion was observed.

The effective diffusion coefficient is defined by the
relations

Deff � x 2

tx
; tx � x 1�h

Vah
: �18�

The laws of concentration behavior at asymptotically
large distances are as follows. At times smaller than tx, the
concentration decay with an increase in distance is described
by a compressed exponential, as previously. At large times
t4 tx, the asymptotic behavior becomes two-stage. The
closer stage corresponds to the current regime of classical
diffusion, and the further stage corresponds to the preceding
regime of superdiffusion. The asymptotic structure here
obeys the general rule established for regularly hetero-
geneous media: the further the stage, the earlier its defining
regime occurs, with the nearest stage corresponding to the
current time.

3.3 Anisotropic percolation media
In the general case, transport in geological media is almost
always anisotropic, with the anisotropy caused by factors
such as the force of gravity. A description of flows in this case
lies in the framework of the directed percolation problem,
which was studied inRefs [52±54]. These studies show that the
power-law decay of velocity correlation functions also holds
in the presence of anisotropy, which, ultimately, is a
consequence of the fractal medium self-similarity. However,
in the presence of anisotropy, the medium properties vary
differently under spatial scaling along and perpendicular to
the anisotropy axis. Hence, in considering the scale invariance
property of the medium, we need to introduce one more
scaling index b for the coordinates in the basis plane; instead
of the transformation r! lr, we then consider the transfor-
mation

fz! lz ; r? ! lb r?g : �19�
The analysis in [55] shows that depending on the value of b,
two cases are possible: strong and weak anisotropy. For weak
anisotropy �h < 1; 1=�1� h� < b < 2=�1� h��, transport is
in a superdiffusive regime in all directions, albeit at different
rates:

Rk�t� � �ahVt�1=�1�h�; R?�t� � �b b�1�h�ÿ1Vt�1=�b�1�h�� :
�20�

For strong anisotropy �h < 1; b > 2=�1� h��, transport is
superdiffusive in the longitudinal direction as previously,
but is classical diffusive in the basis plane:

Rk�t� � �ahVt�1=�1�h� ; R?�t� �
���������
D?t

p
: �21�

It is important that the anisotropy is accompanied by an
anomalous drift, when the mean particle displacement
increases superdiffusively, just as the size of the tracer cloud
along the anisotropy axis hzi � ���������hz 2ip � Rk�t�.

We note that for anisotropic media with a finite fractality
interval, there are two correlation lengths, in agreement with
(19): xk and x? related as

xk
ak
�
�
x?
a?

�b

; �22�

where ak and a? are the lower fractality bounds in the
longitudinal direction and the basic plane.

July 2019 Nonclassical transport in highly heterogeneous and sharply contrasting media 653



On scales greater than the fractality interval, wemust take
the mean velocity into account, for which

v � V

�
xk
ak

�h

: �23�

As a result, at large times t4 tx, the expression for concentra-
tion takes the form

c � 1

�4pt�3=2
���������������
DxkD

2
x?

q exp

�
ÿ�zÿ vt�

2

4Dxk t
ÿ r 2?
4Dx? t

�
; �24�

where

Dxk � vxk ; Dx? � x 2
?t
ÿ1
x ; �25�

and the asymptotic behavior is two-stage.

3.4 Percolation media with dual porosity
Traps are always present in real percolation media. There are
at least two reasons for traps to form: first, as already
mentioned, there are dead ends in the percolation cluster;
second, the percolation cluster can be immersed into a porous
medium of low permeability. A term describing the exchange
between the backbone and traps then appears in the transport
equation for quantities averaged over an ensemble of
realizations, just as in the Dykhne model, in the integro-
differential form

Q�r; t� � q
qt

� t

0

j�tÿ t 0� c�r; t 0� dt 0 ; �26�

where the integral kernel is determined by medium scale-
invariance properties [56, 57]. Hence, it follows that there is a
large time interval t1 < t < t � when the kernel takes a power-
law form j�t� � �1=t1��t1=t�a, where a characterizes the
kernel decay in the self-similarity interval. At large times
t > t �, when traps become saturated, the kernel decays with
time exponentially. As a result, the exponent characterizing
the tracer cloud growth rate depends on the properties of both
the velocity field and the traps [58]:

R�t� � �ahVt a1 t��1ÿa�=�1�h� / t �1ÿa�=�1�h� : �27�

Depending on the relation between the parameters h and a
(but under the condition h < 1), transport can be both super-
and subdiffusive.

