
Abstract. An overview is given of the current status of the theory
and observations of the acceleration of the expansion of the
observable part of the Universe.

Keywords: accelerating expansion of the Universe, dark en-
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1. Introduction

One of the most impressive discoveries made in astronomy in
the last two decades was that cosmological expansion is not
slowing down with time as would be natural to expect for
matter that moves in its own gravitational field. Quite the
opposite, the expansion rate is growing, and this process has
begun quite recently in cosmological history.

The Nobel Prize in physics was awarded in 2011 to three
astronomers (Saul Perlmutter, Brian P Schmidt, andAdamG
Riess) ``for the discovery of the accelerating expansion of the
Universe through observation of distant supernovae.'' This
discovery, though not unexpected, is of great importance.
Even though it has not closed the chapter on the discussion
about the nature of cosmological expansion in the modern
epoch, it has provided a very convincing argument in favor of
the expansion that occurs with acceleration. Distant super-
novae have proved to be dimmer than expected. More
precisely, the radiation flux detected from those stars proved
to be lower than expected for the measured redshift z � 1 and
under the assumption that the luminosity of those supernovae
at z � 1 is the same as at z � 0, i.e., that they are standard
candles.

This observation implies that the supernovae are located
farther than was assumed and hence the Universe is
expanding faster than predicted by the Standard Cosmologi-
cal Model. Strictly speaking, neither acceleration nor expan-
sion have been measured directly in the sense that the
available accuracy is not sufficient to detect that distances
between galaxies change with the observer's time t. Actually,
the distances are measured as a function of the galactic'
redshifts, and the dependences obtained turned out to differ
from those predicted by the Standard Cosmological Model.
Possible pitfalls in interpreting these results and observation
errors are discussed below.

It is of great importance that the accelerated expansion of
the Universe is favored not only by the measured data on
radiation fluxes and distances to supernovae but also by a
number of other entirely independent astronomical observa-
tions. As we discuss below, the set of these observations
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includes data on the age of the Universe, analyses of its large-
scale structure, and measured fluctuations of the cosmic
microwave background (CMB) and baryon acoustic oscilla-
tions (BAOs). Based on this, we can confidently conclude that
the accelerated expansion of theUniverse is a well-established
phenomenon.

To fully assess to what extent this discovery is unusual, we
adhere to a simple, even if not quite accurate similarity
between the cosmological expansion and the motion of a
stone thrown vertically upward in Earth's gravitational field.
If the initial kinetic energy of the stone is smaller than its
potential energy, i.e., Ekin < U, then, having attained a
certain height, the stone halts for a moment and falls back.
Otherwise, ifEkin > U, it does not halt and escapes to infinity.
In the intermediate, very special case where Ekin � U, the
stone also flies infinitely far, but its speed vanishes at infinite
distance. The stone's velocity decreases as it moves upward in
each of these cases.

It had been assumed until recently that the cosmological
expansion occurs in a way that is fully similar to the
examples described above. The Universe's expansion can
be regarded as the inertial motion triggered by an initial
kick caused by gravitational repulsion (antigravitation) in
the inflation epoch, which we discuss below. If the initial
kick was not very strong, the Universe will cease to expand
at some moment and will collapse back to a hot and dense
singularity. If the kick was strong enough, the expansion
will continue eternally, and the hazard of a hot `bath' does
not occur. It was assumed, similarly to the example with the
stone, that the cosmological expansion rate decreases with
time.

Recent discoveries have shown that this is not fully true.
The normal expansion of the Universe with a decreasing rate
changed at some time, quite recently on the cosmological
scale, to accelerated motion. If we recall the analogy with the
stone, the picture is as follows: the stone was initially flying in
a usual way, gradually losing velocity; however, later, it
started accelerating as if a rocket engine was activated or,
using terms closer to the cosmological situation, Earth's
gravitational field at large distances became antigravita-
tional, resulting in repulsion instead of attraction.

The discovered accelerated expansion of the Universe can
be very briefly described as follows: normal gravitational
attraction that slows down the expansion turns into gravita-
tional repulsion at a relatively late stage of cosmological
evolution, and the expansion rate starts increasing with time.
We note from the very beginning that such antigravitation is
only possible in a relativistic theory of gravity, for example,
Einstein's general relativity (GR) theory, as discussed in
Section 2. Newton's theory only allows gravitational attrac-
tion. It is worth noting that the initial kick that resulted in the
creation of our astronomically large Universe from a
microscopically small and confined state and in the currently
observed expansion of the Universe `by inertia' was also a
consequence of cosmic antigravitation. This stage is referred
to as cosmological inflation, and the expansion during this
stage also occurred with acceleration. We can assert that the
large Universe, suitable for life, turned to be possible only in
theGR framework. Later, the initial `inflationary' antigravity
either vanished or became negligibly small during almost all
of the cosmological history. The reason antigravity started
playing a noticeable role in cosmology again at the current
stage remains unclear: moreover, at first glance, it is not
needed at all.

To avoid misunderstanding, we note that antigravity is
only possible in the GR for boundless systems. Any finite
object with a positive energy density (and we can only
consider such objects so as not to encounter problems of an
unstable world) always creates only normal gravitational
attraction. However, two such objects placed inside an
environment with negative pressure no longer experience
`normal' attraction at rather long distances between them
but are instead accelerated in opposite directions. It can be
shown that gravitational attraction in the case of two galaxies
with masses of the order of that of the Milky Way is
compensated by gravitational repulsion of vacuum energy at
distances of about two megaparsecs (see below).

It was believed quite recently that the ultimate fate of the
Universe and the geometry of its 3D space are linked in a
unique way. A closed universe that has the geometry of a 3D
sphere cannot expand eternally. The expansion will halt at
some moment in the distant future and turn into collapse, as
in the example with the stone thrown with a small initial
velocity. Expansion of an open universe with the geometry of
a 3D hyperboloid will never stop. The expansion in the
intermediate case of a flat 3D space will also continue
eternally. The halt will only occur asymptotically at t!1.

The last case is of special interest because observations
show that the geometry of the Universe is very close to flat.

The most probable outcome in the case of accelerated
expansion is eternal expansion for any geometry of the world.
We note that this result is absolutely opposite to the
conclusions made in the inflationary theory, according to
which the most probable ultimate fate of the Universe in the
case of unaccelerated expansion (as was believed earlier) at
the current and later stages is to collapse back to a singularity.
Thus the accelerated expansion of the Universe may save the
world from this grim fate. Isn't it here that the need for it lies?

The statement that our Universe will end its life as a result
of sufficiently long-term inflation in a hot singularity requires
some comments. Inflation causes density perturbations,
including those on the cosmological horizon scale. These
perturbations are of stochastic nature, and the sign of a
density fluctuation dr can be both positive and negative. It
is therefore natural to expect that at some time on a horizon
scale dr will turn out to be positive, and this lump of the
Universe will then detach from the general cosmological
expansion and collapse. The external observer will see it as
our collapse into a black hole. However, as was noted above,
given the accelerated expansion, this would not be our fate, if
the density of dark energy that possibly causes the expansion
decreases more slowly than the scale factor squared [see the
discussion after Eqn (2.16) below].

The source that causes accelerated expansion is not
known. Two options are primarily discussed. The first is so-
called dark energy, i.e., a substance that has a negative
pressure whose absolute value is larger than one third of its
energy density, jPj > r=3 (see Section 2). A form of that dark
energy could be vacuum energy or, equivalently, the cosmo-
logical constant for which P � ÿr. The other option for dark
energy is a quasi-constant scalar fieldf similar to the one that
probably generated inflation. In that case, the difference
between exponential expansion at the dawn of the world and
in modern days only amounts to the difference, albeit giant,
between the energy and time scales.

The vacuum energy density does not change in the process
of expansion [see Eqn (2.7) below]. If the dark energy is the
vacuum energy, accelerated expansion will continue eternally
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for any 3D geometry of the world, as we have already noted .
But if the dark energy is the energy of a very light scalar field
or a field with an almost flat potential, then in the very distant
future when the Hubble parameter becomes comparable to
the mass or slope of the potential of that field, the expansion
rate will again start slowing down, and the field f itself will
vanish due to redshift and/or the production of massless
particles. Eventually, the Universe's fate will again depend on
its geometry, as was the case in good old Friedmannian
cosmology.

The accelerated expansion can also be a consequence of
some modifications of gravity at small curvatures. Instead of
the standard GR whose Lagrangian is proportional to the
curvature scalar R, theories have been considered with an
additional term nonlinear in curvature, R� f �R�. In princi-
ple, additional terms that depend on the Ricci or Riemann
tensor squared or more sophisticated invariants can be
considered; however, no detailed analysis of these options
has been done. Due to the nonlinear dependence of the action
on curvature, gravitational field equations, generally speak-
ing, are of a higher order than the usual second order. As a
result, problems can occur that are related to ghosts,
tachyons, and the stability of the theory. Thus, some
constraints on the form of the f �R� function can be imposed.

The choice between these two options (dark energy vs.
modified gravity) is one of the central problems in the
phenomenological description of the accelerated expansion
of the Universe. The inflation mechanism also involves a
similar problem because inflation can be caused, in addition
to a scalar field (inflaton), byR 2 corrections to theGR action.
There is, however, a significant difference from the accelera-
tion mechanism at the late cosmological state, i.e., at current
times or somewhat earlier. The R 2 inflation needs gravity to
be modified at large curvatures, an effect that occurs rather
naturally due to radiative corrections, while the phenomen-
ological description of today's accelerated expansion requires
modification of gravity at very small curvatures, the mod-
ifications being introduced ad hoc without any theoretical
justification whatsoever.

There is also a much more basic theoretical problem that
is closely related to the accelerated expansion, and this is the
problem of vacuum energy: theory, and in some sense also
experiment, show that the vacuum is not empty but features a
colossal energy density that exceeds the observed bound or
possibly themeasured value by 50 to 100 orders ofmagnitude.
Some mechanism is therefore needed to compensate these
giant contributions. No mechanism has been found as yet,
despite numerous attempts. The problem of vacuum energy
compensation seems to be one of the most challenging ones in
modern fundamental physics.

This review is organized as follows. In Section 2, we
present (and in Section 9.1, deduce both at a simple and
naive level and rather accurately) the main cosmological
equations and the Friedmann equations, introduce the
concept of the cosmological constant (vacuum energy), and
explain how cosmic antigravity may emerge. The main
cosmological parameters are also defined in this section.
Section 3 contains a description of vacuum energy and
possible approaches to its solution. In Section 4, we discuss
the astronomical data that are indicative of the accelerated
expansion of theUniverse. An analysis of data on supernovae
and baryon acoustic oscillations is presented in special
Section 5 due to the great importance of that analysis and
interesting prospects for future research. A phenomenologi-

cal description of the accelerated expansion of the Universe
owing to dark energy or modified gravity is contained in
Sections 6 and 7. In Section 9.1, we present two versions of
a simplified derivation of the Friedmann equations (one
using the Newtonian limit and the other based on the
variational principle); Section 9.2 contains the main cosmo-
logical parameters and a discussion of the approaches to
measuring them. Section 9.3 is devoted to the scalar field in
cosmology.

2. Friedmann equations
and cosmological acceleration

Underlying modern cosmology are the Einstein equations
[1, 2], which relate the space±time curvature to the matter
energy±momentum tensor Tmn:

Rmn ÿ 1

2
gmnR � 8p

m 2
Pl

Tmn : �2:1�

Here, gmn is the metric tensor that determines the 4D space-
time interval as

ds 2 � gmn dx
m dx n ; �2:2�

and Rmn and R � g mnRmn are the Ricci tensor and scalar
curvature. They can be expressed in the known way in terms
of the metric tensor and its first and second derivatives, as
described in any textbook on GR or Riemannian geometry.
The value mPl�1:2�1019 GeV is referred to as the Planck
mass. Here and below, we use the natural system of units
where c�k�h=�2p��1. The Newton gravitational constant
is GN � 1=m 2

Pl in these units.
Friedmann was the first to apply the Einstein equations to

the cosmology of the real Universe [3], although Einstein
himself attempted to develop a static model of the Universe
(and introduced the lambda term for this), and de Sitter was
developing a model of a vacuum universe. Friedmann
assumed that the Universe is uniform and isotropic (at least
at large scales) and therefore space is supposed to have a
constant 3D curvature with the interval

ds 2 � dt 2 ÿ a 2
�
dw 2 � sin2 w 2�dy 2 � sin2 y dj 2�� : �2:3�

A somewhat different form can be obtained by setting
sin w � r; then dw 2 � dr 2=�1ÿ r 2�, and the interval can be
represented as (with k � 1)

ds 2 � dt 2 ÿ a 2�t�
�

dr 2

1ÿ kr 2
� r 2�dy 2 � sin2 y dj 2�

�
: �2:4�

The quantity a�t�, which is referred to as the scale factor,
determines the distance between two events in the 3D space.
This form of the Friedmann metric is taken from [3] and
another metric of this from [4] in the representation by
Robertson and Walker [5, 6]. Consequently, the metric of
the uniform and isotropic universe was named the Fried-
mann±Robertson±Walker (FRW) metric.

If k � �1, the 3D space can be considered a 3D spherical
surface embedded into a flat 4D space. This case is referred to
as the closedUniverse. In all other cases, theUniverse is open.
If k � ÿ1, the 3D space is a hyperboloid, while if k � 0, our
space is flat in three dimensions and is described by standard
Euclidian geometry (studied in high school).
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Substituting themetric tensor that corresponds to interval
(2.4) in Eqns (2.1), we obtain the equation that drives the
evolution of the scale factor from the `creation' of the world
until today, as far as the Universe can be considered uniform
and isotropic:�

_a

a

�2

� 8p
3

r
m 2

Pl

ÿ k

a 2
; �2:5�

where r is the matter energy density, i.e., the Ttt (or T00)
component of the energy±momentum tensor. We note that in
accordance with the assumption that the Universe is uniform
and isotropic, it is assumed that the energy±momentum
tensor has a diagonal form with spatial components propor-
tional to the pressure density, T j

i � ÿd j
i P.

The second Friedmann equation expresses acceleration in
the process of expansion in terms of energy and pressure
density of matter:

�a

a
� ÿ 4p

3m 2
Pl

�r� 3P� : �2:6�

We note that if P < ÿr=3, the acceleration is positive, i.e.,
gravity becomes repulsive (antigravity). As was noted in the
Introduction, this was the reason for the initial kick that
resulted in the expansion of the Universe, and, most
probably, it is also the reason for the accelerated expansion
of the Universe that is currently observed.

We quote another equation that describes evolution of the
energy density in Friedmann cosmology:

_r � ÿ3H�r� P� : �2:7�

This equation is a covariant conservation law for the energy±
momentum tensor,

DmT
n
m � 0 ; �2:8�

whereDm is the covariant derivative in the gravitational field.
Equation (2.7) follows from two Friedmann equations (2.5)
and (2.6) but is presented separately due to its importance.

Section 9.1 contains an elementary (albeit somewhat
cheating) derivation of these equations virtually without
using GR, allowing one to better feel their physical content.
It also contains a more accurate but nonstandard derivation
based on the variational principle used in GR.

Two independent equations of the three presented above,
(2.5), (2.6), and (2.7), contain three unknown functions: a�t�,
r�t�, and P�t�. To close the set of equations, one more
equation is needed. The equation of state is typically used
for this; it describes pressure density as a function of the
energy density, P � P�r�. A linear relation holds in many
cases that are of practical interest:

P � wr ; �2:9�

where w is usually some constant parameter. This assumption
is not mandatory however, and versions of the theory with
w � w�t� are discussed not infrequently. This assumption is
natural for a phenomenological description and analysis of
observational data at various redshift values (i.e., at different
moments of cosmological evolution). The dependence w�t�
also emerges in a natural way, for example, when gravitating
matter is a dynamic field. The function w�t� is then
determined by the equations of motion of that field (see
Section 6 below). We note that the relation P � P�r� is,

strictly speaking, not always true. Pressure can depend on the
energy density via its time derivative or the integral over time
or can depend on other thermodynamic variables (tempera-
ture, specific entropy, etc.). However, relation (2.9) obviously
always holds: w�t� � P�t�=r�t�.

In simpler cases that are nevertheless of practical interest,
w � const. For example, for nonrelativistic matter, P5 r,
and it is therefore assumed that w � 0. It is known that for
relativistic matter, w � 1=3. The form of the cosmological
expansion law is especially simple if k � 0 [see Eqn (2.5)] when
the 3D space is a flat, Euclidian one. Observations show that
this is the case with good accuracy, and it is realized in our
world. The scale factor increases in the nonrelativistic case in
accordance with the law

aNR�t� � t 2=3 : �2:10�

The expansion law in the relativistic case has the form

arel�t� � t 1=2 : �2:11�

Friedmann found solutions of Eqns (2.5)±(2.7) for various
expansion laws and predicted the expansion of the universe,
which was later discovered in astronomical observations.
This discovery is usually credited to Hubble [7], although it
was made earlier by LemaõÃ tre [8] (see also [9]). It is therefore
relevant to refer to the expansion law of the universe as the
Friedmann±LemaõÃ tre±Hubble law.

Einstein was for some reason against a nonstationary
universe and did not agree for a long time (until Hubble's
results) with Friedmann's solutions. In an attempt to apply
GR to cosmology, Einstein found that there are no stationary
solutions, and to `save' the stationary universe, he proposed
introducing an additional term into Eqns (2.1) (see below),
the so-called lambda term or, equivalently, the cosmological
constant [10]:

Rmn ÿ 1

2
gmnRÿ Lgmn � 8p

m 2
Pl

Tmn : �2:12�

The added termdoes not violate covariant conservation of the
left-hand and right-hand sides of this equation. The Einstein
tensor is automatically conserved in the metric theory:

Dm

�
R m

n ÿ
1

2
g m
n R

�
� 0 : �2:13�

This is the so-called contracted Bianchi identity, which
automatically holds in Riemannian geometry. The vanishing
of the Einstein tensor derivative resembles the automatic
vanishing of the derivative of the left-hand side of Maxwell's
equations, qmqnF mn � 0. The right-hand side of Eqn (2.12) is
covariantly conserved [see (2.8)] due to general covariance,
i.e., invariance of the theory with respect to the choice of the
reference frame. The covariant derivative of the metric tensor
is zero by construction of the theory. This can be easily
verified by expressing the covariant derivative of the metric
in terms of the Christoffel symbols G:

gik;m � qmgik ÿ G j
imgjk ÿ G j

kmgi j � qmgik ÿ Gkim ÿ Gikm

� qmgik ÿ 1

2

�
qmgik � qigmkeeeee ÿqkgim

�
ÿ 1

2

�
qmgki � qkgmi ÿ qigkmeeeee

�
� 0 : �2:14�
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Here, the terms underlined in the same way cancel each
other if the symmetry gik � gki is taken into account.
Therefore, the covariant conservation of all components in
Eqn (2.12) is not violated if L � const. It is for this reason
that this quantity is referred to as the cosmological
constant.

Einstein's idea was that the antigravity created by the
lambda term could compensate the gravitational attraction
of ordinary matter and thus ensure the stationarity of the
Universe. Such a stationary solution indeed exists, but it is
unstable and, most importantly, it disagrees with the
expansion of the Universe discovered later. It is for this
reason that Einstein later rejected the hypothesis regarding
the existence of the lambda term, considering it the biggest
blunder of his life (as quoted by G Gamow in his book My
World Line).

It later became clear that the cosmological constant is
equivalent to the vacuum energy with the energy±momentum
tensor

T vac
mn � gmnr vac �2:15�

and the equation of state P � ÿr (see, e.g., the references in
[11]). If the vacuum energy dominates, the Universe must
expand in an accelerated way with an exponentially growing
scale factor:

a vac�t� � exp �Hvact� ; �2:16�

where H 2
vac � 8prvac=3m2

Pl � const.
We also note that according to Eqn (2.7) the energy

density of relativistic matter decreases as 1=a 4, and that of
nonrelativistic matter, as 1=a 3. The cosmological energy
density in the epoch when either of them dominates decreases
as 1=t 2. On the other hand, the vacuum energy density does
not change in the process of either expansion or contraction,
i.e., rvac � const.

This behavior of the cosmological energy density
explains the link between the geometry of space and the
ultimate fate of the Universe. This fate can be determined in
the simplest way in the absence of vacuum or dark energy.
As follows from Eqn (2.5), if k > 0, i.e., in a closed universe,
the term proportional to curvature, k=a 2, eventually
becomes larger than the term proportional to the matter
energy density, which decreases not slower than 1=a 3.
Hence, H vanishes, and expansion is replaced by contrac-
tion.

Cosmological solutions in the theory with the lambda
term have been explored by Friedmann [3, 4] and in studies
[12±15]. The authors of the latter research believed, in
contrast to Einstein, that adding the cosmological constant
as in Eqns (2.12) was a very important generalization of
GR. On the other hand, the attitude of many renowned
physicists to the cosmological constant was very negative. In
particular, Gamow wrote in the mid-1960s in his autobio-
graphy My World Line regarding the astronomical data in
favor of a nonzero cosmological constant: ``Lambda rears
its ugly head again and again and again.'' However,
afterwards, this evidence disappeared, only to re-emerge
later (see Section 4.1).

However, as we see in Section 3, quantum field theory not
only requires the cosmological constant (or, equivalently,
vacuum energy) to be nonzero but also predicts that it has a
gigantic value.

3. Vacuum energy problem

The vacuum energy problem seems to be themost challenging
one in modern fundamental physics. Theoretical estimates of
various contributions to the vacuum energy yield a fantasti-
cally huge value. It would not be an exaggeration to say that
the theory predicts rvac � 1. The disagreement between the
theoretical values and astronomical data is of the order of
1050ÿ10100. Dispersion of those values corresponds to
various physical sources of the vacuum energy. The huge
value of the theoretical contribution and the vanishingly
small total result lead one to recall Feynman's statement
regarding radiative corrections in quantum electrodynamics:
``The corrections are infinite but small!''

