
Abstract. The frequently usedMaxwell's equations that contain
E, B, D, andH fields are only substantiated in the framework of
linear material equations and for isotropic media alone. We
have shown that accounting for the deviation of magnetic per-
mittivity l�x� from unity in the usually employed dispersion
equation implies a false precision. Therefore, if spatial disper-
sion is disregarded, transverse waves only exist in the energy
region where e�x� > 0 and have a positive group velocity.

Keywords: conductivity tensor, dielectric permittivity tensor,
isotropic media, electric andmagnetic permittivity, phase and
group velocity of transverse electromagnetic waves

1. Introduction

The history of the problem discussed in this paper is quite
completely, beginning from L I Mandelstam's work, pre-
sented in the review by V M Agranovich and
Yu N Gartshtein [1]. L I Mandelstam [2] pointed out one of
the possible selections of physically realized solutions of
Maxwell's equations. According to [2], the field in an
equilibrium medium far from a source should satisfy the
condition at which the energy flux is directed from the source.

Following [3], we will call this condition the Mandelstam
emission principle. Using this principle, Mandelstam indi-
cated an interesting feature of the refraction of a monochro-
matic plane wave by the interface of two isotropic media. If
the waves in both media have a positive (or negative) group
velocity,1 then refraction is `ordinary': the refracted and
incident beams lie on different sides from the normal to the
interface. If the group velocity of the wave in one of the media
is positive and negative in another, refraction is `extraordin-
ary': the refracted and incident beams lie on one side of the
normal to the interface. This refraction is now called negative
refraction [1].

The question of the group velocity sign in a medium with
dielectric permittivity e�o� and the magnetic permeability
m�o� was solved by D V Sivukhin [4] and V E Pafomov [5].
The dispersion equation for a transverse electromagnetic
wave has the form [6, } 83]

k 2 � o 2

c 2
e�o� m�o�: �1:1�

If the field energy dissipation is ignored (i.e., in the case of
real e �o� and m�o�), the wave does not decay (i.e., the wave
vector k is real, k 2 > 0) if the product e�o� m�o� > 0, i.e.,
e�o� and m�o�>0 or e�o� and m�o�<0. Expression (1.1)
gives the relation between the group and phase wave
velocities:

vgr � qo
q k
� 2o e�o� m�o�

q�o 2e m�=qo vph ;

vph � c��������������������
e�o� m�o�p k

k
: �1:2�
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1 In all cases, if not noted otherwise, an isotropic medium is considered. In

an isotropic medium, the group and phase velocities of a wave are either

parallel or antiparallel; it is assumed that in the first case the group velocity

is positive and is negative in the second case.
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The transverse wave energy density is [6, } 83]

U � 1

8pom�o�
qo 2e m
qo

E 2 ; �1:3�

where E 2 is the squared electric field strength averaged over
the period 2p=o. Because U > 0 in an equilibrium medium
[6, } 80], relations (1.2) and (1.3) give the Sivukhin
conditions [4]:

e�o�; m�o� > 0) vgr "" vph ;

e�o�; m�o� < 0) vgr "# vph : �1:4�

Note that expressions (1.1)±(1.4) follow only from
Maxwell's equations [6, } 77]

divD � 0 ; rotE � ÿ 1

c

qB
qt

; divB � 0 ; rotH � 1

c

qD
qt
�1:5�

andmaterial equations, which for monochromatic fields have
the form [6, } 77]

D � e�o�E; B � m�o�H : �1:6�

In the number of papers published after review [1], paper
[7] by S G Rautian, which we already pointed out in [8],
takes a special place. The most impressive result of paper [7]
is the statement that waves with the negative group velocity
in the optical spectral region do not exist in a homogeneous
isotropic medium with dielectric permittivity e�o� and
magnetic permeability m�o�. The negative group velocity of
waves inmaterials studied in experiments is caused, according
to [7, p. 1023], not by the negative values of e�o� and m�o�, but
by a periodic inhomogeneity of the medium.

