
Abstract. Studies of various experimental groups that explore
the properties of a two-dimensional electron gas in silicon
semiconductor systems ((100) Si-MOSFET and (100) SiGe/
Si/SiGe quantum wells) in the vicinity of the metal±insulator
transition are described and critically analyzed. Results are
identified that are common to all research: (i) the effective mass
of electrons measured at the Fermi level in the metallic region
increases as the electron density decreases and, if extrapolated,
tends to diverge; (ii) the behavior of the energy-averagedmass in
the metallic region is quite different in the two systems: in Si-
MOSFETs, it also exhibits a tendency to diverge, while in the
SiGe/Si/SiGe quantum wells it saturates in the limit of low
electron densities; (iii) there is a small number (depending on
the sample quality) of localized electrons in the metallic phase;
(iv) the properties that the electron system exhibits in the
insulating phase in the vicinity of the metal±insulator transition
are typical of amorphous media with a strong coupling between
particles.

Keywords: two-dimensional electron system, metal±insulator tran-
sition, effective mass

1. Introduction

The review is devoted to a brief description of state-of-the art
experimental studies of strongly correlated two-dimensional
electron systems based on silicon semiconductor structures.
An electron system is called strongly correlated if the
characteristic Coulomb interaction energy between elec-
trons greatly exceeds their kinetic (Fermi) energy eF.
Because the former is inversely proportional to the mean
distance between electrons (i.e.,

��������
nÿ1s

p
, where ns is the

electron concentration) and the latter is eF / ns, a strong
coupling corresponds to low electron concentrations. In
most experiments discussed below, the electron gas is
assumed to be degenerate, i.e., eF 4 kT, where k is the
Boltzmann constant and T is the temperature.

The electron±electron interaction strength is usually
characterized by a parameter rs equal to the ratio of the
Wigner±Seitz radius �pns�ÿ1=2 to the Bohr radius of the
electron aB � k�h 2=�me 2�, where k is the dielectric constant
determining the interaction between electrons, and m and e
are their mass and charge. In the simplest case of a single-
valley electron system (which does not include the electron
systems considered below), rs is equal to the ratio of the
characteristic potential interaction energy to the Fermi
energy.

For the readers who are not familiar with the properties
of silicon-based two-dimensional electron structures, we
present some required information very schematically. In
the momentum space, the Wigner±Seitz cell for silicon is a
truncated octahedron (Fig. 1a). The center of the Wigner±
Seitz cell is denoted by G, the center of squares by X, and
the center of hexagons by L. The minima of the conduction
band are located on straight lines connecting points G and
X. There are six such points altogether. The isoenergy
surfaces in the momentum space are shown schematically
in Fig. 1b. They are ellipsoids of revolution with a mass of
0:98m0 along the major axis (m0 is the free electron mass)
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and mb � 0:19m0 for the momentum in the perpendicular
direction.

If potential barriers are introduced making the electron
motion in the z-direction restricted (for the (100) sample
orientation), discrete levels appear in such a quantum well,
the lowest of them being determined by ellipsoids with the
major axis directed along z (with the `heavy' mass corre-
sponding to the motion along z). There are two such
ellipsoids, and therefore the spectrum of the form

e�p� � e0 � p 2

2mb
; �1�

where e0 is the energy of the lowest level in the quantum well
and p is the momentum in the (100) plane, has the so-called
`valley' degeneracy in addition to spin degeneracy. Strictly
speaking, the valley degeneracy is lifted in an asymmetric
potential well; however, we ignore this small splitting in what
follows.

To fill a potential well with electrons, the Fermi energy eF
must exceed e0. With this condition fulfilled, electrons
freely moving along the quantum well appear with the
wave function spreading in the z direction by 30 �A in
Si-MOSFETs and by 150 �A in SiGe/Si/SiGe quantum wells
considered in Section 3.

The two electron systems considered here have another
substantial difference. In silicon MOSFETs, electrons are
localized at the interface between silicon, with the dielectric
constant kSi, and silicon dioxide (kSiO2

). Therefore, the
interaction between electrons is determined by the mean
dielectric constant �kSi � kSiO2

�=2 ' 7:7. In the SiGe/Si/SiGe
quantum well, the interaction is determined by the dielectric
constant kSiGe close to kSi. Therefore, to achieve the same
interaction in SiGe/Si/SiGe, it is necessary to reduce the
electron concentration by at least a factor of 2.5.

The current carrier concentration is controlled with a
metal electrode (gate) deposited on the dielectric separating a
two-dimensional electron layer from the gate. The electron
concentration depends linearly on the potential difference

between the gate and the electron layer. We show below that
the gate allows obtaining information on many properties of
the electron system.

2. Electrons in (100) Si-MOSFET transistors

2.1 Metal±insulator transition
in the absence of a magnetic field
Two-dimensional electron systems at liquid helium tempera-
tures can have a high conductivity considerably (bymore than
two orders of magnitude) exceeding s0 � e 2=h (where e is the
electron charge and h is Planck's constant). However, at low
electron densities, real electron systems exhibit a low con-
ductivity s5 s0, with the activation temperature dependence
typical of an insulator.

Beginning with paper [1] based on the scaling hypothesis,
it has become commonly accepted that ametal phase in a two-
dimensional electron system (even with an arbitrarily weak
disorder) is impossible in the sense that such a system with
infinite dimensions at zero temperature would inevitably
become an insulator. In this case, the metal±insulator
transition (MIT) in a two-dimensional system turned out to
be impossible, and the experimentally observed transitionwas
called `apparent'. The term is slightly misleading because
`apparent' should rather refer to an insulator assumed in the
place of a metal at unrealistically low temperatures and
fantastically huge dimensions of the sample.

A revolutionary role was played by experiments [2, 4] in
which the unusual temperature behavior of the resistance of
highly mobile electrons in Si-MOSFET was observed in the
vicinity of the transition from the metal dependence to the
behavior typical of an insulator (Fig. 2). In fact, such a
behavior was observed even earlier in [3], remaining unno-
ticed, however.

It was found in [2, 4] that curves in the metal region, as
well as in the insulator region, can be scaled into one universal
curve. These two groups of curves are separated by a
temperature-independent line corresponding to the concen-
tration nc � 7:25� 1010 cmÿ2 in Fig. 2. By extrapolating this
line to the zero temperature, we see that the MIT in the
electron system under study is possible, even at a zero
temperature, in samples with infinite dimensions, which
obviously contradicts paper [1]. Because at electron concen-
trations of the order of 1011 cmÿ2 the kinetic (Fermi) energy in
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Figure 1. (a) Wigner±Seitz cell for electrons in silicon. (b) Image of

constant-energy surfaces near the minima of the conduction band.
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Figure 2. Temperature dependences of Si-MOSFET sample resistance at

electron densities (from top to bottom) of 6.85, 7.17, 7.25, 7.57

��1010� cmÿ2 (from data in [5]).
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the electron gas under study is an order of magnitude lower
than the characteristic electron±electron interaction energy,
this contradiction was interpreted to be the result of a strong
coupling between electrons. It seemed that a one-parameter
scaling remained valid with a scaling function changed by the
interaction. The conviction that a one-parameter scaling
remains universal has led to paradoxical conclusions [6, 7]
that a two-dimensional electron system remains metallic even
for resistances of the order of 3� 107 O per square and a
positive temperature derivative of the conductivity and that
the critical concentration nc can decrease with increasing
disorder.

At the same time, more realistic renormalization group
calculations have appeared taking renormalization with the
increasing coupling strength and disorder into account [8±12].
Based on such calculations, a conclusion was made that the
phase transition observed in the most perfect Si-MOSFET is
indeed a quantum phase transition [10, 11]. Experimental
data were consistent with the theory in the metal region [12±
14]. Paper [14] is of interest because it describes the
experimental temperature dependence in a considerably
broader range than the theory of small corrections does [15,
16].