The vacuum in quantum field theory is the lowest-energy
state, and, generally speaking, its energy is not necessarily
zero. It is worth recalling the well-known example of the
quantum oscillator, for which the ground-state energy iso=2,
where o is the oscillator frequency.

If the vacuum energy is not zero, the energy±momentum
tensor that corresponds to that energy and momentum must
be proportional to the metric tensor [see Eqn (2.15)], because
this tensor is the only symmetric `invariant' second-order
tensor, i.e., a tensor that does not change in passing from one
reference frame to another, as would be natural to expect for
the one vacuum.

A quantum field is an infinite set of oscillators with all
possible frequencies. The energy density of vacuum quantum
fluctuations for any bosonic field consequently turns out to be
infinitely large (see Section 9.3):

rvacb � hHbivac �
�

d3k

�2p�3
ok

2
ha ykak � bkb

y
kivac

�
�

d3k

2 �2p�3 ok � 14 : �3:1�

Here, hHbivac is the vacuum expectation value of the
Hamiltonian of the bosonic field, ok � �k 2 �m 2�1=2 is the
energy of the quantumwithmomentum k andmassm, and ak,
a
y
k , and bk, b

y
k are the operators of annihilation and creation of

particles and antiparticles.
The calculated pressure of vacuum quantum fluctuations

also turns out to be infinite. If we use Eqns (9.28) from
Section 9.3 and formally cut off the integrals for r andP at the
same upper limit, the vacuum averages calculated in this way
fail to satisfy the condition rvac � ÿP vac. This observation
was used in [16] to reach the conclusion that vacuum
fluctuations violate the Lorentz invariance of the vacuum,
and because the vacuum must be Lorentz invariant, we have
to require that the most diverging terms that can violate the
Lorentz invariance vanish. However, diverging integrals
should be handled with care, and, in particular, a compar-
ison of formally equal expressions for different quantities
does not actually imply that they are indeed equal; below, we
give an example where bosonic and fermionic contributions
mutually cancel in a supersymmetric world where the
obtained finite result (up to logarithmic divergence) satisfies
the required Lorentz-invariance condition rvac � ÿP vac.

Life in a world with an infinite energy density is
apparently impossible. Such a world would either expand
with an `infinitely' large rate if the energy density is positive or
instantaneously collapse into a singularity if it is negative.
Fortunately, because commutators are replaced with antic-
ommutators in the quantization procedure, the contribution
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of fermionic fields has the same value but the opposite sign:

r �f�vac � hHfivac �
�

d3k

�2p�3
ok

2
ha ykak ÿ bkb

y
kivac

� ÿ
�

d3k

�2p�3 ok � ÿ14 : �3:2�

Hence, if each boson had a fermionic partner with exactly the
samemass, the vacuum energy of quantum fluctuation would
vanish. This was first observed by Pauli [17] and indepen-
dently by Zel'dovich [18] (see also [19], where Pauli's work is
discussed in depth). Interestingly, the idea of cancelation of
the vacuum energies of bosons and fermions emerged prior to
the appearance of work that introduced supersymmetry [20±
22], where the cancelation occurs in a natural way. However,
supersymmetry, even if it exists, is not an exact symmetry, and
the masses of bosons and fermions are significantly different.
Fourth-power divergences should nevertheless cancel irre-
spective of the masses. Quadratic divergences also cancel in
the case of so-called soft supersymmetry violation, but the
final result proportional to the differences between masses of
ordinary particles and their superpartners turns out to be
colossal at cosmological scales:

r vac
SUSY � m 4

SUSY > 1055rc ; �3:3�

where rc � 4� 10ÿ47 GeV4 is the cosmological energy
density in the present-day Universe (see Section 9.2) and
mSUSY is the supersymmetry violation mass scale, which
should be larger than 100 GeV as follows from available
experimental constraints. The absence of signals from super-
symmetric particles at the Large Hadron Collider (LHC) at
CERN seems to indicate that either mSUSY must be signifi-
cantly larger or supersymmetry does not exist at all.

We note that the total contribution of bosons and
fermions whose masses are tuned such that the contributions
diverging quartically and quadratically cancel yields a
logarithmically diverging result that satisfies the condition
r � ÿP, and therefore the Lorentz invariance is not violated,
as noted above. It is clear that if the mass difference tends to
infinity, the result diverges as a second or even fourth power
of mass.

If exact supersymmetry yields zero vacuum energy, this is
not necessarily true for broken supersymmetry. Moreover,
the so-called global supersymmetry in its softly violated
version, which does not destroy the renormalizability of the
theory, requires a nonzero vacuum energy close to the value
m4

SUSY presented above. However, if the theory is extended to
include gravity, i.e., a supergravity (SUGRA) theory is
considered, mandatory nonzero vacuum energy is no longer
required, and very fine tuning of parameters can be used to
obtain r vac

SUGRA�0. However, the natural value of the vacuum
energy in that theory is rvac � m4

Pl, and hence the accuracy of
the tuning required to cancel the vacuum energy must be of
the order of 10ÿ123, a value that looks quite unnatural.

It is of interest to note that the vacuum energy experiences
colossal jumps in phase transitions from a symmetric phase to
a phase with broken symmetry: underlying the modern
elementary-particle theory is the concept of spontaneously
broken (gauge) symmetry. As the universe cools, the vacuum
state changes in that theory. The energy density jump is
drvac � 1060 GeV4 for the phase transition in the grand
unification theory (GUT), drvac � 108 GeV4 in the electro-
weak theory, and drvac � 10ÿ2 GeV4 in quantum chromody-

namics (QCD) in going from the confinement to the
deconfinement phase.

The vacuum energy problem becomes especially challen-
ging if the structure of the QCD vacuum is considered. A
proton is known to consist of three light quarks: p � uud, the
mass of each being about 5 MeV. One might expect that the
proton mass is quite small,mp � �15 MeVÿ EB� < 15 MeV,
where EB is the binding energy of the quarks in the proton.
But the obtained result is at bast 60 times smaller than the
proton mass. The missing contribution to the mass comes
from the nontrivial properties of the QCD vacuum. Despite
intuitive expectations, this vacuum is not empty but filled
with a condensate of quark [23] and gluon [24] fields:

h�qqi 6� 0 ; hGmnG
mni 6� 0 : �3:4�

The energy density of these condensates is negative and is
about 1 GeV4. This value, which is reasonable at elementary-
particle physics scales, is huge for the cosmological standards
of the present-day Universe:

rvacQCD � ÿ1045rc : �3:5�
Quarks destroy the gluon condensate inside the proton, thus
increasing the proton mass to the required value:

mp � 2mu �md ÿ rvacl 3p � 1 GeV ; �3:6�

where lp is the proton size.
An almost mystical situation occurs. According to a

theory that is perfectly established and agrees with experi-
ment, the vacuum is not empty. It contains quark and gluon
fields, whose energy density is 45 orders of magnitude larger
than the cosmological value. Nevertheless, the total vacuum
energy density is equal to the cosmological value. Something
else `resides' in the vacuum, and this `something', possibly a
new field, compensates the 45 orders of magnitude of rvacQCD.
We note that the new field must be light; otherwise, it would
not be able to be effective at cosmological scales.Moreover, it
`does not talk to' quarks or gluons. Otherwise, this field
would interact with them, and this interaction would be
experimentally detectable. The vacuum energy is apparently
described by a single parameter, and all the described
contributions are to be compensated using a single subtrac-
tion constant, but such a solution seems very unnatural.

The problem is aggravated by the fact that the vacuum (or
vacuum-like) energy is not exactly zero, and for an unknown
reason its value is close to the density of ordinary matter
(including dark matter), although the cosmological evolution
laws are quite different for rvac and rm. As was noted above,
rvac remains unchanged as the universe expands, while rm
decreases as the scale factor a cubed in the case of
nonrelativistic matter, and as 1=a 4 in the case of relativistic
matter. A number of attempts have been made to solve this
problem or rather these problems, but none was particularly
successful. We provide a brief description of those attempts
below. More detailed reviews of these problems can be found
in [25±38].

The first and simplest, but terribly inelegant, solution that
was mentioned several lines above is that all those contribu-
tions to vacuum energy are compensated by some subtraction
constant, whose value (selected with an extreme accuracy)
equals the total of physical contributions to the vacuum
energy with an accuracy of 10ÿ45 ± 10ÿ127. This is essentially
the choice of zero on the energy scale. Because the value of
only one parameter must be explained, the feasibility of that
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specific inelegant solution cannot be ruled out, although it
seems quite unnatural. It is also desirable that all contribu-
tions to the vacuum energy originate from physical fields
rather than from an arbitrarily chosen number.

Somewhat better seems to be the proposal to solve the
vacuum energy problem based on the anthropic principle.
Underlying this principle is the hypothesis that values of
certain fundamental constants are set by the observer located
in the Universe where conditions suitable for that observer's
existence are available. A list of earlier studies of the
anthropic principle, apparently incomplete, is contained in
[39±42]; a more detailed discussion can be found, e.g., in
books [43±46].

For the anthropic principle to be naturally realized, it is
necessary that there be a nearly infinite (or infinite) number of
universes with various values of fundamental constants and,
in particular, with different bare values of the vacuum energy
(i.e., with various subtraction constants). Cosmologically
large universes with various physical properties emerge quite
naturally in the inflationary models [47]. Chaotic inflation
seems to be the best candidate in this sense [48]. The idea that
the large number of universes solves the vacuum energy
problem seems to have been first proposed in [49].

Strong support for the idea of a multiplicity of universes
was lent in the context of superstring theory. These theories
are formulated in a 10-dimensional space; it is assumed,
however, that the six extra dimensions are compact and
small. A realistic mechanism for compactifying the extra
dimensions that is compatible with inflation has been
proposed in [50]. It was quickly understood that there are a
huge number of ways to compactify that 6-dimensional space.
Estimates made in [51] show that the number of possible
compactification types is about 10500 or, maybe, significantly
more. Similar ideas regarding a large number of various
universes have been developed in [52].

Relatively few (if any) universes among those multiple
universes can be suitable for life. The absolute value of
vacuum energy, whether positive or negative, in a universes
suitable for life cannot be too large. If rvac is large and
negative, the universe would collapse prior to the formation
of stars and planets, while if it is large and positive, expansion
would be so fast that no celestial bodies would have enough
time to form, because matter density would very rapidly
become negligibly small. These arguments were presented in
a quantitative form in [53±55]. It was shown that if rvac > 0,
the vacuum energy density cannot differ from the cosmologi-
cal density of ordinary matter by more than 2 to 3 orders of
magnitude. The anthropic principle was used in [56] to derive
constraints on various cosmological parameters, including
vacuum energy.

The problem of the anthropic constraint on vacuum
energy was explored in detail in [57]. The author of [57]
makes a significantly stronger statement that the anthropic
principle predicts a nonzero vacuum energy, and its value is
close to the observed one. The anthropic constraint on the
(positive) vacuum energy can be derived from the require-
ment that the vacuum energy could only start dominating
after the galaxy formation epoch. The energy density of
ordinary matter decreases in the process of cosmological
expansion as the scale factor cubed, while rvac remains
constant; therefore, the following condition must be satisfied:

rvac < �1� zmax�3r0m ; �3:7�

where r0m is the matter density in the present-day Universe
and zmax is the maximum redshift at which the formation of
galaxies commences.

According to [57], if zmax � 10, the anthropic constraint
on the vacuum energy density is rvac < 4000r0m. This con-
straint was improved in [54] (see also [58]): rvac < 100r0m,
where it was noted for the first time that not all values of L
are compatible with the presence of sentient life in the
Universe.

The anthropic approach was applied in [59] to three time
scales (galaxy formation time, moment when the cosmologi-
cal constant dominates in the energy density of the Universe,
and the age of the Universe) to reach the conclusion that the
vacuum energy density is close to the observed one.

A similar conclusion regarding the smallness of vacuum
energy was made in [60]; however, according to the authors,
the zero vacuum energy is much more probable than the
observed dark energy value.

A detailed analysis of the anthropic approach to the
probability of a specific vacuum energy value was performed
in [61, 62]. Although the authors agree that the anthropic
considerations favor the largest probability of a small vacuum
energy, their results slightly differ from each other. Given the
uncertainty of estimates, we can conclude that they agree well
with each other.

A negative vacuum energy density results in gravitational
attraction, and to prevent early contraction of the universe
prior to its reaching its current age, the condition jrvacj < r0m
should be satisfied.

Despite obvious successes in understanding options for a
natural realization of the anthropic principle, the theory that
does enable calculating main parameters in a dynamical way
looks unsatisfactory. In this relation, we recall the Friedmann
cosmology problems whose solution would have required the
anthropic principle if a nice and economic inflationary
solution had not been found, which made a clear-cut
prediction regarding the density perturbation spectrum.
Criticism of the anthropic principle can be found in [63].
However, any approach can exist in physics as far as and to
the extent that it does not disagree with experiment and well-
established theories in their applicability areas.

It was hoped some time ago that there is a symmetry that
would require a zero lambda term, as occurs in unbroken
supersymmetry. These hopes seem to be futile. The required
symmetry must be realized at rather low energies, below
100 MeV, otherwise it would be impossible to compensate
the vacuum energy in QCD, Eqn (3.5), but physics at those
energies has been well explored and any appropriate
symmetry is definitely nonexistent there. Moreover, to
obtain the observed vacuum (or vacuum-like) energy at a
level of �10ÿ12 GeV�4, we have to pass to an energy range that
is significantly lower than 100 MeV.

In the opinion of at least one of the authors of this review,
of most interest is the mechanism of dynamic compensation
of vacuum energy proposed in 1982 in [64]. It is assumed that
there is a new light or massless field f coupled to gravity in
such a way that if there is a vacuum energy, the condensate of
that field emerges that compensates the initial vacuum
energy. This mechanism resembles the well-known solution
of the CP-violation problem by means of introducing an
axion field. The very idea of the system responding to an
external effect so as to reduce that effect is quite general. This
mechanism, known in chemistry since the 19th century, is
referred to as Le Chatelier's principle.
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The original idea in [64] and a variety of subsequent
proposals (see the discussion in reviews [25±38]) were based
on introducing a scalar field; however, higher-spin fields, for
example, vector [65] or tensor [66], cannot be ruled out either.
Regardless of their specific realization, these predictions
feature some general and rather attractive properties. First,
owing to the contribution of the energy±momentum of f to
cosmological dynamics, the initial exponential expansion is
replaced by a power-law expansion. Second, the field f
compensates the vacuum energy incompletely and only with
an accuracy of the order of rc�t�. Third, the `uncompensated'
vacuum energy can have an unusual equation of state that
results, in particular, in accelerated expansion. Thus, such a
mechanism not only provides a solution of the problem of
vacuum energy compensation from a large value typical of
elementary-particle physics to cosmologically small values
but also enables resolving the so-called coincidence problem,
i.e., explaining why the uncompensated dark energy rDE is
close to the total time-dependent energy density in the
Universe rc�t�, in full correspondence with what is observed
in the skies. The existence of cosmological dark energy was
predicted in this sense in 1982 [64], long before it was observed
astronomically. Unfortunately, numerous attempts to find a
realistic cosmological model that would include that mechan-
ism have thus far failed.

Bronstein seems to have been the first to hypothesize that
vacuum energy can be time dependent, and its value can be
close to the cosmological energy density [67]. However, the
models where L � L�t�, if taken literally, are far from being
innocuous because covariant conservation of the left-hand
side of the Einstein equation is known to imply the condition
L � const [see a discussion of the problem immediately after
Eqn (2.12)]. To compensate vacuum energy nonconservation,
nonconservation of the matter energy±momentum tensor Tmn

is added, which has the same value but opposite sign.
However, the theory then loses its predictive power because
such models only determine the covariant divergence

DmT
m
n � ÿ

m 2
Pl

8p
qnL ; �3:8�

but are not able to say anything about the value of Tmn. It is
for this reason that Landau strongly criticized Bronstein's
approach.

It should be kept in mind that the energy±momentum
tensor is calculated in GR as a functional derivative of the
matter action with respect to the metric, and is therefore
automatically conserved due to the principle of general
covariance. Rejecting that principle would lead, in general,
to a nonzero graviton mass, contradicting the observations.
(See study [68], where modified theories of gravity are
analyzed on the scale of stars and galaxies, including
possible violation of the Vainshtein mechanism [69], which
could be helpful in avoiding problems with a nonzero
graviton mass.) An alternative option is to drastically
modify the theory of gravity, for example by introducing
nonmetric theories.

All of these problems can be avoided if a new light or
massless field is introduced in the theory whose approximate
equation of state is P � ÿr, which corresponds to a quasi-
constant vacuum-like energy density.

The first model of the dynamic cancelation of vacuum
energy proposed in [64] was based on a massless scalar field
that is nonminimally coupled to gravity and satisfies the

equation of motion

�f� 3H _f�U 0�f;R� � 0 : �3:9�

The simplest form of the potential U�f;R� was chosen,
U � xRf 2=2. It readily follows that if xR < 0, this equation
in the de Sitter space has unstable solutions that exponentially
grow with time because, for a curvature R, the effective mass
squared of thef field is negative. A similar situation occurs in
theHiggsmodel, where long-wavelength states withf � 0 are
unstable.

Asf grows, its effect on cosmological evolution cannot be
disregarded, and it is easy to verify that the expansion that
was initially exponential, a�t� � exp �Hvt�, is asymptotically
replaced with a power-law dependence:

f � t ; a�t� � t b ; �3:10�

where b is some constant expressed in terms of the model
parameters. Thus, due to the inverse effect of f on the
cosmological solution, the exponential expansion law trans-
forms into Friedmann behavior, despite the presence of the
initially nonzero vacuum energy.

A disadvantage of that simple model based on a scalar
field is that the energy±momentum tensor of that field is not
proportional to the metric tensor,

Tmn�f� 6� ~Lgmn ; �3:11�

and hence the vacuum energy does not vanish even asympto-
tically. The expansion regime changes due to the weakening
of gravitational interaction, whose coupling constant
decreases with time, first exponentially and then as time
squared:

GN � 1

t 2
: �3:12�

If this behavior of GN were realized in the early universe and
were somehow stabilized later, this mechanism could explain
the hierarchy of gravitational and electroweak scales [70].

For successful predictions of primordial nucleosynthesis,
the constant GN must change by no more than 10% from the
moment when the age of the Universe was about one second
to modern times [71±74]. Even stronger constraints on the
variability of GN follow from the analysis of the arrival of
signals from pulsar J1713+0747 (the so-called pulsar timing
method): _GN=GN��ÿ0:6� 1:1� � 10ÿ12 yearÿ1 (99.7% CL),
a rate that is at least 30 times slower than the expansion rate of
the Universe [75]. Stabilization of the GN variation with time
is therefore apparently needed. There are, however, some
indications of some mystic variability of GN�t� [76, 77].

Several dozen studies have been published by now where
various mechanisms of the dynamic compensation of vacuum
energy by a scalar field are discussed. Earlier studies
presented in [78±90] and in [91±94] primarily explored a
phenomenological description of dark energy in terms of a
scalar field. References to later studies can be found in [25±
38]. Unfortunately, none of the proposed mechanisms can be
considered to be fully satisfactory.

Weinberg formulated a no-go theorem regarding natural
compensation of the vacuum energy by a scalar field (see [25]).
The basis of the theorem is that compensation requires two
conditions: the total rtot � rvac � rf must be zero, and the
derivative of the potential U 0�f;R� at that point must also
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vanish. The latter condition implies that the value of f at
which the total vacuum-like energy vanishes, rtot � 0, is at the
same time a solution of equation of motion (3.9) with
f � const. However, as occurs not infrequently in physics,
no-go theorems can be circumvented by changing the
conditions of the problem. For example, nonzero spin fields
can be used (see below) or the form of the coupling of f to
gravity can be modified, as was done in [95] and analyzed in
more detail in [96, 97]. The main idea of these studies is to
modify the kinetic term of the scalar field by introducing a
coefficient that is inversely proportional to the curvature
squared:

A �
�
d4x

�������ÿgp

�
�
ÿ 1

2
�R� 2L� � F1�R� DmfD mf

2R 2
ÿU�f;R�

�
: �3:13�

Here, a system of units is used in which m 2
Pl=8p � 1. The

corresponding equation of motion for f has the form

Dm

�
D mf

�
1

R

�2�
�U 0�f� � 0 ; �3:14�

which can be reduced in the FRW metric for a spatially
uniform field f�t� to the equation�

d

dt
� 3H

�� _f
R 2

�
�U 0�f� � 0 : �3:15�

An additional term appears, in particular, in the Einstein
equations that is proportional to higher derivatives of f:

Rmn ÿ 1

2
gmnRÿ 4C1

�
Rmn ÿ 1

4
gmnR� gmnD

2 ÿDmDn

�
R

ÿDmfDnf
R 2

� �Daf�2
2R 2

�
gmn � 4Rmn

R

�

ÿ gmn
�
U�f� � rvac

�� 2�gmnD 2 ÿDmDn� �Daf�2
R 3

� Tmn ;

�3:16�

where Tmn is the matter energy±momentum tensor, �Df�2 �
DafD af, and we set F1�R� � C1R

2 for simplicity.
Taking the trace over m and n yields

ÿR� 3

�
1

R

�2

�Daf�2 ÿ 4
�
U�f� � rvac

�
ÿ 6D 2

�
2C1Rÿ

�
1

R

�2 �Daf�2
R

�
� Tm

m : �3:17�

The covariant d'Alembert operator that acts on the scalar has
the form D 2 � d2=dt 2 � 3H d=dt in the spatially uniform
case, and the Hubble parameter is related to the scalar
curvature by the formula

R � ÿ6�2H 2 � _H � : �3:18�

Equations (3.15), (3.17), and (3.18) fully describe our
system in the absence of ordinary matter. Studies [96, 97]
showed that even if the vacuum energy is initially nonzero,

these equations have the asymptotic solution

H � h

t
; R � r

t 2
; U�f� ÿ rvac �

1

t 2
: �3:19�

The amplitude of the field f tends to a value at which the
potential U�f� compensates the initially nonzero vacuum
energy, and the exponential expansion law is replaced with
Friedmann behavior. This implies that this solution compen-
sates the vacuum energy, thus enabling Weinberg's ban to be
circumvented. This solution has other attractive properties; it
can be shown, notably, that the Hubble parameter corre-
sponding to it isH � 1=�2t�; as is the case in actual cosmology
at the stage where relativistic matter dominates. However,
this value of H is in no way related to the type of matter the
universe contains, whereas in ordinary cosmology H � ���

r
p

.
Moreover, such `nice' solutions turn out to be unstable

[97]. The last term in the left-hand side of Eqn (3.17), which
contains D 2, turns out to be small and inessential. However,
in studying the stability of a solution of the equation, terms
with higher derivatives must be retained because they
drastically affect stability. It was shown in [92] that the
terms with higher derivatives result in a singular solution
with R and H becoming infinitely large during a finite and
short time. The curvature sign changes in the general solution
from initially negative to positive, and the Hubble parameter
tends to minus infinity, resulting in the collapse of the
Universe, regardless of the presence of ordinary matter.

