
Abstract.We present the main results of the theory of Brownian
motors obtained using the authors' approach, in which a Brow-
nian particle moving in a slightly fluctuating potential profile is
considered. By using the Green's functionmethod, the perturba-
tion theory in small fluctuations of potential energy is con-
structed. This approach allows obtaining an analytic
expression for the mean particle velocity that is valid for two
main types of Brownian motors (flashing and rocking ratchets)
and any time dependence (stochastic or deterministic) of the
fluctuations. The advantage of the proposed approach lies in
the compactness of the description and, at the same time, in the
variety of motor systems analyzed with its help: the overwhelm-
ingmajority of known analytic results in the theory of Brownian
motors follow from this expression. The mathematical deriva-
tions and analysis of those results are the main subject of these
methodological notes.

Keywords: Brownian motors, ratchets, driven diffusive systems,
Green's functions

1. Introduction

Analytic approaches to solving many problems in theoretical
physics arise when the model formulation of the system being
studied allows proposing a suitable zeroth approximation
and developing a perturbation series in small parameters to
include factors that are absent in the zeroth approximation.

The zeroth approximation is often selected such that it
corresponds to the state of the system when its elements do
not interact with each other or are in free motion. In this case,
either the interactions between system elements or their
potential energy in a time-dependent external field are
regarded as perturbations.

Problems of this type are frequently solvable in the
framework of an approximate approach based on differen-
tial equations, using iterations in small parameters describing
perturbations. The solution procedure becomes more com-
plicated if we attempt to include a larger number of factors
into the zeroth approximation, for example, the stationary
part of the potential energy, with its variable part considered
small and treated as a perturbation. In this case, we have to
first solve the unperturbed problem, i.e., find the response of
the unperturbed system to a pointwise instantaneous forcing.
The solution obtained, called the Green's function of the
unperturbed problem, can then be used to analyze the full,
`perturbed' problem (see, e.g., Refs [1±3]).

The Green's function method is used in many areas of
physics to solve both stationary and nonstationary problems.
We mention boundary-value problems of electrostatics [4] as
typical among stationary problems, and various problems of
statistical physics and condensed-matter physics (irreversible
processes, superconductivity, ferromagnetism, interaction of
electrons with a lattice in metals and semiconductors) [5±7] as
typical among nonstationary problems. Using Green's func-
tions is especially fruitful when their closed analytic forms are
available. For example, the Green's function for an ideal
lattice of a solid body [8] was used to find the constant of
tunnel atom transport in the solid phase [9], while the integral
representation of the Coulomb Green's function [10, 11] has
been used to compute rate constants for various processes
occurring in the interaction of laser radiation with atoms
(light scattering, photoexcitation, photoionization, and
others) [10±13]. The Green's function method also becomes
very fruitful in the analysis of perturbations in energy spectra
induced by defects in the crystal lattice, the surface, or
molecules with locally attached fragments [14±16].

In this paper, the Green's function method is applied to
construct a theory of Brownian motors (called ratchets)Ð
model systems in which temporal fluctuations of the potential
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energy of a Brownian particle can lead to its directed motion
[17±20]. The fluctuations can be different in nature: they can
occur due to stochastic conformational transitions in mole-
cules forming a Brownian motor, triggered by external
nonequilibrium actions, can be an effect of an external
alternating electromagnetic field applied to the system, etc.
The first type of fluctuations (stochastic) is characteristic of
biological molecular motors [21±27], while the second
(periodic variations) are characteristic of artificially designed
nanodevices [18, 28±34]. An important fact here is that the
mean force applied to a particle through these fluctuations is
zero (unbiased fluctuations), but system asymmetry and
effects nonlinear in fluctuations lead to the directed motion.
One of the first examples of the realization of directed motion
arising in these conditions is a direct electric current excited
under the action of a high-frequency electromagnetic field in
media without a symmetry center (photogalvanic effect) [35].

Among the numerous approaches to describing the
phenomenon of directed nanoparticle motion in nonequili-
brium systems in the absence of mean forces and concentra-
tion gradients, a special place is occupied by theoretical
analysis of the diffusive dynamics of an individual particle in
a time-dependent potential field with a potential energy
U�x; t�. Such approaches are the simplest because their main
object is an individual particle or an ensemble of noninteract-
ing particles, but at the same time aremost instructive because
they allow clarifying the basic condition for directed motion
to occur. The basic equation describing inertialess motion of a
Brownian particle is the Smoluchowski equation for the
distribution function r�x; t� that determines the probability
of finding the particle at a point x at a time instant t. This
equation is a particular case of the Fokker±Planck equation,
the applications and solutionmethods of which are detailed in
monograph [3] (see also its summary version [36] and
monograph [37]). In many problems of Brownian motor
theory, the Smoluchowski equation can be conveniently
written as the continuity equation [17],

q
qt

r�x; t� � q
qx

J�x; t� � 0 ; �1�

with the probability flux

J�x; t� � ÿD exp �ÿbU�x; t�� q
qx

exp �bU�x; t��r�x; t�

� ÿD q
qx

r�x; t� ÿ bD
qU�x; t�

qx
r�x; t� ; �2�

where D � �bz�ÿ1 is the diffusion coefficient, z is the friction
coefficient depending on the medium viscosity and on the
particle size and shape, and b � �kBT �ÿ1 is the inverse
thermal energy (kB is the Boltzmann constant and T is the
absolute temperature). The mean force acting on the particle
is assumed to be zero, and the averaging operation is
understood as averaging over both space and time variables.
For a spatially periodic potential profile U�x; t�, spatial
averaging (over a period) always gives zero for the force
ÿqU�x; t�=qx that corresponds to this profile. If the form of
the potential energy U�x; t� is additive-multiplicative,

U�x; t� � u�x� � s�t�w�x� ; �3�

where the function of time s�t� plays the role of a fluctuating
variable, then the mean of s�t� must be equal to zero,
hs�t�i � 0; the symbol h. . .i denotes averaging over fluctua-

tions, and its definition depends on the nature of s�t�. We
note that representation (3) is relevant for most theoretically
and practically significant motor systems [17, 18, 38, 39] and
that correlation functions of s�t� of different orders enable
analyzing how the different natures of fluctuations are
imprinted in the characteristics of motors.

The mean velocity for directed motion of a Brownian
particle in the absence of mean forces can be different from
zero due to the time dependence of the potential energy
U�x; t� under certain conditions on the system symmetry [17,
18, 20, 40±46]. Moreover, in a number of systems, the
violation of nonobvious (so-called hidden) symmetries
allows these systems to demonstrate motor behavior [45, 46].
We are typically interested in steady-state regimes of motion,
when the system has already forgotten its initial condition.
Then, by averaging continuity equation (1) with flux (2) over
fluctuations, we can arrive at an important conclusion: the
mean flux J � h J�x; t�i is independent not only of time but
also of the spatial coordinate, i.e., is a constant. This constant
value multiplied with the spatial period L of the potential
energy U�x; t� defines the mean motion velocity hvi � LJ,
which is the main characteristic of Brownian motors.

To compute the mean velocity of motor motion, we need
to find a solution of the Smoluchowski equation with periodic
boundary conditions and then average flux (2) over potential
energy fluctuations. An analytic solution of this complex
problem is possible only under certain simplifying assump-
tions about the shape of the function s�t� that governs the
temporal behavior of the particle potential energy, as well as
about the shape of the potential profile and/or the presence of
a small parameter that allows developing a perturbation
theory. The function s�t� is often taken to be a dichotomous
stochastic process in which s�t� takes two values ,+1 andÿ1,
with the given transition rates g� and gÿ (particle transition
rates between states with different potential energies (3)) [47].
A typical example of systems that exhibit such temporal
behavior of potential energy is given by molecular (protein)
motors [22±26, 48], with motion induced by the cyclic
transition of a motor protein between conformational states
with different potential profiles U��x� � u�x� � w�x� and
Uÿ�x� � u�x� ÿ w�x�. For a dichotomous stochastic pro-
cess, the correlation function K�t� � 
s�t0 � t�s�t0�

�
(where

t0 is an arbitrary initial instant) takes an exponential form
K�t� � exp �ÿGjtj�, where G � g� � gÿ is the inverse correla-
tion time. In the class of processes where potential energy
varies deterministically (the processes controlled through
human-made techniques and considered in describing the
mechanisms of the functioning of nanodevices), periodic
processes are usually analyzed. In this case, s�t� t� �
s�t� �P j sj exp �ÿiojt�, where t is the period, oj � 2p j=t,
j � 0;�1;�2; . . . ; and sj are the Fourier components of s�t�.
The averaging operation h. . .i implies averaging over the
period, whence hs�t�i � s0 � 0, and the correlation function
is K�t� �P j jsjj2 exp �ÿiojt�.