The subject of MITs, in particular, transitions in highly
mobile MOSFETs, has been considered in many reviews [6,
17±23, 25].We do not review their content but only note some
details.

(i) We first note that the critical concentration nc is not
universal and changes upon changing the random potential
(see Figs 2 and 3a and also [25]).

(ii) If we assume that the transition discovered in Si-
MOSFET is a quantum MIT stabilized due to interaction,
then there must be another MIT appearing as the electron
concentration increases and the interaction weakens. But no
trace of such behavior was observed (see, e.g., [26]). However,
the possible absence of the second transition was theoretically
predicted in [10].

(iii) Despite a certain success, the renormalization group
theory cannot offer any predictions about the structure of an
insulator.

2.2 Influence of a magnetic field
on the metal±insulator transition
Amagnetic field parallel to the interface acts only on the spin
of electrons in a two-dimensional electron system and can
completely spin-polarize it [27]. The spin-polarized electron
system in the vicinity of the transition changes its behavior
from that typical of a metal to that typical of an insulator and
does not exhibit any properties similar to those shown in
Fig. 2. We can see from Fig. 3b that the resistance increases
with decreasing temperature at all electron concentrations,
although a number of features (the disappearance of non-
linearity, the vanishing of the activation energy) demonstrate
the transition from an insulator to a metal at the critical
concentration nc � 1:155� 1011 cmÿ2. Strictly speaking, a
nonhorizontal separatrix separating the metal from insulator
does notmean the absence of a quantumphase transition (this
question is discussed in detail in [6, 23]). Therefore, the
determination of the critical concentration by the sign of the
temperature derivative is at least controversial. Below, we use
other criteria for finding the critical concentration nc, for
example, by the vanishing of the activation energy in the
insulator phase.

Figure 4 shows the position of theMIT point in the �B; ns�
plane in a magnetic field normal and parallel to a two-
dimensional electron gas. In the parallel orientation of the
magnetic field, the transition point position is independent of
the angle between the current and field, which again confirms
the influence of themagnetic field, in this case only on the spin
of electrons. (The contribution of orbital effects to the
magnetoresistance in Si-MOSFET is rather weak: in [28], a
magnetoresistance anisotropy of about 5% was observed in
the parallel field for different current directions with the
respect to the field.)
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Figure 3. Temperature dependences of the resistance of an Si-MOSFET

sample in the absence of a magnetic field (a) at electron densities (from top

down) 7.65, 7.80, 7.95, 8.10, 8.25 ��1010� cmÿ2 and in the 4 T magnetic

field parallel to the interface and (b) at electron densities 1.095, 1.125,

1.155, 1.185, 1.215 ��1011� cmÿ2 (from data in [24]).
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Figure 4. Critical density for the MIT measured for two orientations of a
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parallel to the interface (triangles). nc�B � 0� � 0:89� 1011 cmÿ2. The
dashed straight line corresponds to the filling factor n � 1. The inset shows

critical density oscillations on an expanded scale [30].
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In the region under the solid line in Fig. 4 in the normal
magnetic field and under the dashed line in the parallel field,
the electron system is an insulator, while above these lines it is
a metal. Two points must be noted. First, the critical
concentration in the parallel magnetic field gradually
increases by approximately a factor of 1.5 and then ceases to
increase with increasing the magnetic field. Second, the
behavior of the critical density proves to be quite different in
the normal and parallel magnetic fields.

The increase in the critical concentration in the parallel
magnetic field is related to the spin polarization of electrons.
In a strong magnetic field (exceeding 4 T in Fig. 4), electrons
are completely spin-polarized and the critical density is
independent of the magnetic field. The transition from a
spin-polarized electron insulator to a spin-polarized metal
was observed in [31].

The last statement, as well as the scale of the effect and the
resistance behavior in the metal region agree with the concept
of the MIT due to multiple electron±electron scattering [32].
In themetal phase, a high-viscosity region appears, which was
called a metal glass in [33]. A similar region, although in a
considerably narrower concentration range, can also exist in a
zero magnetic field. In any case, it is distinctly observed in
strongly disordered Si-MOSFETs [6].

The linear increase in the critical concentration in the
initial region in Fig. 4 in the framework of these concepts
should correspond to the behavior of the field corresponding
to complete spin polarization, which, even if not quite exactly,
corresponds to experiments. Nevertheless, the correctness of
the description of the MIT in most perfect Si-MOSFETs
based on calculations in [32] is doubtful. These calculations
correspond to the Anderson transition rather than to a
quantum transition. In addition, the transition point in
calculations is determined by extrapolation from the metal
region.

The linear dependence of the critical concentration in a
strong normal magnetic field can be understood based on
considerations presented in [34]. The normal magnetic field
reduces the amplitude of zero vibrations of electrons in an
insulator (/ Bÿ1=2). According to the Lindeman criterion, the
critical electron density is determined by comparing the
amplitude of zero vibrations and the interelectrode distance
(/ n

ÿ1=2
s ). The extrapolation of the straight line to the zero

magnetic field specifies the number of localization centers
equal to 4� 1010 cmÿ2 for Fig. 4.

In the initial region, where quantization is insignificant,
curves for normal and parallel magnetic fields coincide. But
as the magnetic field is increased further, the critical electron
density of the MIT in the normal field does not increase, in
contrast to the case of a parallel field, and even somewhat
decreases, exhibiting small oscillations (see the inset in Fig. 4).

In a strong quantizing magnetic field, each of the
quantum levels has a band of delocalized states. As the
magnetic field decreases, the delocalized states lower in
concentration, each of them following its filling factor.
Therefore, the MIT in a strong field should occur when the
filling factor is smaller than unity (see Fig. 4). In a weak
magnetic field (oct ' 1), delocalized states detach from
quantum levels and, being topologically protected, merge,
not decreasing their energy or concentration with a further
decrease in the field [35, 36].

The boundary oscillations in this region were explained by
the chemical potential oscillations under conditions of the
quantumHall effect [37, 38]. It was assumed that both phases

can coexist at the MIT boundary. In this case, the chemical
potentials of the phases must be equal at the transition point.
The chemical potential of the insulator changes gradually
with energy, whereas the chemical potential of the metal in a
quantizing magnetic field oscillates, resulting in boundary
oscillations.

2.3 Electron properties in the depth of the Fermi distribution
2.3.1 Complete spin polarization field. Experiment. The
complete spin polarization field B p parallel to a surface
depends linearly on the electron density [39±41] and vanishes
when extrapolated to zero at the finite electron concentration
nc0 (Fig. 5). The linear dependence, which was first estab-
lished from transport measurements, was later confirmed in
independent experiments [42]. It was shown in [41] that
sample quality worsening did not change the slope of the
linear dependence but increased nc0. Because nc0 proved to be
rather close to nc in all experiments, it was assumed that the
number of mobile electrons was not ns but only ns ÿ nc.

To rule out such a possibility, the electron density nHall

was measured in [39] by the Hall effect in a weak magnetic
field (Fig. 6). The electron concentration measured in these
experiments turned out to be coincident within the experi-
mental accuracy with the total electron concentration ns
determined, as usual, by the Shubnikov±de Haas effect in a
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Figure 5. Dots: total spin-polarization field as a function of the electron

concentration (from data in [39]). The dashed line is a least-square fit of

experimental points. The solid line is the expected result for noninteracting

electrons in the model presented in the text.
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strong magnetic field. Below, we will show that such an
experiment does not necessarily rule out the existence of a
`tail' of the density of states containing localized electrons.