A more general action of the form

A �
�
d4x

�������ÿgp �
ÿ m 2

Pl

16p
�R� 2L� � F2�f;R�DmfD mf

� F3�f;R�DmfD mRÿU�f;R�
�

�3:20�

has not been explored yet. Terms depending on Rmn or Rmnab

could in principle be added in an attempt to obtain a realistic
model. However, the presence of higher curvature tensors, in
addition to scalar ones, should generally result in the
emergence of tachyons or ghosts in the theory of gravity,
which are luckily avoided in GR or in theories whose action
depends on R alone, despite the presence of second deriva-
tives.

The Weinberg theorem can also be circumvented in a
model of dynamic compensation involving two scalar fields
[98±102]. One of the two scalar fields f considered in the
model in [101] has the usual kinetic term in the Lagrangian,
while the second field w has a kinetic term that is singular as
f! 0 (p is an integer),

Lkin � 1

2
qmfq

mf� m 2p

2f2p
qmwq

mw ; �3:21�

which resembles the Lagrangian in the later study [95] in that
it makes the f field relax in the vicinity of zero. More
accurately, the converse statement is valid: study [95] uses
this idea from [101]. Consequently, these studies are very
similar in regard to both their advantages and disadvantages.

Compensating fields with a nonzero spin can presumably
solve the problem of vacuum energy more successfully than
the scalar field does. Amodel of the compensating vector field
Vm was proposed in [65], with the Lagrangian

L1 � Z
�
F mnFmn

4
� �V m

; m�2
�
� xRm 2 ln

�
1� V 2

m 2

�
: �3:22�
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The time component of this field, Vt, turns out to be unstable
in the de Sitter space and grows with time:

Vt � t� c

t
: �3:23�

The dominating term in the energy±momentum tensor that is
responsible for this solution is proportional to the metric
tensor and has the form

Tmn�Vt� � ÿrvacgmn � dTmn ; �3:24�

where dTmn asymptotically tends to zero.
The gravitational constant in this model depends on time

but only logarithmically, a behavior that can be consistent
with the constraints on variations of GN. However, this
scheme is plagued with a standard disadvantage of known
compensation mechanisms: there is no relation between the
rate of cosmological expansion H and matter energy density
in the Universe, as is the case in standard cosmology
[see (2.5)].

Another interesting option is provided by a massless
second-rank tensor field Smn [66], with the Lagrangian that
contains only kinetic terms:

L2 � Z1Sab; gS
ag; b � Z2S

a
b; aS

gb
; g � Z3S

a
a;bS

g;b
g : �3:25�

In other words, this is a free field minimally coupled to
gravity. It is known that to avoid the infrared catastrophe,
the massless field must be coupled to a conserved source. On
the other hand, the only conserved source of a second-rank
tensor field is the energy±momentum tensor (see, e.g., [103]).
A conclusion can therefore be made that the graviton can be
the only spin-two massless field. However, this constraint is
not applicable to free fields, and the massless rank-two tensor
field is not ruled out. We also note that Lagrangian (3.25)
depends only on field derivatives and is therefore invariant
under a shift by a covariantly constant second-rank tensor.
Owing to this, quantum radiative correction must not
generate mass for Sab. This is an important difference from
the scalar field, whose mass can emerge as a result of radiative
corrections.

The components of the Sab field in a flat FRW metric
satisfy the equations

�q2t � 3H qt ÿ 6H 2�Stt ÿ 2H 2sjj � 0 ; �3:26�

�q2t � 3H qt ÿ 6H 2� stj � 0 ; �3:27�

�q2t � 3H qt ÿ 2H 2� si j ÿ 2H 2di jStt � 0 ; �3:28�

where stj � Stj=a�t� and si j � Si j=a
2�t�.

It is easy to verify that the time±time component Stt and
the isotropic space±space component Si j � di j are unstable
and grow with time in the de Sitter metric. The energy±
momentum tensor of those components tends to a constant
proportional to the metric tensor and compensates the initial
vacuum energy up to terms of the order of m 2

Pl=t
2. However,

although this is not obvious, the constant of gravitational
coupling with matter varies with time, as follows from the
arguments presented in [104].

A general comment is relevant here. In developing a
theory of fields with spin, additional requirements are
imposed that the components with lower spins vanish. For
example, the time component of a vector, which is a 3D

scalar, is eliminated from the vector-field theory. The 3D
vector is eliminated in addition to the 3D scalar from the
rank-two tensor field theory. However, the situation is quite
the opposite in the example considered above: 3D scalar
components of the 4D tensor remain physical variables,
while the elimination of higher spins is required. It is not
clear whether a theory of that kind can be developed in a self-
consistent way; however, an example is published of a scalar
gauge field theory that is described by the time component of
a vector Vt, while spin-one components are eliminated [105].

Promising results have been obtained recently in a series
of studies [106±109] for themechanism of dynamic compensa-
tion of vacuum energy in a theory of several coupled vector
fields whose time components increase proportionally to
time, thus compensating the vacuum energy. This model
seems to enable avoiding the problem of a growing gravita-
tional constant described above, although the `eternal'
problem of the absence of a canonical dependence of the
Hubble parameter on the energy density of ordinarymatter in
early times, for example, in the period of primordial
nucleosynthesis, persists.

The mechanisms of dynamic compensation of vacuum
energy described above have mostly been analyzed in the
inflationary framework, which, as we have stressed, provided
a successful prediction of the density perturbation spectrum.
Nevertheless, inflation cannot be considered an established
fact; it remains a hypothesis. Moreover, inflation itself can be
generated in various ways, for example, with the mechanism
described above [101]. Other scenarios in addition to inflation
have been developed; they are not as comprehensive but claim
to explain the small value of the present-day cosmological
constant (see, e.g., [101], where the dynamic mechanism is
included in the `cyclic universe' scenario).

In conclusion, we note another cosmological problem
related to vacuum energy. The current value of rvac is very
close to the matter energy density and differs from it by only a
factor of two, in spite of significant differences between their
evolutions in the process of expansion of the Universe. A
natural explanation of why these values are close to each
other is missing, as is the understanding of why the energy
densities of baryons and dark matter are also close to each
other.

We stress in concluding this section that the existence of a
deep relation between the problems of compensation of
vacuum energy and the physics of dark energy seems to be
quite natural. Most probably, these problems can only be
solved jointly.

4. Data in favor of cosmological acceleration

4.1 History
In about the 1920s, physicists started in depth discussions of
GR-based models of the Universe, including those of a finite-
volume universe. The first GR models of the Universe were
formulated by Einstein, de Sitter, and Friedmann. It is
amazing that the size of the Milky Way was not known at
that time, even by the order of magnitude. It was certainly
not known whether galaxies other than the Milky Way
existed [111].

What was known to astronomers about the size of the
Galaxy and our location in it by the 1920s? Accurate
measurements of distances and the detection of proper
motion of nearby stars (the concept of an immobile stellar
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sphere had been abandoned long ago) started as early as the
19th century. Counting weak stars in various directions
shaped the picture where the Sun was located close to the
Galaxy center; indeed, the densities of stars along the Milky
Way strip are approximately the same. It was as late as 1920
that H Shapley correctly indicated that the Galaxy center is
located in the direction of the Sagittarius constellation:
globular star clusters bunched around this direction. Shapley
moved the Sun far away from the Galaxy center. We now
know that the distance to the center is about 8 kpc (about
25,000 light years) [112], and Shapley, moreover, greatly
overestimated that distance. Most astronomers shared the
opinion of Curtis, who made the following estimate: ``Our
Galaxy's diameter is, most probably, no more than
30,000 light years''; they also believed that the Sun is located
close to the Galaxy center.

A historical dispute between Shapley and Curtis, `the
great debate', was held on April 26, 1920 at the US National
Academy. Curtis supported a small scale of distances in the
Galaxy, and Shapley a large one.

In those debates, Curtis quoted some estimates taken
from Lundmark's article: ``Wolf, about 14,000 light years in
diameter; Eddington, about 15,000 light years; Shapley
(1915), about 20,000 light years; Newcomb, no less than
7,000 light years and later possibly 30,000 light years in
diameter and 5,000 in thickness; and Kapteyn, about
60,000 light years.'' Shapley's estimate as of 1920 was: ``The
Galaxy's diameter is about 300,000 light years.''

The parties to the dispute failed to persuade each other at
that time. It was as late as the 1930s that it became clear that
Shapley was right in his statement about the Sun being
located far away from the center. (Modern-day data on the
Galaxy size: while Curtis's estimate was � 30;000 light years
and Shapley's estimate was � 300;000 light years, the
currently adopted value is � 100;000 light years or
� 30 kpc. Shapley and Curtis both made about the same
error but in the opposite direction.) Shapley's estimate was
only confirmed to be correct when astronomers (Lindblad
and Oort) understood the asymmetry of stellar motion
around us, in the Galaxy's rotation.

However, Shapley made another mistake: he considered
spiral galaxies such as M31 (Andromeda) to be small gas
formations located inside the Galaxy or quite near to it.
Curtis asserted that those spirals are stellar words similar to
theMilkyWay.He proved to be right (but underestimated the
sizes of the galaxies.)

One can now compare the picture of that small stationary
Universe, a model that Einstein had tried to develop before
1920, with the reality known to us nowadays.Not only did the
observable scales change (by a factor of millions!): the
concept of a nonstationary Universe has emerged.

The plot showing redshifts of objects as a function of their
distances is referred to as the Hubble diagram (after his study
was published in 1929 [113]). Hubble used his plot to establish
the law of how distances to galaxies grow as the redshift
increases.

German astronomer Carl Wirtz (1876±1939) was actually
the first to work out that law eight years prior to Hubble.
Alan Sandage (Baade's PhD student, whoworked forHubble
from 1950 to 1953) calledWirtz a ``EuropeanHubble without
a telescope.''Wirtz, who was the real pioneer in observational
cosmology, used data on 29 spiral galaxies in 1921 to discover
that the further away a galaxy is located, the larger is its
redshift [115] (published in June 1922). Unfortunately, due to

the poor situation with the German economy, his studies
failed to find any support. In 1936, when Hubble was already
famous worldwide. Wirtz made a desperate attempt to point
out his priority inZeitschrift f�ur Astrophysik [116], but in spite
of that he has been virtually forgotten. Nevertheless, the
authors of review [117] called Wirtz ``a pioneer of cosmologi-
cal dimensions.''

An objective and brief history of how the Universe's
expansion was discovered is presented in [118]. The role of
observers such as Vesto Slipher is covered in [119].

Van den Bergh [118] asserts straightforwardly: ``The myth
that expansion of theUniverse was discovered byHubble was
disseminated for the first time by Humason (1931) [120]. The
actual nature of that discovery proved to be more intricate
and interesting.''

According to studies of the history of the discovery [121,
122], in 1927 Georges Henri-Joseph Edouard LemaõÃ tre
(1894±1966) published a study under the title ``Uniform
Universe of constant mass with an increasing radius with
consideration for the beam velocities of extragalactic neb-
ulae'' in the Annals of the Scientific Society of Brussels [8] (an
English translation from the original publication in French
appeared later [123, 124].) In that study, he established a
linear dependence between the velocity at which a galaxy
moves away and the distance to that galaxy. LemaõÃ tre was the
first to calculate the numerical value of the `Hubble'
parameter in the relation between the velocity v and the
distance to the galaxy D. This parameter is known today as
H0 in the formula v � H0D. Using the measured values of
redshifts obtained by Vesto Melvin Slipher (1875±1969) and
Gustaf Str�omberg (1882±1962) and published in 1925 and the
distances to 42 galaxies estimated by Hubble (1926) [125],
LemaõÃ tre obtained the valueH0 � 625 km sÿ1 Mpcÿ1.

When Wirtz, LemaõÃ tre, and Hubble discovered their
redshift±distance relation, they did not have a reliable way
to measure distances to galaxies. They only assumed how the
distance depends on the galaxy size and the light flux; Wirtz
only formulated the law in qualitative terms, and LemaõÃ tre
and Hubble underestimated the actual distances to the
galaxies by a factor of almost 10. We recall that Wirtz did
not know whether spiral nebulae are located inside or outside
the Milky Way and could have made even stronger mistakes.
Nevertheless,Wirtz was right in establishing the phenomenon
that redshift increases as the distance grows.

4.1.1 History of how hints about the lambda term emerged in
observations. Prior to explorations of Ia supernovae, only
those possibilities had been considered in depth where
deceleration rather than acceleration occurs under the effect
of mutual gravitation in the universe for all three types of the
universes listed above. Most astronomers did not expect to
encounter data that could be interpreted as acceleration of
expansion, although such models of the Universe were
developed long ago by de Sitter (the vacuum) and Friedmann
(for a nonempty universe) with the lambda term. As early as
1922, Friedmann [3] analyzed in depth the fate of theUniverse
expanding with acceleration for a positive value of L. (In the
same publication, he also explored cosmological models with
a zero or negative value of L.)

Models with the lambda term occasionally became
fashionable if some peculiarities emerged, for example, in
the z-distribution of quasars. Such models were proposed by
Shklovsky [126] andKardashev [127] in 1967. However, those
peculiarities later `dissolved', and the fashion waned. Some
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convincing arguments in favor of the reality of the lambda
term were put forward by Beatrice Tinsley and collaborators
in 1975±1978 based on a comparison of the age of the
Universe and that of globular stellar clusters [128, 129]. The
globular clusters seemed at that time to be older than the
Universe in models without acceleration. However, that
disagreement has also dissolved.

An important role was played by Fukugita and coauthors
[130±132]. First, they stressed that the parameter H0 cannot
be as small as 50 km sÿ1 Mpcÿ1, the value obtained by
Sandage and Tammann [133], and then the correct age of
the Universe might be ensured by a positive L. It was also
shown in [130] that number counts of faint galaxies require a
`sizable' value of L.

Many professional astronomers first considered those
statements regarding H0 and L as heresy until the Hubble
diagram for type-Ia supernovae showed in 1998 that many
supernovae are located a little further from us than follows
from simple models. The acceleration of the expansion of the
Universe (for example, due to the lambda term) could explain
those increased distances, and this explanation has become
universally adopted. In Section 5, we consider how super-
novae are used to measure distances.

5. Data on supernovae
and baryon acoustic oscillations

5.1 Cosmography primer: distances in the Universe
If wavelengths of various spectral lines in spectra of distant
objects are correctly identified and their laboratory values are
known, the redshift can be determined as the ratio of the
frequency shift, z � o1=o0 ÿ 1. Astronomers can do this with
a very high accuracy for nearby objects and with an accuracy
of several percent for distant ones. It is thus possible to
determine to what extent the wavelength changed from the
moment of emission t1 to the moment of observation t0. We
can use this observation and the condition

oa�t� � const �5:1�

to find the ratio of scale factors at those twomoments of time:

a�t0�
a�t1� � 1� z :

How are distances measured? This problem is more
challenging.

We can determine the proper distance. Let the coordinate
of the first observer be r � 0 and that of a distant galaxy
r � r1. Then

Dprop�t� �
� r1

0

������
grr
p

dr � a�t�
� r1

0

dr�������������
1ÿ r 2
p �5:2�

corresponds to the distance that would be measured by
observers located rather closely in the expanding universe
between r�0 and r�r1 at the same moment of cosmic time t.
To perform such ameasurement, they would have to make an
agreement in advance. Direct use ofDprop is therefore not very
helpful.

We now introduce an auxiliary variable

Dflat�t� � a�t� r : �5:3�

We refer to Dflat as the `flat' distance. If curvature is zero,
k � 0, the value of Dflat that would be measured at the
moment of coordinate time t by a team of observers with
rigid rulers between the points with radial coordinates 0 and r
would coincide with the proper distance. (We recall that r is
dimensionless!) We see below that Dflat�t� is involved in
measured distances, and, in general, k 6� 0.

Of importance in theoretical cosmology is the concept of
the comoving distance

Dcom � a�t0� w ;

where w is the Friedmann radial coordinate involved in
Eqn (2.3). Friedmann used w for a closed world where k � 1.
In the general case,

r �
sin w ; k � 1 ,
w ; k � 0 ,
sinh w ; k � ÿ1 .

8<: �5:4�

We cannot directly measure the `distances' Dprop, Dflat,
and Dcom to distant objects in the expanding universe using
rulers or radio location. Used instead in cosmography are
various definitions of the distances that depend on the
measurements that can be actually made (for example,
angular size distance based on measurement of the angular
size across a standard ruler.) Details are nicely presented by
Weinberg [134, 135]. We follow his work and also that of
Carrol [136].

5.1.1 Angular size distance. We only present here a sketch of
the definition (see the details in [134, 135, 137]).

If there is a source of a known size (a standard ruler), it
can be used to determine distances by measuring its angular
size and applying straightforward trigonometric formulas
for Euclidian space. For example, if the line of sight is
perpendicular to the standard ruler, the distance apparently
doubles when the angular size halves.

If distancesD are large, the angles are small, and a ruler of
length R is seen in flat space at the angle y � R=D. This
enables determining the angular diameter distance

DA � R

y
; �5:5�

(for small y).
It can easily be shown that the distance in the expanding

universe (both spatially flat and curved) is

DA � a0r

1� z
; �5:6�

where r is the dimensionless radial coordinate in the FRW
metric (2.4), because light was emitted when the ruler was
located 1� z times closer than it is at the moment of
reception, when the scale factor is a0.

The angular diameter distance is primarily used in
cosmology in analyzing anisotropy of the cosmic microwave
background (CMB). The almost ideal black-body spectrum
received from the surface of last scattering is observed in the
microwave range. Small perturbations of the average tem-
perature T � 2:7 K, measured as a function of the angular
diameter distance, reflect acoustic oscillation of the primor-
dial plasma that occurred at that period. The maximum
fluctuation value, dT, observed for an angular separation of
one degree corresponds to the `last' acoustic wave that
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entered below the horizon just at the moment of recombina-
tion. The length of this wave is known, and we can use the
value of that angle to determine the distance to the last
scattering surface. These data are evidence, in particular,
that our Universe is spatially flat (see details in [137±139]).
The angular diameter distance is also used in analyzing BAO
(see Section 5.5 below).

5.2 Photometric distance
Of greater value for using supernovae data in cosmography is
the so-called photometric distance,

Dph �
�

L

4pF

�1=2

; �5:7�

where L is the absolute luminosity (i.e., light power) of the
source, a standard candle, and F is the flux measured by the
observer (the energy that comes to the receiver's unit area per
unit of time). This distance is sometimes denoted as DL

(luminosity distance). This definition corresponds to the
observation that the flux from a source at a distance D in the
flat space is F � L=�4pD 2�.

However, we cannot straightforwardly substitute
Dflat � a0r from (5.3) in the Friedmann universe, where a0 is
the scale factor at the moment when photons were detected at
the comoving coordinate r from the source; as r grows, the
flux diminishes not only due to normal dilution (the area of
the sphere increases as 4pD 2

flat) but also due to two effects:
individual photons experience redshift by a factor of 1� z,
and the rate of arrival of protons is also reduced by a factor of
1� z. We therefore have

F � L

4pa 2
0 r

2�1� z�2 ;

or

Dph � a0r�1� z� � Dflat�t0��1� z� : �5:8�

Thus, we obtain that the distances defined in Eqns (5.5)
and (5.7) are in general not equal to each other, even in flat
space, if the metric is not stationary. The equality DA � Dph

only holds in a static flat space, while in the expanding
universe, Dph � DA�1� z�2. This means that the difference
between the two distances in the case of a hot plasma blob
that we observe at the moment of recombination, when
z � 1000, is one million-fold!

The photometric distance Dph is a quantity that can be
measured if we have an astrophysical source whose absolute
luminosity L is known (standard candle). However, r in
Eqn (5.8) cannot be measured directly, and we therefore
have to eliminate it. On a null geodesic line along which
photons propagate from a distant object to the observer, we
can set dy � dj � 0, whence

0 � ds 2 � c 2 dt 2 ÿ a 2

1ÿ k�r 2
d�r 2 ; �5:9�

or � t0

t1

cdt

a�t� �
� r

0

d�r

�1ÿ k�r 2�1=2
: �5:10�

The integral in the right-hand side of (5.10) is an elementary
one:� r

0

d�r

�1ÿ k�r 2�1=2
�

arcsin �r� ; k � 1 ,

r ; k � 0 ,

arsinh �r� ; k � ÿ1 .