The choice of the shape of the model potential profile is
governed by the properties of the system considered. If the
potential energy changes smoothly with the coordinate, we
can limit its functional description to two (rarely, three)
spatial harmonics [42, 50]. When dealing with potential
energy profiles that have intervals of sharp behavior (in the
limit, jumps), a saw-tooth profile is selected [51±53]. Describ-
ing motor systems with a potential in the form of two
harmonics is simplified by resorting to the Fourier representa-
tion because summation of the occurring expressions over
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harmonics is then reduced to only the first terms in the series.
For a saw-tooth potential, the coordinate representation can
be quite useful because the piecewise linear form of the
potential enables analytic integration. The shapes of the
potential energy profiles mentioned above are clear leaders
judging by the frequency of their use in problems of Brownian
motor theory [17, 18, 38, 50].

Themain parameters `governing' theworking regimes of a
Brownian motor, the amplitude and sign of its mean velocity,
and the energy characteristics are the frequency of fluctua-
tions and the amplitude of spatial variations of the potential
energy. The frequency can be chosen as the inverse correla-
tion time G for a dichotomous stochastic process and as the
inverse period tÿ1 for a periodic deterministic process.
Whether the frequencies are small or large is decided by
comparing them to characteristic system frequencies, i.e.,
inverse characteristic times, for example, the particle diffu-
sion time tD � l 2=D over a characteristic length l or the time
tsl � zl 2=DV it rolls down a sloping part of the potential
energy profile with the height DV and length l (we note that
for inertial Brownian motors, an additional characteristic
time related to the particle mass appears, together with
nontrivial effects due to the competition between this time
and the values of Gÿ1 and t [52±54]).

To estimate characteristic values, l is often chosen as the
spatial period L of potential energy variation. In this case, the
low-frequency and high-frequency approximations are char-
acterized by the respective small and large values of
dimensionless frequencies GtD and Gtsl (for dichotomous
stochastic processes; for deterministic periodical processes,
they are tD=t and tsl=t). To use these dimensionless
quantities in a general context, we introduce a common
notation nch for them. The role of a dimensionless energy
parameter is commonly played by the ratio of the energy
barrier DU to the thermal energy kBT. Small and large values
of this parameter respectively determine high-temperature
(low-energy) and low-temperature (high-energy) approxima-
tions [41, 43, 48, 55, 56].

Themainmethods for obtaining an analytic description of
the directed nanoparticle motion are based on the four
approximations listed above. Figure 1 presents characteristic
domains in the plane �DU=kBT; nch�, determined by the choice
of a small parameter that allows obtaining an analytic
solution of the Smoluchowski equation. The low-frequency

approximation (band A) or the adiabatic regime of motor
operation allows deriving an explicit expression for the mean
velocity of a Brownian particle for an arbitrary coordinate
dependence of U�x; t� [48, 52±54, 57±59]. Slow variations of
the potential energy actually imply that the system is close to
equilibrium. In this case, it suffices to seek corrections to the
known equilibrium results, which significantly simplifies the
solution process. The invariance of the low-frequency
approximation to how the potential energy varies with time
(stochastically or deterministically) [55] is another of its
advantages, together with the high efficiency of energy
conversion demonstrated by adiabatic motors [56, 59±61].

The high-frequency solutions (band B) are strongly
dependent on the shape of the potential profile and the
character of its changes with time [62, 63], but just this fact
makes this approximation a kind of `probe' enabling the
problem to be `tested' from different sides. A set of
asymptotic behaviors is known for this regime [17, 64±66].
Motors of different classesÐwith a fluctuating periodic
potential profile (flashing ratchets) and fluctuating inclining
homogeneous force (rocking ratchets)Ðdemonstrate differ-
ent sensitivities to the presence of cusps and jumps in the
potential profile in this regime [51].

The inequality DU=kBT5 1 defines the low-energy range
(band C), and solutions obtained in this range are called
high-temperature approximations. The advantage of this
approximation is that it can be used in the entire frequency
range of potential energy fluctuations [41, 49, 55, 59].
However, this approximation cannot be applied to describe
protein motors because the temperature of conformational
changes in molecules exceeds kBT. The `beneficiaries' of the
high-temperature approximation are artificially designed
devices, for example, dipole photomotors [66], in which the
energy of interaction between a polar particle and a substrate
are small because of the smallness of dipole interactions
compared to kBT. Motor systems based on a semiconductor
nanocluster [49] can also be assigned to this class. We note
that abandoning the dipole approximation when considering
photoinduced motion of stretched molecules along a sub-
strate does not violate the validity of the high-temperature
approximation [67].

The intersection of domains where approximations are
valid (A \ C and B \ C in Fig. 1) enables comparing the
results and offers additional criteria to check their validity.
Additionally, the use of two approximations prompts con-
clusions that cannot be made in the framework of one of
them. For example, the analysis of domain B \ C in Ref. [55]
made it possible to establish that at G!1 �t! 0� the
mean Brownian motor velocity is linear in the inverse
frequency of potential energy fluctuations for a stochastic
dichotomous process and quadratic for a deterministic one.
This result is preserved even outside the high-temperature
approximation [62±66], but obtaining it for arbitrary
DU=kBT is much harder.

The analysis in the low-temperature domain (band D)
does not offer an appropriate approximation on its own, due
to the difficulty of working with differential equations
having a small coefficient at the highest derivative [see
Eqns (1) and (2), where the diffusion coefficient D � kBT=z
is small for small T ]. That is why the formulation of the low-
temperature approximation imposes additional constraints
on spatial and temporal characteristics of the potential
profile. Briefly, their essence is that the original problem
with a continuous description of Brownian particle motion is
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A \ C B \ C

A \D

Figure 1. Validity domains of approximations allowing analytic solutions

of the Smoluchowski equation (1), (2).
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replaced by a description of its jumps over potential barriers
separating potential wells. In this way, the low-temperature
approximation can be introduced for potential profiles
containing well-pronounced wells and barriers, and the
kinetic approach serves as this approximation. It amounts
to considering changes in potential well populations due to
transitions between them, described in terms of transition rate
constants. It is assumed that only the maxima and minima of
the potential profile fluctuate, whereas their position and the
profile curvature in the vicinity of the extrema stay without
changes, that the barrier height DU exceeds the thermal
energy kBT, and that the period of fluctuations t �Gÿ1� is
much larger than tD (domain A \D).

These conditions ensure local thermodynamic equili-
brium in each of the wells, which does not change under
fluctuations of the potential and excludes energy losses
related to the relaxation of the distribution function inside
the wells [68]. The approach results in a suitable description of
the main properties of Brownian motors for sufficiently low
temperatures kBT5DU in a broad range of fluctuation
frequencies G; tÿ1 < tÿ1D of potential wells and barriers [56].
The advantage of the kinetic approach lies in the simplicity of
obtaining analytic results, facilitating comparisons with
experimental observations for molecular motors, which are
the main application of the low-temperature approximation.
Its drawback is that it is impossible to pass to the high-
frequency limit when just the intrawell motion provides the
correct asymptotics [48, 50, 60, 61, 69].

In this paper, we present a theory of Brownian motors
based on our approach, the construction of the perturbation
theory in small potential energy fluctuations. According to
this approach, the leading contribution to the additive±
multiplicative form (3) of potential energy comes from the
time-independent asymmetric periodic profile u�x�, whereas
the product s�t�w�x� can be considered a small correction.
We assume that values taken by the function s�t� are of the
order of unity, and therefore the order of s�t�w�x� is
defined by the order of the function w�x�, which is denoted
as O�w�. As mentioned above, representation (3) embraces
the majority of practically and theoretically important
variants of potential energy variations [17, 18, 38, 39, 49].
Two main classes of Brownian motorsÐwith a fluctuating
periodic potential (flashing ratchet) and with a fluctuating
homogeneous force (rocking ratchet)Ð are particular
cases of representation (3). The functions u�x� and
w 0�x� � dw�x�=dx must then be periodic. For motors of
the flashing ratchet class, w�x� L� � w�x�, and of the
rocking ratchet class, w�x� � Fx, F � const.