The condition of the total spin polarization can be
formulated as follows: the Fermi energy referenced to the
bottom of the electron subband for electrons gaining the
energy epF in the magnetic field is mBgB

p (here, mB is the Bohr
magneton and g is the Lande factor taken at the energy epF).
The constant slope of the experimental dependence in Fig. 5
means that mBgD

p
T � const. Here, the Lande g-factor and the

thermodynamic density of states �D p
T� of the totally spin-

polarized electron gas are, in principle, functions of the
electron density. Taking into account that the g-factor
weakly changes with the electron density in the metal phase,
the constant slope means the absence of the renormalization
of the thermodynamic density of states in the totally spin-
polarized electron system of (100)Si-MOSFET.

The discovery of a finite critical density even in the most
perfect silicon structures was interpreted as amanifestation of
the possible spontaneous spin polarization in a strongly
interacting electron gas or at least as magnetic-field-induced
instability [22, 39].

The naõÈve model. The behavior of the total spin polariza-
tion field, similar to that shown by dots in Fig. 5, can also be
realized in a two-dimensional system of noninteracting
electrons. Indeed, we assume that some of these electrons
are localized (Fig. 7). In a zero magnetic field, two spin
subbands are filled equally, each of them consisting of two
valley subbands. The tail of spin-localized states is not
polarized.

It is important that (i) the first delocalized electron has a
finite quasimomentum and energy (Fig. 7a):

ploc � �h�pnc�1=2; e�nc� � p 2
loc

2m �
; �2�

and (ii) the number of strongly localized electrons is
independent of ns �ns > nc�.

Equation (2) cannot be proved, is an assumption, and
should be verified experimentally. The question about the
possibility of verifying this equation is considered in the next
sections.

In a weak magnetic field and at a sufficiently low
temperature, all electrons in the `tail' are spin polarized
(Fig. 7c). This is possible, for example, for single localized
spins [43, 44]. The analog of Fig. 7a cannot be drawn for
Fig. 7c.

The attempt to measure the thermodynamic density of
states in a spin-polarized localized electron system [24] has
led to an entirely unexpected result, shown in Fig. 8. The
thermodynamic density of states of a spin-polarized
electron system in the insulator phase turned out to be
almost three times higher than that for spin-nonpolarized
electrons and almost six times greater than for spin-
polarized electrons.

The polarization of mobile electrons begins at concentra-
tions ns > nc. In other words, in the model considered here,
nc � nc0, and the slope of the straight line is determined by the
condition

dBp

dns
� 2

mBgDTb
� p�h 2

m �mBg
; �3�

where DTb � 2D p
Tb � dns=deF is the thermodynamic density

of states of the spin-nonpolarized electron gas with band
parameters. The corresponding dependence is shown by the
solid straight line in Fig. 5 for m � � mb (mb is the band
electron mass), g � 2. We can see from Fig. 5 that the values
of nc and nc0 virtually coincide and the slope of the
experimental straight line is smaller than expected. The
slopes can be matched assuming that the g-factor exceeds
the band g-factor: g � 1:3g0 � 1:3� 2. Indeed, the measured
values of the Lande g-factor always exceed g0, being
�1:5ÿ1:7�g0 [45], 1:5g0 [47], and �1ÿ1:3�g0 [48]. All these
values were obtained from measurements in a normal
magnetic field and therefore it is not obvious that the same
values of the Lande g-factor are also applicable to the
magnetic field parallel to the interface.

We note that the presence of localized states satisfying
Eqn (2) cannot be found in transport measurements in the
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metal phase, where all the properties are determined by the
close vicinity of the Fermi surface. In particular, measure-
ments of the Hall resistance in weak magnetic fields give the
total electron concentration.

The assumption that the electron system undergoes a
transition to the totally spin-polarized state is also well
founded because, for example, a system of localized magnetic
moments is already polarized at zero temperature in an
infinitely weak magnetic field.

These considerations can be applied with minor changes
to a system of strongly interacting electrons, assuming that we
are dealing with single-particle electron states. The average
mass of quasiparticles in this model is independent of (or
weakly depends on) the electron concentration. Such a model
was probably used to interpret experimental results in [41, 46].

The alternative naõÈve model consists of the following. It is
assumed that when the critical concentration nc is exceeded,
all electrons become mobile and the energy of a totally
polarized gas vanishes at nc:

p�ns� � �h�pns�1=2 ; e pF�ns� �
p 2

2m �
/ �ns ÿ nc� : �4�

The assumed single-particle spectrum of a completely
polarized electron gas is shown schematically in the inset in
Fig. 9. The spectrum is quadratic, with the average effective
massm �. The constant value of the thermodynamic density of
states and the vanishing of the total spin polarization field at
ns � nc cause the divergence of m

�, as shown in Fig. 9.
This model was earlier used in a number of papers

beginning with [39] and ending with recent study [22].
Both models have a number of disadvantages. First,

quasiparticles are treated as free particles even in the depth
of the Fermi distribution. Neither model can explain the shift
of the critical concentration as the total spin polarization sets
in. Finally, they do not consider the physical properties of an
insulator.

2.3.2 Thermodynamic density of states. As mentioned above,
the thermodynamic density of states is one of the parameters
that can be inferred from experiments. Experimental data for
a completely polarized system of mobile electrons can be
compared with the results of numerical Monte Carlo
simulations [49]. The solid curve in Fig. 8 shows the
thermodynamic density of states of an ideal two-dimensional

Si-MOSFET electron system with the electron scattering
ignored, calculated using the results in [49]. The dashed line
in the inset shows the thermodynamic density of states
obtained from experimental data in Fig. 5 using the value
g � 1:3g0. We can see from Fig. 8 that the calculated
thermodynamic density of states weakly depends on the
electron density for ns > 3� 1011 cmÿ2, asymptotically
approaching the dashed line as ns !1. The complete spin
polarization field calculated in the same concentration region
is consistent with experiment. According to [49], the con-
sideration of a finite mean free path of electrons reduces the
growth of the thermodynamic density of states at minimal
electron concentrations, such that the thermodynamic den-
sity of states approaches a constant in the concentration
range of interest to us.

A comparison of the data in Fig. 8 with that in the inset
shows that the thermodynamic density of states in the parallel
magnetic field experiences a jump at the concentration nc,
increasing under conditions of the complete spin polarization
in the insulator phase.

Information on the thermodynamic density of states can
be obtained from the MOSFET capacitance measurements.
Indeed, by measuring capacitances in the absence of a
magnetic field and in a field parallel to the plane of a two-
dimensional system, we determine their difference DC�ns� in
the region of complete spin polarization,

DC
C
� C0�Ae 2�ÿ1

�
1

DTpol
ÿ 1

DT

�
; �5�

where A is the gate area. For an electron density lower than
1:2� 1011 cmÿ2, the electron system in a magnetic field
becomes an insulator, resulting in an increase in jDCj. At the
electron concentration 2:25� 1011 cmÿ2, the transition to the
completely spin-polarized state from magnetoresistance
measurements is detected.

We can see from Fig. 10 that the measured capacitance
difference decreases as the electron concentration increases.
This is possible only if the thermodynamic density of states
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behaves as DT / ns=�ns ÿ nc� and DTpol � const. 1 Such a
behavior was reported in [51] based on the analysis of data
on the dependence of the elastic relaxation time on the
electron density. The fitting of experimental data with this
expression and Eqn (5) is shown by the dashed line in Fig. 10
for DT � DTbns=�ns ÿ nc� and DTpol � DTb=1:3. The result
obtained should be verified by measurements in stronger
magnetic fields.