We assumed that Rautian's paper [7] would be broadly
discussed; however, it remained in fact unnoticed. For
example, paper [7] was not even mentioned in reviews [9, 10]
(although in [9], practical applications of waves with the
negative group velocity were already discussed). This is all
the more surprising because the proof of the fact that the
group velocity of the wave can be only positive is absent in
fact in [7]. The author of [7] recalls that D V Sivukhin himself
wrote in paper [4]: ``Media with e < 0 and m < 0 are unknown.
The question of the fundamental possibility of such media
existing is open.'' Rautian continues [7, p. 1023]: ``In themore
than 50 years that have passed since those times, the situation
has not changed, and I am sure it will never change: the
existence of continuous homogeneous media with e < 0 and
m < 0 in the optical spectral region is impossible.'' This
statement, of which the author is sure, was in no way
discussed in [7], i.e., was formulated like a postulate. From
this postulate, together with Sivukhin's conditions (1.4), the
positive value of the wave group velocity is obtained as a
direct consequence.

Note that, long before the publication of [7], Sivukhin
discarded in fact his result (1.4) without any explanation. In
the book Optika cited in [7], on another occasion, Sivukhin
states without proof [11, } 64]: ``It can be shown that in the
case of electromagnetic waves in isotropic media, the
propagation directions of the phase and energy coincide,''
and by deriving Fresnel formulas, he warns readers that ``e�o�
and m�o� are substantially positive.'' [11, } 67]. In this

connection, we note recent paper [12] in which Fresnel
formulas are discussed for negative e�o� and m�o�.

The aim of this paper is, without using any postulates like
the Rautian postulate [7], to answer the question: Can a
transverse electromagnetic wave propagate in an isotropic
medium if dielectric permittivity e�o� and magnetic perme-
ability m�o� of the medium are negative at the wave
frequency? As the first step, we present the solution to the
problem of the propagation of an electromagnetic pulse from
a quasi-monochromatic source in a medium with dielectric
permittivity e�o� and magnetic permeability m�o�.

2. Emission of a quasi-monochromatic source
in an isotropic medium

Consider a field source producing charge density rext�r; t� and
current density j ext�r; t� in the region under study. Instead of
equations (1.5), we now have equations [6, } 75]

divD � 4prext ; rotE � ÿ 1

c

qB
qt

;

divB � 0 ; rotH � 1

c

qD
qt
� 4p

c
j ext : �2:1�

The law of conservation of foreign (with respect to the
medium) charges being related to the source, the continuity
equation

qrext
qt
� div j ext � 0 �2:2�

is obtained from the first and fourth equations in (2.1).
We assume that the source is quasi-monochromatic,

rext�r; t� � Re r �0�ext �r; t� exp �ÿiot� ;
j ext�r; t� � Re j

�0�
ext�r; t� exp �ÿiot� ; �2:3�

where r �0�ext and j
�0�
ext are slow �compared to exp �ÿiot��

functions of time: if these functions are characterized by
some time t, then

1

ot
5 1 : �2:4�

Equations (2.1) and material equations are linear. Therefore,
fields E, B, D, and H have a form similar to (2.3). For
example, E�r; t� � ReE �0��r; t� exp �ÿiot�.

Assuming that the field energy dissipation in the medium
is negligible (the dielectric permittivity and the magnetic
permeability are real), we write the material equations in the
zero-order approximation over parameter (2.4) in the form
(1.6). Then, equations (2.1) are reduced to equations for the
fields E andH:

divE � 4p
e�o� rext ; rot E � ÿ m�o�

c

qH
qt

;

divH � 0 ; rotH � e�o�
c

qE
qt
� 4p

c
j ext :

�2:5�

Similarly to [13, } 17], we introduce the vector potentialA�r; t�
and the scalar potential j �r; t� in order to satisfy the second
and third equations in (2.5):

H�r; t� � rotA ; E�r; t� � ÿ m�o�
c

qA
qt
ÿ 1

e�o�Hj : �2:6�
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In this case, the first and fourth equations in (2.5) are reduced
to equations for j and A:

H 2j� e�o� m�o�
c 2

q
qt

divA � ÿ4prext�r; t� ;

H 2Aÿ e�o� m�o�
c 2

q 2A

qt 2
ÿ H

�
1

c

qj
qt
� divA

�
� ÿ 4p

c
j ext�r; t� : �2:7�

The choice of potentialsA andj in (2.6) is ambiguous (see [13,
} 18]): potentials