8<: �5:11�

We transform the left-hand side of (5.10) as follows:� t0

t1

dt

a�t� �
� a0

a1

dt

da

da

a
� ÿ

� 1

a0=a1

a

a0

dt

da
d

�
a0
a

�
�
� a0=a1

1

a

a0

dt

da
d

�
a0
a

�
:

Hence,

a0

� r

0

d�r

�1ÿ k�r 2�1=2
� c

� z�1

1

d��z� 1�
H

� c

� z

0

d�z

H
;

showing that this expression reduces to observable values like
1=H (equal to a= _a), z (also using a0=a1 � z� 1), and so on.
We can thus eliminate r in Eqn (5.8) for Dph if r is expressed
through the integral

� z
0 d�z=H and the elementary integral� r

0 �1ÿ k�r 2�ÿ1=2 d�r.
For this, we use Friedmann equation (2.5) and take into

account that the vacuum energy can be nonzero:

H 2 � 8pGr
3
ÿ k

a 2
;

an expression that is equivalent to

H 2 � H 2
0

�
Om�1� z�3 � OL � �1ÿ Om ÿ OL��1� z�2� ;

�5:12�

where Om � Em=rcc 2 and OL � EDE=rcc
2 are the density

parameters defined above for nonrelativistic matter (whose
density rm changes in inverse proportion to the comoving
volume, i.e., as �1� z�3) and dark energy (this density is
constant in the simplest case of the L term). We note that rm
contains the energy of both ordinary and invisible nonrelati-
vistic matter (dark matter, or DM). Below, we use standard
abbreviations for cosmological models; for example, CDM
denotes the model with cold dark matter, LCDM is the same
model with the L term included, etc.

Having substituted H in
� z
0 d�z=H and having expressed

r through
� r
0 �1ÿ k�r 2�ÿ1=2d�r in the case k � ÿ1 (other cases of

k are obtained automatically by analytic continuation), we
arrive at a working formula for the photometric distance:

Dph�z� � c

H0
�1� z� 1������

Ok

p sinh

� ������
Ok

p � z

0

�
Om�1� �z�3

� OL � Ok�1� �z�2�ÿ1=2 d�z

�
: �5:13�

Here, Ok � 1ÿ Om ÿ OL and, if Ok < 0, the hyperbolic sine
(sinh) becomes the trigonometric sine (sin), and

������
Ok

p
becomes���������jOkj

p
. If Ok ! 0, the limit can easily be found; sinh

disappears from the expression for Dph, and only the integral� z
0 �. . .�ÿ1=2 d�z remains.

The function Dph�z� is now expressed in terms of
cosmological parameters. We can see from (5.13) that Dph is
very simply related to both the `flat' valueDflat in (5.3) and the
Friedmann radial coordinate w. We can easily derive a similar
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expression for Dph�z� for a variable density of dark energy if
P � w�z� E.

If PDE � wEDE, we have

H�z� � H0

�
Om�1� z�3 � v�z�ODE � Ok�1� z�2�1=2 ;

�5:14�
where ODE � EDE=rc. The function Hÿ1�z� in (5.14) should
now be substituted instead of the terms in square brackets in
(5.13). The density EDE is constant in the simplest case of the
L term (where w � ÿ1). The function v�z� follows from the
equation of state of dark energy P�z� � w�z� EDE�z�;

v�z� � exp

�
3

� z

0

1� w�z�
1� z

dz

�
; �5:15�

and is equal to unity for a constant L term, i.e., for w � ÿ1.
We stress that the formulas for the photometric distance

Dph of type (5.8) that containDflat are applicable to any k and
not only k � 0. The distance Dph relates L and F via the area
of the sphere through which the entire power L passes.
However, the area of the sphere for FRW-type metrics is
related to only g22 � gyy and g33 � gff, i.e., it does not
contain g11 � grr, the component that contains the 3D
curvature parameter k. We always obtain 4pa 2r 2 for the
area of the sphere, and our value ofDflat sets the radius of that
sphere. For this reason, we obtain a formula for Dph that is
also valid in curved 3D space. The `true' distance Dprop

includes
� ������

grr
p

dr.
Our formula is obviously not applicable in an anisotropic

curved space where g22 and g33 do not have the Euclidian
form.

5.3 Cosmic distance ladder.
Supernovae
The ladder of cosmic distances is based on primary distance
indicators such as trigonometric parallaxes of stars, nearby
clusters of stars with common motion, and variable stars, in
particular, cepheids (when the Baade±Wesselink method is
applied to them).

There are numerous secondary distance indicators that
use various gauges for the distances established on the
previous ladder rung [140]. For example, the cepheids per-
form as secondary distance indicators if the period±luminos-
ity relation calibrated using objects located at various
distances is employed.

Supernovae, being astronomical objects with the largest
luminosity L that can be observed at immense distances, play
a very important role in testing cosmological models. We
explain in this section how supernovae are used as distance
indicators.

Astronomical classification of supernovae is based on
their visible light spectra near the luminosity maximum.
First, the presence of hydrogen lines is checked.

1. Type I supernovae: no hydrogen lines near the bright-
ness maximum. A subtype Ia with the ionized silicon line is
distinguished among them. Such supernovae are the brightest
stars (i.e., exhibit a very high luminosity at the maximum).

2. Type II supernovae: clearly pronounced hydrogen lines
in spectra both at the brightness maximum and a long time
afterward.

To measure the flux F and luminosity L, astronomers
traditionally use stellar magnitudes, which are a logarithmic
measure of the flux. The difference between two stellar

magnitudes is by definition

m1 ÿm0 � ÿ2:5 �lgF1 ÿ lgF0� � ÿ2:5 lg
�
F1

F0

�
: �5:16�

The factor ÿ2:5 is chosen because traditionally the light flux
of a star of zero stellar magnitude is exactly 100 times larger
than that of the fifth stellar magnitude. The zero point m0 in
(5.16) should be set using a standard star (usually Vega, i.e., a
Lyrae). The values m and F in (5.16) may have additional
indices (for example, for the frequency n in the case of
monochromatic fluxes or U, B, V, etc. if various filters are
used.)

The absolute stellar magnitudeM is defined as the stellar
magnitude at a standard distance D of 10 pc. Thus, M�
ÿ2:5 lgL� const, implying that the larger the is luminosity
L, the smallerM is.

In Fig. 1, as an example, we display the absolute
magnitude curves M�t� for several type-Ia supernovae
measured with BVI filters (blue, visible, and infrared).

It is now firmly established that type-Ia supernovae are
products of a thermonuclear explosion of degenerate stars.
Reliable simulation data show that light, i.e., entropy in
type-Ia supernovae, is generated in radioactive decays: 56Ni
transmutes into 56Co, which transmutes into 56Fe. This
mechanism explains, notably, why the shapes of the Ia light
curves in B andV filters are so similar (see Fig. 1). The gamma
lines that accompany the decay 56Co! 56Fe have been
recently detected in direct observations by the Integral
spacecraft [141].

A large number of type-Ia supernovae can be observed
up to z � 1:7 [142], and spectra can be used to identify three
type-IIn supernovae at z � 0:808, 2.013, and 2.357 [143]. The
redshift of the most distant known type-Ia supernovae is
z � 1:914 [144].

It was discovered owing to Ia supernovae [145±147] that
the cosmological lambda term in the Friedmann model is not
zero, OL > 0, i.e., the Universe is now expanding with
acceleration. This can be interpreted in a broader class of
models as the presence of `dark energy'. One of the most
significant challenges to fundamental physics is currently to
establish the reality and properties of dark energy (and dark
matter). Supernovae visible at cosmological distances will
keep playing a key role in fulfilling this goal. As we have
noted, this discovery was awarded the 2011 Nobel Prize in
physics.

The basics of using supernovae for measuring distances
can be briefly formulated as follows:

(1) The theoretical dependence of photometric distance
(5.7) on the redshift z,Dph theor�z;Om;ODE;w�z�; . . .�, is set by
cosmological models, for example, in Eqns (5.12)±(5.15). The
theoretical models can certainly be much richer than those
used in the quoted equations; they can be based on non-
Einsteinian gravity, extra space dimensions, etc. However, the
parameters they contain are quite different.

(2) A comparison of the predicted dependenceDph theor�z�
with the `observed'Dph obs�z� yields the parameters best fitting
observations such as Om;ODE , and w�z�.

Several methods have been proposed to use supernovae
and their gas remnants in cosmography. These methods can
be divided into two groups.

The first uses the concept of a standard candle, which we
analyze in detail in Section 5.4. The standard candle needs
calibration; it is based on the cosmic distance ladder. Super-
novae perform here as secondary distance indicators.
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Supernovae in the second group of methods are primary
distance indicators. These methods are reviewed in Section 5.9.

5.4 Variety of type-Ia supernovae light curves
and their use in cosmography
Figure 1 shows that although the shapes of the light curves of
type-Ia supernovae are very similar, their luminosities at the
maximum are very different, and therefore they are not
standard candles!

This diversity was not so obvious to many researchers
three or four decades ago. It was almost universally believed at
that time that the Ia supernovae are identical, i.e., are standard
candles in the sense that absolute luminosity maxima (i.e.,
light power) of various supernovae are the same. It was found
later [148, 149] that this is not true; however, procedures have
been proposed that enable determining the absolute luminos-
ity, i.e., standardize the candle [150, 151].

The history of how the applicability of supernovae to
cosmology has been developing can be described in detail as
follows. Some nonuniformity of the maximum luminosity of
type-I supernovae was known long ago; however, the
dispersion seemed to be much less than those of other rapidly
varying astrophysical objects, for example, novae. Baade
[152] noted in 1938 that the dispersion of the absolute stellar
magnitude at the maximum is much smaller for supernovae
(1:1m according to his measurements) than for novae. He
suggested employing them as distance indicators using the
same absolute stellar magnitude for all supernovae. We note
that his selection only contained 18 objects, and type-I
supernovae had not been divided into subtypes. The idea to
use supernovae for cosmography was immediately supported
[153, 154]. Pskovskii [155] was the first to introduce the
parameters that characterize the light curve (in particular,
his famous b for the slope of the light curve `tail'). He
measured b for type-I supernovae in 1967 to show that all
these values are very similar, confirming the conclusion that
type-I supernovae are suitable for use as distance indicators.
It was as late as 1977 that Pskovskii, using large supernovae
selections, noticed a relation between the light curve slope (b)

and the absolute stellar magnitude of supernovae [148]. He
then derived a formula for that correlation.

Thus, Pskovskii was the first to relate the shape of
supernovae light curves to luminosity at the maximum. A
history of that discovery is described in [156]. Pskovskii was
the first to discover not only the variety of type-Ia supernovae
but also an important correlation between the peak luminos-
ity Lmax and the decline rate L�t� [148, 149]. It is correlations
of this kind that are used now to find the absolute luminosity,
i.e., to standardize the candle. Details of various approaches
to standardizing the candle are reviewed in [121, 122]. Studies
[121, 122] found that an important role in Pskovskii's
discovery was played by correspondence with B W Rust, a
US astrophysicist, who never published his research results in
accessible journals, however. Nevertheless, Rust's thesis
[150], which was noticed by the classics of research on the
expanding Universe [157, 158], played a role in establishing
the correlation that enables standardizing the type-Ia super-
novae candle.

This correlation can be formulated as follows: ``Brighter
type-Ia supernovae are slower.'' Here, the word `brighter'
means `having high luminosity' and `slower' refers to the flux
decline rate after the maximum. This relation is qualitatively
seen in Fig. 1; however, 40 years ago these data were not
known. Phillips [151] discovered a similar correlation after
Pskovskii. Such correlations are now referred to as the
Pskovskii±Phillips (PP) relation, WLR (width luminosity
relation), or BDR (brightness decline rate). An example of
modern data for the PP correlationMB ÿ Dm15 is displayed in
Fig. 2 (courtesy of the authors of [159]). Here, Dm15 denotes
the luminosity variation expressed in stellar units 15 days
after the maximum in the B-filter. Larger Dm15 implies faster
decline; then, indeed, the supernova is weaker in its max-
imum.

If the decline rate of the observed flux F�t� for a faraway
supernova has been measured, then relations similar to those
illustrated in Fig. 2, including the time dilation factor �1� z�,
can be used to obtain L and the photometric distance Dph. In
this way nonstandard candles are standardized.

Next, an equation similar to (5.13) is used and the least-
square method is applied to find the cosmological parameters
that best reproduce the observational data. Both standardiza-
tion and determination of cosmological parameters are done
in practice as part of a single global fit. Such an approach
involves errors. This implies that w 2 includes not only
parameters related to cosmology but also those associated
with the light curve. A nonzero L was obtained in [145±147]
just in this way.

Similar activities are in progress, and the accuracy of
data obtained is increasing; however, it cannot be said that
it is to be very high. For example, the first results of the
Legacy Survey (SNLS) group [160] yielded the best fit
Om � 0:263� 0:042 �stat:� � 0:032 �syst:�; for Dph�z� imply-
ing OL � 0:74 for flat L-cosmology. Using Eqns (5.14) and
(5.15) for dark energy, the SNLS group obtained w �
ÿ1:023� 0:090 �stat:�� 0:054 �syst:� w in the equation of
state P � wr is constant. These results have been obtained
by combining data on supernovae with those from the Sloan
Digital Sky Survey (SDSS) for baryon acoustic oscillations
(BAOs), i.e., data on the distribution of galaxies in space (see
Section 5.5). The same French group [161] in a later and
important study used a compilation of data from the
collaborations SNLS, SDSS, Nearby SNe, and HST. The
combined data on the CMB, BAOs, and SN Ia's yield,
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according to [161], the Hubble parameter H0 �
68:50� 1:27 km ÿ1 Mpcÿ1, a value that is somewhat lower
than that obtained by Riess's group, H0 � 73:8�
2:4 km sÿ1 Mpcÿ1, but agrees well with recent results of
WMAP (Wilkinson Microwave Anisotropy Probe). Analy-
sis [161] yielded the value Om�0:295�0:034 (stat.+syst.)
for flat LCDM cosmology, in good agreement with values
obtained in measurements of CMB fluctuations performed
in the Planck and WMAP experiments. The parameter w �
ÿ1:018�0:057 (stat.+ syst.) was obtained for the flat
universe with the CMB data.

In subsequent Section 5.5, we briefly describe the
prospects provided by the BAO method for cosmological
research. This method is an important complement to those
based on supernovae properties. Figure 3 shows recent results
obtained using measurements of supernovae alone [163], with
276 type-Ia supernovae (0:03 < z < 0:65) collected from
observations made in the PanSTARRS1 project and useful
estimated distances to type-Ia supernovae taken from the
reviews by SDSS, SNLS, HST, etc. The largest united set of
type-Ia supernovae was thus created containing 1,049 super-
novae in total in the range 0:01 < z9 2, which was named
Pantheon Sample by the authors.

All results for cosmological parameters extracted from the
above-mentioned observations of supernovae have been
obtained using the approach standard for FRW cosmology
models with dark energy, where the scale factor evolution is
described using the energy density averaged over very large
scales (> 100 Mpc). Averaging nonlinear Einstein equations
is actually a nontrivial problem. Deviations can occur from
the solutions obtained by means of ordinary averaging (the
so-called backreaction effect). Without entering into the
disputes related to that problem, we only give references to
recent studies where, in particular, data on type-Ia super-
novae are used and this effect is discussed [164±166].

5.5 Baryon acoustic oscillations (BAOs)
Baryon acoustic oscillations (BAOs) is the name that is used
for primordial acoustic waves propagating in a hot plasma of
photons and baryons due to the pressure of photons in the

early Universe. We here consider the main concepts of the
BAO method as applied to determining cosmological para-
meters (including the proportion of dark energy). Details can
be found in [167], a good review that also contains extensive
useful information about other methods used for studying
dark energy, including supernovae. Review [168] is dedicated
to BAOs. The basics needed for understanding the BAO
theory can also be found in older reviews on the development
of perturbations in the Universe; for example, review [169] is
of use in this regard.

Baryons and photons in the early Universe are strongly
coupled, and perturbations propagate in plasma in the form
of acoustic oscillations. After hydrogen recombines at the
redshift zr � 103, photons and baryons virtually cease
interacting, and light pressure on baryons vanishes. This
phenomenon is referred to as decoupling of photons and
baryons. The waves in baryons, i.e., propagating sound
waves, halt shortly after that due to cosmological expansion
and leave a footprint in the distribution of matter on a scale
that corresponds to the distance that the sound waves pass
prior to that epoch (i.e., on the acoustic horizon scale).

The soundwaves propagate until the recombination epoch
t � 4� 105 years with a velocity � c=

���
3
p

(somewhat smaller
before the recombination itself) and freeze on a scale that in
themodern epoch yields a comoving size lBAO�150 Mpc (i.e.,
lBAO�100 hÿ1 Mpc). This value of the halt radius has been
derived in quantitative terms on the basis of simplifiedmodels
in [170, 171] (see also [172, Section 7.1.2]).

We now formulate these statements in a more accurate
form. While baryons are strongly coupled to photons, we
have the speed of sound (for c � 1)

us �
�

dP

dr

�1=2

S

� 1���
3
p : �5:17�

ÿ20

MB

sSN � 0.10
rms = 0.14

ÿ18

ÿ16

1.0 1.5 Dm15�B�

Figure 2. Pskovskii±Phillips relation for Carnegie project data [159]. The

horizontal axis shows a flux decrease 15 days after the maximum, Dm15,

and the vertical axis, the absolute stellar magnitude at the luminosity

maximum.
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Here, the subscript s refers to sound and S denotes entropy
(the speed of sound is adiabatic). Because us � a�t� dr=dt,
where r is the Robertson±Walker radial coordinate in (2.4),
we have the acoustic horizon coordinate

rs �
� tr

0

us dt

a�t� ; �5:18�

and the horizon size

ls�tr� � a�tr� rs � a�tr�
� tr

0

us dt

a�t� : �5:19�

For any redshift z after recombination, the matter correlation
function must have a singularity at the length

lBAO�z� � 1� zr
1� z

ls�tr� : �5:20�

If, prior to recombination, we approximately set
us � 1=

���
3
p

(5.17) and a�t� / t 1=2 (this is only valid in the
radiation-dominated epoch), we arrive at the estimate

ls�tr� � t 1=2r

� tr

0

dt���
3
p

t 1=2
� 2���

3
p tr � 135 kpc ; �5:21�

for the recombination time tr � 380;000 years. For the
nonrelativistic law a�t� / t 2=3, we obtain another estimate:
ls �

���
3
p

tr � 200 kpc. The expansion law is actually some-
where between these two limit cases. Also, the speed of sound
in (5.17) differs from 1=

���
3
p

due to the contribution of baryons
to pressure:

u 2
s �

1

3

1

1� RB
; �5:22�

where

RB � 3rb
4rg
� 3� 104Obh

2

1� z

�
T0

2:725 K

�4

�5:23�

(see Eqn (9.17) for Obh
2 below).

As a result, we obtain ls�tr� � 150 kpc for the recombina-
tion epoch: a CMB radiation spot of just that angular size
determines the main peak in the power spectrum of
temperature perturbations expanded over spherical harmo-
nics. The same scale sets the present-day size of the
correlation length of acoustic oscillations lBAO�0��150 Mpc,
because zr � 103.

The data collected by WMAP over five years of observa-
tions of CMB yield [173]

lBAO�0� � 153:3� 2:0 Mpc ; zd � 1020:5� 1:6 : �5:24�

This value for the present-day BAO scale is obtained from the
acoustic horizon at the moment when the `epoch of dragging'
photons by baryons ended. Equation (5.24) contains zd
instead of zr because two different definitions are used in
publications for the recombination epoch (this circumstance
is of no importance for order-of-magnitude estimates but is
essential for accurate calculations): the moment of the last
photon scattering is distinguished from the end of the
baryons-dragged-by-photons epoch. The last scattering is
the moment when the optical depth in Compton scattering
of photons to today's observer becomes less than unity,
without taking the subsequent reionization into account.

The moment td when the drag epoch ends is defined as the
time when baryons decouple from photons. Actually,
baryons couple to electrons by electric fields, and the latter
couple to photons owing to Compton scattering. The cross
section of the process is the same, the Thomson cross section
s

T
, as in the last photon scattering, but the number of

photons is much larger than the number of baryons (and
electrons) in the hot (determined by entropy) universe. The
mean free path of photons �nesT�ÿ1 is therefore many orders
of magnitude larger than that of baryons �ngsT�ÿ1 in the sea
of photons (because ng=nb � 109 and, prior to recombina-
tion, ng=nb � 109).

Actually, for the analysis of how photon and baryons
exit the strong coupling regime to be correct, we should
compare the efficiency of their momentum exchange rather
than mean free paths of the particles. We perform this
analysis following study [174], which showed that using the
hydrodynamic approximation for Compton scattering
results in momentum exchange between fluids of baryons
and radiation that tends to equalize the average velocities of
the liquids ub and ug. However, momentum densities
�rg � pg� ug � �4=3� rgug and �rb � pb� ub � rbub are not
equal, even if the velocities are. Momentum conservation
(Euler equation or, more accurately, Navier±Stokes equa-
tions) requires that the acceleration of the baryon fluid due
to Compton drag be multiplied by Rÿ1B � �4=3� rg=rb
[cf. Eqn (5.23)] compared with the same value for the
photon fluid. The process dynamics are thus governed not
by the immense number ng=nb but by RB, which is close to
unity for z � 103. A beautiful pedagogical presentation of
this issue is offered in book [175]. It is also shown there that
analytic theory [174] is fully confirmed by numerical
simulations of the kinetic equations for photons and
baryons in the recombination epoch of the Universe.

Because the hydrodynamic approximation for photons is
invalid after recombination, the difference between the
moment of last scattering and the end of the drag epoch can
be described by paraphrasingWeinberg [135] (page 441 of the
Russian edition): ``Strictly speaking, the moment of the drag
epoch end, td, should be chosen on the recombination stage
when a typical electron stops exchanging appreciable
momentum with the photons, rather than the slightly earlier
time of the last scattering tls when a typical photon stops
exchanging appreciable momentum with the electrons.
Because RB is not very different from unity, there is little
difference between these times.'' The history of ionization
determines to what extent the moment of drag epoch end td
differs from the moment of last scattering (see approximating
formulas in [174], Appendix E).

We must take into account that td > tls only if Ob 5 1. If
the inequality Obh

2 > 0:03 had been satisfied, the last
scattering would have occurred later than the baryon drag
epoch ended.