2.3.3 Electron magnetic moment in the metal phase. Studies of
the electron magnetic moment were initiated in [52].
Because the direct measurement of the magnetic moment
of a two-dimensional electron system is difficult due to its
smallness, the quantity qm=qB, equal toÿqM=qns according
to Maxwell's relation, was measured in experiments. Here,
m is the chemical potential of the electron system and M is
the magnetic moment of the unit area. To obtain the
dependence M�ns�, the measured quantity should be
integrated over the electron concentration. However, to
do this, it is necessary to use some point with the known
magnetic moment as the initial point or to measure qm=qB in
the insulator region at low electron densities for the most
perfect samples, which is not simple at low temperatures.
Below, we present results obtained by the first [42] and
second [52±55] methods.

Themagneticmoment as a function of the electron density
for two magnetic fields is shown in Fig. 11. The curves shown
in this figure were obtained from original curves by integrat-
ing, assuming that interaction can be disregarded at the
maximal electron concentration and the band mass and the
Lande factor g � 1:3g0 can be used for calculating the
magnetic moment. This procedure is justified by the fact
that near the maximum, the magnetic moment expressed in
Bohr magnetons coincides with good accuracy with the total
number of electrons (the discrepancy does not exceed
2� 1010 cmÿ2).

For comparison, the dashed lines in Fig. 11 show the
dependences of themagneticmoment expected for a gas of free
electrons with band parameters. We can see that interaction
plays a considerable role and significantly modifies the
dependence M�ns�. In addition, the dashed-dotted curve in
Fig. 11 shows the expected dependence for a gas of interacting
electrons, assuming that electrons with oppositely oriented
spins have a parabolic spectrum with a mass / ns=�ns ÿ nc�.
We can see that the spectrum of a partially polarized electron
system is not quadratic, and a comparison of the values of two
solid curves at an arbitrary fixed concentration suggests that
the degree of spin polarization is approximately proportional
to the magnetic field.

Recently, a method for measuring the magnetic moment
in an insulator was proposed in [55]. Measurements are
possible at a low but finite conductivity at a finite tempera-
ture. The method is based on the fact thatMOSFET charging
occurs in the same way under modulation of the gate voltage
and parallel magnetic field. In the first case, some effective
capacitance is measured (which depends on the conductivity
and does not exceed the sample capacitance), and in the
second case the value of qm=qB related to the same area as that
the measured capacitance is determined. The only unwelcome
feature of the method is that the magnetic moment measured
is related to the near-contact region of the sample.

One of the results in [54], obtained by integrating the
magnetic moment starting from the zero electron density, at
which the magnetic moment of the electron system is zero, is
shown in Fig. 12. The curve presented in the figure is
consistent in the overlap region (ns < 6� 1011 cmÿ2) with
data obtained earlier by a different method [52] for which the
magnetic moment is approximately proportional to the
magnetic field and is therefore mainly caused by mobile
electrons. As the electron density is increased further, the
magnetic moment ceases to decrease (Fig. 12). The level at
which the dependence M�ns� is saturated depends weakly on
the temperature and the magnetic field strength (see the inset
in Fig. 12), which is without a doubt related to the presence of
localized electrons in the metal phase and which allows
estimating their number. Indeed, because the magnetic
moment at saturation depends on the temperature very

1 The expression forDTpol obtained in [50] is based on amisunderstanding:

chemical potentials entering Maxwell's relation and screening were

measured relative to different levels.
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weakly, the maximum number of localized electrons is equal
to the difference between the saturation level and the expected
level for a free electron gas. It is 2� 1010 cmÿ2, whereas
nc � 8:5� 1010 cmÿ2 for the sample under study. This
number is not universal. It changes from sample to sample
and can change from cooling to cooling, even for one sample.

Many efforts have been made to study the magnetic
susceptibility, i.e., the quantity w � qM=qB �B � 0� (Fig. 13).
A comparison of the result presented in Fig. 13 with a rough
estimate of the expected magnetic susceptibility according to
the data in Figs 11 and 12 shows that the measured
susceptibility exceeds the expected one by almost an order of
magnitude. This is possible only if the magnetic susceptibility
is caused by the initial stage of the rearrangement of the `tail'
of the density of states (see Fig. 7) and is not directly related to
the properties of delocalized electrons.

We note two features of the curves in Fig. 13. First, the
curve obtained for a sample from the Netherlands lies below
the corresponding curve for a sample made in Russia.
Assuming that with all other parameters equal, the suscept-
ibility in the metal phase is proportional to the number of
localized electrons, we can conclude that the number of
localized electrons in the Russian sample is greater by 25%.

Second, the susceptibility in a small concentration interval
continues to increase with increasing ns in the metal phase,
and this increase is virtually the same for both samples
(arrows in Fig. 13).

2.4 Electron properties at the Fermi level
2.4.1 Temperature dependence of the conductivity. In the
absence of a magnetic field, the conductivity of a two-
dimensional electron system linearly depends on tempera-
ture in some temperature range. Such a behavior of the
conductivity was predicted by two different models [15, 16,
56] and experimentally demonstrated in [57]. The temperature
interval in which a linear dependence is expected is deter-
mined by the condition

�h

t
5 kT5 pFvF ; �6�

where k is the Boltzmann constant, and pF and vF are the
electron momentum and velocity on the Fermi surface. The
left inequality in relation (6) corresponds to the ballistic
regime [16]. It appears in the alternative model [15] as the

restriction on energy in the regime where the screening
parameter is washed out by collisions.

It is important for us that independently of the model, the
conductivity in the linear region is determined by the relation

s�T �
s�0� � 1ÿ AkT ; �7�

where A / �pFvF�ÿ1 / m �F=ns. Here, we standardly introduce
the single-particle mass on the Fermi surface as m �F � pF=vF.

Examples of the temperature dependence of the conduc-
tivity on the metal side of the MIT are shown in the inset in
Fig. 14. For each of the electron concentrations, the
temperature dependence of the conductivity has a linear
region that allows determining A�ns�. This dependence is
shown in Fig. 14. The dependence 1=A�ns� is linear with
good accuracy and can be extrapolated to a finite concentra-
tion coinciding for the sample under study with nc0 and nc.
The linear dependence means that m �F / ns=�ns ÿ nc�, simi-
larly to the behavior of the mean mass of spin-polarized
electrons, and by extrapolation diverges at the same concen-
tration where the Fermi energy of spin-polarized electrons
reaches the bottom of the electron subband (see Fig. 5).

2.4.2 Thermal EMF. The alternative method for studying the
electron properties in the vicinity of the Fermi level in Si-
MOSFET involved measurements of the thermal EMF
ST � ÿDV=DT [58], where DV is the potential difference
caused by the temperature difference DT for a constant
thermal flow directed along the electron layer. The creation
of such a thermal flow and control of its constancy are the
major experimental challenges in measuring the thermal
EMF at low temperatures.

In the case of noninteracting electrons (taking valley
degeneracy into account), the thermal EMF is described by
the expression

ST � ÿ 2pk 2mbT

3e�h 2ns
: �8�
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At a low electron density, the elastic relaxation time itself
becomes temperature dependent [15, 16], resulting in a
correction to Eqn (8). In the right-hand side, an additional
factor appears depending on the disorder [59±61] and
interaction [62]. In addition, for interacting electrons, mb

should be replaced withm �F in Eqn (8). It is expected that 1=ST

is inversely proportional to the temperature and in the
simplest case proportional to ns=m

�
F.

Indeed, experiments demonstrate the correct scaling of
the thermal EMF with the temperature and a linear
dependence of the inverse EMF on the electron density
(Fig. 15).This implies a constant value of the additional
factor in Eqn (8) caused most likely by the narrowness of the
electron concentration interval in which the measurements
were performed.