2. Perturbation theory in small fluctuations:
general consideration

In this section, assuming that fluctuations of the potential
energyU�x; t� described by the term s�t�w�x� in expression (3)
are small, we develop a perturbation theory in these
fluctuations. With this aim, we insert Eqn (3) into representa-
tion (2) for the flux and average it over the fluctuations:

J � 
 J�x; t�� � Ĵ�x�
r�x; t��ÿ bDw 0�x�
s�t�r�x; t�� ; �4�
where

Ĵ�x� � ÿD exp
ÿÿbu�x�� q

qx
exp

ÿ
bu�x�� �5�

is the flux operator in the stationary potential profile u�x�. If
Eqn (4) is considered as a differential equation for the
function of coordinate h r�x; t�i, its general solution can be
readily written as


r�x; t�� � C exp
ÿÿbu�x��ÿ b exp

ÿÿbu�x��
�
�x
0

dx 0 w 0�x 0� exp ÿbu�x 0��
s�t�r�x 0; t��
ÿ J

D
exp

ÿÿbu�x�� �x
0

dx 0 exp
ÿ
bu�x 0�� : �6�

Representation (6) contains two arbitrary variables, J and C,
to be determined from additional conditions. The normal-
ization condition

� L
0 dxh r�x; t�i � 1 fixes the constant C.

Then, requiring that for periodic functions u�x� and w 0�x�
the solution h r�x; t�i be also periodic for an steady-state
process, h r�x� L; t�i � h r�x; t�i, the flux J can be written as

J � ÿbD
� L

0

dx q�x�w 0�x�
s�t�r�x; t�� ;
�7�

q�x� � exp
ÿ
bu�x���� L

0

dx exp
ÿ
bu�x���ÿ1 :

We assume that the functionw�x� is of the orderO�w� and
find an approximate expression for hs�t�r�x; t�i up to O�w�.
As the first step, we develop a perturbation theory with
respect to the small function w�x�, relying on Eqns (1)±(3)
[3, 70]:

r�x; t� � r�0��x� ÿ bD
� L

0

dx 0
q
qx 0

�
w 0�x 0�r�0��x 0��

�
�1
ÿ1

dt 0s�t 0�g�x; x 0; tÿ t 0� �O�w 2� : �8�

Here, the unperturbed distribution function r�0��x� satisfies
the equation Ĵ�x�r�0��x� � 0, which is the condition that the
unperturbed flux is zero. A normalized solution of this
equation is the Boltzmann distribution

r�0��x� � exp
ÿÿbu�x���� L

0

dx exp
ÿÿbu�x���ÿ1 :

The retarded Green's function g�x; x 0; t� �g�x; x 0; t� � 0 for
t < 0�, present in (8), satisfies the equation

q
qt

g�x; x 0; t� � q
qx

Ĵ�x�g�x; x 0; t� � ÿd�xÿ x 0�d�t� : �9�

As the second step, we multiply all terms in Eqn (8) by s�t�
and average the result over fluctuations using the equality
hs�t�i � 0, which leads to the sought expression for
hs�t�r�x; t�i:


s�t�r�x; t�� � ÿbD � L

0

dx 0
q
qx 0

�
w 0�x 0�r�0��x 0��

�
�1
ÿ1

dt 0


s�t�s�t 0��g�x; x 0; tÿ t 0� �O�w 2� : �10�

We let the function S�x; x 0� of two spatial variables
denote the inner integral in the right-hand side of (10).
Taking the definition of the correlation function K�tÿ t 0� �
hs�t�s�t 0�i and the fact that g�x; x 0; tÿ t 0� � 0 for t 0 > t into
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account, the function S�x; x 0� can be written as

S�x; x 0� �
�1
0

dt g�x; x 0; t�K�t� : �11�

Finally, substituting expression (10) in Eqn (7) with due
regard for (11) leads to the result

J � �bD�2
� L

0

dx q�x�w 0�x�

�
� L

0

dx 0S�x; x 0� q
qx 0

w 0�x 0�r�0��x 0� �O�w 3� : �12�

This expression, obtained for the first time in Ref. [71], is
the most general result of the approximation of small
fluctuations. Its analysis is of high importance because it
leads to a wide spectrum of analytic results, including those
known in the theory of Brownian motors in particular cases.
Analysis of expression (12) is carried out in the next sections
of this paper.

We note that in the particular case of a stochastic
dichotomous process, for which K�t� � exp �ÿGjtj�, where G
is the inverse correlation time, the function S�x; x 0� is the
Laplace transform of the Green's function g�x; x 0; t� describ-
ing diffusion in the potential profile u�x� and satisfies the
equation�

d

dx
Ĵ�x� � G

�
S�x; x 0� � ÿd�xÿ x 0� ; �13�

which can be easily obtained fromEqn (9) if it is multiplied by
exp �ÿGt� and integrated over t from ÿe to1, where e is an
infinitesimal positive value. We must take into account that
the contribution of exp �Ge�g�x; x 0;ÿe� vanishes because
g�x; x 0; t� is the retarded Green's function. In Section 3, an
alternative derivation of Eqn (12) is proposed, with the
function S�x; x 0� satisfying Eqn (13); this derivation follows
directly from the Smoluchowski equation with sources and
sinks (master equation), which describes the stochastic
dichotomous process and underlies stochastic models of
Brownian motors [17, 37, 47, 72]. We also discuss the
physical meaning of the function S�x; x 0� and give its explicit
expression for a saw-tooth potential profile.

3. Perturbation theory in small fluctuations:
dichotomous stochastic process

We consider the motion of a Brownian particle with the
potential energy given by a random variable described by a
stochastic dichotomous process. Two states of the dichot-
omous process, denoted by indices `+' and `ÿ' in what
follows, are characterized by different potential profiles
U��x� and Uÿ�x�, which are described by periodic functions
of the coordinate with the period L: U��x� L� � U��x�.
Such a behavior of the potential energy can be characterized
by additive-multiplicative dependence (3) when the function
s�t� takes two values +1 and ÿ1 with given transition rates
between these values, g� and gÿ. We assume in what follows
that the dichotomous process is symmetric (i.e., g� � gÿ) and
the inverse correlation time G is 2g�. This simplification does
not modify the resulting expression because in the approx-
imation of small fluctuations, the characteristics of both
symmetric and asymmetric processes depend only on the
sum of g� and gÿ. The correctness of this assertion can be
seen, for example, by analyzing the high-temperature result in
Ref. [55]: up to terms of the orderO�w 3�, the mean velocity at

g� � gÿ depends only on G � g� � gÿ [see also Eqn (68)
below].

The probability densities r��x; t� and rÿ�x; t� of finding a
Brownian particle in states `+' and `ÿ' satisfy the Smolu-
chowski equation with an additional term r�x; t� describing
the rate of particle transitions between these states [17, 37, 38,
55]:

q
qt

r��x; t� � ÿ
q
qx

J��x; t� � r�x; t� ;

r�x; t� � 1

2
G
�
r��x; t� ÿ rÿ�x; t�

�
; �14�

J��x; t� � ÿD qr��x; t�
qx

ÿ bD
qU��x�

qx
r��x; t� :

The probability densities are subject to the periodicity
condition and are normalized:

r��x� L; t� � r��x; t� ;
� L

0

�
r��x; t� � rÿ�x; t�

�
dx � 1 :

�15�
For stationary processes �qr��x; t�=qt � 0�, the total flux

of particles through an arbitrary cross section x is given by the
sum of fluxes J��x�, J�x� � J��x� � Jÿ�x� and does not
depend on x. Precisely this flux J � J�x� is the basic quantity
of the Brownian motor theory, because the mean motor
velocity is expressed in terms of it as hvi � LJ.