The characteristic BAO scale is thus the sound horizon
scale at the end of the strong coupling epoch when photon
pressure can no longer prevent gravitational instability in
baryons (which occurs somewhat later than the last
scattering of photons because the parameter Obh

2 � 0:022
is small.)

It is frequently said that BAOs leave a clear-cut footprint
on the characteristic scale of matter clustering; however, we
should take into account that this footprint is only exhibited
in statistical terms as a local bump in the correlation function
at r � 150 Mpc.
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We now explain how BAOs are used for measuring
cosmological distances. Galaxies or galaxy clusters are
scanned in certain celestial areas within a rather large solid
angle. The color indicators of galaxies are used to determine
the so-called photometric redshift. Such scanning enables a
BAO footprint to be identified by photometric redshift in the
angular clustering of galaxies within rather narrow intervals.
Let the angular diameter of such a footprint be a. Because the
linear diameter r � 150 Mpc defines a standard ruler, we can
measure the angular size distance DA�z� � R=a according to
Eqn (5.5). Spectroscopic studies of the galaxies in the same
volume enable measuring redshift values more accurately and
observing BAOs along the line of sight and not by the angle
alone. Owing to this,DA�z� can bemeasuredmore accurately.
Also, measured differences between velocities of the galaxies
on the BAO scale can be used to directly determine the
Hubble parameter as a function of redshift, H�z�. Other
matter distribution indicators can also be used to measure
BAOs. Because the BAO scale is known in absolute units (on
the basis of simple physical calculations and the values of the
parameters measured for the CMB), the D�z� determined
using the BAO method is expressed in absolute units, Mpc,
rather than hÿ1 Mpc units, as a result of which BAO and
measurements of distances to supernovae yield different
values for the same redshift. Recent results for the cosmolo-
gical parameters from the detailed Baryon Oscillation
Spectroscopic Survey (BOSS) are reported in [176]. Data
from the Planck and BOSS projects have been used to obtain
Ok � 0:0003� 0:0026 and w � ÿ1:01� 0:06, in good agree-
ment with the flat LCDM model. Adding data on type-Ia
supernovae improves the constraint on the parameter in the
equation of state of dark matter to w � ÿ1:01� 0:04 to yield
the Hubble constant H0 � 67:9� 0:9 km sÿ1 Mpcÿ1.

We can see BAOs directly in observational data on galaxy
clusters as they are processed, for example, in [177] (see Figs 4
and 5). Figure 4 shows two areas on the celestial sphere, and
points represent positions of galaxy clusters. The distribution
of points is apparently random and fully uniform.

The BAO footprint in the distribution of matter is
exhibited in the distribution of both galaxy clusters and field
galaxies [178]. Observations of that footprint proved to be a
powerful and reliable probe of dark energy (see, e.g., [179]).
The observable BAO scale determined in scans of galaxies can
be compared with the actual physical scale of the sound
horizon, which can be independently estimated using initial
data on the CMB, to establish a correspondence between
observational coordinates and physical coordinates; this
correspondence is sensitive to the history of expansion and
hence to darkmatter properties (see, e.g., [180]). The accuracy
with which the BAO correlation function can be measured
and hence therefore constraints on dark energy obtained from
BAO measurements depend on the BAO footprint strength
and the accuracy with which the BAO footprint can be
separated from broadband noise in the perturbation power
spectrum. Due to the formation of a large-scale structure and
the observable effect of spatial distortions caused by redshift,
the BAO footprint is expected to gradually fade out, along
with the evolution of the structure; this footprint is therefore
much weaker at small redshifts, where expansion of the
Universe is primarily driven by dark energy. We give an
illustrative example of how the signal from a ring-shaped
distribution of points on a 2D plane is blurred: when many
random points are located on a small number of rings, the
signal can be identified without any problem. But if the same

number of points is scattered across a large number of rings
(the number of points per ring is small), a special procedure is
needed to process and identify correlations (see Fig. 6).

However, the main difficulty in reconstructing the density
distribution is due not to the detection of the signal on the
background of random distribution of points but rather to
the fact that the density peak in the current epoch corresponds
to a size of 150Mpc; to determine the peak with an acceptable
accuracy, a large space volume must therefore be explored.
The reconstruction problem is described in detail in reviews
[181, 182].

Measuring the characteristic scale of BAOs in the
correlation function of various matter distribution indica-
tors is an efficient tool for exploring cosmic expansion and a
reliable method for obtaining cosmological parameters. The
BAO peak in the correlation function for a redshift z emerges
for the angular distance of objects Dy � ld=��1� z�DA�z��;
where DA � Dph=�1� z�2 is the angular-diameter-based
distance and ld � ls�zd� is the sound horizon for the redshift
of decoupling zd (drag), i.e., the epoch when baryons
decouple from photons. The BAO correlation function is
also exhibited in the redshift Dz � ld=DH where
DH � c=H�z�. The measured position of the BAO peak at
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some z sets therefore restricts combinations of the cosmolo-
gical parameters that determine DH=ld and DA=ld at that
redshift [183].

5.6 BAOs in the correlation function of galaxies
The BAO peak was primarily observed in the correlation
function of a pair of galaxies obtained in redshift scans.
Because of the low statistical significance, bounds on DV=ld
alone could be obtained, where

DV�z� �
�
z�1� z�2DHD

2
A

	1=3
: �5:25�

Both the physics of and data on BAOs depend on the
content of matter in the universe. They therefore a priori
depend on the selected dynamic structure (see, e.g., review,
[184]). The analysis in [185] showed that the ratio
DV�z�=DV�z0� weakly depends on the dynamic structure;
reliable constraints on cosmological parameters can there-
fore be obtained using such relations.

Results of the Planck collaboration [186] and study [161],
where DV=ld was BAO-measured at z � 0:106, 0.35, and 0.57
on the basis of [187±189], and the results of publications [190]
and [191] for z � 0:35 and z � 0:2 yield

DV�z�
DV�z � 0:35�
��0:335�0:016; 0:576�0:022; 1:539�0:039� �5:26�

for the respective values z � �0:106; 0:2; 0:57�.
This approach to BAOs and publicly accessible data on

type-Ia supernovae were used in [183] to obtain observational
constraints on the class of modified gravity models that result
at low redshifts in power cosmology (i.e., models in which the
scale factor grows as a power of time). The spatially flat
universe was shown to be well suited for describing BAOs and
type-Ia supernovae if the expansion regime is a�t� / t b with b
close to 3/2.

5.7 Summary of results on supernovae combined
with BAOs
New results of the same SNLS group [192] yield the values
Om � 0:173�0:095ÿ0:098 and w � ÿ0:85�0:14ÿ0:20 orOm � 0:214�0:072ÿ0:097 and

w � ÿ0:95�0:17ÿ0:19 (all error intervals here are purely statistical)
on the basis of richer statistics of observations for two
procedures of fitting light curves to observational data (the
observational points on the light curve are usually very sparse
and therefore special procedures are needed to identify the
maximum, values Dm15, etc.). They obtained w �
ÿ0:91�0:16ÿ0:20 �stat:��0:07ÿ0:14 �syst:� for the parameter in the equa-
tion of state for dark energy (which is considered to be
constant to at least z � 1:4) in a flat universe on the basis of
data on supernovae alone. These values of w agree with the
cosmological constant, which requires w � ÿ1. The results
reported of the CfA3 review published by the Harvard-
Smithsonian Center for Astrophysics [193] (see Figs 7 and
8) combined with BAO data used as an a priori distribution
of probabilities yield 1� w � 0:013�0:066ÿ0:068�0:11syst:�; also in
good agreement with the cosmological constant. BAO data
combined with their set of supernovae also yield
Om � 0:281�0:037ÿ0:016 and OL � 0:718�0:062ÿ0:056. Although the results
of various groups formally agree with each other, we can
nevertheless see that the difference between them is larger
than could be expected based on estimates of their own
errors.

The cosmological parameters extracted from observa-
tions of supernovae and BAOs are continuously being
refined. For example, study [161] is in a sense a continuation
of paper [192] described above. Also, some inaccuracies of the
earlier analysis have been corrected. Taking data on BAOs
into consideration, the value w � ÿ1:027� 0:055 for the
parameter in the equation of state of dark energy was
reported in [161], in good agreement with their value with
the CMB taken into account, w � ÿ1:018� 0:057 (stat. +
syst.).

The combined results displayed in Fig. 9 are taken from
study [163], which contains the most complete set of type-Ia
supernovae as of the end of 2017.

Data on BAOs [194] combined with data on CMB
temperature fluctuations measured by the Planck mission,
polarizationmeasured byWMAP-9, and a 6dG scan of BAOs
failed to indicate any deviations from the flat LCDMmodel.
The Hubble parameter in this model proves to be
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H0 � 67:15� 0:8 km sÿ1Mpcÿ1. The variable in the equation
of state of dark energy is wDE � ÿ1:080� 0:135. The
curvature in a nonflat LCDM model is Ok �
ÿ0:0043� 0:0047, compatible with zero.

5.8 Systematics and dependence on z
An important factor must be taken into account in passing
from a description of the Pskovskii±Phillips relation to the
development of the Hubble diagram. It was found long ago
that the luminosity of type-Ia supernovae depends not only
on the light curve shape (the Pskovskii±Phillips relation) but
also on the supernova color. Moreover, the dependence on
color is significant. The absolute stellar magnitude of type-Ia
supernovae is defined in the most popular standardization
model SALT2 [195] as: M �M0 � aX1 ÿ bC, where X1 is an
analog ofDm15 (responsible for the light curve shape) andC is
the color. Tripp [196] seems to be the first to have introduced
the color parameter, although Riess was also taking it into
account in some way in his MLCS method.

It is also well established (although this correction has not
yet been introduced into cosmological analysis) that the
absolute stellar magnitude of type-Ia supernovae depends on
the host galaxy. The following physical parameters are used to
characterize the host: the division into subtypes (spiral, elliptic
[197, 198]), themass of the galaxy stellar component [161, 199,
200], and global and local star formation rates [201, 202] (the
immediate surroundings of a supernova are explored [203]).
The corrections related to the host galaxy properties are
introduced into in the cosmological analysis literally by
hand. For example (see Eqn (5) in [161]), a small term
1010M� is added to M0 for supernovae whose galaxy stellar
mass is more than DM, i.e., some part of the Hubble diagram
(corresponding tomassive host galaxies) is simply shifted with
respect to the other part (with low-mass galaxies).

There aremany factors that can affect the results obtained
in cosmology using type-Ia supernovae calibrated by means
of the Pskovskii±Phillips relation; for example, light absorp-
tion and scattering in the inter-galaxy space or in host galaxies
(see studies [159, 204] and the references therein), changes in
the metallicity of supernovae progenitors, and the relative
role of various pre-supernovae as the Universe ages.

We try to cursorily explain the role of these factors in
applications of supernovae in cosmology to the reader trained
as a physicist.

The most difficult task is to determine how light emitted
by a supernova is absorbed and scattered on its way to the
observer. X-ray astronomy provides plentiful information
about hot intracluster gas, but information about intercluster
baryon gas is very scarce. This is the well-known missing
baryon problem: cosmological nucleosynthesis predicts that
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about 4±5% of the energy density is localized in baryons, and
about the same number follows from an analysis of the CMB.
The total number of all observable baryons (in gas and stars)
is at the same time significantly smaller. These hidden
baryons can be in a state of a warm intercluster gas. The
temperature of that gas can be too high to allow detecting it in
the visible or near-ultraviolet range but too low for noticeable
emission in the X-ray range. That gas can in principle contain
an admixture of `grey' dust (whose absorption does not
depend on wavelength). As a result, we see the distant
galaxies dimmed, this effect being possibly misinterpreted as
an effect of accelerated cosmological expansion. We refer in
this regard to [205], where grey dust and its effect on the
Hubble diagram is explored. The authors also analyzed the
effect of the evolution of mass of merging white dwarfs with
Hubble time. However, this effect cannot occur at redshifts
larger than z � 1: supernovae this distant do not exhibit the
accelerated expansion effect.

The grey-dust hypothesis may seem to be absolutely
artificial; nevertheless, it cannot be fully rejected until the
problem of hidden baryons is resolved.

Very scarce information is also available about the so-
called `reddening' in supernovae's host galaxies. This is the
same effect of light absorption/scattering but occurring in the
medium that surrounds the exploding star. Properties of that
medium, which can vary strongly over space, can be explored
for nearby galaxies, but the problem becomes very difficult
for distant objects.

Metallicity, i.e., the content of elements heavier than
helium in pre-supernovae, can affect the behavior of super-
novae's light curves, i.e., Pskovskii±Phillips relations, and
hence the candle standardization.

Several quite permissible scenarios have been proposed
for the birth of type-Ia supernovae in a very complicated and
intricate evolution of binary stars (single degenerate stars,
white dwarfs, cannot explode). It is difficult to estimate the

relative role of these scenarios in the nearby universe
(published data disagree with each other). Such an estimate
becomes an even more challenging task in the distant young
universe.

All these factors (light absorption, metallicity, the relative
role of evolution scenarios) can vary as the age of the universe
grows: stars produce an increasingly large amount of metals
that pollute the interstellar environment. Systematic errors
thus occur in determining distances and cosmological para-
meters by means of supernovae.

Another possible source of errors is related to incorrect
classification and an admixture of unusual events of the type
of Ia supernovae. For example, a peculiar subclass of type-Ia
of supernovae, the subtype SN 2002cx, has been discovered.
These supernovae are weak but slow (see Fig. 10 taken from
[207]), i.e., they behave in a way quite opposite to that
prescribed by the Pskovskii±Phillips relation used in cosmol-
ogy; according to that relation, slowly declining type-Ia
supernovae are the brightest. We now imagine that the
number of SN 2002cx-type events increases as the cosmolo-
gical redshift z grows. We then conclude based on the
Pskovskii±Phillips relation established for nearby type-Ia
supernovae, i.e., at z � 0, that the type-Ia supernovae at
large z seem on average to be dimmer, and hence the
photometric distance to them is larger than for the true OL.
Thus, a false contribution to dark energy may be obtained.

It is quite relevant to quote Conley et al. [192]: ``Evolution
in the absolute magnitude of SNe Ia with redshift is not
constrainable without a detailed physical model because it
can in principle mimic any cosmology.'' This does not imply
that supernovae cannot be used for reliable cosmography;
just new approaches to the problem should be developed. One
such new approach to type-Ia supernovae is presented in
[208]. The author of this study notes: ``These results imply
that at least 3/4 of the variance in the Hubble variances in
current supernova cosmology analyses is due to SN Ia.''
Results like this confirm our apprehension about using
type-Ia supernovae for analyzing dark energy as is done, for
example, in [209, 210], because the properties of stars change
with the age of the Universe. The authors of [208] use their
observations in an attempt to estimate the quantitative
measure of astrophysical uncertainty. They accurately pro-
ceed in the local Universe and improve standardization
options; however, at larger distances unknown astrophysics
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inevitably introduces unknown systematics because type-Ia
supernovae are secondary distance indicators, and it remains
unclear how their improved calibration at z � 0would vary at
large z (their estimate ``standardizing high-redshift super-
novae to within 0:06� 0:07 magnitudes'' remains concep-
tually statistical.)

A new, direct dense shell method for measuring distances
in cosmology has been proposed in [211±213] with the
participation of the authors of this review. This method is
discussed in the next section.

5.9 Supernovae as primary distance indicators
The `standard candle' method requires knowledge of the
distances to a large number of supernovae measured using
another, independent method involving the cosmic distance
ladder [133]. Otherwise, without large statistics on objects
with a known distance having been accumulated, the candle
standardization procedure cannot be calibrated (see, e.g.,
reviews [156, 214]). This implies that supernovae are used in
this method as secondary distance indicators.

Another group of methods enables using supernovae as
primary distance indicators. For example, luminosity and
light curves of type-II supernovae (SN II) are very different,
and, generally speaking, these supernovae are not suitable for
the standard candle method. But they have a significant
advantage: distances can be measured directly, for example,
using the expanding photosphere method (EPM) [215]. This
method needs neither candle standardization nor the cosmic
distance ladder.

High-quality spectral data enable determining distances
using the spectral-fitting expanding atmosphere method
(SEAM) [216]. Unlike EPM, SEAM does not involve an
assumption that supernovae radiate as black bodies.

We describe the development of a newmethod to measure
distances in cosmology that is based partly on EPM and
SEAM and partly on ESM (expanding shock front
method) [217]. This method uses data on type-IIn supernovae
with the highest luminosity, which have been recently not only
discovered in large numbers but also explored in depth [218].

It was proposed to refer to this method as the dense shell
method (DSM) because the luminosity of type-IIn super-
novae is due to propagation of a thin dense layer in the
surrounding environment. Supernovae SN 2006gy and
SN 2009ip were used as an example to show that this method
is valid: the distances to those supernovae have been
determined without applying the standard distance calibra-
tion. The new method needs neither the standard candle
approximation used for type-Ia supernovae nor the cosmic
distance ladder.

Photons are produced in type-II supernovae in shock
waves that propagate in the envelope (during a time of
< 104 s in SN 1987A and up to � 107 s in type-IIn super-
novae). The shock wave generates in ordinary type-II super-
novae not only short-time bursts of hard radiation but also an
entropy reservoir that ensures radiance at the `plateau' stage
for several months. It is the source of radiance in type-IIn
supernovae, where the shock wave propagates in the
surrounding medium for several months [219±222].

The shapes and amplitudes of light curves of type-II
supernovae are very diverse, as a result of which they cannot
be described by introducing a standard candle, i.e., a kind of
unified light curve. The light curve heavily depends on the
properties of the envelope that surrounds the supernova
energy source, whether it is a collapsing star core or thermo-

nuclear fusion in the core. Type-II supernovae are at the same
time much less dependent on details of the burst owing to the
envelope. A real photosphere is observed over several months
in the envelope, which is manifested in the light curves as a
classical plateau.

The idea of the expanding photosphere method (EPM)
originates from Baade [223] and Wesselink [224], who
developed it to measure distances to variable stars, cepheids.

Because a detailed model of type-IIn supernovae can be
developed, a new direct method DSM can be created on the
basis of the same idea that enables using the bright light of
type-II supernovae for cosmology.

The concept of the method is as follows. If the photo-
sphere velocity v is known, its radius changes during the time
of measurement dt by dr � vdt, and the change in radius dr
can be immediately determined without using any cosmic
distance ladders. The measured radiation flux is

F � 4pr 2sT 4

D 2
; �5:27�

where D is the photometric distance. The temperature T is
measurable, as are dr and dF, while D does not change. It is
convenient to define S � ���

F
p

:

S � 2
������
ps
p

rT 2

D
: �5:28�

IfT does not significantly change between twomeasurements,
we arrive at

dS � 2
������
ps
p

drT 2

D
: �5:29�

The value dr can be directly measured in a number of
cases. Namely, dr � vph dt if vph is the photosphere velocity.
We then directly determine the distanceD usingmeasured dS,
dr, and T.

The authors of [215] clearly understood that spectral lines
show the velocity u of matter, and the photosphere itself
moves with respect to matter (because the matter absorption
coefficient diminishes in the process of expansion). Even the
signs of u and vph can be opposite if the photosphere is
shrinking. This is the main difficulty for EPMand SEAM: for
these methods to be operative, it is necessary to assume that
free expansion occurs, and the velocity of matter is u � r=t.
This situation occurs if dense matter is absent for some time
around the star. The case of type-IIn supernovae is quite the
opposite: there is a large amount of matter around the star,
and the shock wave cannot burst into the low-density
environment for months or even years.

By contrast, as plots reported in [221] and [222] show, all
matter behind the shock wave front is compressed in those
supernovae into a cold dense shell. The photosphere is glued
to that dense shell and exactly u � vph, and this value can be
measured. The described picture corresponds to Baade's idea
[223] proposed as early as the 1920s.

Summarizing, we can formulate a new method, DSM, to
determine cosmological distances using type-IIn supernovae.
This method consists of the following stages:
� Narrow components of spectral lines is measured to

assess the properties (densities and velocities) of the near-star
envelope. This stage requires neither high accuracy of
measurements nor simulation.
� Broad emission components of lines ismeasured and the

velocity on the photosphere level is determined (with the
highest accuracy possible).
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� Although the law u � r=t is not applicable to these
supernovae, vph now corresponds to the true velocity of the
photosphere radius (and not only to the matter motion
velocity as in SN II-P).
� Baade's initial idea [223] to measure the increase in

radius dr � vph dt by integrating over time can nowbe applied
(definitely with necessary consideration for scattering, limb
darkening/brightening, etc.). The obtained changes in the
radius must be used in iterating the optimal model.
� The observed flux can now be used to determine the

distance D as

D � 2
������
ps
p

drT 2

dS
: �5:30�

IfT changes significantly, this simple approach fails, and a
model should be developed that best reproduces the data of
broadband photometry and the velocity vph, which is
controlled by observations of dr�t�. A model like this is
needed to calculate the evolution of r and the correction
factor z and, in reality, to make detailed predictions for the
theoretical flux Fn.

We now represent the main algorithm of that method on
the basis of a black-body model with color temperature Tc

with the correction factor z. We assume that observations are
performed frequently enough to measure changes in the
radius dr � vph dt for a set of points. Let the initial (and
unknown) radius beR0 andRi � R0 � DRi for i � 1; 2; 3; . . . ;
where DRi can be considered to be known from summing the
measured dr. We then have

z 2i �R0 � DRi�2pBn�Tci� � 10ÿ0:4AnD 2fni ; �5:31�

or, after taking the square root,

zi�R0 � DRi�
������������������
pBn�Tci�

p
� 10ÿ0:2AnD

�����
fni

p
: �5:32�

A quality model yields a set of zi and Tci for all
observation points, and we can then use the measured fni
and DRi to find the unknownR0 and combination 10ÿ0:4AnD 2

by the least square method. To obtain the distanceD, we need
to either know the absorptionAn from astronomical observa-
tions or obtain it from the same equations modified for
various spectral filters. In this case, already knowing R0, we
arrive at a set of equations of the form

10ÿ0:4AnD 2 � as ; �5:33�

where the subscript s refers to one of the UBVFRI filters, and
as is a constant that depends on the selection of the filter. As a
result, we obtain the differences As1 ÿ As2 and, knowing how
extinction depends on frequency, find An.