The thermal EMFmeasurements confirm the dependence
m �F / ns=�ns ÿ nc� at minimal achievable electron densities
and extend it much closer to the critical concentration.

2.4.3 Entropy measurements. Additional information on the
properties of the electron system in Si-MOSFET was
obtained from entropy measurements [63]. Rather compli-
cated experiments involved the study of the response of the
chemical potential of the electron system to the temperature
modulation Dm=DT equal to the change in entropy with the
opposite sign after the addition of one electron. The entropyS
of the unit area of a degenerate noninteracting electron gas
(kT5 eF, where eF is the Fermi energy measured from the
bottom of the electron subband) is

S � k 2pTgsgvmb

6�h 2
�9�

and is independent of the number of electrons. Therefore, the
zero response is expected for noninteracting electrons.

The properties of a degenerate electron gas of interacting
electrons are determined by the nearest vicinity of the Fermi
level [64]:

qS
qns
� qm �F

qns

k 2pTgsgv
6�h 2

: �10�

Because the electron mass at the Fermi level increases with
decreasing the electron density, the negative values of qS=qns
are expected in the region of the degenerate gas.

The corresponding experimental data are presented in
Fig. 16. Here, the solid curve shows calculations with the
electron mass at the Fermi level found previously. At an
electron density above 4� 1011 cmÿ2, the calculation is
consistent with experiments. At lower concentrations, experi-
mental points deviate from the calculated curve and even
move to the upper half-plane, because the electron system
ceases to be degenerate.

In the opposite limit case kT5eF, the authors of [63]
processed experimental results using the expression

qS
qns
� k

�
eF=kT

exp �eF=kT � ÿ 1
ÿ ln

ÿ
1ÿ exp �ÿeF=kT �

�� �11�

for an ideal gas with a renormalized average effective
mass m �.

Expression (11) is valid only in a bounded region of
electron concentrations depending on temperature. For
example, in Fig. 16 these are concentrations above 1011 cmÿ2

(to avoid the insulator) and below 2� 1011 cmÿ2 (to remain in
the nondegenerate regime). The result of the corresponding
processing is presented in the inset in Fig. 16. We can see that
experimental points in chosen coordinates are close to a
straight line with a slope of 45�, extrapolating to a finite
electron density.

We note in concluding this section that results obtained
in entropy measurements cannot confirm the results in
Sections 2.3.3, 2.4.1, and 2.4.2, but do not contradict them
either.

2.4.4 Shubnikov±de Haas effect. The parameters of an
electron system at the Fermi level can be determined from
quantum oscillations of resistance (the Shubnikov±de Haas
effect) [65]. Corresponding measurements have been
performed by different experimental groups [64, 66±68]
with samples from various manufacturers. The effective
mass was found from the Lifshitz±Kosevich relations [65],

0.8
0

0.05

0.10

0.9 1.0 1.1

ns, 1011 cmÿ2

ÿ1
=
S
T
,K

mV
ÿ1

Figure 15.Dependences of the inverse EMF on the electron concentration

at 300 mK (dots) and 600 mK (squares). The straight lines drawn through

the points are extrapolated to the concentration nc0 (data from [47]).

ns, 1011 cmÿ2

0

0 2 4 6 8

0.5

1.0

1.5

E
n
tr
o
p
y
p
er

el
ec
tr
o
n
,k

ns, 1011 cmÿ2

1.0

0.5

0
1.0 1.5 2.0

m
b
n
s=
m
� ,
1
0
1
1
cm
ÿ2

Figure 16.Dependence of qS=qns on the electron concentration (in units of

the Boltzmann constant k) at the temperature 3 K (dots). The solid curve

was calculated by Eqn (10) with the mass m�F � mbns=�ns ÿ nc�, where
nc � 8� 1010 cmÿ2. The inset shows the processing of points in the upper

half-plane with Eqn (11). The dashed straight line corresponds to the

dependence m� � mbns=�ns ÿ nc� (data from [63]).

July 2019 Two-dimensional system of strongly interacting electrons in silicon (100) structures 641



which give the dependence of the relative magnitude U of
quantum oscillations on the temperature and the magnetic
field:

U �
X
i

ULK
i cos

�
pi
�

�hcpns
eB?

ÿ 1

��
Z s

i Z
v
i ;

ULK
i � 4 exp

�
ÿ 2p2ikBTD

�hoc

�
2p2ikBT=�hoc

sinh�2p2ikBT=�hoc� ;

Z s
i � cos

�
pi

DZ

�hoc

�
� cos

�
pi

gm �F
2me

�
;

�12�

Z v
i � cos

�
pi

Dv

�hoc

�
;

where TD is the Dingle temperature, me is the free electron
mass, �hoc is the cyclotron frequency, DZ is the Zeeman
splitting, and Dv is the valley splitting.

In weak magnetic fields (U5 1), the amplitude is
determined by the factor ULK

1 , and two fitting parameters
m �F andTD remain in the temperature dependence in Eqn (12).
Such a processing of experimental results from [66] and [67] is
shown in Fig. 17.

We can see from Fig. 17 that data obtained for samples
from different manufacturers agree with each other within the
experimental accuracy, are described well by a linear
dependence in corresponding coordinates, and are extrapo-
lated to the concentration of 0:66�1011 cmÿ2.

It was shown in Section 2.4.1 that the transport elastic
relaxation time depends on temperature. The questions
arise as to whether the temperature dependence can also
be manifested in the quantum relaxation time determining
the Dingle temperature and if so, how the effective mass

changes after processing experimental results with the
Dingle temperature depending on temperature. This
effect was roughly estimated in [66] by replacing the
quantum relaxation time in the Lifshitz±Kosevich for-
mula by the temperature-dependent transport time. The
result is shown by filled squares in Fig. 17. Despite
quantitative differences with the previous processing,
experimental points again lie on a straight line extrapo-
lated to the concentration of 0:55� 1011 cmÿ2.

Replacing the quantum relaxation time with the transport
time changes the temperature dependence of the Dingle
temperature. The critical electron density found from
quantum oscillations arguably lies in the interval from
5:5� 1010 to 6:5� 1010 cmÿ2. This value is noticeably lower
than that found in Sections 2.4.1 and 2.4.2. The reason for the
discrepancy can be the nonlinearity of the single-particle
electron spectrum near the Fermi level (see the right inset in
Fig. 17). Indeed, at minimal electron densities, the tempera-
ture dependence of oscillations is studied at the third or fourth
Landau levels, i.e., under the conditions

�hoc ' 1

3

pFvF
2

:

The nonlinearity of the spectrum for such considerable
deviations from the Fermi level can lead to a decrease in the
measured effective mass compared with the mass measured
directly at the Fermi level.

To avoid misunderstanding, we make an important
remark. The amplitude of quantum oscillations is deter-
mined exclusively by the vicinity of the Fermi level and is
absolutely insensitive to the difference between the band
bottom and Fermi energies. For this reason, the measured
mass turned out to be insensitive to the spin polarization
degree.

The study of the temperature dependence of the amplitude
of quantum oscillations in tilted fields [67] revealed another
important fact about the independence of the electronmass at
the Fermi level from the spin polarization degree. This
statement was recently confirmed by independent experi-
ments [64] and by some raw experimental data [66] and
calculations [69] for a multi-valley electron system in the
weak-coupling limit.

In a tilted magnetic field, another possibility exists for
measuring parameters of the electron system at the Fermi
level. By changing the tilt angle (or changing one of the
components of the magnetic field with the other component
kept fixed), the nodes of quantum oscillations can be
observed. It was shown in [70] that for a relatively weak
electron±electron interaction and zero temperature, the
position of the nodes is determined by the product gFm

�
F.