We introduce new probability densities x�x� and Z�x�,
such that

x�x� � r��x� � rÿ�x� ;
Z�x� � r��x� ÿ rÿ�x� ;

�
�16�

r��x� �
1

2

�
x�x� � Z�x��

and, following (3) with s�t� � �1, expand the potential
profiles U��x� as some mean profile u�x� and the fluctuating
contribution w�x�,

U��x� � u�x� � w�x� : �17�
We relate the flux operator defined by expression (5) to the
mean profile. The total flux can then be written as

J � Ĵ�x�x�x� ÿ bDw 0�x�Z�x� : �18�
Relation (18), taking (5) into account, is treated as a

differential equation for the function x�x�. Its general
solution

x�x� � C exp
ÿÿbu�x��ÿ b exp

ÿÿbu�x��
�
�x
0

dx 0 w 0�x 0�Z�x 0� exp ÿbu�x 0��
ÿ J

D
exp

ÿÿbu�x�� �x
0

dx 0 exp
ÿ
bu�x 0�� �19�

contains an arbitrary constant C and the required constant
quantity (flux J) that is independent of C and can be found
from the periodicity condition x�x� L� � x�x�. The flux J
then becomes

J � ÿbD
� L

0

dx q�x�w 0�x�Z�x� ;
�20�

q�x� � exp
ÿ
bu�x���� L

0

dx exp
ÿ
bu�x���ÿ1:
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The equation for Z�x� can be obtained from system of
equations (14) written for the stationary case,

d

dx

�
J��x� ÿ Jÿ�x�

� � ÿGZ�x� : �21�

Inserting the expression for the flux difference
J��x� ÿ Jÿ�x� � Ĵ�x�Z�x� ÿ bDw 0�x�x�x� into Eqn (21), we
obtain a differential equation for Z�x�:�

d

dx
Ĵ�x� � G

�
Z�x� � bD

d

dx
w 0�x�x�x� �22�

(the function x�x� is assumed to be given).
The solution of this equation can be written using the

notation S�x; x 0� introduced above for the function (the
solution of Eqn (13)) representing the Laplace transform of
the Green's function g�x; x 0; t�:

Z�x� � ÿbD
� L

0

dy S�x; y� d

dy
w 0�y�x�y� : �23�

Substituting (23) in Eqn (20) allows the sought stationary
flux to be expressed in terms of the function x�x�:

J � �bD�2
� L

0

dx q�x�w 0�x�
� L

0

dy S�x; y� d

dy
w 0�y�x�y� :

�24�
Equation (24) defines the total flux J precisely if the function
x�x�Ðthe solution of the system of differential equations
(18), (22) (or integral equations (19), (23))Ð is found,
satisfying periodic boundary conditions and normalization
conditions� L

0

x�x� dx � 1 ;

� L

0

Z�x� dx � 0 : �25�

We now consider small fluctuations in the potential
energy of a nanoparticle (small compared to the thermal
energy), i.e., consider the approximation jw�x�j5 kBT. The
structure of expression (24) is such that in this approximation
the flux is a small quantity of the order O�w 2�. If we limit
ourselves to considering only contributions quadratic in w�x�
in the flux, the function x�x� should be computed in the zeroth
approximation in w�x�. This means that the second and third
terms can be ignored in general solution (19) (the third term is
zero, as follows from relation (20), which gives J � 0 for
w�x� � 0). The remaining first term contains the integration
constant C, which can be easily found from normalization
condition (25) for x�x�. As a result, in the zeroth order in
fluctuations, the function x�x�, denoted by x0�x� in what
follows, is

x0�x� � exp
ÿÿbu�x���� L

0

dx exp
ÿÿbu�x���ÿ1; �26�

i.e., is the Boltzmann distribution normalized to unity for the
unperturbed potential profile u�x�. In other words, we obtain
expression (12) with r�0��x� � x0�x� in an alternative way,
which is valid under the assumption that stochastic dichot-
omous fluctuations of potential energy are small [72].

We further consider some important properties of the
function S�x; y� that follow from Eqn (13) in some
particular cases. In the high-frequency limit G!1 and
under the condition that the potential profile u�x� (defining
the operator Ĵ�x� in accordance with (5)) is a smooth

function, Eqn (13) implies that, approximately, S�x; y� �
ÿGÿ1d�xÿ y� (up to the exchange x 0 ! y), which when
inserted into Eqn (12) gives

J � D 2b 3

G

� L
0 dx u 0�x��w 0�x��2� L

0 dx exp
ÿ
bu�x�� � L0 dx exp

ÿÿbu�x�� : �27�
This result coincides with expressions known from [64, 66]
(see also review [17]). The low-frequency (G! 0) representa-
tion for the flux (12) for a dichotomous process (stochastic or
deterministic) is obtained in Section 4.

The physical meaning of the function S�x; y� is that it
describes the probabilistic process of particle motion from
point y to point x and contains all important information on
diffusion in the potential u�x�, with the fluctuation variable
s�t� characterized by the correlation functionK�t�. For a saw-
tooth potential specified by a piecewise linear periodic
function with two linear intervals �0; l � and �l;L� within the
period L and the energy barrier u0 �u�x� � u0x=l for x 2 �0; l �
and u�x� � u0�Lÿ x�=�Lÿ l � for x 2 �l;L��, Eqn (13), which
corresponds to a stochastic dichotomous process with
K�t� � exp�ÿGjtj�, complemented by the boundary condi-
tions that the function S�x; y� and its partial derivative over x
are periodic and that S�x; y� is continuous at x � y and the
flux jumps at this point,

Ĵ�x�S�x; y�
���
x�y�e

ÿĴ�x�S�x; y�
���
x�yÿe

!
e!0
ÿ1 ; �28�

can be solved analytically [71, 73]:

ÿ GS�x; y� �
0<x<y<l<L

l2
exp

ÿ
fl�yÿ x��
DLl

n
ÿ� fl ÿ fLÿl�2

� sinhLLÿl�Lÿ l � sinhLl�lÿ y� sinhLlx

ÿ � fl ÿ fLÿl�Ll sinhLLÿl�Lÿ l � sinhLl�x� yÿ l �
� LlLLÿl

�
coshLLÿl�Lÿ l � sinhLl�xÿ y� l �

ÿ sinhLl�xÿ y��� sinhLLÿl�Lÿ l ��L2
l coshLl�lÿ y�

� coshLlx� L2
Lÿl sinhLl�lÿ y� sinhLlx

�o
; �29�

ÿ GS�x; y� �
0<y<x<l<L

l2
exp

ÿ
fl�yÿ x��
DLl

n
ÿ� fl ÿ fLÿl�2

� sinhLLÿl�Lÿ l � sinhLly sinhLl�lÿ x�
ÿ � fl ÿ fLÿl�Ll sinhLLÿl�Lÿ l � sinhLl�x� yÿ l �
� LlLLÿl

�ÿcoshLLÿl�Lÿ l � sinhLl�xÿ yÿ l �
� sinhLl�xÿ y��� sinhLLÿl�Lÿ l ��L2

l coshLly

� coshLl�xÿ l � � L2
Lÿl sinhLly sinhLl�lÿ x��o ; �30�

ÿ GS�x; y� �
0<y<l<x<L

l2
exp

ÿ
fl y� fLÿl�Lÿ x��

D

�
n
� fl ÿ fLÿl�

�
sinhLl�lÿ y� sinhLLÿl�xÿ l �

ÿ sinhLly sinhLLÿl�Lÿ x��
� LLÿl

�
sinhLl�lÿ y� coshLLÿl�xÿ l �

� sinhLly coshLLÿl�Lÿ x��
� Ll

�
coshLl�lÿ y� sinhLLÿl�xÿ l �

� coshLly sinhLLÿl�Lÿ x��o ; �31�
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where

D � 2�l2 � fl fLÿl� sinhLll sinhLLÿl�Lÿ l �

� 2LlLLÿl
�
coshLll coshLLÿl�Lÿ l � ÿ 1

�
;

Ll �
���������������
f 2l � l2

q
; LLÿl �

������������������
f 2Lÿl � l2

q
; �32�

fl � bu0
2l

; fLÿl � ÿ bu0
2�Lÿ l � ; l2 � G

D
:

To obtain analogous formulas in the interval l < y < L, it
suffices to make the following changes in expressions (29)±
(32):

l$ Lÿ l ; x$ Lÿ x ; y$ Lÿ y ; fl $ ÿfLÿl : �33�

The quantity ÿGS�x; y� gives the probability density of
finding the particle at a point x in a saw-tooth potential with a
lifetime Gÿ1 under the condition that it was initially placed at
a point y. For long-lived potentials �G! 0�, the quantity
ÿGS�x; y� tends to the Boltzmann distribution r�0��x�. For
short-lived potentials �G!1�, it is close to the initial delta-
shaped distribution d�xÿ y�.