The DSMmethod described here was used in [211±213] to
obtain distances to type-IIn supernovae SN 2006gy, SN
2009ip, and SN 2010jl. A comparison with the distances to
these objects measured using alternative (indirect) methods
shows the operability of the new method, enabling systematic
errors introduced by the cosmic distance ladder to be ruled
out.

5.10 Merging of neutron stars
and the standard siren method
A breakthrough into the era of gravitation wave astronomy
occurred in 2015: it was announced for the first time that the
merging of a pair of massive black holes had been observed.

Before, humans had only observed the Universe in electro-
magnetic and neutrino channels; now, we acquired a new
`vision': an absolutely new gravitational-wave channel for
studying objects in the Universe, exploring their properties,
and testing theoretical predictions. The first gravitational-
wave signal was received on September 14, 2015 by two
antennas of the LIGO collaboration [225]. An analysis
showed that the signal originated from two massive black
holes. It was followed by more discoveries of signals from
merging black holes until August 14, 2017 (in which the
upgraded VIRGO detector participated).

Three days later, on August 17, 2017, another important
discovery was made: a gravitational-wave signal, GW170817,
was detected [226] whose duration and shape evidenced the
merging of not two black holes but two neutron stars in a
close binary system. The time delay of the signal in the LIGO
antennas with VIRGO data taken into account was used to
localize the source within approximately 30 degrees squared
on the celestial sphere. The Fermi [227] and Integral [228]
space observatories recorded a weak short gamma-ray burst
GRB170817A in the square spot where the gravitational-
wave source was localized 1.7 s after the LIGO signal was lost.

The gravitational wave amplitude and the pattern of its
frequency variation enable estimating the distance to the
source. It proved to be approximately 40 Mpc with an error
of several dozen percent; however, despite the large error,
only few galaxies corresponded to a distance this large in the
localization area on the celestial sphere. Ground telescopes
(including theMASTER robot [229]) therefore rather rapidly
identified the outburst of a weak supernova (the so-called
`kilonova') in the NGC 4993 galaxy located at a distance of
40 Mpc from Earth.

It is important to stress in relation to this outstanding
discovery in world science that the phenomenon was first
predicted in the 1980s in the work of one of the authors of this
review with his collaborators [230]. It was predicted for the
first time that when a pair of neutron stars merges, heavy
elements should be ejected and an electromagnetic outburst
occur, including a gamma-ray burst rather than radiation
from a gravitational wave alone. Models had been proposed
prior to that study that described the merging of a neutron
star and a black hole but with an inefficient gamma-ray burst
within our Galaxy [231], while Blinnikov et al. [230] explicitly
predicted distances of about tens of megaparsecs and out-
burst energy of the order of supernova outbursts. That study
was preceded by a good study [232] that contained a range of
predictions regarding gravitational-wave and neutrino sig-
nals that originate from the merging of two neutron stars in a
binary; however, nothing was said about the electromagnetic
signal, which is a million times weaker than those two signals
but can be detected much more easily. The scenario in [230]
was later corroborated by a quantitative calculation [233] that
yielded all the main characteristics of the weak gamma-ray
burst GRB170817A (total energy and hardness of photons in
the gamma-ray range and typical velocities of heavy-element
ejection.)

The photometric distance to the gravitational wave source
measured using the gravitational wave signal alone, the so-
called standard siren method, makes it possible to measure
the Hubble constant H0 if the host galaxy redshift is known.
Schutz [234] was the first to indicate this immediately after
publication of [230], when it became clear that a strong
gravitational-wave signal must be accompanied by a weak
electromagnetic signal. The electromagnetic signal can be
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associated with a specific galaxy much more reliably than
using gravitational waves, and this potential enhances the
accuracy with which the Hubble parameter can be measured.
The distance estimated on the basis of the gravitational wave
signal inevitably contains errors related primarily to the
uncertainty in the orbit plane tilt angle (the distance
43:8�2:9ÿ6:9 Mpc was obtained already taking kilonova's locali-
zation into account [235]). The Hubble parameter was
determined using data for the gravitational wave from
GW170817: H0 � 70:0�12:0ÿ8:0 km sÿ1 Mpcÿ1 (at a 68.3%
confidence level [235]). This estimate is obviously compatible
with the supernova measurements performed by the Riess
group, 73:45� 1:66 km sÿ1 Mpcÿ1 [236, 237], and data on the
CMB obtained by the Planck collaboration,H0 � 67:8� 0:9
[238] and a more recent value, H0 � 67:4� 0:5 [239]. The
estimates of confidence intervals show that the H0 values
obtained by these two groups significantly disagree. The
accuracy in measuringH0 using this method can be improved
if a large number of merging neutron star binaries is
discovered. We note that currently our DSM method [211±
213] described above is, owing to its accuracy, quite
competitive with the standard siren method, and it can be
developed at a lower cost than the lattermethod, because even
most powerful telescopes are less expensive than facilities that
detect gravitational waves.

6. Dark energy

Dark energy is the general name for the unknown substance
that possibly causes cosmological acceleration. Any form of
matter can be dark energy as long as it is described by the
equation of state P � wr (2.9) with w < ÿ1=3 [see Eqn (2.6)].
It should be kept in mind that the parameter w is very close to
ÿ1 according to observations. A special particular case
w � ÿ1 corresponds to the vacuum energy described above
and differs conceptually from any other case.

As was correctly noted in [11], due to the presence of
vacuum energy in this equation of state, the distance between
two hydrogen atoms in the absolute vacuum of our modern
Universe, sufficient for their gravitational attraction to be
compensated by gravitational repulsion of vacuum energy, is
only one meter. Strictly speaking, repulsion at this distance
would be unnoticeable on the background of the induced
electric dipole interaction between atoms. This thought
experiment is valid for ideally neutral particles with a mass
of 1 GeV. This conclusion is valid in the real world for two
galaxies with the mass of theMilky Way located at a distance
of a couple of megaparsecs.

An alternative mechanism of accelerated cosmological
expansion might be offered by gravity modified at large
(cosmological) distances, considered in Section 7.

The existence of dark energy was predicted in [64] prior
to the discovery of the accelerated expansion of the
Universe. A conclusion was made in that study and in
several subsequent ones [65, 66] that the compensation
mechanism must have an uncompensated residue with the
energy density close to the cosmological one and a non-
standard equation of state. It was noted, in particular, in [66]
that an equation of state with w < ÿ1 can emerge, which
would result during a finite time in a cosmological
singularity, which was later called a phantom [240].

It was noted in other earlier papers [91±94] that in some
potentials the scalar field can mimic time-dependent
vacuum-like energy. The description of dark energy signifi-

cantly advanced when potentials were discovered that yield
so-called tracking solutions, first found in [241, 242] and
somewhat later in [243, 244]. These tracking solutions are of
interest because the scalar field potential can be selected in
such a way that the energy density of the field rather
naturally turns out to be close to the current energy density
of ordinary matter, thus solving the problem of rm being
close to rvac in the present-day Universe. This option
has rapidly become very fashionable [245±263] (see also
reviews [264±266]).

Possible forms of dark energy models based on a scalar
field can be divided into several classes. In particular, this
could be a scalar field with the standard kinetic term (see
Eqn (9.24) in Section 9.3), but with the potential U�f� of a
very unusual form, which results, at the very least, in a
nonrenormalizable and essentially nonlinear theory. Cald-
well et al. [248] proposed calling that field the `quintes-
sence'.

Other versions include the so-called K-essence theory,
where the kinetic term has a nonstandard form:

AK �
�
d4x

�������ÿgp
P�f;X � ; �6:1�

where X � �1=2� g mn qmf qnf is the usual kinetic term, but the
function P depends on it nonlinearly. P is often chosen in a
factored form: P�f;X � � f1�f� f2�X �. The freedom of choice
here is very broad, owing to which studies where this issue is
explored are quite numerous.

Another way to describe dark energy is based on a scalar
tachyon field, an example of whose action is given by the
formula

AT �
�
d4xV�f�

������������������������������������������
ÿ det �gmn ÿ qmf qnf�

q
; �6:2�

where V�f� is a potential function chosen ad hoc. We stress
the unusual dimension of the field f, which is inversely
proportional to the first power of energy. This action
resembles the Born±Infeld action [267], where qmf qnf is
substituted with the Maxwell tensor Fmn, or modified gravity
[268, 269], where Rmn is added to the action in the radicand.
All those theories feature a number of similar properties.

Finally, it is worth mentioning the `phantom' field whose
action sign is opposite to the normal one. This field results in
w < ÿ1, as follows from the formula for energy and pressure
density (9.28) if the sign in front of the f field derivatives is
reversed. The incorrect sign of the kinetic term apparently
results in instability of high-frequency modes, a serious
problem for such theories, which has already emerged on
the classical level, to say nothing about quantum theory
problems.

A more detailed discussion of these options for the
phenomenological (effective, in the spirit of effective Lagran-
gians) description of dark energy and a vast list of references
can be found in reviews [264±266]. It looks as if everything
that was considered pathological in normal theories is now
used to `produce' accelerated expansion. We cannot, how-
ever, rule out that a solution to the problemmay be found just
on this path.

A straightforward candidate for the role of dark energy
carrier is a scalar field f with the canonical kinetic term and
very small (or even zero) mass, m < H0, where H0 is the
Hubble parameter in themodern epoch. This field satisfies the
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Klein±Gordon equation

�f� 3H _fÿ H 2f
a 2�t� �U 0f � 0 ; �6:3�

where U�f� is the potential of that field and U 0 � dU=df.
If the Hubble parameter is large (specific conditions for

the required value are presented below), the solution of the
above equation is approximately constant. First, the spatial
nonuniformity of f is smoothed out due to the cosmological
expansion caused by the factor 1=a 2 in front of spatial
derivatives. The second time derivative is at the same time
negligibly small due to large Hubble friction. We note that
Eqn (6.3) for a spatially uniform field f � f�t� coincides with
the equation of motion in Newton mechanics, where the role
of coordinate is played by f�t�. Its solution can therefore be
intuitively designed knowing the shape of the potentialU�f�.
The term 3H _f behaves as fluid friction in mechanics, and, if
the friction is strong, the motion resembles floating in
glycerin, where the velocity tends to a constant value under
the effect of a constant force.

We thus assume that the second derivatives in Eqn (6.3)
can be disregarded, find a solution, and check whether it
corresponds to the initial assumptions regarding slow varia-
tion off. The fieldf under the assumptionsmade satisfies the
first-order equation

_f � ÿ U 0

3H
: �6:4�

This is nothing but the slow-roll approximation widely used
in inflationary models.

If the main contribution to the cosmological energy
density r comes from f, then r is determined in the slow
field variation limit by the potential U�f� and, according to
Eqn (2.5), the Hubble parameter is

H 2 � 8pU
3m 2

Pl

: �6:5�

The slow-roll approximation is only valid if �f5 3H _f and
_f 2 5 2U�f�. For these conditions to hold, the following
inequality must be satisfied:

U 00

U
5

8p
3m 2

Pl

; �6:6�

which requires a very large f field. Notably, the conditions
specified above are satisfied for a massive noninteracting
field, i.e., a field with the harmonic potential U � m2f2=2, if

f 2 >
4p
3

m 2
Pl : �6:7�

If it is required that the energy density of the f field,
namely rf � m 2

ff
2, be of the order of the modern cosmolo-

gical energy density, its mass must be constrained by a very
low value: mf < 1=tu � 10ÿ42 eV.

Some information about the scalar field theory is
presented in Section 9.3, which also contains a derivation
of the scalar field energy±momentum tensor, which has
form (9.27). In the case of a quasi-constant and quasi-
uniform field, it becomes proportional to the metric tensor,
Tmn / gmn, thus implementing the vacuum-like equation of
state (2.15), i.e.,w � ÿ1, which eventually results in an almost
exponentially accelerated expansion. It is essential, however,

that the field f decreases, albeit slowly. It is assumed that at
the equilibrium point where dU=df � 0, the potential also
vanishes, U � 0. (This requires that the vacuum energy be
absent, and the fulfillment of this requirement is, generally
speaking, optional.) A simple example of such potentials
tending to zero at infinity are the power-law U � 1=f q or
exponentialU � exp �ÿf=m� potentials, where m is a constant
parameter with the dimension of mass [270]. These potentials
were introduced for the purpose of a phenomenological
description of accelerated expansion; however, substantia-
tion of such potentials is rather weak.

The motion of f�t� in such potentials is conceptually
different from that in potentials that have a minimum at a
finite f, for example,U�f� � m 2

ff
2=2 orU�f� � lf 4=4, and

zero vacuum energy. We note that these two potentials are
natural in quantum field theory because they correspond to
renormalizable theories. The expansion regime changes
drastically in such potentials if f decreases to a value at
whichH 2 becomes comparable tom 2

f or lf 2, i.e., f decreases
to a level significantly lower than the Planck value. The
quasipotential regime of accelerated expansion is replaced at
that moment with the ordinary decelerating Friedmann
regime: either nonrelativistic (w � 0) for the quadratic
potential or relativistic (w�1=3) for the quartic potential.
The field f then starts oscillating about the minimum,
generating massless particles, photons or gravitons.

If the potential does not have a minimum at finite f, the
field monotonically tends to zero, and the expansion is
eternally accelerated; the parameter w in the slow-roll regime
is constant and negative, thus ensuring accelerated expansion.
For example, we consider the exponential potential [270, 271]

U�f� � U0 exp

�
ÿ f

m

�
: �6:8�

The equation of motion for f reduces under the assumption
_f 2 5U�f� to Eqn (6.4), which can be easily integrated if the
potential term dominates in the energy density and the
Hubble parameter is given by Eqn (6.5). The field f
logarithmically grows with time:

f�t� � 2m ln

" �������������
U0

96pm 4

s
mPl�tÿ t0� � exp

�
f0

2m

�#
; �6:9�

where f0 is the value of the field at the initial moment t0. For
large t, we then have

U�f� � 96pm 4

�mPlt� 2
; � _f� 2 � 4m 2

t 2
; �6:10�

and the slow roll-condition is satisfied for mPl9m. The
Hubble parameter then decreases in inverse proportion to
time:

H � 16pm
mPlt

; �6:11�

and hence the expansion is described by a power law:

a � t 16pm=mPl : �6:12�

If 16pm > mPl, expansion occurs with acceleration. If
mPl=m! 0, the expansion law tends to be exponential, and
w! ÿ1.
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7. Modified gravity

An alternative hypothesis suggested for a phenomenological
description of cosmological acceleration is the assumption
that gravity is modified at small curvature. This approach is
usually realized by adding some function of the curvature
scalar R to the Hilbert±Einstein action:

A � m 2
Pl

16p

�
d4x

�������ÿgp �R� F �R�� � Am ; �7:1�

where mPl � 1:22� 1019 GeV is the Planck mass, R is the
scalar curvature, and Am is the matter field action. The
additional term F�R� modifies gravity at large distances;
therefore, this approach is referred to as an infrared
modification of gravity. The nonlinear function F�R� is
chosen in such a way that the equation of motion has the
solutionR � const in the absence of matter.We note that, in
principle, more intricate versions of modifying gravity
might be considered that contain functions not only of R
but also of invariant combinations built from RmnR

mn or the
Riemann tensor. However, theories with F�R� alone are
currently under consideration. This is dictated not only by
their simplicity but also by problems with ghosts and
tachyons that emerge in more sophisticated theories.

The Einstein equations for F�R� gravity are modified to

�1� F 0�Rmn ÿ 1

2
�R� F � gmn

� �gmnDaD
a ÿDmDn�F 0 � 8pT �m�mn

m 2
Pl

; �7:2�

where F 0 � dF=dR, Dm is the covariant derivative in a
FRW metric and T

�m�
mn is the energy±momentum tensor of

matter. Taking the trace of this equation, gmndA=dgmn, we
obtain

3D 2F 0R ÿ R� RF 0R ÿ 2F � 8pTm
m

m 2
Pl

; �7:3�

where D2 � DmD
m is the covariant d'Alembert operator.

Exploration of the solutions of this equation is frequently
sufficient for analyzing the F�R� theory.

We note, however, that adding a term to an action that
is nonlinear in curvature can result in serious pathologies in
the theory, including violation of unitarity and the emer-
gence of ghosts and/or tachyons. These problems are
usually ignored for curvatures close to the Planck value
(who knows what happens there), but noticeable deviations
from ordinary gravity at small curvatures, i.e., in the weak-
field limit, may result in disagreement with well-established
observational facts. We do not consider the entire range of
these problems, but limit our analysis to possible deviations
from the standard GR at the level of solutions of the
classical equations of motion.

In the pioneering studies of cosmological acceleration
originating from modified gravity [272, 273], the function
F�R� was chosen in the form F�R� � ÿm 4=R, where m is a
small parameter with the dimension ofmass. However, as was
shown in [274], this choice of F�R� results in very strong
exponential instability of the theory in the presence of matter,
such that the ordinary gravity theory would be heavily
distorted. Indeed, we consider the equation that describes
the evolution of curvature as a function of time (7.3) in the

theory containing F�R� � ÿm 4=R:

D 2Rÿ 3
�DaR� �D aR�

R
� R 2

2
ÿ R 4

6m 4
ÿ

~TR 3

6m 4
: �7:4�

Here, ~T � 8pT n
n =m

2
Pl > 0. This equation has an obvious

solution R 2 � 3m 4 in the absence of matter, which describes
the de Sitter universe with a constant curvature scalar.

We now assume that an ordinary celestial body, for
example Earth or the Sun, is the source of the gravitational
field, and hence the created gravitational field is weak and the
background space is 4D flat and has the Minkowski metric.
We seek a solution of Eqn (7.4) in the perturbation theory,
assuming a small deviation from standard GR. The curvature
is algebraically expressed in the lowest order in terms of the
trace of the energy±momentum tensor: R0 � ÿ ~T. The
standard solution in the vacuum R � 0 is now an approx-
imate one, because the function F�R� is chosen, as was noted
above, such that Eqn (7.3) has the solutionR � Rc � const in
the absence of matter. Here, Rc is equal to the observed
cosmological constant and is negligibly small compared with
the curvature inside any material body: it is as small as the
ratio of the cosmological energy density and the energy
density of that body. It can also be verified that the
stationary solution outside a gravitating body rapidly
decreases in the modified theory as the distance from that
body increases. This observation enables making a conclu-
sion that stationary solutions in modified gravity agree well
with theNewtonian limit of the standardGR for a sufficiently
small m.

Introducing an additional term m 4=R with a sufficiently
small m to the action seems at first glance to not result in
significant deviations from the standard gravity theory;
however, this is not fully true: in the modified theory, the
scalar R becomes a dynamic variable whose evolution is
driven by a second-order equation with a small coefficient in
front of the higher time derivative. This results in the
emergence of very strong instability of the solution in the
presence of material bodies [274].

We now use Eqn (7.4) in a perturbative calculation of the
gravitational field or, more accurately, of the scalar curvature
within a celestial body, for example, the Sun, Earth, or a gas
cloud in a galaxy whose energy density is time dependent. We
seek a solution in the form R � R0 � R1, where R0 � ÿ ~T is
the standard GR solution. Assuming, as was noted above,
that the background metric is flat, we find that the deviation
from GR, R1, satisfies the equation

�R1 ÿ DR1 ÿ 6 _~T
~T

_R1 � 6qj ~T
~T

qjR1

�R1

�
~T� 3

�qa ~T � 2
~T 2

ÿ
~T 3

6m 4

�
� D ~T�

~T 2

2
ÿ 3�qa ~T � 2

~T
; �7:5�

where �qa ~T �2 � _~T
2 ÿ �qj ~T �2.

The last term in square brackets in the left-hand side of
Eqn (7.5) results in exponential instability of small fluctua-
tions and an instability of the gravitational field produced by
the mass/energy density of the body under consideration,
which changes with time on a regular basis. The characteristic
instability time turns out to be very short:

tinstab �
���
6
p

m 2

T 3=2
� 10ÿ26 s

�
rm

g cmÿ3

�ÿ3=2
; �7:6�
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where rm is the mass/energy density of the body, mÿ1 �
tu � 3� 1017 s, and tu is the age of the Universe. Because m
is small, the term that contains m 4 in the denominator in
Eqn (7.5) is much larger than all other terms.

Spatial derivatives usually eliminate or suppress instabil-
ity. For example, the Jeans instability is removed by the
pressure that counteracts gravity. However, the term contain-
ing the Laplace operator, DR1, which is inversely propor-
tional to the system dimension squared, is in the case under
consideration much less than the term that causes the
instability. It can be easily verified that the instability can be
suppressed on a scale that is smaller than the Compton
wavelength of the proton, i.e., smaller than 10ÿ14 cm.

Further modification of modified gravity has been
proposed to solve the instability problem. We only consider
the class of models proposed in [275±277]. Some other forms
of the modification of gravity are reviewed in [278]. Various
forms of the action studied in [275±277] are

FHS�R� � ÿRvac

2

c�R=Rvac�2n
1� c�R=Rvac�2n

; �7:7�

FAB�R� � E
2
lg

�
cosh �R=Eÿ b�

cosh b

�
ÿ R

2
; �7:8�

FS�R� � lR0

��
1� R 2

R 2
0

�ÿn
ÿ 1

�
: �7:9�

Although these functions seem to look different, their
implications are virtually identical. Below, we follow the
analysis performed in [279] and use formula (7.9) in specific
examples.

Introducing the notation f � R� F�R�, we represent the
field equations in the form

f 0R n
m ÿ

f

2
d n
m � �d n

m&ÿDmD
n� f 0 � 8pT n

m

m 2
Pl

: �7:10�

Here and below, the prime on f or F denotes the derivative
with respect to R.