The corresponding experimental data presented in the inset in
Fig. 17 demonstrate the critical behavior of the product gFm

�
F

but cannot be used to accurately determine the critical
concentration because the extrapolation law is unknown.

2.4.5 Low-frequency resistance noise. Information on electron
properties at the Fermi level can be obtained by measuring
low-frequency resistance noise. Such measurements were
performed with Si-MOSFETs of different qualities [71] in a
broad temperature range. Below, we consider only the results
of low-temperature measurements with the most perfect
samples [72, 73].

It was shown that the low-frequency spectral density of
noise, which in the metal phase is usually proportional to
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literature so far.
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1=f, changes in the narrow region above nc to 1=f a with the
exponent a > 1 increasing with decreasing the electron
concentration. The spectral noise density in this region
increases for T < 3 K with decreasing temperature. Such a
behavior is typical for the amorphous phase (glassy
phase).

The exponent a in a spin-polarized metal, as in the usual
metal phase, is independent of the electron concentration and
is a ' 0:5. In the region of transition from a spin-polarized
insulator to a spin-polarized metal [73], a increases, and the
concentration range in which a metallic glass phase exists
expands (Fig. 18).

While the boundary between an amorphous metal and
an insulator can be determined with good accuracy (see
Sections 2.1 and 2.2), the upper boundary (dashed curve) in
Fig. 18 is somewhat conventional because of the absence of
any criterion for the value of the exponent a allowing the
separation of themetal phase from the amorphous metal. The
accuracy of determining this boundary can be estimated from
data presented in Fig. 19.

We note that the electron concentration range where the
amorphous metal phase is observed strongly depends on the
sample quality [6], considerably expanding with increasing
disorder.

2.5 Intermediate conclusions
We briefly formulate the results of the experiments presented
above.

(1) The electronmass in the metal phase at the Fermi level
increases as the electron density decreases and is independent
of the spin polarization degree. The extrapolation predicts a
divergence of mass (the appearance of a flat region of the
electron spectrum) at the electron concentration close to the
MIT point in the zero magnetic field for the best of the
samples studied.

(2) In themetal phase, a fraction of localized electrons can
be retained, their number being dependent on the sample
quality.

(3) In the metal phase, an amorphous metal with long-
period correlations of fluctuations can exist in the nearest
vicinity of the MIT [72]. In the most perfect samples, the
amorphous metal region in the zero magnetic field virtually
disappears.

(4) The electron mass averaged over the spectrum in the
metal phase also increases with decreasing the electron
concentration. More precisely, this statement can be formu-
lated as follows: the distance between the bottom of the
electron subband and the Fermi level decreases with decreas-
ing electron density faster than can be expected for a
noninteracting electron gas.

(5) The thermodynamic density of states of spin-non-
polarized electrons is proportional to the electron mass at
the Fermi level. However, this statement should be addition-
ally verified.

(6) The total spin-polarization field is linear in the
electron density and is extrapolated for the best samples to
zero at the electron concentration close to the concentration
of the MIT in the zero magnetic field. This means that the
thermodynamic density of states of spin-polarized electrons
under the condition ns � n" (where n" is the number of
electrons with an energy-advantageous spin orientation) is
independent of the electron concentration.

(7) The effective mass of spin-polarized electrons aver-
aged over the spectrum increases as the electron density
decreases, demonstrating (by extrapolation) the tendency to
diverge at an electron concentration close to that of the MIT
in the zero magnetic field.

2.6 Electrons in an insulator
2.6.1 Low-frequency noise in the insulator phase. In [72, 73],
measurements of low-frequency noise were extended to the
MIT and even into the insulator phase (see Fig. 19). We can
see from the figure that neither in the absence of a magnetic
field nor in the magnetic field spin-polarizing the electron
system were any specific features in the behavior of a
observed at the MIT point. Therefore, the transition
occurs between the amorphous metal phase (with a finite
resistance at the zero temperature) and the glassy insulator
phase (with the conductivity tending to zero with decreas-
ing temperature).

The amorphous phase of an insulator was considered in the
grating model [74] for spinless electrons. It was shown that in
the case of disorder and strong electron±phonon coupling, a
gapless state appears with a deep lowering of the single-particle
density of states, reaching zero at the Fermi level. With such a
spectrum realized, variable-range hopping conductivity should
be expected [75]. The temperature dependence of the resistance
described by the Efros±Shklovskii law was observed experi-
mentally deep in the insulator [4, 76]. In the region closer to the

Insulator

Amorphous metal

Metal
14

12

10

8
0 2 4 6 8 10

B, T

n
s,
1
0
1
0
cm
ÿ2

Figure 18.Modified phase diagram for theMIT in amagnetic field parallel

to the interface (cf. Fig. 4). The hatched region is the insulator, the filled

region is the amorphous metal (data from [73]).

2.0

a

1.5

1.0

0.5

10 15 20
ns, 1010 cmÿ2

Figure 19. Exponent a of the frequency dependence of the spectral density
of low-frequency noise �/ 1=f a� as a function of the electron concentra-

tion. Unfilled squares: B � 0; triangles and red squares: B � 4 T and

B � 9 T parallel magnetic fields, respectively. The filling corresponds to

Fig. 18. The dashed horizontal straight lines show the saturation level of a
in the metal phase (data from [73]).

July 2019 Two-dimensional system of strongly interacting electrons in silicon (100) structures 643



MIT, the usual activation dependence was observed [24],
demonstrating the transition to nearest-neighbor hopping.

The appearance of an intermediate amorphous metal
phase was predicted in [77].

Interesting results on low-frequency noise in the insulator
phase were obtained in [78], where nonlinear voltage±current
�VÿI� characteristics were studied in the depth of an
insulator (Fig. 20). At a low temperature (T ' 60 mK) in the
linear regime, the current was absent within the experimental
accuracy. As the voltage reached a critical value depending on
the difference nc ÿ ns, the current began to increase dramati-
cally, its increase being accompanied by the low-frequency
noise, well observed in the inset in Fig. 20. Finally, as the
voltage reached the second threshold value, theVÿIs became
linear and the noise amplitude decreased. Both threshold
voltages decreased with increasing temperature, the noise
decreased, and the current appeared in the linear regime at
high temperatures. The slope of the linear part of the VÿI
curve weakly depended on the temperature (see Fig. 20) and
the electron concentration.

The observed VÿIs are similar (up to the interchange of
the current and voltage axes) to the well-known VÿIs for the
depinning of a vortex lattice in type-II superconductors (see,
e.g., [79]). Based on this analogy, we can attempt to describe
the experimental curves.

Following the terminology used to describe the properties
of the vortex lattice, we introduce two critical voltages: the
static voltageVs (see the inset in Fig. 20) corresponding to the
onset of the linear dependence of the current on voltage, and
the dynamic voltage Vd, the result of extrapolating the linear
dependence to zero (see Fig. 20).

The region of voltages Vd < V < Vs is the region of
collective pinning of an amorphous electron system with a
strong interparticle interaction. In this region, pinning is
produced by centers of different strengths, and the electron
system canmove only due to thermal activation.We note that
we are dealing not with the activation of a single electron but
with the activation motion of the total electron system or, at
least, of a large part of it:

I / exp

�
ÿU�V�

kT

�
: �13�

Here, U�V� is the activation energy depending on the
potential difference applied to the sample.

For voltages exceedingVs, the electron systemmoves with
friction, which is maximal at spatial points with the greatest
pinning force. Therefore,

Uc � eEsL ; �14�
where Uc is the maximum activation energy in the absence of
an electric field, Es is the electric field at the voltage Vs, and L
is the characteristic distance between the points of maximum
pinning. It is the random arrangement of these points that
supports the amorphous state of the electron system. The
electric current in this region linearly depends on the applied
voltage,

I � s0�Vÿ Vd� ; �15�

where s0 is a coefficient with the dimension of inverse
resistance.