The functions ÿGS�x; y� (29)±(33) are plotted in Fig. 2
[71]. The shape of the curves is highly dependent on where the
initial particle position y � 0 was chosen: in the narrow or
wide parts of the profile base (cf. Fig. 2c, e and d, f). The value

of the ratio of the amplitude u0 of u�x� to the thermal energy
kBT also influences the shape of the curves. The positions of
the maxima of curves ÿGS�x; y� correspond to the positions
of potential wells and the initial particle position. It can be
seen that if the particle `starts' at the wide link of the potential,
then the lower the frequency G (the longer the lifetime of the
state with this potential), the larger is the contribution of
potential minima and the smaller the contribution of the
initial position y in this link to the probability of finding the
particle at the point x (Fig. 2d, f). If at the initial instant the
particle is at the narrow link of the potential, such a tendency
is absent: the values of the probability density for those x that
coincide with the positions of potential wells and for x � y
decrease together with the reduction in the frequency
(Fig. 2c, e). Additionally, in this case, the highest point in
the graph of the function ÿGS�x; y� corresponds to the well
position; this means that if the slope of the profile is
sufficiently steep, the particle has enough time to roll down
the well, even for a short-lived potential profile (the curve
with GL 2=D � 2 in Fig. 2c is the only exception: the
amplitude of the potential is taken such that it is still
insufficiently large, and the lifetime is sufficiently small). To
summarize, we stress that just the details of the behavior of
ÿGS�x; y� define, by virtue of relation (12), the main features
in the dependences of the Brownian ratchet velocity on the
model parameters.

Using results (29)±(33) in formula (12), we can compute
the mean velocity of a stochastic Brownian motor function-
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Figure 2. Saw-tooth potentials u�x� for normalized lengths of `tooth' links equal to l=L � 0:1 and 1ÿ l=L � 0:9, where L is the spatial period; the initial

particle position y � 0 is respectively taken in the middle of the base of (a) steep and (b) gentle slopes of the potential, and associated probability densities

ÿGS�x; y� (in units of Lÿ1) of finding the particle at a point x in the saw-tooth potential with the lifetime Gÿ1 (panels c, e and d, f) computed for different

values of the amplitude u0 of u�x�: (c, d) bu0 � 0:1 and (e, f) bu0 � 0:5. The curves in panels (c±f), in the vicinity of x � 0 from top down are in the order of

decreasing the parameter GL 2=D � 2; 1:5; 1; 0:5; 0 (the last value corresponds to an infinite lifetime, whenÿGS�x; y� does not depend on y and coincides

with the Boltzmann distribution).
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ing due to fluctuations �w�x� of a saw-tooth profile u�x�
with the amplitude u0 and the characteristic lengths l and L.
Figure 3 presents the frequency dependences of the flux
computed for those ratchet models with a fluctuating
potential for which w�x� � �w0=u0�u�x�, and a fluctuating
force where w�x� � w0x. It can be seen that for the same
asymmetry of the potential profile u�x�, the directions of
motion for thesemotors are opposite. Onemore distinction of
these motors lies in the zero low-frequency asymptotic
behavior of the mean velocity for a motor with fluctuating
potential energy, whereas the mean velocity of a motor with a
fluctuating force differs from zero at small frequencies. We
note that, for w0=u0 � 0:1 and l=L � 0:9, computations with
analytic formulas (12), (29)±(33) fully reproduce the results in
Ref. [38], whose authors did not use the Green's function
technique, exploring the same system based on a certain
numerical procedure. Such agreement serves as an additional
test of the fidelity of the results obtained and confirmation of
the possibility of using them for studies of motor character-
istics with changing geometrical parameters of potential
profiles with arbitrarily shaped fluctuations w�x�.

To conclude this section, we note that the mean velocity
of a particle driven by small fluctuations in the potential
energy is written here in a rather simple analytic form.
Furthermore, all known analytic expressions for the mean
motor velocity expanded in a series in small w�x�, obtained
in the framework of various other approximations, can be
directly derived from Eqn (12). Indeed, in the case of small
frequencies of potential energy fluctuations, additionally
assuming that the potential profile changes instantaneously,
we arrive at a generalization of the celebrated lemma by
Parrondo [57]. For the high-frequency variant of a dichot-
omous stochastic process, Eqn (12) leads to the relations in
Ref. [17] obtained for smooth potential profiles. The
applicability of Eqn (2) to the description of ratchets with a
fluctuating force and fluctuating periodic potential profile
adds to its universality.

4. Low-frequency approximation

The approximation of low frequencies of potential energy
fluctuations, or the adiabatic approximation, occupies a

special place in the Brownian motor theory. It allows
obtaining closed analytic expressions for the mean
velocity of motors, whose subsequent analysis reveals
many common features in their functioning: a similarity
in the behavior of stochastic and deterministic motor
systems and motors controlled by extremely fast or
extremely slow changes in potential energy, symmetry
properties, conditions concerning the high efficiency of
energy transformation, and others [41, 50, 52±55, 59, 61].
The analysis is simplified for small fluctuations because of
the adiabaticity of processes. The absence of heat
exchange between the subsystem being considered and a
heat bath can be realized in two ways [59], which
delineates so-called `adiabatically slow' and `adiabatically
fast' motors that function due to fluctuations in a periodic
potential profile (flashing ratchets). The first way implies
that the variation in potential energy is so slow that a
quasiequilibrium is reached at each instant [57]. The
second way corresponds to instantaneous transitions of
the system between two different potential profiles (a fast
change in potential energy) under the condition that the
lifetime of each of the states is large enough for the
equilibrium distribution to set in. The flux determining
the mean velocity of such Brownian motors with a
fluctuating periodic potential is [57, 59]

J � tÿ1
� L

0

dx
�
q��x� ÿ qÿ�x�

� �x
0

dy
�
r�0�� �y� ÿ r�0�ÿ �y�

�
;

�34�

where the notation

r�0�� �x� � exp
ÿÿbU��x���� L

0

dx exp
ÿÿbU��x���ÿ1

is used for equilibrium distributions in states of a dichot-
omous process with potential energies U��x� (17),

q��x� � exp
ÿ
bU��x�

��� L

0

dx exp
ÿ
bU��x�

��ÿ1
;

t is the sum of lifetimes of the states, equal to the period
of potential energy change if it varies periodically, or to
the sum of inverse transition rates gÿ1� and gÿ1ÿ between
the states if these transitions are random. We stress that
result (34) is independent of whether the dichotomous
process is deterministic or stochastic [55]. In the approx-
imation of small potential energy fluctuations, which is
considered in this study, the expansion of expression (34)
in small w�x� gives

J � ÿGb 2

� L

0

dx q�x�
�
w�x� ÿ

� L

0

dz q�z�w�z�
�

�
�x
0

dy r�0��y�
�
w�y� ÿ

� L

0

dz r�0��z�w�z�
�
: �35�

Here, we took into account that for a symmetric stochastic
dichotomous process, the inverse correlation time G is related
to t as G � 4=t.

For Brownian motors with a homogeneous force
fluctuating in sign between two symmetric states �F
(a rocking ratchet) with F not necessarily small, the
expression for the flux in the adiabatic limit takes the
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Figure 3. Frequency dependence of the flux defining the mean velocity of a

ratchet with a fluctuating force (upper curve,w�x� � Fx; F � w0) andwith

a fluctuating potential �lower curve, w�x� � �w0=u0�u�x��; tD � L 2=D.