Taking the trace over m and n, we arrive at a closed
equation for R:

3& f 0�R� � Rf 0�R� ÿ 2f �R� � 8pmÿ2Pl T
m
m : �7:11�

The theory modified in this way yields accelerated
cosmological expansion if the equation

Rf 0�R� ÿ 2f �R� � 0 �7:12�

has the solution R � R1 > 0 with an (approximately) con-
stant R1.

To avoid possible pathologies in the theory, the following
conditions must be satisfied:

(1) stability of cosmological solutions in the future:

F 0�R1�
F 00�R1� > R1 ; �7:13�

(2) classical and quantum stability (gravitational attrac-
tion and the absence of ghosts):

F 0�R� > 0 ; �7:14�

(3) the absence of instability in material bodies shown
above:

F 00�R� > 0 : �7:15�

These twice modified theories still result in significant
problems, despite significant improvements. First, in the
cosmological situation where the energy density decreases
with time, a singularity had to exist in the near past when
curvature was infinitely large, although energy density
remained finite.

Moreover, astronomical systems with a growing energy
density either have already ended in a singular state or will
come to that state in the near future [280, 281]. Following
[281], we consider version (7.9) of modified gravity in the limit
R4R0, where the following approximation can be used:

F�R� � ÿlR0

�
1ÿ

�
R0

R

�2n�
: �7:16�

We analyze the evolution of R within massive astronomic
objects with the mass/energy density r4 rcosm growing with
time.

We conjecture as above that the gravitational field of the
objects under study is weak, and therefore ordinary deriva-
tives can be used instead of covariant ones. In this approx-
imation, Eqn (7.11) has the form

�q 2
t ÿ D�Rÿ �2n� 2�

_R 2 ÿ �HR�2
R

� R 2

3n�2n� 1�
�
R 2n

R 2n
0

ÿ �n� 1�
�

ÿ R 2n�2

6n�2n� 1� lR 2n�1
0

�R� ~T � � 0 : �7:17�

The equation is drastically simplified if R is replaced with
another function w � F 0 �ÿ2nl�R0=R�2n�1, which satisfies
the equation

�q 2
t ÿ D�w� dU�w�

dw
� 0 ; �7:18�

where the potential U�w� is

U�w� � 1

3
� ~Tÿ 2lR0�w

� R0

3

�
q n

2nn
w 2nn �

�
q n � 2l

q 2nn

�
w 1�2nn

1� 2nn

�
�7:19�

with the parameters n � 1=�2n� 1� and q � 2nl. We here
follow the notation introduced in [281] and hope that the use
of the same notation w for both the new curvature function
and the cosmological parameter that relates pressure and
energy density does not lead to confusion.

We note that the singularityR � 1 corresponds tow � 0.
Therefore, in analyzing the singularity, we can safely
disregard spatial derivatives in that equation. Indeed, spatial
derivatives usually do not allow the function to grow; on the
contrary, they `drag' it to zero. If the Fourier transformation
by coordinates is done, then ÿDw � k 2w, which means that
this component behaves like the harmonic oscillator potential
with a minimum at zero. Therefore, if a singularity occurs
when the term Dw is disregarded, it certainly does so if this
term is taken into account.
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If only the leading terms in the small ratio R0=R are
retained and spatial derivatives are disregarded, Eqn (7.18)
takes the form of the ordinary oscillator equation

�w�
~T

3
ÿ q n�ÿR0�

3w n � 0 �7:20�

with the potential that has the following form in this
approximation:

U�w� �
~Tw

3
ÿ q n�ÿR0�w 1ÿn

3�1ÿ n� : �7:21�

The potential U is time dependent if the mass/energy
density of the celestial body under consideration varies with
time. As an example, we consider an object that consists of
nonrelativistic matter whose mass density is growing
linearly:

~T � ~T�t� � ~T0

�
1� t

tcontr

�
; �7:22�

where tcontr is the characteristic time of system contraction.
The linear approximation apparently loses its validity at some
moment, but the results do not change in a qualitative way.

It is convenient in what follows to introduce dimension-
less variables t � gt and w � bz such that

g 2 � 3q

ÿR0

�
ÿ R0

~T0

�2�n�1�
;

b � g 2 ~T0

3
� q

�
ÿ R0

~T0

�2n�1
:

�7:23�

Equation (7.20) expressed in terms of these variables takes a
very simple form:

z 00 ÿ zÿn � �1� �t� � 0 : �7:24�

The prime here denotes a derivative with respect to the
dimensionless time t.

It can be easily seen that the minimum of the potential
shifts to z � 0, and the depth of the potential in its minimum
decreases. It seems to be quite evident that even if z was
constant in the initial state and corresponded to a minimum
of the potential, the growing mass density causes oscillations
of z around the sliding minimum, and z attains zero in the
process of oscillation build-up. Computations performed
in [281] yield exactly that scenario.

For qualitative analysis of oscillations, it is convenient to
use the integral law of energy evolution, which for the general
form of the oscillatory equation

z 00 � qU
qz
� 0 �7:25�

with a potential that can explicitly depend on time, has the
form

�z 0� 2
2
�U�z; t� ÿ

�
dt

qU
qt
� const : �7:26�

Relation (7.26) also enables a general analysis of how the
singularity of R emerges, as has been done in [282].

Infinite R values can be avoided if a term proportional to
R 2 is added to the action:

F�R� ! F�R� ÿ R 2

6m 2
: �7:27�

Cosmological models with the action quadratic in curvature
were explored for the first time in [285±287]. Leading terms in
the curvature can emerge as a result of radiative corrections to
the ordinary Einstein±Hilbert action if the vacuum expecta-
tion value of the energy±momentum tensor in a curved space
is considered. We note that the radiative corrections generate
not only R 2 but also RmnRmn, which are not as innocuous as
the former term because they result in pathology in the form
of tachyons and ghosts.

An interesting feature of the action containing terms
quadratic in curvature is the early inflation stage, as is the
case in the Starobinsky model [286]. Inflation naturally ends
in this model due to production of particles by the new scalar
gravitational degree of freedom, the curvature scalar, which
becomes a dynamic variable owing to R 2 corrections.
Heating of the Universe, a herald of the end of inflation,
which occurs due to gravitational production of particles in
the R 2 theory, was explored earlier in [287±291] and in more
recent studies [292, 293].

Particle production in the late Universe due to high-
frequency oscillations of the curvature scalar in the theory
with action (7.9) was analyzed in [294, 295]. A conclusion was
reached that the produced particles can make a significant
contribution to the flux of high-energy cosmic particles. This
result was criticized in [296, 297], where the high efficiency of
particle production was questioned. However, it was shown
in [298] that this criticism is not justified.

If the equation of motion that governs the evolution of
R�t� contains anR 2 term, it cannot be explicitly reduced to an
oscillatory equation like (7.25), and takes a more involved
form [281]:�

1ÿ R 2n�2

6ln�2n� 1�R 2n�1
0 m 2

�
�Rÿ �2n� 2�

_R 2

R

ÿ R 2n�2�R� T �
6ln�2n� 1�R 2n�1

0

� 0 : �7:28�

We can nevertheless see that due to the presence of the second
term in the coefficient in front of �R, the curvature cannot
grow to infinity. It is of interest that a naive estimate of the R
cut-off at a value at which the second term is of the order of
unity turns out to be too low. The growth of R stops at a
significantly larger value, as was shown in [294]. This study
explored the evolution of R�t� in detail in infrared-modified
theories with an action like (7.7)±(7.9), with the termR 2=6m 2

added for astronomical systems with growing energy density.
An analytic solution was obtained using Eqn (7.26), as was a
numerical one, and they agree well with each other.

The numerical solution is unstable at high frequencies and
`blows up' at relatively short times. It is therefore not possible
to reliably advance to the asymptotic regime. However, the
calculations are quite reliable at sufficiently small frequencies
and agree well with the analytic result. On the other hand, the
accuracy of analytic results increases as the frequency grows.
Owing to this, the entire essential frequency range can be
spanned.
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Equation of motion (7.28) was transformed for analysis
into (7.25); but an explicit expression for the potential cannot
be derived in that case. The obtained approximations never-
theless describe the solutions sufficiently well. The relations
jRcj5 jRj5m 2 hold for the considered case of astronomical
systems with growing density, and then F is approximately
given by

F�R� ' ÿRc

�
1ÿ

�
Rc

R

�2n �
ÿ R 2

6m 2
: �7:29�

We consider an approximation for the uniform distribu-
tion of matter with the growing mass density that remains
sufficiently small (for example, a gas cloud in the process of
production of a galaxy or star). The background metric can
be considered in this case to be the Minkowski metric. In this
approximation Eqn (7.3) takes the form

3q2t F
0 ÿ Rÿ T � 0 : �7:30�

As above, we introduce dimensionless variables

z � T�t�
T�tin� �

T

T0
� rm�t�

rm0

; y � ÿ R

T0
;

g � T 2n�2
0

6n�ÿRc�2n�1m 2
� 1

6n�mtu�2
�
rm0

rc

�2n�2
;

�7:31�

t � m
���
g
p

t ;

where rc � 10ÿ29 g cmÿ3 is the cosmological energy density
in the present-day Universe, rm0 is the initial value of energy
density in the system under consideration, and T0 �
8prm0=m

2
Pl.

We next introduce a new unknown function

x � 1

2n

�
T0

Rc

�2n�1
F;R � 1

y2n�1
ÿ gy ; �7:32�

which can be used to rewrite Eqn (7.30) in the simple
oscillatory form

x 00 � zÿ y � 0 ; �7:33�

where the prime on x denotes the derivative with respect to the
dimensionless time t. Change of variables (7.32) is similar but
not identical to that done in [281] even if theR 2 term is absent.
This is more convenient in the case under consideration for
technical reasons.

The oscillator potential is evidently determined by the
condition

qU
qx
� zÿ y�x� : �7:34�

The y variable is no longer expressed in terms of x in analytic
form, and the explicit formula for the potential is unavailable.
Rather accurate approximated formulas for U�x� can never-
theless be derived, especially for small g, separately for
positive and negative x. Details of this approach can be
found in [294].

Oscillations of x�t� are nearly harmonic, but the physical
field R�t� oscillates in a way that is very far from harmonic;
it exhibits sharp and short peaks with large amplitude where
y4 1, i.e., the solution strongly deviates from the standard
GR form RGR � ÿT0. These peaks correspond to unrea-
lized singular points where curvature could become infinite
but was cut off by the R2 term. The behavior of curvature as
a function of time is displayed in Fig. 11. As a result of the
strong anharmonicity of oscillations of y or, equivalently, of
R, the energy of low-frequency modes excited when the
system slowly contracts is pumped to high-frequency
modes.

The high-frequency large-amplitude oscillations of curva-
ture result in the production of high-energy cosmic rays in the
periodwhen large-scale structures are formed in theUniverse.
Fluxes of such particles can be observable for a rather broad
range of theory parameters.

We discussed this unusual behavior of curvature in detail
also because these solutions violate the Jebsen±Birkhoff
theorem; in particular, an amazing phenomenon of gravita-
tional repulsion, antigravitation, occurs in finite-size systems
[299]. The occurrence of gravitational repulsion in infinite
systems, for example, accelerated cosmological expansion,
does not disagree with GR. A discussion of the violation of
the Jebsen±Birkhoff theorem in F�R�-modified theories can
be found in [300, 301].

We now show how gravitational repulsion emerges using
an example of a spherically symmetric distribution of matter
with the metric given by the standard formula

ds 2 � A�r; t� dt 2 ÿ B�r; t� dr 2 ÿ r 2�dy 2 � sin 2y df 2� :
�7:35�

A metric of this type for the F�R� theories has been analyzed
in [302, 303]; however, these studies did not discuss curvature
oscillations for which the antigravitation effect originates.

y

t

x

t

a b

Figure 11. Curvature oscillation peaks. Results are presented for n � 2, g � 0:001, � � 0:04, and y 00 � �=2.
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Weassume that themetric coefficientsA andB are close to
unity, i.e., that the metric is close to the flat Minkowski
metric. It is under this assumption that the quantitative
results about R oscillations have been obtained. Nonzero
components of the Ricci tensor corresponding to metric
(7.35) are

R00 � A 00 ÿ �B

2B
� �

_B� 2 ÿ A 0B 0

4B 2
�

_A _Bÿ �A 0� 2
4AB

� A 0

rB
; �7:36�

Rrr �
�Bÿ A 00

2A
� �A

0� 2 ÿ _A _B

4A 2
� A 0B 0 ÿ � _B� 2

4AB
� B 0

rB
; �7:37�

Ryy � ÿ 1

B
� rB 0

2B 2
ÿ rA 0

2AB
� 1 ; �7:38�

Rjj �
�
ÿ 1

B
� rB 0

2B 2
ÿ rA 0

2AB
� 1

�
sin 2y � Ryy sin

2 y ; �7:39�

R0r �
_B

rB
: �7:40�

The prime and dot on symbols denote derivatives with respect
to r and t. The corresponding curvature scalar R � g mnRmn is

R � 1

A
R00 ÿ 1

B
Rrr ÿ 1

r 2
Ryy ÿ 1

r 2sin 2y
Rjj

� A 00 ÿ �B

AB
� �

_B� 2 ÿ A 0B 0

2AB 2
�

_A _Bÿ �A 0� 2
2A 2B

� 2A 0

rAB
ÿ 2B 0

rB 2

� 2

r 2B
ÿ 2

r 2
� 2

A
R00 ÿ 2B 0

rB 2
� 2

r 2B
ÿ 2

r 2
: �7:41�

Assuming, as was said above, that the metric insignificantly
differs from the flat one, i.e.,

A1 � Aÿ 15 1 ; B1 � Bÿ 15 1 ; �7:42�

we check the self-consistency of that assumption for the
oscillatory solutions found in [294], where R significantly
exceeds its GRvalue. For this, it is convenient to use Eqn (7.2)
in the form

R00 ÿ R

2
�

~T00 � DF;R � F=2ÿ RF;R=2

1� F;R
; �7:43�

Rrr � R

2
�

~Trr � �q 2
t � q 2

r ÿ D�F;R ÿ F=2� RF;R=2

1� F;R
;

�7:44�

because the left-hand side does not contain second derivatives
of curvature. The derivatives of A�r; t� and B�r; t� squared in
the limit of a weak gravitational field can be ignored, which
leads to the following formulas for the components R00 and
Rrr of the Ricci tensor and the curvature scalar R:

R00 � A 00 ÿ �B

2
� A 0

r
; �7:45�

Rrr �
�Bÿ A 00

2
� B 0

r
; �7:46�

R � A 00 ÿ �B� 2A 0

r
ÿ 2B 0

r
� 2�1ÿ B�

r 2
: �7:47�

If the matter energy density inside the cloud, i.e., for
r < rm, is much larger than the average cosmological energy

density, the following relations hold:

F;R 5 1 ; F5R : �7:48�

The gravity modification effects for static solutions are
not large in this limit, and the solution is close to the standard
Schwarzschild solution, in agreement with the published
results. As was noted above, study [296] showed that high-
frequency oscillations of curvature are excited in systems with
growing density. We can disregard spatial derivatives F 0R in
such solutions in comparison to time derivatives because the
characteristic time of oscillations is microscopically small and
spatial variations are macroscopically large. It therefore
follows from Eqn (7.3) that �q 2

t ÿ D�F;R � � ~T� R�=3, and
we obtain

B 01 �
B1

r
� r ~T00 ; �7:49�

A 001 ÿ
A 01
r
� ÿ 3B1

r 2
� �B1 � ~T00 ÿ 2 ~Trr �

~Tyy

r 2

�
~Tjj

r 2 sin 2 y
� SA : �7:50�

Assuming deviations from the Minkowski metric to be
small, we disregard the corrections to Tmn that are caused by
space±time curvature. We check below in which case this
assumption is valid.

Equation (7.49) has the solution

B1�r; t� � CB�t�
r
� 1

r

� r

0

dr 0r 0 2 ~T00�r 0; t� : �7:51�

To avoid a singularity at r � 0, we must set CB�t� � 0. Then
the formula for B1 formally coincides with the standard
Schwarzschild solution, and the solution for A1 contains
additional freedom:

A1�r; t��C1A�t� r 2�C2A�t� �
� rm

r

dr1 r1

� rm

r1

dr2
r2

SA�r2; t� :
�7:52�

Integration limits are chosen such that no singularity occurs
at r2 � 0.

Using Eqn (7.51) combined withCB � 0, we present SA in
the form

SA � ÿ 3

r 3

� r

0

dr 0r 02 ~T00�r 0; t� � 1
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� r

0

dr 0r 02 �~T00�r 0; t�
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~Tyy
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r 2 sin 2 y
; �7:53�

to eventually obtain

A1�r; t� � C1A�t� r 2 � C2A�t�
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0
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�
: �7:54�
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We first find the integration constants in the cases where
the curvature does not contain an oscillating term. We define
the mass inside a radius r standardly

M�r; t� �
� r

0

d3�r T00��r; t� � 4p
� r

0

d�r �r 2 T00��r; t� : �7:55�

If the entire matter is concentrated within a radius rm, the
total mass of the system is M �M�rm�, and, in correspon-
dence with the classic Schwarzschild solution, it does not
depend on time. Because ~T00 � 8pT00=m

2
Pl, for r > rm we

obtain B1 � rg=r, where rg � 2M=m 2
Pl is the standard external

Schwarzschild radius, in accordance with expectations.
We now calculate A1 in (7.54). If r > rm, the first integral

evidently vanishes because r2 > rm and, according to the
assumption, Tmn�0. The integral containing �~T00 also
vanishes because the external mass is constant. The remain-
ing integral can be easily calculated:� rm

r

dr1 r1

� rm

r1

dr2
r2

3

r 32

� r2

0

dr 0r 02 ~T00�r 0; t�

� rg
r
� rg r

2

2r 3m
ÿ 3rg

2rm
: �7:56�

The metric coefficient outside the source is therefore given by

A1 � ÿ rg
r
�
�
C1A�t� ÿ rg

2r 3m

�
r 2 �

�
C2A�t� � 3rg

2rm

�
: �7:57�

We set

C1A � rg
2r 3m

; C2A � ÿ 3rg
2rm

: �7:58�

The first condition is needed to remove the term proportional
to r 2 at infinity, and the second condition is optional but can
always be imposed by redefining time. We note that this
choice of arbitrary constants is valid if the solution does not
contain rapidly oscillating terms.

The internal solution in modified gravity has the same
form (7.51) and (7.54); however, the coefficient C1A can
depend on time in a nontrivial way. This coefficient can be
found from Eqn (7.47) if the scalar curvature R�t� is known.
Using Eqns (7.51) and (7.54) and comparing them with
Eqn (7.47), we conclude that the dominant contribution to
curvature comes from the sum A 00 � 2A 0=r and hence
C
�osc�
1A �t� � R�t�=6 with the curvature scalar calculated

in [294]:

R�t� � RGR�r� y�t� ; �7:59�

where RGR � ÿ8pT�r�=m2
Pl is the GR solution, and the

rapidly oscillating function y�t� can significantly exceed
unity. According to [294], the maximum value of y in the
peak region is

y�t� � 6n�2n� 1�mtu

�
tu

tcontr

�

�
�
rm�t�
rm0

��n�1�=2� rc
rm0

�2n�2
; �7:60�

where tu is the age of the universe and tcontr is the
characteristic time of system contraction; thus, the density
of the contracting cloud behaves as rm�t� � rm0�1� t=tcontr�

and rm0 and rc � 10ÿ29 g cmÿ3 are the initial density of cloud
mass/energy and the present-day cosmological constant.
Results in [293] show that the parameter m contained in
Eqn (7.27) must exceed 105 GeV to avoid disagreement with
primordial nucleosynthesis. The factormtu therefore acquires
a giant value, mtu 5 1047, and y can be much greater than
unity unless it is suppressed by a small ratio �rc=rm0�2n�2 with
a large exponent n.

We note that the vacuum solutions in ordinary and
modified gravity significantly differ. The term proportional
to r 2 emerges in the standard case outside (r > rm) and inside
(r < rm) the cloud with the same coefficient and must
therefore vanish. On the other hand, there is no such
condition in modified gravity, and the term C1Ar

2 can
therefore be present at r < rm and absent at r4 rm.

The vacuum solution for R can be apparently written as
R � Rc, where Rc is the small cosmological curvature, plus a
possible oscillating term. The metric functions within the
cloud are therefore given by

B�r; t� � 1� 2M�r; t�
m 2

Plr
� 1� B

�Sch�
1 ; �7:61�

A�r; t� � 1� R�t� r 2
6
� A

�Sch�
1 �r; t� : �7:62�

In other words, we have constructed a solution assuming that
it consists of two terms: the Schwarzschild term and the
oscillating one, and the rapidly oscillating part emerges in
systems with an energy density that slowly varies with time.
The formula for A

�Sch�
1 �r; t� is determined by integrals (7.54)

with the constants CA1 � rg=2r
3
m and CA2 � ÿ3rg=rm, as

follows from (7.58).
As regards the integrals in (7.54) in the inner region, we

calculate them under the assumption that matter is nonrela-
tivistic and therefore the spatial components Tmn are negli-
gibly small compared to T00. We also assume for simplicity
that the mass/energy density T00�rm�t� is constant across
space but can depend on time. The first two integrals in
Eqn (7.54) mutually cancel, and only the integral that is
proportional to the second derivative of the mass density
remains. As a result, we obtain

A
�Sch�
1 �r; t� � rgr

2

2r 3m
ÿ 3rg

2rm
� p�rm
3m 2

Pl

�r 2m ÿ r 2�2 : �7:63�

As we have noted, R�t� in the modified theory is usually
larger than its counterpart in GR, jRGRj � 8prm=m

2
Pl, and

therefore the second term in the right-hand side of Eqn (7.62),
R�t� r 2=6, makes the dominant contribution to A1 at suffi-
ciently large r. Indeed, r 2R�t� � r 2yRGR, and y > 1, while the
canonical Schwarzschild contribution is of the order of
rg=rm � rmr

2
m=m

2
Pl9r 2mRGR.

The equation of motion of a nonrelativistic probe
(geodetic equation) in the lowest order in gravitational
interaction has the form

�r � ÿA 0

2
� ÿ 1

2

�
R�t� r
3
� rgr

r 3m

�
; �7:64�

where A is defined in Eqn (7.62). Because R�t� is negative in
the modified gravity considered here and its absolute value is
large, gravitational repulsion emerges within the contracting
cloud with r > rc, which turns out to be stronger than
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gravitational attraction if

jRj r 3m
3rg

� jRj r
3
mm

2
Pl

6M
� jRj r

3
mm

2
Pl

8pr r 3m
� jRj

~T00

� y > 1 : �7:65�

Cellular structures, in particular, cosmic voids, can be formed
as a result.