~A � A� H f ; ~j � jÿ e�o� m�o�
c

q f
qt
; �2:8�

where f �r; t� is an arbitrary function, give the same expres-
sions for fieldsH and E as potentialsA and j. We will choose
the function f �r; t� in (2.8) so as to satisfy the Lorentz
condition [13, } 46],

divA� 1

c

qj
qt
� 0 : �2:9�

In this case, equations (2.7) take the form

H 2j ÿ e�o� m�o�
c 2

q 2j
qt 2
� ÿ4prext�r; t� ;

H 2Aÿ e�o� m�o�
c 2

q 2A

qt 2
� ÿ 4p

c
j ext�r; t� : �2:10�

In the zero-order approximation in parameter (2.4), we have
q 2A=qt 2 � ÿo 2A, q 2j=qt 2 � ÿo 2j, and equations (2.10)
outside the source are equations for a monochromatic wave,
which can be treated as a planewave in small spatial regions at
a large enough distance from the source [13, } 66]. In this case,
the wave vector and frequency are related by dispersion
equation (1.1). The field will not decay if the inequality
e�o� m�o� > 0 is fulfilled.

The solution of equations (2.10) is similar to that of the
same problem for radiation in a vacuum [13, } 62] in the form
of retarded or advanced potentials

j�r; t� �
�

dV 0

jrÿ r 0j rext
�
r 0; t � jrÿ r0j

vph

�
;

A�r; t� � 1

c

�
dV 0

jrÿ r 0j j ext
�
r 0; t � jrÿ r 0j

vph

�
;

�2:11�

where dV 0 � dx 0 dy 0 dz 0, and vph � o
��������������������
e�o� m�o�p

=c is the
phase velocity of the wave. By using the continuity equation
(2.2), we can verify that the Lorentz condition with j and A
from (2.11) is satisfied for any (but the same for j andA) sign
at jrÿ r 0j=vph.

Let a be the scale of the linear size of the source. At a large
distance r from the source

a

r
5 1 : �2:12�

Functions j and A (2.11) in the zero-order approximation
over parameter (2.12) can be written in the form [13, } 66]

j�r; t� � 1

r

�
dV 0rext

�
r 0; t � jrÿ r 0j

vph

�
;

A�r; t� � 1

cr

�
dV 0 j ext

�
r 0; t � jrÿ r 0j

vph

�
:

�2:13�

The time � a=vph in t� jrÿ r 0j=vph� t� r=vph � r r 0=�r vph�
can be ignored if the charge distribution in the source does not
change noticeably, i.e., if a=vph 5 1=o: This condition is
equivalent to the condition [13, } 66]

a

l
5 1 ; �2:14�

where l � 2pvph=o is the wavelength in the medium. From
(2.13) in the zero-order approximation over small parameter
(2.14), we find [13, } 66]

A�r; t� � 1

cr

�
dV 0 j ext

�
r 0; t � r

vph

�
� 1

cr
_d

�
t� r

vph

�
;

�2:15�

where the dipole moment of the source is

d �t� �
�
dV rext�r; t� r : �2:16�

In the expression forj�r; t� (2.13), it is also necessary to retain
the first-order term in parameter (2.14); assuming that the
total charge in the source is zero, we find

j�r; t� � � r _d

�
t � r

vph

�
1

r 2
: �2:17�

By substituting potentials (2.15) and (2.17) into expressions
(2.6), we obtain expressions for fields at distances from the
source r4 l4 a [see (2.12) and (2.14)]:

H�r; t� � � 1

crvph
�d

�
t � r

vph

�
� r

r
;

E�r; t� � � m�o� vph
c

H�r; t� � r

r
: �2:18�

By using these expressions, we find the energy flux density
vector (the Umov±Poynting vector) [6, } 80]:

S � c

4p
E�H � � m�o� vphH 2�r; t� r

4pr
: �2:19�

According to the Mandelstam principle (see Section 1), the
energy flux at a large distance from the source is directed from
it: S "" r. Therefore, according to (2.19), the upper sign
should be taken in all formulas if m�o� > 0, and the lower
sign should be taken if m�o� < 0. The final expressions for the
fields and the energy flux density have the form

H�r; t� � � 1

cvphr
�d

�
t � r

vph

�
� r

r
;

E�r; t� �
����������
m�o�
e�o�

s
H�r; t� � r

r
; �2:20�

S�r; t� � c

4p

����������
m�o�
e�o�

s
H 2�r; t� r

r
;

where the upper (lower) sign corresponds to the case
e�o�, m�o� > 0 �e�o�; m�o� < 0�. Recall that d�t� �
Re d �0��t� exp �ÿiot�, where d �0��t� is a slow function �com-
pared to exp �ÿiot��.