3.5 Comparison of theoretical and experimental results
To compare theoretical and experimental results, an inter-
polation formula relying on the results of the random
advection model has been proposed, describing the behavior
of concentration at a fixed distance from a tracer source as a
function of time:

c�r; t� /
�
t0
t

�3=�1�h�
exp

"
ÿ
�
t0
t

�1=h
#
; �28�

where t0 and h are some tuning parameters. The experiment
in [59] was carried out in fractured crystalline rock. The
injection and pumping out of tracers were realized using a
convergent and weakly dipole scheme. Deuterated water,
bromides, and pentafluorobenzoic acid were taken as tracers
for their wide range in diffusivity. The behavior of concentra-

tion turned out to be very similar for all tracers at small times
and practically coincident at late times. Hence, a conclusion
was drawn that the exchange of diffusive particles between a
highly permeable system of cracks and a low-permeability
matrix does not affect tracer transport processes. Figure 4
presents a comparison of theoretical and experimental results.

We note that the interpolation formula describes the
experimental data well if h � 0;4, demonstrating that trans-
port in the experiment occurs in a superdiffusive regime.

4. Statistically homogeneous media
with dual porosity

An important (and perhaps the most frequently encountered)
class of strongly heterogeneous media comprises strongly
contrasting statistically homogeneous media. An example of
such a medium, consisting of highly permeable channels and
weakly permeable blocks filling the space between the
channels, is presented in Fig. 5. It is important that
nonclassical transport regimes are realized here at times
when the size of the tracer cloud substantially exceeds the
characteristic size of the medium heterogeneity (determined
by the size of the blocks).

In the literature, the description of transport in such a
medium is typically based on the Gerke±van Genuchten
model [60], in which the exchange by a tracer between the
fast and slow subsystems is considered in the `mean field
approximation'. This assumes that the exchange flux is

Experiment
Theory

10ÿ4

t

10ÿ5

10ÿ6

103 104 105

c�t�

Figure 4. Comparison of computations using Eqn (28) with data from

tracer experiments [59].

2a

2b

Figure 5.Diagram of a dual-porosity medium.
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determined by the difference between local mean concentra-
tions in blocks and channels. However, it can be easily shown
that the time of concentration equilibration inside a weakly
permeable block is very large. For example, for geological
porous-fractured media, even for blocks with b � 10 cm,
small on the geological scale, with a typical characteristic
molecular diffusion coefficient in saturated porous media
d � 10ÿ7 cm2 sÿ1, it would take several dozen or hundred
years for the concentration to equilibrate. A proper descrip-
tion of transport in such time intervals therefore requires
taking persistent gradients of concentration into account.

With this aim, a nonequilibrium model of dual porosity
was developed in [61, 62] with the transport over long
distances described by an equation for concentration in the
fast subsystem (the system of channels), including a term
describing the exchange between the subsystems in form (26).
The expression for the kernel in Eqn (26) depends in general
on the shape of weakly permeable domains, but its shape
turns out to be universal [57] at small �t5 tb� and large
�t4 tb� times (see below). This facilitates the description of
transport regimes (including nonclassical ones) in wide time
intervals.

The following results were obtained. The set of transport
regimes and the order in which they follow are determined by
the relation between three characteristic times ta, tb, and tu.
The quantity ta � a 2=d (an analog of the time t1 for regular
heterogeneous media), where a is the aperture of channels,
describes the time when the contribution from weakly perme-
able regions becomes essential; tb � b 2=d is the time of
concentration equilibration within a block; tu � 4d=u 2,
where u is the mean velocity of ground water filtration,
characterizes the relative role of advection and diffusion in
channels.

Depending on the relations between these times, there can
be up to seven transport regimes. For example, in the case
tu 5 ta 5 tb, the transport is anomalous for a broad range of
times ta 5 t5 tb: the transport along the mean velocity is in
the regime of quasidiffusion, when the mean displacement
hrki and the size of tracer cloud Rk are described by formulas
(11) where Du � u 2ta, and the transverse transport is in the
regime of power-law subdiffusion described by formula (7).
At small and large times, the transport is in the classical
advection±diffusion regime, but with different mean veloci-
ties and effective dispersion coefficients.