Because the activation energy is described by the expres-
sion

U�V� � Uc ÿ eEL � Uc

�
1ÿ V

Vs

�
; �16�

the current at V < Vs is

I � s0�Vÿ Vd� exp
�
ÿUc�1ÿ V=Vs�

kT

�
: �17�

Fitting the experimental curves with expressions (15) and
(17) is shown by dashed curves in Fig. 20 and the inset. The
only fitting parameter was the activation energyUc. All other
quantities in (15) and (17) were determined from experiments.
We can see from Fig. 20 that calculations describe the
experiments well.

The noise in the voltage region Vd < V < Vs is related to
the expectation of a quite large fluctuation transforming the
electron system from one local energy minimum to another.
The intense noise in the nonlinear regime and the two-
threshold flow disappear earlier than the MIT is reached
[78]. Such a behavior agrees well with the noise measurements
in the linear regime, where the saturation of a at the level
a ' 2 corresponding to the usual amorphous phase was
observed at an electron density noticeably lower than nc.

2.6.2 Magnetic properties in the insulator phase
Localized droplets. Experimental data presented in [80] were
interpreted as the result of the existence of localized droplets
in the insulator phase, i.e., localized formations resembling
quantum dots consisting of a few �' 4� electrons. Electrons in
such droplets are completely spin-polarized with a random
orientation of the total magneticmoment in the zeromagnetic
field.

Despite identical names, it is unlikely that localized
droplets have something in common with the free droplets
proposed in [81] as one of the intermediate phases between a
metal and a Wigner crystal.

In the framework of the concept of localized droplets, the
magnetic moment of a unit area can be written as

M � mB
�
nd tanh �sb� � �ns ÿ nd� tanh �b�

�
; �18�

where nd is the electron density in droplets, s is the mean
number of electrons in one droplet, and b � mBB=kT is the
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Figure 20. Voltage±current characteristics in the insulator phase.

ns � 5:36� 1010 cmÿ2, temperature (from right to left): 60, 140, 200,

300 mK. The inset shows the VÿI curve at the electron density

ns � 5:2� 1010 cmÿ2 on the expanded scale. T � 60 mK. A strong

increase in the low-frequency noise is observed in the interval

Vd < V < Vs (data from [78]).
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normalized magnetic field. For simplicity, we assume that
s4 1 and b5 1. Then

qM
qns
' Nd

qs
qns

�
tanh �sb� � sbcoshÿ2�sb�� ; �19�

where Nd � nd=s is the number of droplets (strong pinning
centers), weakly depending on the electron concentration in
the insulator phase but depending on temperature.

Figure 21 shows fitting curves based on expression (19) for
the values of the fitting parameter Ndqs=qns equal to 2, 1,
ÿ0:1, and s � 4.We can see that the fitting curves describe the
experiments well.

A comparison of calculations with experiments leads to
some interesting conclusions. First, the value of the derivative
qM=qns ' 2 at the temperature T � 0:8 K means that at
lower concentrations this derivative is considerably smaller
than unity and the interval of its large values is quite narrow.
This statement is inconsistent with higher-temperature
measurements (see, e.g., Fig. 12). Second, the number of
localized droplets turns out to be temperature-dependent
(which requires additional verification, however) and weakly
dependent on the electron concentration in the insulator
phase. Third, after transition to the metal phase, the
derivative qs=qns changes its sign.

A question naturally arises: How are the concepts of
localized droplets and the amorphous phase following from
noise measurements described above related? Taking into
account that the Coulomb energy considerably exceeds the
temperature forT4 2K, we see that the characteristic spatial
scale between electrons in a droplet should not differ
significantly from the mean distance between electrons. In
other words, the density of an electron system with droplets
weakly changes at scales exceeding (slightly) the mean
distance between electrons, which corresponds to the amor-
phous state and is qualitatively confirmed by experiments,
albeit those performed with samples of different qualities
prepared by different manufacturers.

Magnetic moment and susceptibility in the insulator phase.
We again consider Fig. 12. In a magnetic field of 2 T, the
magnetic moment increases linearly with a unit slope up to a
concentration of 5� 1010 cmÿ2. As the electron concentration
is increased further, the magnetic moment continues to
increase, but now proportionally to ns. Because B � 2 T at
the temperature 1.7 K corresponds to the saturation of the
magnetic moment of droplets, we have to conclude that for
ns > 5� 1010 cmÿ2, not all localized electrons enter dro-
plets. Therefore, the number of strong pinning centers is
nd � 5� 1010=s � 1:2� 1010 cmÿ2 (s � 4), and in the metal
phase, according to the estimate in Section 2.3.3, s � 2.

In the magnetic field B � 5 T at the temperature
T � 0:4 K, the parameter b ' 16 and all electrons in the
insulator phase are spin-polarized. It can be expected that the
straight line M � mBns specifies the behavior of the magnetic
moment in the insulator phase, in agreement with the results
in [52, 54]. However, as follows from Fig. 11, experimental
points in the metal phase at the minimal concentration are
higher than this straight line, which is unsurprising because
the Lande factor is g > 2 in the metal phase.

The susceptibility in the insulator phase is determined by
the initial region of the curve describing the dependence of the
magnetic moment on the magnetic field. In the concept of
droplets,

w � m 2
B

kT

�
nd�sÿ 1� � ns

�
: �20�

In [80], the relation nd / 1=T was observed to roughly hold.
In the initial part of the dependence w�ns�, the suscept-

ibility is proportional to concentration (see Fig. 13); there-
fore, nd � ns. The slope of the initial part of the sample shown
by squares in Fig. 13 is 30% smaller than that for a sample
whose data are shown by circles. According to (20), this
means that the mean number s of particles in a droplet is
smaller for a more perfect sample than for a more disordered
sample.

2.7 Additional intermediate conclusions
We note that neither of the two alternative naive models
presented in Section 2.3.1 is fully correct. Only their
combination is consistent with experiments.

Indeed, in the metal phase, both the energy-averaged
effective electron mass �m �� and the effective electron mass
�m �F� at the Fermi level increase with decreasing the electron
concentration. We note that m �F exhibits a tendency to
diverge, in agreement with the second model, assuming that
localized electrons are absent in the metal phase and the
properties of the electron system are determined only by
interaction. At the same time, the metal phase undoubtedly
contains a small number of localized electrons, which, for
example, determine themagnetic susceptibility of the electron
system. The number of localized electrons depends on the
sample quality. Experiments demonstrate that according to
the assumptions of the first model, the presence of localized
electrons in the metal phase does not affect the Hall effect in
weak fields.

The insulator phase in the general case contains electrons
included in localized droplets, with the total magnetic
moment of the droplet behaving as a single whole, and also
localized electrons not entering the droplets. The relation
between these two electron groups probably depends on the
sample quality. Some properties of this mixture, for example,

2

0

ÿ0.1

0.2 0.4 0.6 0.8
mBB=kT

qM
=
qn

s,
m B

0

Figure 21.Derivative of themagneticmoment of a unit area by the electron

concentration as a function of the normalizedmagnetic field parallel to the

MOSFET interface. Unfilled symbols: ns � 5� 1010 cmÿ2, squares

(T � 0:8 K), circles (T � 1:2 K). Filled symbols: T � 1:8 K: squares,

diamonds, stars, and large diamonds correspond to respective electron

concentrations 0.4, 0.8, 1.4, 2.5 ��1011� cmÿ2. The dashed, solid, and

dashed-dotted curves are fittings using Eqn (19) (data from [80]).
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noise characteristics, are similar to those of the amorphous
phase. Unfortunately, any theoretical calculations concern-
ing the magnetic properties of a strongly coupled disordered
electron system are absent.