The insets to the right of the curves plot the profiles u�x� (no marker),

u�x� � w�x� and u�x� ÿ w�x� (filled and unfilled triangles).
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form [39, 74]

J � 1

2

�
J�F � � J�ÿF �� ;

J�F � � D
ÿ
1ÿ exp �ÿbFL���� L

0

dx exp
ÿÿbU�x��

�
� L

0

dx exp
ÿ
bU�x��ÿ ÿ1ÿ exp �ÿbFL�� �36�

�
� L

0

dx exp
ÿÿbU�x�� �x

0

dy exp
ÿ
bU�y���ÿ1;

U�x� � u�x� ÿ Fx :

We note that the dependence J�F � is the known analytic
solution of the problem of particle motion in a viscous
medium in a periodic potential u�x� under the action of a
uniform stationary force F [3, 75]. For this type of motor, the
approximation of small fluctuations discussed here corre-
sponds to small amplitudes of the force F. In this case, the
expansion of expressions (36) in F gives [53]

J � ÿbF 2mFonÿoff ;

Fonÿoff �
� L

0

dx
�
q�x� ÿ Lÿ1

� �x
0

dy
�
r�0��y� ÿ Lÿ1

�
; �37�

m � L 2

z
� L
0 dx exp

ÿÿbu�x�� � L0 dx exp
ÿ
bu�x�� ;

where m is the particle mobility in the potential u�x�; it is the
proportionality coefficient between the particle velocity and
the small applied forceF:LJ�F � � mF; the function q�x� is the
same as q��x� above up to the replacement of U��x� with
u�x�. The quantity Fonÿoff represents the integral flux equal
to the fraction of particles crossing some given cross section
in one cycle of switching the periodic potential u�x� on and
off [57]. This same quantity determines the velocity of a
Brownian motor with a flashing potential, or the so-called
on±off ratchet for which w�x� � u�x� and s�t� � �1 [see (3),
(17)]: LJ � �L=t�Fonÿoff; in other words, up to tÿ1, the
quantity Fonÿoff coincides with the flux J (34) for
U��x� � u�x� and Uÿ�x� � 0. As shown in Ref. [53], the
mean velocities of adiabatic Brownian motors with a
fluctuating force and flashing potential are determined by
the same quantity Fonÿoff, even if small inertial contributions
are taken into account.

To conclude this consideration, we solve the inverse
problem, i.e., we demonstrate that low-frequency expres-
sions (35) and (37) can be obtained from general relation
(12) by writing its adiabatic limit. For definiteness, we
consider a dichotomous process with the function S�x; x 0�
satisfying Eqn (13). We relabel the variables as x! x 0,
x 0 ! y and integrate all terms of this equation over x 0 from
0 to x,

G
�x
0

dx 0S�x 0; y� � Ĵ�x�S�x; y� � C1�y�

� ÿ
�x
0

dx 0d�x 0 ÿ y� : �38�

The integral in the right-hand side is the Heaviside theta
function y�xÿ y�. Using explicit expression (5) for the flux
operator Ĵ�x� in a stationary potential u�x� and multiplying
both sides of Eqn (38) by Dÿ1 exp �bu�x��, after the integra-

tion over x, we obtain

exp
ÿ
bu�x��S�x; y��C2�y� �Dÿ1C1�y�

�x
0

dx 0 exp
ÿ
bu�x 0��

�Dÿ1
�x
0

dx 0 exp
ÿ
bu�x 0�� y�x 0 ÿ y�

�Dÿ1G
�x
0

dx 0 exp
ÿ
bu�x 0�� �x 0

0

dx 00S�x 00; y� : �39�

Two integration constantsC1�y� andC2�y� can be found from
the conditions

S�0; y� � S�L; y� ;
� L

0

dxS�x; y� � ÿGÿ1 ; �40�

which follow from the periodicity of the functions u�x� and
Ĵ�x�S�x; y� (the second equality in Eqns (40) is obtained after
integration of Eqn (13) over x from zero to L).

Integrating by part in the inner integral in the expression
for flux (12) and using periodic boundary conditions, we
rewrite Eqn (12) in a form convenient for computations:

J � ÿ�bD�2
� L

0

dx q�x�w 0�x�

�
� L

0

dy r�0��y�w 0�y� q
qy

S�x; y� �O�w 3� : �41�

The partial derivative qS�x; y�=qy entering (41) can be
written, using formula (39) and the found integration
constants C1�y� and C2�y�, in the form

q
qy

S�x; y� �
�
qS�x; y�

qy

�
G�0
� GR�x; y� �O�G 2� ; �42�

where�
qS�x; y�

qy

�
G�0
� Dÿ1r�0��x�q�y�

� L

0

dx exp
ÿÿbu�x��

�
� L

0

dZ exp
ÿ
bu�Z���ÿ � L

0

dx 0r�0��x 0�
�x 0
0

dx 00q�x 00�

�
� L

y

dx 0r�0��x 0� �
�x
0

dx 0q�x 0� ÿ y�xÿ y�
�
; �43�

R�x; y�� Dÿ1r�0��x�
� L

0

dx exp
ÿÿbu�x�� � L

0

dZ exp
ÿ
bu�Z��

�
��� L

0

dx 0r�0��x 0�
� x 0

0

dx 00q�x 00� ÿ
�x
0

dx 0q�x 0�
�
A�L; y�

� A�x; y� ÿ
� L

0

dx 0r�0��x 0�A�x 0; y�
�
; �44�

A�x; y� �
�x
0

dx 0q�x 0�
� x 0

0

dx 00
�
qS�x 00; y�

qy

�
G�0

: �45�

Next, in view of the smallness of G (the adiabatic limit), it
suffices only to substitute the first term �qS�x; y�=qy�G�0,
independent of G, from expansion (42) in Eqn (41) in order to
show that for Brownian motors with a fluctuating homo-
geneous force �w 0�x� � F �, the expression for the flux takes
the form given in (37). But a similar substitution for motors
with a fluctuating periodic potential, when the function w�x�
is periodic, w�x� L� � w�x�, leads to the vanishing flux J.
This implies that for this class of motors, a nonzero
contribution can be provided by the second term GR�x; y� in
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representation (42) for qS�x; y�=qy (the term linear in G), and
therefore

J � ÿG�bD�2
� L

0

dx q�x�w 0�x�
� L

0

dy r�0��y�w 0�y�R�x; y�

� ÿGb 2D

� L

0

dxw 0�x�
� L

0

dy r�0��y�w 0�y�

�
�
ÿA�L; y�

�x
0

dx 0q�x 0� � A�x; y�
�

�46�

� ÿGb 2D

� L

0

dxw 0�x�
�x
0

dx 0q�x 0�

�
�� x 0

0

dx 00j�x 00� ÿ
� L

0

dx 00q�x 00�
� x 00

0

dx 000j�x 000�
�

� Gb 2D

� L

0

dx q�x�
�
w�x� ÿ

� L

0

dz q�z�w�z�
� �x

0

dx 0j�x 0� :

Here, the function j�x� is the result of integration over y:

j�x� �
� L

0

dy r�0��y�w 0�y�
�
qS�x; y�

qy

�
G�0

� ÿDÿ1r�0��x�
�
w�x� ÿ

� L

0

dx 0r�0��x 0�w�x 0�
�
: �47�

Inserting (47) into Eqn (46), we arrive at expression (35), valid
for Brownian motors with a fluctuating periodic potential.

As we already mentioned in Section 3, a major distinction
of Brownian motors with a fluctuating homogeneous force
frommotors with a fluctuating periodic potential is that in the
adiabatic limit the velocity is different from zero for the first
and tends to zero for the second. Because the high-frequency
limit gives zero velocity in both cases [see, e.g., expression
(27)], it is obvious that the frequency dependence of velocity is
a monotonically decreasing function for motors with a
fluctuating force and is nonmonotonic for motors with a
fluctuating potential (see Fig. 3). In the latter case, for a small
G, the law of velocity increase with the frequency of
fluctuations is sensitive to the degree to which the process of
potential switching can be considered a purely dichotomous
one. Namely, the presence of short time intervals in which the
function s�t� varies fast (step-wise in the limit) leads to linear
low-frequency asymptotics [76]. The proportionality of the
Brownian motor velocity to G squared is characteristic of
smooth s�t�, i.e., the existence of transient processes (making
the step-wise potential changes continuous) leads to the
replacement of the linear law of velocity increase with
frequency by a quadratic one [76]. We mention that in an
approximation linear in frequency, the velocity depends
additively on the contributions from each time interval with
fast changes of the function s�t�: each jump makes a
contribution linear in G, and each deviation from the junp-
like behavior gives a correction quadratic in the duration of
the jump. The form of intervals where s�t� varies smoothly
does not contribute to the velocity in this approximation [76].