5. Effects of sorption

The advantage of the approach that we have developed is that
in describing nonclassical regimes, we can naturally include
additional processes that have an impact on transport, for
example, sorption. It is known that sorption of a tracer in a
matrix in porousmedia leads to a substantial slowdown of the
transport process. For example, at large times, the mean
transport rate and the effective dispersion coefficient decrease
by K times, where K � 1� kd is the so-called retardation
coefficient, and the distribution coefficient kd relates the
equilibrium concentration of the tracer in a solution with
the concentration of tracer adsorbed in thematrix [63]. On the
other hand, if the medium contains colloidal particles
(microscopic particles with a size from several dozen
nanometers to several dozen micrometers, which might be
present in ground waters adsorbing and carrying the tracer),
this may lead to noticeable acceleration of transport in media
with dual porosity. The cause of this acceleration is that

because of the relatively large size of colloidal particles
compared to the sizes of the pores of the weakly permeable
matrix, their ability to penetrate into the matrix is strongly
suppressed. As a result, these particles are carried without
losses at the speed of groundwaters along cracks transporting
the absorbed tracer.

The colloidal subsystem was taken into account in the
description of tracer transport for dual-porosity media of
various types in [64±66]. An importantmodel parameter is the
distribution coefficient s linking the equilibrium values of the
tracer concentration in solution c and the concentration m of
the tracer absorbed on colloids,

ceq � smeq : �29�

Figure 6 present results of computations of the mean tracer
particle displacement for systems with colloids (the upper
curve) and without them (the lower curve). It follows that
under the condition s5 1, which corresponds to the strong
absorbing capacity of colloids, the presence of colloids in
ground waters considerably accelerates the transport. Taking
this process into account is especially important in estimating
the rate of environmental pollution.

6. Transport in periodic cellular flows

The approach discussed proved convenient for building
transport models in problems that seemed to have nothing
in common with sharply contrasting dual-porosity media.
Namely, the ideology of dual-porosity media was applied to
describe transport processes in homogeneous media with
regular flows [67]. It is well known that at sufficiently large
Rayleigh number, periodic closed flowsÐchains of rolls and
lattices of hexagonal cellsÐarise in a layer of fluid heated
frombelow.Analyzing such flows from the standpoint of how
they transport particles dissolved in fluid allows domains of
two types to be singled out: those that carry tracers fast, and
others that are in fact traps. Accordingly, transport in such a
flow is determined by the transport through fast domains and
by retardation caused by traps.

We consider a chain of rolls formed in a fluid layer of
thickness H. There are two systems of subdomains in a flow
structure of this type. One combines peripheral flow tubes of
the thickness w � �������������

Hd=V
p

, where V is the flow velocity at the
periphery and d is themolecular diffusivity. The thicknessw is

hrki

hrki � ut

hrki �
��������
~Dut

p
, ~Du � Du

s
hrki � ~~ut, ~~u � ~u

s

hrki �
��������
Dut
p

, Du � u2t1
hrki � ~ut, ~u � u

����
t1
ts

r

t1 t1=s2 ts t

Figure 6. Mean displacement of tracer particles as they migrate in a

statistically homogeneous dual-porosity medium in the presence of

colloids. The time ts corresponds to the characteristic time of the tracer

concentration equilibration on the scale of porous blocks.
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determined from the condition that a particle moving along a
separatrix between two rolls diffuses from one roll to the
other. The other system is the union of roll interior regions
(Fig. 7).

The first system of subdomains is analogous to the highly
permeable subsystem in the dual-porosity model, whereas the
interior subdomains play the role of traps. As a result, the
behavior of the tracer initially concentrated, for example, at
the left boundary, is described as follows. At small times
t < tH, where tH � H 2=d is the tracer diffusion time across
the cell, transport is in a subdiffusive regime, when the growth
in the cloud size in the direction of the chain is described by
the expression

R 2 � 2VH

�����������
pH
V

t

r
: �30�

At large times, t > tH, the tracer propagation is described by
classical diffusion with the effective coefficient [42]

Deff � d
�����
Pe
p

; �31�

where the Peclet number Pe � HV=d is introduced for
convenience.

For large Rayleigh numbers, the flow in rolls becomes
fluctuating, although it keeps the form of closed cells on
average (over time). In this case, the model elaborated in
Ref. [67] predicts a linear increase in the effective diffusivity
with an increase in the amplitude of fluctuations. This
happens because in the presence of velocity fluctuations
characterized by an amplitude Dv and period tf, the
molecular diffusion coefficient in model expressions (for
example, in Eqn (31)) has to be replaced with the effective
diffusion coefficient ~d � �Dv�2tf. The conclusions from the
model (the value of the diffusivity Deff and its dependence on
the amplitude of fluctuations) in this case are in reasonable
agreement with experimental results [68].