We see from (2.20) that the energy flux from the source in
amediumwith e�o� < 0 and m�o� < 0 received at an instant t
is determined by the motion of charges in the source that will
occur only in the future at the moment t� r=vph. Thus, a
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consequence proves to be ahead of the cause, which is
inconsistent with the principle of causality. 2

Thus, dispersion equation (1.1) is invalid for all media in
the frequency region where the dielectric permittivity and
magnetic permeability are negative. However, as mentioned
in Section 1, dispersion equation (1.1) directly follows from
Maxwell's equations (1.5) and material equations (1.6). To
find the reason for the incorrectness of dispersion equation
(1.1) and to obtain the correct dispersion equation, it is
necessary to elucidate how material equations (1.6) appear
in the electromagnetic field theory. We will discuss this
question in what follows [6, 16±18].

3. Maxwell's equations and material equations
for an isotropic medium

Consider the Maxwell±Lorentz equations for an electromag-
netic field [16, } 27; 17, } 1; 18, } 1],

divE � 4pr ; rotE � ÿ 1

c

qB
qt

;

divB � 0 ; rotB � 1

c

qE
qt
� 4p

c
j ;

�3:1�

where (in the absence of foreign charges) r and j are the mean
charge density and the mean charge current density of the
medium (mean values in the sense of disregarding fluctua-
tions [18, } 1]). Electric field strength E and magnetic
induction B are determined by the force acting of the point
charge qmoving at velocity v (the Lorentz force),

F � q
ÿ
E� 1

c
v� B

�
: �3:2�

The first and fourth equations (3.1) contain the law of
conservation of charges in a medium:

qr
qt
� div j � 0 : �3:3�

Equations (3.1) can be represented in an equivalent form,
which is ``more convenient for macroscopic electrodynamics''
[16, } 28], if we introduce into the right-hand side of the fourth
equation the vector ~D �r ; t� called, like D �r; t� , the electric
induction [6, } 103; 17, } 1]:

q ~D

qt
� qE

qt
� 4p j : �3:4�

By integrating (3.4), we obtain (see 17, } 1])

~D �r; t� � E �r; t� � 4p
� t

ÿ1
j �r; t 0� dt 0 � 4pP �ÿ��r� ; �3:5�

where P�ÿ��r� is a so far arbitrary time-independent vector.
Taking into account the first equation in (3.1) and continuity
equation (3.3) and requiring the fulfilment of the condition

divP�ÿ� � ÿr�ÿ��r� ; �3:6�

where r�ÿ��r� � r�r; t � ÿ1�, we find that div ~D � 0. Thus,
along with system of equations (3.1), the equivalent system of

equations 3 [6, } 103; 16, } 28; 17, } 1; 18, } 1],

div ~D � 0 ; rotE � ÿ 1

c

qB
qt

;

divB � 0 ; rotB � 1

c

q ~D

qt
;

�3:7�

is valid, in which ~D�r; t� is determined from (3.5) and (3.6).
Taking into account the electric neutrality of the entire
medium, equation (3.6) should be supplemented by the
condition that P�ÿ��r� � 0 outside the medium (in a vacuum,
where r�ÿ��r� � 0) [6, }} 6, 77]. Note that in this case the vector
P�ÿ��r� is not yet defined unambiguously, and any vector of
the form rot f can be added to it in the region inside the
substance [6, } 6].