Reference [71] shows that for Brownian photomotors in
which directed motion is induced by resonance laser
radiation cyclically acting on a particle [49], accounting
for fast relaxation processes with a duration trel (described
by a supersymmetric periodic function s�t� � ÿs�t� t=2�;
s�t� � 1ÿ 2 exp �ÿt=trel�, t 2 �0; t=2�, t4 trel) also produces
a nonadiabatic correction to the velocity. The character of the

dependence of the mean velocity on trel=tD is determined by
the presence or absence of jumps in the spatial dependence of
the potential energy. For a saw-tooth potential profile, the
velocity decreases with increasing trel=tD, and for small
trel=tD the decrease is linear for extremely asymmetric
potential profiles and quadratic for profiles without jumps.
The character of the dependence of the mean motor velocity
on trel=tD and spatial asymmetry of the potential differs for
small and large trel compared with tl � l 2=D, which is the
characteristic diffusion time over the characteristic small
length l of the potential. Interestingly, the nonadiabatic
contribution in the mean velocity coming from taking
relaxation processes in the periodic temporal dependence of
the potential energy into account coincides with the expres-
sion obtained in Ref. [51] directly for the velocity of a motor
moving owing to stochastic dichotomous (instantaneous)
changes in the potential energy with the correlation function
K�t� � exp�ÿGjtj� (up to a formal replacement of trel with
Gÿ1). Thus, in the last case, the parameter G is `responsible'
for the occurrence of the motor effect proper, whereas the
parameter trel in Ref. [71] governs only the nonadiabatic
correction. Such a nontrivial coincidence of results invites a
thought on a deep similarity between the two different
mechanisms of ratchet effect (stochastic with the inverse
correlation time Gÿ1 and deterministic periodic with transi-
ent processes whose duration is determined by trel): the
presence of exponential behavior in the `decay' of the
potential profile [71].

5. High-temperature approximation

The smallness of fluctuations s�t�w�x� of the potential energy
U�x; t� assumed in this paper implies that their magnitude is
small compared to the thermal energy kBT, whereas the
contribution of u�x� to U�x; t� can be arbitrary. If addition-
ally the ratio u�x�=kBT is assumed to be small, we arrive at the
well-known high-temperature [55] or low-energy [41] approx-
imations used in some applications [49, 66, 67].

We derive the relations of the high-temperature approx-
imation from the formulas obtained in the preceding sections
for small fluctuations by using the operator form of
transformations like

Ŝ�x� f �x� �
� L

0

dy S�x; y� f �y� : �48�

Here, the action of an integral operator Ŝ�x� on an arbitrary
periodic function f �x� is determined by the integral, with the
kernel given by the function S�x; y� introduced in Eqn (11).
The use of integral operators makes the expressions of the
required transformations compact. Indeed, with the use of
integral operators, relations (12), (11), and (9) take the
succinct form

J � �bD�2
� L

0

dx q�x�w 0�x�Ŝ�x� q
qx

w 0�x�r�0��x� �O�w 3� ;
�49�

where

Ŝ�x� �
�1
0

dt ĝ�x; t�K�t� ; �50�

and the Green's operator ĝ�x; t� satisfies the equation
q
qt

ĝ�x; t� � q
qx

Ĵ�x�ĝ�x; t� � ÿ1̂d�t� ; �51�
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(1̂ is the unit operator). If we introduce the Green's operator
ĝ0�x; t� for the unperturbed Eqn (51) with u�x� � 0 and
Ĵ�x� � ÿD q=qx, then the original operator ĝ�x; t� satisfies
the Dyson equation [70]

ĝ�x; t� � ĝ0�x; t� ÿ bD
� t

0

dt 0 ĝ0�x; tÿ t 0� q
qx

u 0�x�ĝ�x; t 0� :
�52�

We note that the integral over time in this expression can be
extended to the entire range of t 0 because the Green's
operators are retarded, i.e., ĝ0�x; tÿ t 0� � 0 for t 0 > t and
ĝ�x; t 0� � 0 for t 0 < 0. Therefore, in the frequency Fourier
representation where

ĝ�x; t� � 1

2p

�1
ÿ1

do exp �ÿiot�~̂g�x;o� ;
�53�

~̂g�x;o� �
�1
ÿ1

dt exp �iot�ĝ�x; t� ;

Eqn (52) can be written in the form

~̂g�x;o� � ~̂g0�x;o� ÿ bD~̂g0�x;o�
q
qx

u 0�x�~̂g�x;o� : �54�

Then the operator Ŝ�x� defined in Eqn (50) can be expressed
in terms of ~̂g�x;o� as

Ŝ�x� � 1

2p

�1
ÿ1

do ~K�ÿo�~̂g�x;o�

� Ŝ0�x� ÿ bD
2p

�1
ÿ1

do ~K�ÿo�~̂g0�x;o�
q
qx

u 0�x�~̂g�x;o� ;
�55�

where

Ŝ0�x� � 1

2p

�1
ÿ1

do ~K�ÿo�~̂g0�x;o� �56�

(the second equality in Eqns (55) is obtained using Eqn (54)).
We insert result (55) into Eqn (49) and introduce the

notation J0fug for the first term,

J0fug � �bD�2
� L

0

dx q�x�w 0�x�Ŝ0�x� qqx w 0�x�r�0��x� ; �57�

which reflects the fact that the quantity introduced is a
functional of u�x�. For further transformations, we need the
property of oddness of this functional. We prove it. For this,
we need first to prove that the operator Ŝ0�x� is Hermitian
and commutes with the operator q=qx. Owing to equality
(56), it suffices to prove that the unperturbed Green's
operator ĝ0�x; t� has these properties. Its Hermiticity prop-
erty follows from the equation for ĝ0�x; t�, and the commu-
tativity with q=qx follows from spatial homogeneity, which
holds for free diffusion in the absence of a potential and
results in g0�x; y; t� being dependent only on the argument
xÿ y:

q
qx

ĝ0�x; t� f �x� �
� L

0

dy
qg0�xÿ y; t�

qx
f �y�

� ÿ
� L

0

dy
qg0�xÿ y; t�

qy
f �y�

�
� L

0

dy g0�xÿ y; t� q
qy

f �y� � ĝ0�x; t� qqx f �x� : �58�

Then the oddness of the functional J0fug is proved by a chain
of transformations

J0fug � �bD�2
� L

0

dx q�x�w 0�x� q
qx

Ŝ0�x�w 0�x�r�0��x�

� ÿ�bD�2
� L

0

dx

�
q
qx

q�x�w 0�x�
�
Ŝ0�x�w 0�x�r�0��x�

� ÿ�bD�2
� L

0

dx r�0��x�w 0�x�Ŝ0�x� qqxw
0�x�q�x� � ÿJ0fÿug ;

�59�
where we use the fact (see the last equality) that the function
q�x� differs from r�0��x� only by the replacement of u�x� with
ÿu�x�. From the equality J0fÿug � ÿJ0fug, it follows that
J0f0g � 0; thus, in the linear approximation in u�x�, by
expanding functions q�x� and r�0��x� up to u�x�, the
functional J0fug can be written as

J0fug � ÿ2b 3D 2

� L

0

dx

�
q
qx

u�x�w 0�x�
�
Ŝ0�x�w 0�x� : �60�

Returning to formula (49) with the operator Ŝ�x� defined
by relation (55) and using equality (60), we present the flux J
in the approximation linear in u�x� as

J � J0fug ÿ b 3D 2

L 2

�1
ÿ1

do ~K�ÿo�W�o� ;
�61�

W�o� � D

2p

� L

0

dxw 0�x�~̂g0�x;o�
q
qx

u 0�x�~̂g0�x;o�
q
qx

w 0�x� :

The expression for W�o� can be simplified using the
commutativity of the operators ~̂g0�x;o� and q=qx, as well as
the identities

q
qx

u 0�x� q
qx
� q2

qx 2
u�x� q

qx
ÿ q
qx

u�x� q2

qx 2
;

�62�
D

q2

qx 2
� ~̂gÿ10 �x;o� ÿ io1̂ :