In a periodic lattice of hexagonal cells, the flow geometry
is such that active particles penetrate from one boundary tube
into another at a rate that is limited by diffusion in the region
close to the cell centers and not on the boundary between the
cells. This is related to the widening of boundary flow tubes as
they pass through the cell center. As a result, there is no
increase in the effective diffusivity compared to d. But if we
allow particle walk between the tubes via diffusion in the
azimuthal direction, the increase in the effective diffusivity
turns out to be proportional to the logarithm of the Peclet
number,

Deff � d ln Pe : �32�

In the range of Rayleigh numbers where the flow in the
layer becomes oscillatory, the increase inDeff for the lattice of
hexagonal cells can be substantial. Indeed, it follows from
experimental data [69] that flow fluctuations lead to intense
mixing in the region close to the centers of hexagonal cells. If
we introduce the mixing region size l and the characteristic
mixing time tl, then the model in [67] predicts that the
effective diffusivity is Deff � l 2=tl in the case l5HPeÿ1=4,
and Deff � H 2=�tl

�����
Pe
p � in the opposite limit.

7. Transport processes
in the presence of diffusive barriers

It was assumed in Sections 2±6 that the entire tracer is initially
located directly in the migration medium. In this section, we
present results for a more general problem where the tracer
source is separated from the main medium by a barrierÐa
compact spatial region filled with a weakly permeable
medium. In the presence of the barrier, the tracer is released
to the main medium gradually (and varying with time), which
essentially modifies transport regimes and the behavior of
concentration at asymptotically large distances from the
source.

In Sections 7.1±7.3, we present the problem statement
and the result for a stationary barrier [70] and a barrier
degrading with time [71]. For definiteness, tracer transport
in the migration medium is described by the model of
random advection with an infinite correlation length (see
Section 3.1), and inside the barrier, by classical diffusion.

7.1 Problem statement
Because the problem is linear, the ensemble-mean tracer
concentration can be written as

c�r; t� �
� t

0

dt 0Q�tÿ t 0�G�r; t 0� ; �33�

whereG�r; t� is the Green's function in the prototype problem
without the barrier with a given distribution of concentration
at the initial moment, and Q�t� is the effective tracer source
rate representing the total flux of tracer particles from the
barrier to the main medium. The quantity Q�t� satisfies the
obvious condition�1

0

dt 0Q�t 0� � N0 ; �34�

where N0 is the total number of tracer particles.
The transport regimes of this problem can be conveniently

characterized by the total number of active tracer particles
leaving the barrier at a moment t for the migration medium,

N�t� �
�
d3r c�r; t� ; �35�

and the size R�t� of the main localization region

R 2�t� � Nÿ1�t�
�
d3r r2c�r; t� : �36�

One more characteristic is the asymptotic behavior of
concentration at long distances from the source:

c�r; t� / exp
ÿÿF�r; t�� ; r4R�t� : �37�

We note that the characteristics of tracer transport in the
absence of a barrier are obtained from relations (16) and (17)

w

H

Figure 7. Schematic of the flow in a chain of rolls formed in a fluid layer

heated from below.
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if the persistent source is replaced by an instantaneous source
Q�t� ! N0d�tÿ 0�. The size of the main localization region
and the exponent in the asymptotic law for concentration for
the prototype without a barrier are respectively denoted as
R��t� and F��r; t�.

7.2 Stationary barrier
We assume that the barrier is a sphere filled by a weakly
permeable homogeneous medium. A source initially contain-
ing N0 tracer particles is located at the center of the sphere.
Transport of a tracer within the barrier is due to classical
diffusion with the coefficient d. The barrier radius Rb is small
compared to all other linear sizes in the problem. The number
of active particles and the size of the main localization region
depend on the relation between the current time t and the
characteristic diffusion time through the barrier
tb � R 2

b=�4d �. In limit cases, the quantities mentioned take
the form

N�t� � N0
4

�����
tb
t

r
exp

�
ÿ tb

t

�
; t5 tb ;

1 ; t4 tb ;

8<: �38�

R�t� � R�
ÿ
teff�t�

�
; t5 tb ;

R��t� ; t4 tb ;

(
teff�t� � t 2

tb
: �39�

We note that the action of the barrier at small times
�t5 tb� not only considerably reduces the number of active
particles, which becomes exponentially small, but also slows
down the transport regime significantly, leading to the
replacement of real time by the effective time teff�t�5 t. At
large times t4 tb, the influence of the barrier on the number
of active particles and the transport regime ceases.