By expanding all the quantities in (3.7) to Fourier
integrals in time and space, we can obtain relations between
corresponding Fourier components:

k ~Dok � 0 ; k� Eok � o
c
Bok ;

kBok � 0 ; k� Bok � ÿo
c

~Dok :
�3:8�

Similarly, we find from (3.5) (see [17, } 2])

~Dok � Eok � 8p 2 jokd��o� � 4pd�o�P�ÿ�k ; �3:9�

where [19, } 5]

d��o� � 1

2p

�1
0

exp �iot� dt � 1

2
d�o� � i

2po
; �3:10�

the singularity at o � 0 in the last term should be treated in
the sense of the principal value. Considering time-dependent
fields, we will omit terms with d�o� in (3.9) [6, } 96] and
assume that

~Dok � Eok � 4p i
o

jok : �3:11�
The passage from Maxwell's equations (3.7) for three

fields, E, B, and ~D, to Maxwell's equations (1.5) for four
fields, E, B, D, and H, is performed by dividing the current j
into a part related to the polarizationP�r; t� and a part related
to the magnetizationM�r; t� [6, } 79; 17, } 2; 18, } 1],

j �r; t� � 1

4p
q�~Dÿ E�

qt
� qP

qt
� c rotM ; �3:12�

then, the fields

D�r; t� � E�r; t� � 4pP�r; t� ;
H�r; t� � B�r; t� ÿ 4pM�r; t� �3:13�

are introduced to obtain equations (1.5).
Vectors P�r; t� and M�r; t� are defined as in the theory of

static fields. The polarization P is defined so that [6, } 6]

divP � ÿr�r� �3:14�

and P�r� � 0 outside the body. It is proved that the
polarization itself is the dipole moment of the unit volume in

2 Note that this problem was solved in [14, 15]. According to [14, 15],

radiation in a medium with negative dielectric permittivity and negative

magnetic permeability is directed to the source!

3Maxwell's equations in this form are presented already in the first edition

(1957) [6, } 83]).
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the sense that the integral taken over the entire body volume is�
rr�r� dV � ÿ

�
r divPdV �

�
P�r� dV : �3:15�

Definition (3.14) in alternate fields does not contradict
equality (3.12) or continuity equation (3.3) [6, } 77]. The
magnetization M is defined so that [6, } 29]

c rotM � j �3:16�

andM � 0 outside the body. It is proved that the magnetiza-
tion itself is the magnetic moment of the unit volume in the
sense that the integral taken over the entire body volume is

1

2c

�
r� j dV � 1

2

�
r� rotM dV �

�
M dV : �3:17�

One can see from (3.12) that definition (3.16) introduced in
the static limit is invalid in an alternate field, and M�r; t�
cannot be treated as the magnetic moment of the unit volume
[6, } 79]. Thus, the question of the correctness of equality
(3.12) (and, therefore, equations (1.5)) is reduced to the sense
of the vector M�r; t�. We will show below how this question
can be solved within the framework of the linear electro-
dynamics of a homogeneous isotropic medium.

The material equation for a homogeneous medium under
stationary conditions in the linear approximation has the
form 4 [6, } 103; 17, } 2]

ji �r; t� �
�
dt 0
�
dV 0gi j �tÿ t 0; rÿ r 0�Ej �r 0; t 0� : �3:18�

For the corresponding Fourier components, we obtain the
relation

jiok � si j �o; k�Ejok ; �3:19�

where the conductivity tensor is

si j �o; k��
�
dV exp �ÿikr�

�
dt exp �iot� gi j �t; r� : �3:20�

It follows from (3.11) and (3.19) that

~Diok � e i j �o; k�Ejok ; �3:21�

where the dielectric permittivity tensor is

ei j �o; k� � di j � 4pi
o

si j �o; k� : �3:22�
The dielectric permittivity tensor for an isotropic (non-

gyrotropic) mediumwith the symmetry center has the form [6,
} 103; 16, } 28; 17, } 2; 18, } 1]

ei j �o; k� �
�
di j ÿ ki kj

k 2

�
e tr �o; k� � ki kj

k 2
e l �o; k� ;

�3:23�

where e tr and e l are functions of the absolute value of thewave
vector (and frequency). The conductivity tensor is written

similarly with corresponding functions s tr�o; k� and s l�o; k�.
The vector ~Dok (3.21) with e i j �o; k� from (3.23) is written in
the form

~Dok � 1

k 2

�
e l �o; k�k �kEok� � e tr�o; k� k� �Eok � k�� :

�3:24�

The solutions of equations (3.8) with ~Dok from (3.24) are
longitudinal and transverse waves with the corresponding
dispersion equations [6, } 105, 106; 17, } 6]:

e l�o; k� � 0 ; Eok "" k ; ~Dok � 0 ; Bok � 0 ; �3:25�

k 2 � o 2

c 2
e tr�o; k� ; Eok ? k ; Bok ? k ; Bok ? Eok ;

�3:26�

therefore, e l�o; k� is called the longitudinal dielectric permit-
tivity and e tr�o; k� is called the transverse permittivity.