It is of interest that the gravitational repulsion force is
manifested in this theory in the form of short but strong kicks,
significantly stronger than ordinary gravitational attraction.

We note that although the result was obtained in the
approximation of flat background space, it has a more
general nature and also remains valid in the case of curved
space±time. Moreover, it is natural to expect that antigravity
also emerges in other similar versions of F�R� theories.

8. Conclusion

After our review had been submitted for publication, a series
of studies appeared that are directly related to the subject we
discuss. Following the referee's proposal, we briefly describe
some of the most recent publications. First of all, review [304]
should be noted, where various types of modifications of
gravity are considered rather than F�R�, as in our review.
Review [304] contains a description of cosmological evolution
from the inflationary epoch to our time and a model of
bouncing from the singularity in the collapsing Universe.

Constraints were imposed in [305] on the parameters of
scalar±tensor and F�R� theories based on an analysis of
observations of gravitational waves generated by merging
neutron stars.

A detailed discussion of cosmological evolution in F�R�
theories is reported in study [306], which had not been
published yet at the time our review was in preparation.

The authors of [307] make a strict distinction between
dark energy and modified gravity on the basis of strong and
weak equivalence principles. The phenomenology and typical
observable characteristics of those two categories of models
are analyzed.

Review [308] stresses the quantum nature of the dark
energy problem and the necessity of a solution that circum-
vents the so-called Weinberg no-go theorem [25].

A critical analysis of a vast array of astronomical
observations of different kinds is presented in [309]. In the
opinion of its authors, the very reality of cosmological
accelerations has been reliably established.

The issue of how reliably type-Ia supernovae can be used
as standard candles is discussed in [310], given that gravita-
tion may be modified. The authors conclude that type-Ia
supernovae cannot be considered standard candles in theories
where gravity is time dependent, and the conclusion regarding
accelerated expansion may be invalid in general. However,
the issue remains open regarding the extent to which the
required time dependence of the gravitational constant is
compatible with the complete set of data evidencing in favor
of antigravitating dark energy.

A new trend has recently emerged in the description of the
accelerated expansion of the Universe and dark energy. This
trend, referred to as swampland [311, 312], is an alternative to
the string-theory landscape. This term means an almost
infinite number of vacuum states (more than 10100; 000) when
superstring models are compactified to a 4D space. The
number of vacuum states this huge opens an avenue to the
anthropic solution of the vacuum energy problem [see the
discussion above between Eqns (3.6) and (3.7) in Section 3].

The authors of [311, 312] note that it is generally believed
that all self-consistent effective quantum field theories
coupled to gravity can be with a high probability obtained
this way or another by compactifying string theory, thus
making string theories not very helpful from the perspective
of low-energy phenomenology. According to the opinion put
forward in [311, 312], this is not true, and actually effective
field theories may exist that do not result in a self-consistent
theory of gravity under ultraviolet closure. The authors of
[311, 312] propose calling the set of theories that do not result
in string theory under ultraviolet closure the swampland, in
contrast to landscape.

The cosmological effects that could emerge in the
`swampland' picture are analyzed in [313]. A critical analysis
of these models and their implications is contained in [314].

The number of studies where `swampland' issues are
explored is now several dozen, and, a separate review would
be needed to analyze them.
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9. Appendices

9.1 Derivation of the Friedmann equations
9.1.1 Elementary derivation from Newtonian theory. We
consider a space filled with uniformly and isotropically
distributed matter and choose a small sphere with a radius
ra�t� in it. Here, r is a fixed, so-called comoving coordinate,
and possible change in the radius is defined by the function
a�t�. The notation is chosen in correspondence with the
cosmological notations used in the text.

We now consider the behavior of a material probe on the
boundary of that sphere. The external layer of the ball in the
spherically symmetrical case is known to have no effect on the
probe particle. The sum of the kinetic and potential energies
of that particle must be conserved:

r 2 _a 2

2
ÿ 4p

3

rr 2a 2

m 2
Pl

� const : �9:1�

This equation, after dividing by r 2a 2=2, is identical to
Eqn (2.5).

We next consider the balance of the medium energy
density dE � ÿPdV, where E � rV and hence dE �
V dr� 3�da=a�Vr. This evidently yields Eqn (2.7).

Having differentiated Eqn (2.5) and using Eqn (2.7), we
obtain Eqn (2.6).

A natural question may arise at this stage: how is it
possible to obtain the relativistic Einstein theory in which
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not only mass but also pressure gravitates starting with the
Newtonian nonrelativistic theory? The answer is that we
assumed that the source of gravitation is, at least partly, not
mass density but energy density. This is the critical difference
from the Newtonian nonrelativistic theory.

9.1.2 Derivation from the variational principle. The basic
cosmology equations, i.e., Friedmann equations, are usually
derived in GR textbooks under the assumption of uniform
and isotropic metric (2.3) or (2.4). Indeed, Eqn (2.12) with
L � 0 in mixed components yields the Einstein tensor Gn

m in
the form

G n
m � R n

m ÿ
1

2
g n
mR �

8p
m 2

Pl

T n
m ; �9:2�

whence, for FRW metric (2.4), we obtain

G 0
0 � R 0

0 ÿ
1

2
R � 8p

m 2
Pl

T 0
0 : �9:3�

Calculating the Ricci and Einstein tensors, we arrive at

G 0
0 �

3 k� 3 � _a� 2
a 2

: �9:4�

Because T 0
0 � r, we immediately obtain Eqn (2.5).

We now show that this equation can be derived withinGR
not using the energy±momentum tensor Tk

i and Einstein
equations but directly from the action S. The derivation
from the variational principle only requires knowledge of
the curvature scalar R. This derivation contains a number of
instructive points.

The action S consists of two terms: the gravitational
component and the action of matter Sm determined by a
Lagrangian Lm:

S � SH � Sm � K
�
R
�������ÿgp

d4x�
�
Lm

�������ÿgp
d4x : �9:5�

The constant K in Eqn (9.5) is

K � 1

16pGN
� m 2

Pl

16p
: �9:6�

We consider the simple case of a perfect (ideal) fluid,
where the Lagrangian density Lm is just the energy per
unit volume, r. This case is considered in detail in Fock's
book [315].

Having substituted the expression for the curvature scalar
R in terns of the scale factor and its derivative and the energy
density rmultiplied by

�������ÿgp � a 3, we obtain the Lagrangian
function for a�t�:

L�a�t�� � ÿ6K�a 2�a� a _a 2 � ka� � ra 3 : �9:7�

We can eliminate the second time derivative �a by integrating
the corresponding component in the action by parts:� t

tin

a 2�a dt �
� t

tin

a 2 d _a � a 2 _a

���� t
tin

ÿ
� t

tin

_a da 2

� constÿ 2

� t

tin

_a 2a dt : �9:8�

We now discuss the limits for integration over time. It would
be desirable to take the lower limit as zero, tin � 0 (the time
that is referred to as the Big Bang moment); but we must not
forget that the solution is singular at that zero in idealized
models. The singularity structure cannot be explored within
GR. It is also enticing to set the upper limit at infinity, but this
cannot be done either because our model universe may be
finite in time.

Having eliminated the second derivative, we obtain the
Lagrangian in its standard form with first derivatives alone,
but in contrast to the action extremum principle in classical
mechanics, where coordinates alone are specified at trajectory
ends, we now have to specify the velocity as well (here, it is _a).
Only under the condition that da � 0 and d _a � 0 at the
integration region boundaries can we drop the term outside
the integral. We then obtain the Lagrangian for the scale
factor a�t� as

L � ÿ6K�ÿ _a 2a� ka� � ra 3 : �9:9�

We can use any barotropic equation of state to relate r to
the particle number density n. We can assume, in particular,
that r depends only on a (via n), not on _a. We then obtain the
`Hamiltonian'

H � qL
q _a

_aÿ L � 6K�a _a 2 � ka� ÿ ra 3 :

It does not contain any explicit dependence on time; hence,
the `energy' must be constant:

�a _a 2 � ka� ÿ ra 3

6K
� const : �9:10�

We can set the constant in the right-hand side to zero by
adding the density of dustlike matter to the energy density:
r! r� Dr. In other words, the arbitrary constant can be
absorbed into the definition of energy density by selecting
r0a

3
0 . No arbitrariness seems to be involved in deriving the

same equation from the Einstein equations in the standard
way, as described above. However, arbitrariness is still there,
but the constant is determined by the correct choice of the
zero level for matter energy.

The choice of zero for energy density in Eqn (9.2) only
seems to be natural: if there is no curvature, the Riemann,
Ricci, and Einstein tensors are all zero, and we also set r � 0.
But if the true equations of gravity contain the lambda term,
then naturalness fails: the lambda term can be added to the
left-hand side, or nonzero vacuum energy can be added to the
right-hand side if the equation of state is P � ÿrvac.
Otherwise, an arbitrary fraction of the lambda term can be
added to the left-hand side and an arbitrary fraction of
vacuum energy added to the right-hand side to obtain
equivalent dynamics of the universe.

Having set the constant in Eqn (9.10) to zero, after
dividing by a 3 and using K from Eqn (9.6), we thus obtain
the formula�

_a

a

�2

� 8pG
3

rÿ k

a 2
; �9:11�

which yields the well-known first Friedmann equation (2.5).
We now return to the issue of boundary terms that emerge

as a result of integration by parts in deriving the equations of
motion. The relation between the Hilbert principle and
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Einstein equations is far from trivial because of the terms
outside the integral.

The zero values of variations of derivatives on the
boundaries are usually mentioned in textbooks, only to
immediately forget about this restriction. The only exception
we know is Wald's book [316] (see also Eqn (4.7) in a more
recent book by Poisson [317]; this issue is also discussed in a
book on cosmology [318] (pages 451±464)). It is shown in
these books that terms containing external curvature must be
added to the Hilbert action. That action is usually referred to
as the Gibbons±Hawking±York action [319], although York
[320] seems to be the first to have added external curvature to
the action in an explicit form.

The following form of the action for the metric g for
general matter fields f is proposed, for example, in one of the
frequently quoted papers [321]:

I�g;f� �
�
M

�
R

16p
� Lm�g;f�

�
� 1

8p

�
qM

K ; �9:12�

where R is the curvature scalar for the metric g, Lm is the
matter Lagrangian, and K is the trace of the external
curvature tensor of the boundary. Units are chosen in
Eqn (9.12) such that mPl � 1. We do not define the external
curvatureKik in a formal way. It can be found, for example, in
book [322] (volume 2, page 153 of the Russian edition. In our
example with the Friedmann (andRobertson±Walker) metric
with our metric signature, we have

Kik � 0:5 _gik �9:13�

(cf. Eqn (21.70) in [322]). Here, Latin indices take the values 1,
2, 3 (not as in Landau and Lifshitz's book [323]!)

It is not difficult to understand the meaning of that
formula for the external curvature: the boundary of the
manifold qM is in our case a set of cross sections taken at
t � const, i.e., our entire 3D space. The external curvature is
built, according to [322], of vectors that point to the fourth
dimension, which in our case is t. It is in this way that the time
derivative appears in Eqn (9.13).

Taking the trace

K � Ki
i ;

we see that for the choice of the coefficients made in
Eqn (9.12), our term outside the integral in (9.8), a 2 _aj tt0 ,
which contains just the same time derivative as in Eqn (9.13),
disappears. We must not forget about other coefficients that
have not been presented here. Our simple example thus
clarifies how the action term added to the Hilbert action in
Eqn (9.12) is chosen.

9.2 Cosmological parameters
We here quote the values of the main cosmological para-
meters and briefly describe the methods used to measure
them. So as not to clutter the list of references, we only refer to
publication [324], which contains references to original
studies and brief reviews.

A value of importance in cosmology is the so-called
critical energy density

rc �
3H 2m 2

Pl

8p
; �9:14�

which is also referred to as the `closure' density. This term is
related to the fact that r � rc is the boundary value at which
transition from the open Universe to the closed one occurs.
According to astronomical data, the total energy density of all
forms of matter in the Universe, rtot, is very close to the
critical value (see Eqn (9.16) below).

The cosmological energy density of a particular form of
matter is characterized by a dimensionless parameter

Oa � ra
rc
: �9:15�

It has been established that

Otot � rtot
rc
� 1:006� 0:006 : �9:16�

This result is primarily obtained from the analysis of the
angular fluctuation spectrum of the CMB. The physical
wavelength that corresponds to the first maximum at the
hydrogen recombinationmoment (z � 103) is known, and the
angle at which it is observed now and therefore the position of
the first maximum depends on the geometry of the Universe.
This observed position just corresponds to a flat, Euclidian
universe.

The cosmological density of baryon matter can be
determined in several independent ways: the observed
abundance of light elements, helium 4He, and deuterium
D � 2H produced in the process of primordial nucleosynth-
esis; the ratio of the height of peaks inmicrowave background
fluctuations; and the scale at which diffusive or Silk damping
commences. All these methods yield close values:

Obh
2 � 0:022 ; �9:17�

where h is the dimensionless Hubble constant normalized to
100: h � H=100 km sÿ1 Mpcÿ1. The generally adopted value
is [324]

h � 0:673� 0:012 : �9:18�

This result is obtained from the analysis of angular
fluctuations of the CMB and the large-scale structure of the
Universe [325]. However, it is worth noting the systematic and
rather significant disagreement of this result with hmeasured
using standard astronomical methods [326]:

h � 0:738� 0:024 : �9:19�

It is currently not clear whether the Hubble parameter
depends on distance in an unusual way, and therefore the
expansion law differs from that adopted in standard LCDM
cosmology (see, e.g., [183], where possible variations of the
expansion law are analyzed), or the disagreement can be
explained by the presence of an unstable but long-lived
component of dark matter [327, 328]. However, we cannot
rule out a more prosaic explanation, which also seems to be
more probable: this disagreement is due to systematic errors
in determining the astronomical distance ladder. In relation
to the last possibility, of significant interest now is the method
for direct measurement of H proposed in [211], which is free
from uncertainties of standard astronomical methods.

The baryon matter density is anyway close to

Ob � 0:05 : �9:20�
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We note that no less than half of that 5% contribution of
baryons to the cosmological density is directly observed. It is
not known where and in what objects the missing half is
located.

The total density of baryons and dark matter is deter-
mined using a number of independent cosmological observa-
tions. Some historically earlier methods cannot compete with
those developed recently, such as analyzing CMB fluctua-
tions or BAOs, but we nevertheless mention them to show
that the analysis of physically different phenomena in the
Universe results in close values of densities of baryons and
dark matter and the total density of dark energy. Modifica-
tions of dynamics or gravitational interaction are not
infrequently proposed as an alternative to dark matter, but
they fail to describe the entire set of available evidence of dark
matter.

Summarizing, the very presence of dark matter and the
cosmological density of normally gravitating (baryon plus
invisible, dark) matter are determined using data on:

(1) flat rotation curves: velocities of gas particles or small
satellite galaxies does not decrease with the distance from the
radiating center of a (large) galaxy but rather tend to a
constant value. This law holds up to distances of the order
of 10 galactic radii within which radiating matter is located;

(2) gravitational lensing of distant objects, which enables
estimating the total amount of gravitating matter along the
line of sight;

(3) balance of hot gas in rich galactic clusters: the gravity
needed to contain gas inside the cluster is about five times
stronger than the gravitation force generated by the visible
matter;

(4) evolution of galactic cluster formations as a function
of redshift: the number of galactic clusters with O � 1 in the
spatially uniform flat Universe, i.e., in the Universe with
z � 1, where all mass is contained in normally gravitating
matter, would be one third of the observed value. But if the
main part of matter is present in the form of antigravitating
dark energy, the observed picture agrees with theory.

All of these methods yield the total density of clusterized
normally gravitating matter value ODM � Ob � 0:3. More
accurate methods based on the analysis of BAOs and angular
fluctuations of the CMB temperature result in the value (with
the baryon contribution subtracted)

ODM � 0:27 : �9:21�
The contribution that is missing to obtain unity is provided by
dark energy:

ODE � 0:68 : �9:22�
As noted above, indications of the antigravitational

properties of dark energy followed from the discovery that
distant supernovae appear dimmer than was expected for
standard decelerating cosmological expansion. Accelerated
expansion is also needed to resolve the crisis with the age of
the universe. The universe without antigravitating dark
energy would be one and a half times younger than the age
that follows from the age of old star clusters and nuclear
chronology. The accelerated expansion results in suppression
of structure formation at large scales, in agreement with
observations. If the equation of state of dark energy is
parameterized in the form P � wr, then we have (see [324]
and [329])

w � ÿ1:01� 0:04 : �9:23�

It is worth noting that the data do not exclude the phantom
value w < ÿ1 and even favor it. A conclusion was made in
[330] based on data on BAOs that variation in dark energy
possibly occurs in the process of cosmological expansion. The
available data unfortunately do not enable identifying the
reason for accelerated expansion, be it dark energy or infrared
modification of gravity.

9.3 Scalar field
We here present a summary of the formulas for a scalar field
required for cosmology. The action for a real-valued scalar
field is usually chosen in the form

A�f� �
�
d4x

�������ÿgp �
1

2
g m n qmf qmfÿU�f�

�
�9:24�

and results in the equation of motion

D 2f�U 0�f� � 0 ; �9:25�

where U 0 � dU=df, D 2 � g mnDmDn, and Dm is the covariant
derivative in an external gravitational field. This equation in
FRW metric (2.4) with k � 0 becomes

�f� 3H _fÿ 1

a 2
H 2f�U 0 � 0 : �9:26�

The energy±momentum tensor that corresponds to this action
is

Tmn � 2
dA
dg mn � qmf qnfÿ gmn

�
1

2
�qf�2 ÿU�f�

�
: �9:27�

The energy and pressure densities are consequently

r �
_f 2 � �Hf�2=a 2

2
�U�f� ;

Pi j � di j

� _f 2 ÿ �Hf�2=a 2

2
ÿU�f�

�
� qif qif

a 2
: �9:28�

We note that if U > 0, the average pressure is always smaller
than the energy density, Pi

i =3 < r. The vacuum-like equation
of state P � ÿr is apparently approximately valid in the case
of f slowly varying in time and space. The maximally stiff
equation of state, P � r, occurs in the opposite limit case of
rapidly varying f�t�, when the time derivative dominates in
Tmn and the fieldf is spatially uniform. The speed of sound for
such an equation of state is equal to the speed of light. This
equation could be realized in cosmological contraction.

So-called tachyon equations of state are sometimes
considered. They emerge if U < 0, for example, for U �
ÿm 2f 2=2, i.e., in theories with the mass squared negative. It
is generally believed that such theories should support
superluminal propagation of signals, but this conclusion is
not true: signal velocity is the velocity of its front propaga-
tion, which is determined by the asymptotic behavior of the
refractive index for the frequency/energy tending to infinity.
The potential can be disregarded in this limit, and we arrive at
normal propagation with the speed of light. The group
velocity is apparently superluminal, but this only means that
the wave is deformed, a phenomenon that is quite natural
because the vacuum state is unstable if m 2 < 0. Anomalous-
dispersion media are known to exhibit the same picture: the
group velocity is be superluminal but the wave is deformed,
transforming into a shock wave with a nonanalytic front.
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We note that the equation of state P � P�r� does not
always exist. Although the parameter w�t� � P�t�=r�t� can
always be introduced, the functional relation P � P�r� may
be absent. For example, the relation between P and r can be
nonlocal in time. Nevertheless, despite the absence of the
equation of state, the set of cosmological equations is
complete because the equation of motion of the field is the
missing equation (9.26).

The field is quantized according to the standard proce-
dure. The field operator in uniform space is expanded in its
spatial Fourier modes with time-dependent coefficients:

f�t; x� �
�

d3k��������������������
2Ek �2p�3

q �
ak exp �ikx� fk�t�

� a
y
k exp �ÿikx� f �k �t�

�
; �9:29�

where Ek �
������������������
m 2 � k 2
p

. The functions fk�t� are solutions of
the Fourier-transformed equation (9.25) or Eqn (9.26) if the
FRW metric is used. In particular, in the flat-space case we
obtain the known result: fk�t� � exp�ÿiEkt�. The solution of
Eqn (9.26) in the cosmological case for the FRWmetric is also
known in analytic form. It can be expressed in terms of Bessel
functions.

The operators ak and a
y
k are creation and annihilation

operators of the field f quanta (elementary particles). They
satisfy the commutation relations

�a yk ; ak 0 � � 2Ek �2p�2 d 3�kÿ k 0� : �9:30�

The operator ak acting on the vacuum annihilates it,
akjvaci � 0, while the operator a

y
k creates a single-particle

state with the momentum k: a
y
k jvaci � jki. The factor 2Ek in

Eqn (9.30) only appears in the Minkowski space. The
Wronskian of the solutions of the equations of motion for
fk�t� should be used in the general case of a curved space±
time.

Fermion fields are quantized in a similar way, but the
commutator of creation±annihilation operators is replaced
with the anticommutator. This circumstance is of great
importance for mutual cancelation of the diverging parts of
the vacuum energies of bosons and fermions (see Section 3).
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