The exponent in the asymptotic law for concentration
in the presence of a barrier for t5 tb is given by the
expressions

F�r; t� � tb
t
� 1

g g�1ÿ g�1ÿg
r

R�
ÿ
teff�t�

� ; F��r; t� t
tb

5 1 ; �40�

F�r; t� � 2

��������������������������������
g

1ÿ g
tb
t
F��r; t�

r
� F��r; t� ; F��r; t� t

tb
4 1 : �41�

Hence, at small times t5 tb, the asymptotic structure of
concentration is two-stage. The first terms in Eqns (40) and
(41) describe the number of active particles contributing to
the formation of the asymptotic behavior of concentration.
At large times t4 tb and at moderately long distances, when
F��r; t�tb=t5 1, the presence of a barrier does not influence
the asymptotic behavior, and we have F�r; t� � F��r; t�. At
even longer distances, for F��r; t�tb=t4 1, the expression for
the exponent reduces to the expression for F�r; t� in Eqn (41).
Thus, the asymptotic behavior of concentration also remains
two-stage for long times.

7.3 Degrading barrier
Of practical interest is the problem of tracer transport in the
presence of a degrading barrier. In contrast to transport in the
case of a stationary barrier, the tracer transport through a
degrading barrier is modeled with a variable diffusion
coefficient d�t� that increases with time. With the dimension-
less time introduces as

u�t� � 4Rÿ2
� t

0

d�t 0� dt 0 ; �42�

the results for a degrading barrier follow from formulas (39)±
(42) for a stationary barrier upon the substitution

t

4tb
! u�t� ; teff�t� ! ~teff�t� � u 2�t�

�
du

dt

�ÿ1
: �43�

The character of the transport regime change in real time
is dependent on the degradation scenario (the dependence
d�t��. Two limit degradation scenarios are possible: (1) A fast
one, on a small time interval on which the diffusion
coefficient increases practically without a bound; (2) a slow
one, where the coefficient d�t� increases according to a slow
power law.

A schematic of the change in transport regimes with time
for the fast and slow scenarios is presented in Figs 8 and 9.

8. Asymptotic approach to the description
of transport processes

Commonly in the analytic description of nonclassical trans-
port processes, the medium is assumed to be homogeneous on
average, on large spatial scales. However, real media contain
large-scale spatial heterogeneities. In such a situation, even
classical processes of advection±diffusion require rather
cumbersome numerical calculations. Additional and funda-
mental difficulties arise in the case of nonclassical processes,
when the governing equations for concentration are integro-
differential, and details of the kernels in these equation
remain unknown in general.

tt sbt�

R�t)

R��t� / t g

Figure 8. Size of the main localization domain (schematic) as a function of

time in the case of fast degradation. The thin line corresponds to a

stationary barrier, the thick line corresponds to a degrading one; t� is the
beginning of degradation, t sb � R 2

b=�4d�0�� is the exit time from the

stationary barrier.

tt sbt�

R�t)

R��t� / t g

Figure 9. Size of the main localization region (schematic) as a function of

time in the case of slow degradation. The thin line corresponds to a

stationary barrier, the thick line corresponds to a degrading barrier; t� is
the time of the beginning of degradation, t sb � R 2

b=�4d�0�� is the time of

exit from the stationary barrier.
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To overcome these difficulties, a new approach based on
an asymptotic description of transport processes was
proposed in [72]. A practically important situation is
assumed when the distance from the tracer source to the
point of observation is large compared to the size of the main
region of tracer localization at a given moment of time.
Analysis shows that at such distances, on the one hand, the
concentration formation is governed by the short-wave part
of the transport mechanism, and on the other hand, the
dependence of concentration on the distance to the source is
exponential. Thus, formally, the situation resembles the one
occurring in optics or quantum mechanics when, the
geometric optics or semiclassical approximation respec-
tively become applicable (see Refs [73, 74]). The exponent
(quasieikonal) G�r; t�, G4 1, in the expression for the
concentration satisfies a first-order nonlinear partial differ-
ential equation, whose solution is sought in the framework
of the canonical formalism.