Studying the magnetic moment at the MIT at millikelvin
temperatures could be of great interest. The extrapolation of
the available information predicts a jump in the magnetic
moment in this region.

3. Electrons in SiGe/Si/SiGe quantum wells

3.1 Advantages and disadvantages of the structures
The properties of electrons in the highest-mobility SiGe/Si/
SiGe quantum wells were studied in [82±87]. We consider the
results of studies [85±87] in which electrons were located in a
(100) silicon quantum well 150 �A in width. The quantum well
was bounded from above and at the bottom by SiGe barriers.
The top barrier � 1500 �A in width was covered with a 10 �A
thick silicon layer with thermally deposited 2000ÿ3000 �A
thick SiO and a metal gate. The samples, as in the Si-
MOSFET case, had the shape of Hall bridges.

The advantages of the electron system in quantumwells in
SiGe/Si/SiGe systems are due to, first, the high electron
mobility and, second, the feasibility of measurements at low
electron concentrations. The dependence of electron mobility
on the electron concentration for one of the best samples is
shown in Fig. 22. We can see that the maximum electron
mobility in an SiGe/Si/SiGe quantum well is almost two
orders of magnitude greater than the electron mobility in the
best Si-MOSFETs. In addition, metal conductivity is
observed down to very low electron concentrations of the
order of 1:5� 1010 cmÿ2.

Among the disadvantages is a weaker (at a fixed
concentration) electron±electron interaction. As already
mentioned in the Introduction, the reason is the dielectric
constant greater by a factor of 1.5 and a greater spread of the
electron wave function in the direction normal to the inter-
face.

Another disadvantage of SiGe/Si/SiGe structures is a
complex surface relief (see the inset in Fig. 22). The relief has
`ridges' extended along the [110] and [ÿ110] directions with a
characteristic height of � 50 nm and period of 10 mm. The

relief is rather flat, because the period greatly exceeds the
characteristic ridge height. It was shown in [80] that the
potential well relief repeats the surface relief, and therefore
themodulation of the electron concentration caused by ridges
is virtually absent.

Nevertheless, the relief modulation considerably compli-
cates measurements in a magnetic field parallel to the surface.
Although the field is parallel to the surface on average, the
bends of the quantum well lead to the appearance of a local
normal (in the ideal case, alternating) component. We can no
longer assume that the parallel field acts only on the electron
spin, because the local normal component acts on the orbital
motion. This difficulty can be eliminated by a proper choice
of the orientation of the Hall bridge with respect to crystal-
lographic axes and the magnetic field orientation with respect
to the measuring current [86, 87].

3.2 Tendency of a flat band to appear at the Fermi level
The electron system in SiGe/Si/SiGe quantum wells was used
for measurements of two types [87]. First, the total spin-
polarization field was measured as a function of the electron
density. The corresponding results are shown in Fig. 23.

The observed behavior of the total spin-polarization field
is highly consistent (albeit up to a numerical coefficient) with
Monte Carlo simulations [49]. At high concentrations, the
dependence is well approximated by a straight line tending to
a finite concentration as B p ! 0. At a concentration
approximately equal to ns ' 7� 1010 cmÿ2, the dependence
exhibits a break and B p�ns� tends to the origin at lower
concentrations (the dashed line in the left inset in Fig. 23).

The right inset in Fig. 23 shows the dependence of
mbns=m

�
F on ns. We discuss the method for experimentally

measuring the electron mass at the Fermi level below, and
now note the linear dependence in the right inset extrapolat-
ing to a finite electron concentration, which coincides within
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the experimental accuracy with the result of the extrapolation
of the dependence Bp�ns�. As mentioned above, this depen-
dence is determined by the energy-averaged mass. Therefore,
at high concentrations, the energy-averaged electron mass
and the electron mass at the Fermi level are at least
proportional to each other, if not coincident. At the same
time, at concentrations ns < 7� 1010 cmÿ2, the behavior of
the masses is completely different: the electron mass at the
Fermi level continues to increase with decreasing the electron
concentration, whereas the energy-averaged mass saturates.

Such a behavior is more clearly demonstrated in Fig. 24,
where the dependences of gFm

� and gFm
�
F on the electron

concentration are compared. The first dependence was found
by using experimental points Bp�ns� and the relation

gFmBB
p � 2p�h2ns

m �gv
; �21�

where gv � 2 is the valley degeneracy. The dependence
gFm

�
F�ns� was obtained from Eqns (12). The dependence of

the resistance on the magnetic field was fitted as shown in the
inset in Fig. 24. The fitting parameters were m �F, TDm

�
F, and

gFm
�
F. The value of m �F was found in separate experiments

from the temperature dependence of quantum oscillations
with an accuracy of 10%. The fitting of experimental curves
turned out to be not very sensitive to the parameters m �F and
TDm

�
F but was rather sensitive to the product gFm

�
F.

A comparison of the behavior of gFm
�
F and gFm

� at
concentrations ns < 7� 1010 cmÿ2 clearly demonstrates the
difference: the electron mass at the Fermi level continues to
increase with decreasing concentration, whereas the energy-
averaged mass saturates. Such a behavior corresponds to the
appearance of a flat part of the single-particle spectrum at the
Fermi level (Fig. 25).

In the vicinity of the critical concentration ' 1:4�
1010 cmÿ2, the electron system is in the critical region where
the effective mass at the Fermi level is limited by the
temperature m �F < pFDp=4kT. The data presented in Fig. 24
give the estimate of the interval Dp: Dp=pF � 0:06.

We note that the appearance of the interaction-induced
flat part of the single-particle spectrum at the Fermi level was
predicted in theoretical papers (see, e.g., [88, 89]) based on
absolutely different ideas.

Both experiments presented above and the conclusion on
the different behaviors of the electron mass at the Fermi level
and the energy-averaged mass are quite unusual. To confirm
this behavior, independent experiments are required. Such an
experiment was discussed in [92].

4. Conclusions

By comparing the results obtained by different research
groups for different Si-MOSFET samples with the results of
measurements with SiGe/Si/SiGe quantum wells, we can
conclude that the effective electron mass m �F at the Fermi
level in the metal phase tends to diverge as the electron
concentration decreases. The results of measurements of the
effective mass at the Fermi level performed by various groups
with samples of the same type from different manufacturers
differ only due to different processing methods. Unfortu-
nately, the increase in m �F in the region available for
measurements is not as considerable as, for example, in 3He
films [90, 91], and the conclusion about the divergence of the
mass has to be made based on extrapolation.

In the metal phase, a small amount (depending on the
sample) of localized electrons weakly affecting transport
properties is observed.

In the insulator phase and in theMIT vicinity, the electron
system reveals properties typical of amorphous media with
strongly interacting particles. The study of the microscopic
structure of the insulator phase in Si-MOSFET has shown
that it consists of localized droplets (resembling quantum
dots) containing on average about four spin-polarized
electrons, and of localized electrons outside such droplets.

A simple listing demonstrates the considerable recent
progress in experiments that has been achieved due to the
development of experimental methods. Unfortunately, the
quality of Si-MOSFETs has not improved. On the other
hand, the study of electrons in SiGe/Si/SiGe quantum wells is
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far from comprehensive, and conclusions made based on the
available experimental data are only preliminary. Indepen-
dent additional experiments are described in [92]. Never-
theless, to reliably prove the possible independence of the
MIT from events at the Fermi level, further experiments are
required.
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