Hence, because the operator ~̂g0�x;o� is Hermitian, the
expression forW�o� takes the form

W�o� � ÿ 1

p

� L

0

dx

�
q
qx

u�x�w 0�x�
�

~̂g0�x;o�w 0�x�

� io
2p

� L

0

dx u 0�x�� ~̂g0�x;o�w 0�x�
�2
: �63�

Inserting (63) into approximate equality (61) and taking (56)
into account, we can readily see that the first term in Eqn (63)
is compensated by J0fug, and therefore the flux in the high-
temperature approximation takes the final form

J � ÿ ib 3D 2

2pL 2

�1
ÿ1

do o ~K�ÿo�
� L

0

dx u 0�x��~w 0�x;o��2 ;
�64�

which includes the so-called fluctuating effective poten-
tial [51]

~w�x;o� � ~̂g0�x;o�w�x� �
� L

0

dy ~g0�xÿ y;o�w�y� : �65�

506 V M Rozenbaum, I V Shapochkina, L I Trakhtenberg Physics ±Uspekhi 62 (5)



Relation (64) is the most general expression for the flux
determining the velocity of a high-temperature Brownian
motor with a fluctuating periodic potential profile [51, 71],
which is valid for any law of the profile variation with time.
In the case of a stochastic dichotomous process with the
inverse correlation time G, we have ~K�ÿo� � 2G=�o2 � G 2�
and

J � b 3D 2G
L 2

� L

0

dx u 0�x��~w 0�x; iG��2 ; �66�

where the function ~w 0�x; iG� is defined by formula (65)
where the Green's function ~g0�x; iG� is written in the
explicit form

~g0�x; iG��ÿ
X
q

exp
�
ikq�xÿ y��

G�Dk 2
q

� ÿ z cosh
�
z�1ÿ 2jxj=L��
G sinh z

;

�67�
z � 1

2

���������
GtD

p
; tD � L 2

D
:

Here and hereafter, we use wave vectors kq � 2pq=L, which
are functions of an integer argument q.

The relations presented here are convenient for the
analysis of potential profiles with large gradients (see, for
example, the analysis of Brownian motors with saw-tooth
potentials in Refs [51, 71]). In the case of smooth potential
profiles, in contrast, the representation in terms of Fourier
harmonics is more convenient because it allows one to keep
only a few first harmonics. For example, for a nonsymmetric
dichotomous process, such a high-temperature Fourier
representation is obtained in Ref. [55]:

J � ib 3DG
L

X
qq 0

Dkqkq�q 0uq 0 � �g� ÿ gÿ�wq 0

�G�Dk 2
q ��G�Dk 2

q�q 0 �
kq 0wqwÿqÿq 0 :

�68�

In the symmetric case �g� � gÿ�, formula (68) corresponds to
representation (66) written in terms of Fourier components.

For a periodic process,

~K�ÿo� � 2p
X
j

jsjj2d�oÿ oj� ;

and therefore formula (64) takes the form

J � ÿ ib 3D 2

L 2

X
j

jsjj2oj

� L

0

dx u 0�x��~w 0�x;oj�
�2
: �69�

Similarly to the situation with a stochastic process,
expression (69) is convenient for the analysis of potential
profiles with large gradients, whereas for smooth coordi-
nate dependences of the potential energy, the representa-
tion in terms of Fourier components becomes more
productive [55],

J � ib 3D 3

L

X
qj; q 0j 0

k 2
q k

2
q�q 0kq 0UqjUq 0j 0Uÿqÿq 0;ÿjÿj 0

�ioj �Dk 2
q ��ioj�j 0 �Dk 2

q�q 0 �
: �70�

Formula (70) is valid for an arbitrary function U�x; t�, not
only the one reducible to the additive-multiplicative form (3).
However, if we resort to formula (3) and the approximation of
small fluctuations up to terms of the orderO�w 2�, expression
(69), written in Fourier components can be represented in the

form [49]

J � 2ib 3D 3

L

X
qq 0�6�0�
�q�q 0 6�0�

kqkq 0kq�q 0 �k 2
q � k 2

q 0 �

� wqwq 0uÿqÿq 0c�Dk 2
q ;Dk 2

q 0 � ;

c�a; b� �
X1
j�1

o2
j jsjj2

�o2
j � a 2��o2

j � b 2� ; �71�

which follows from Eqn (70) with an accuracy of O�w 2�.

6. Conclusions

Brownian motors (ratchets), which are models of controlled
diffusive systems with broken mirror symmetry [17±20] and
are being actively explored at present, function under the
action of external fluctuating perturbation in the absence of
macroscopic driving forces. The material of this methodolo-
gical paper covers the most typical examples of theoretical
descriptions of systems in which the external perturbation
w�x� is created artificially, and commonly turns out to be
substantially smaller than stationary interactions u�x� of
motors with the environment. Such (nonbiological) systems
can include, for example, particles moving in solutions under
the action of a periodic asymmetric potential [77, 78], vortices
in superconductors [79], atoms in dissipative optical lattices
[80], and electrons in organic semiconductors [81]. Brownian
motors with a fluctuating force or fluctuating periodic
potential energy can also function because of the electro-
phoretic or dielectrophoretic effect [78, 82], which seems to
promise to widen the variety of methods of radioelectric
delivery and segregation of biological drugs [83, 84]. As a
controlling perturbation in this case, one may use spatial
harmonic signals with different time dependences [72, 85]. A
situation inverse to the small-fluctuation approximation,
assuming large perturbations of potential profiles, is char-
acteristic of molecular motors of biological origin. For this
reason, the description of motor proteins such as proton
ATP-synthase [24], kinesin, myosin V [25], and biological
microtubules [26] is outside the scope of this paper.

The smallness of perturbations suggests that the well-
developed and effective theoretical technique of Green's
functions can be used to derive analytic expressions describ-
ing the dependence of the mean velocity of a Brownian
particle (Brownian motor) on the problem parameters
(temperature, fluctuation frequency, geometrical parameters
of the potential profile, etc.). All the variety of possible
dependences is embraced by a single compact expression
(12), derived in detail in Sections 2 and 3 in the framework
of a general description (assuming an arbitrary temporal
behavior of perturbations), as well as in the case of a
dichotomous stochastic process.

The compact character of representation (12) is achieved
through the introduction of the function of two variables
S�x; x 0� defined by the Green's function g�x; x 0; t� for
diffusion in a stationary potential profile u�x�; finding the
function S�x; x 0� for arbitrary u�x� is far from a trivial task.
Analytic expressions for S�x; x 0� can be obtained, for
example, for a saw-tooth potential exhibiting stochastic
dichotomous fluctuations [see expressions (29)±(32) and
Fig. 2]. Computations based on these expressions give
characteristic frequency dependences of the mean velocity,
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which differ substantially for the main ratchet types (see
Fig. 3), those with a fluctuating force and fluctuating
periodic potential energy. Explicit expressions for S�x; x 0�
can also be obtained within certain approximations (regard-
ing the frequencies of fluctuations and amplitudes of
potential profiles), which are actively used in the theory of
Brownian motors. The proposed approach allows the results
of these approximate analyses to be reproduced starting from
the same basic expression, i.e., view them from a common
standpoint. All this is realized in this article.

For example, the mean velocity of a motor with the
potential energy varying in a high-frequency dichotomous
stochastic process, given by formula (27) is easily derived
from general expression (12). Section 4 is devoted to a much
more involved derivation of formulas for the low-frequency
(adiabatic) approximation. The main result of this approx-
imation is the expression for a contribution, linear in the
fluctuation frequency, to the mean velocity of Brownian
motors with a fluctuating potential profile. Section 5
addresses one more important approximation, that of high
temperatures, which allows the motor velocity to be analyzed
for an arbitrary frequency of potential energy fluctuations.
The relations presented in that section are convenient for the
analysis of both smooth potential profiles [41, 55] and profiles
containing intervals with large potential gradients [51, 71].
The opposite approximation of low temperatures can also be
obtained directly from expression (12) using the saddle point
method; however, this case is not touched on in this paper.
The reason is that, on the one hand, such a method to derive
low-temperature expressions is fairly obvious (see, e.g., [68]),
while, on the other hand, it would require the presentation of
cumbersome expressions, the simplified variants of which can
be easily obtained for a jumping motion description [56].
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