As a result, we arrive at the standpoint that a concentra-
tion signal from the source reaches the observation point r by
propagating along a linear trajectory flg (an analog of a ray),
the form of which is found from the generalized Fermat
principle

dflg; p

�� r

0

dl k�p; rl� ÿ pt

�
� 0 ; �44�

where dl is the differential element of the trajectory of the
concentration signal and k�p; rl� is the quasi wave vector,
defined by the pole nearest to the real axis in the Fourier±
Laplace transform of the Green's function in the problem for
a homogeneous medium with parameters coincident with
those at the point rl on the trajectory in a heterogeneous
medium. Minimization in Eqn (44) is carried out not only
over the set of concentration trajectories but also over the
quasifrequency p, the Laplace variable. The coordinate origin
is taken inside the region where the tracer source is localized.
The quasieikonal, quasi wave vector, and quasifrequency are
purely imaginary, in contrast to their real-valued analogs in
geometric optics.

The tracer concentration then takes the form

c�r; t� � A�r; t� exp �ÿG�r; t�� ; �45�

where the quasieikonal G�r; t� is given by

G�r; t� � min
flg; p

�� r

0

dl k�p; rl� ÿ pt

�
; �46�

and the pre-exponential factor A�r; t�, being a solution of a
linear partial differential equation of the first order, reduces
to integrals along the concentration trajectory. The inte-
grands are functions of medium parameters, depending on
the coordinates due to the medium heterogeneity.

It is of fundamental importance that instead of determin-
ing integral kernels entering the equation for concentration,
the problem solution requires only knowledge of a limited set
of parameters. For example, in the random advection model,
there are only three such parameters.

9. Conclusions

The main conclusions that can be drawn from the results
presented in this review are as follows.

From the standpoint of nonclassical transport processes,
strongly heterogeneous media can be divided into three
categories: regularly heterogeneous, fractal, and sharply
contrasting statistically homogeneous. In the majority of
cases, a succession of transport regimes is observed with
time in the main region of tracer localization. The concentra-
tion decay at distances that are asymptotically large com-
pared to the size of the main localization region is always
exponential. The change in regimes with time leads to amulti-
stage structure of the asymptotics, with more distant stages
defined by earlier transport regimes, and the nearest stage
defined by the current regime.

In regularly heterogeneous media composed of a highly
permeable region surrounded by amatrix of low permeability
in one or two dimensions, the regimes of fast and slow
classical diffusion, subdiffusion, and quasidiffusion can be
realized.

The transport in isotropic fractal (percolation) media with
advecting velocities characterized by sufficiently long-range
correlations comes first in the superdiffusive regime, which is
later replaced by classical diffusion (if the correlation length is
finite).

In anisotropic fractal media with a sufficiently slow decay
of spatial correlations, a superdiffusive regime is realized in
the longitudinal direction, accompanied by an anomalous
drift. The character of transverse transport depends on the
degree of anisotropy. Superdiffusion occurs for weak aniso-
tropy, and classical diffusion is realized for strong anisotropy.

For sharply contrasting statistically homogeneous media,
there are long time intervals when the transport along the flow
velocity is in the quasidiffusive regime (the mean particle
displacement and the size of tracer cloud grow as the square
root of time), and subdiffusion occurs in the plane perpendi-
cular to the mean velocity.

Sorption of a tracer on colloids in sharply contrasting
media can substantially accelerate the transport.

Tracer transport in a nonstationary fluid undergoing
Rayleigh±Benard convection is to some degree similar to
the transport in sharply contrasting media. For flows with
quasi-two-dimensional cells (chains of rolls), a subdiffusive
regime at small times is replaced by a diffusive regime at
large times. Its effective diffusion coefficient increases by a
factor of

������
Pe
p

relative the molecular diffusion coefficient.
For flows forming a lattice of hexagonal cells, the effective
diffusion coefficient exceeds the molecular one by a factor
of ln Pe. It can increase substantially in the presence of flow
fluctuations.

The presence of a protective low-permeability barrier
surrounding the tracer source leads to a substantial slow-
down of transport regimes at earlier stages. The asymptotic
behavior of concentration at long distances acquires an
additional stage preceding the one taking place in the
absence of a barrier. Barrier degradation can modify the
transport regime at early times and shorten its duration.

To compute the concentration of tracers in media with
large-scale heterogeneities at asymptotically large distances, a
technique analogous to the semiclassical approximation (in
quantum mechanics) and geometric optics can be applied.
The result reduces to one-dimensional integrals along the
trajectory of the concentration signal (quasi-ray), which is
found based on the variational principleÐan analog of
Fermat's principle in geometric optics.

The authors are indebted to the Russian Science Founda-
tion (grant no. 18-19-00533) for financial support.
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