Note that in the case of a gyrotropic (without the
symmetry center) isotropic medium, tensor (3.23) has the
additional term [6, } 104; 18, } 1]

i
c

o
f �o; k� ei jl kl ; �3:27�

where f is a pseudoscalar, and ~D ok (3.24) has the additional
term i �c=o� f �o; k�Eok � k.

By using the second equation from (3.8), we can write
equality (3.24) in a different form:

~D ok�e l�o; k�Eok ÿ o
ck 2

�
e tr�o; k� ÿ e l�o; k�� k� B ok :

�3:28�
With the expression for ~D ok, the fourth equation in (3.8)
takes the form�

1ÿ o 2

c 2k 2

�
e tr�o; k� ÿ e l�o; k�

��
Bok

� ÿo
c
e l �o; k�Eok : �3:29�

Instead of two functions e l�o; k� and e tr�o; k� characterizing
the dielectric permittivity tensor of an isotropic center (3.23),
we can introduce any two of their combinations. It can be seen
from (3.29) that it is convenient to introduce functions e�o; k�
and m�o; k�, which are called the dielectric permittivity and
magnetic permeability of a medium:

e�o; k� � e l�o; k� ;
1

m�o; k� � 1ÿ o 2

c 2k 2

ÿ
e tr�o; k� ÿ e l�o; k�� : �3:30�

After the introduction of e�o; k� and m�o; k� in accordance
with (3.30), we can introduce vectors

D ok � e�o; k�Eok ; Hok � 1

m�o; k�Bok ; �3:31�

so that [see (3.28), (3.30), and (3.31)]

~D ok � D ok ÿ c

o

ÿ
m�o; k� ÿ 1

�
k�Hok : �3:32�

4 It is assumed that summation is performed everywhere over all doubly

repeated indices i; j; l::: � x; y; z.
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(In gyrotropic media, Dok also contains the term
i�c=o� f �o; k�Eok � k.)

Taking (3.32) into account, equations (3.8) are trans-
formed as follows:

kDok � 0 ; k� Eok � o
c
Bok ;

kBok � 0 ; k�Hok � ÿo
c
Dok : �3:33�

Differential equations for the fieldsE�r; t�,B�r; t�,D�r; t�, and
H�r; t� are obtained from (3.33) and have the form (1.5).

It follows from (3.11), (3.31), and (3.32) that

j ok � ÿi�oPok ÿ ck�Mok� ; �3:34�

where the Fourier components of the polarization Pok and
magnetization Mok are defined by the expressions

Pok � ��o; k�Eok ; Mok � w�o; k�
m�o; k� Bok ; �3:35�

in which

��o; k� � 1

4p

ÿ
e�o; k� ÿ 1

�
;

w�o; k� � 1

4p

ÿ
m�o; k� ÿ 1

� �3:36�

are the dielectric and magnetic susceptibilities, respectively.
Expression (3.34) directly gives equality (3.12), in which the
polarization P�r; t� andmagnetizationM�r; t� are determined
from (3.35).

Dispersion equation (3.26) for transverse waves in an
isotropic nongyrotropic medium can be expressed in terms of
e�o; k� and m�o; k�. We find from (3.30) and (3.26)

m�o; k� � e tr�o; k�
e l�o; k� �3:37�

for the transverse wave, and the dispersion equation has the
form

k 2 � o 2

c 2
e�o; k� m�o; k� : �3:38�

4. Dielectric permittivity e�x�
and magnetic permeability l�x�
Ignoring the spatial dispersion in the conductivity tensor si j
(3.20) and the dielectric permittivity tensor ei j (3.22) means
that the current j �r; t� and induction ~D�r; t� at the point r are
determined by the field E only at this point. This requires the
assumption that the function gi j�t; r� in (3.18) is proportional
to d�r�. Then, si j and ei j are independent of k and are the
functions si j and ei j of only frequency o taking the frequency
dispersion into account. For isotropicmedia, ei j�o� is reduced
to a scalar function ~e �o�:

ei j�o� � ~e�o� di j : �4:1�

Actually, the function

fi j�o; r� �
�
dt exp � iot� gi j �t; r� ; �4:2�

standing as a factor at exp �ÿikr� in (3.20), considerably
decreases at some finite distance 5 a0�o� [6, } 103]. For
k4 1=a0�o�, the conductivity tensor

si j�o; k� �
�
dV exp �ÿikr� fi j�o; r� �4:3�

vanishes [see (3.22)]:

si j�o; k�
��
k!1 � 0 ; ei j�o; k�

��
k!1 � di j : �4:4�

For k5 1=a0 �o�, the exponential factor in (4.3) can be
expanded in a series: exp �ÿikr� � 1ÿ ikr� . . ., and
si j�o; k� and ei j�o; k�, k) can be represented in the form of a
power series in a small parameter:

k

k0 �o� 5 1 ; k0�o� � 1

a0�o� : �4:5�

Terms not containing parameter (4.5) correspond to disre-
garding the spatial dispersion:

ei j�o� � ei j�o; 0� : �4:6�

For e l�o� � e l�o; 0� and e tr�o� � e tr�o; 0� in an isotropic
medium [see (3.23)], taking (4.1) and (3.30) into account, we
obtain [6, } 103; 17, } 3]

e tr�o� � e l�o� � e�o� � ~e �o�; ei j �o� � e�o� di j : �4:7�

Indeed, we find from (3.23)

eii�o; k� � 2 e tr�o; k� � e l�o; k� ;
kikj
k 2

ei j�o; k� � e l�o; k� ;
�4:8�

and from (4.1) we obtain the relations

eii�o� � 3~e�o� ; kikj
k 2

ei j �o� � ~e�o� : �4:9�
Comparing (4.8) for k! 0 with (4.9), we obtain expressions
(4.7).

It follows from (3.30) that themagnetic permeability m �o�
in which the spatial dispersion is disregarded differs from
unity only when the spatial dispersion is taken into account in
e tr�o; k� and e l�o; k�. By using (4.7), we find [6, } 103]

1

m�o� � 1ÿ o 2

c 2
q

qk 2

ÿ
e tr�o; k� ÿ e l�o; k����

k�0 : �4:10�

Because jqe tr=qk 2j�jqe l=qk 2j�je�o�j=k 2
0 �o�, we obtain���� 1

m�o� ÿ 1

���� � o 2

c 2k 2
0 �o�

je�o�j : �4:11�

Let us recall the known result by Landau and Lifshitz
about the magnetic susceptibility of matter [6, } 79]: ``...there
is no sense using themagnetic susceptibility already beginning
from the optical frequency region, and we should assume that
m � 1 by considering the corresponding phenomena. Taking
into account a difference between B and H in this region

5 This distance can be different for different tensor components fi j
[6, } 103].
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would be an obvious false precision. In fact, taking into
account the difference between m and 1 is false precision for
most phenomena already at frequencies much lower than
optical frequencies.''6 In [6, } 103], an important remark is
made concerning the relation between this result and the
spatial dispersion effect. Taking into account this remark, we
can assume that the restriction by optical frequencies is
unnecessary: the difference between m�o� and 1 can be
substantial only in exclusive cases (see below). Indeed, in the
general case,

k0 �o� � 1

a0�o� �
o
v0
; �4:12�

where v0 is the velocity of particles (quasi-particles) making a
considerable contribution to the dielectric permittivity at the
given frequency o. By substituting (4.12) into (4.11), we
obtain���� 1

m�o� ÿ 1

���� � �v0c
� 2

; �4:13�

if e�o� � 1. The parameter v0=c5 1 (in quantum mechanics,
if v0 is the electron velocity, then v0=c � a, where a � e 2=��hc�
is the fine structure constant) is a small parameter in the
theory of matter±electromagnetic field interaction. The
exclusion from result (4.13) can be related, as usual in the
perturbation theory, only with the resonance situation, when
the frequency o is close enough to the frequency o0 of some
transition between the energy levels of the medium.

The total set of quantum numbers characterizing the state
of a medium contains the momentum p of a particle (a
molecule if the medium is a gas) or the quasi-momentum of
a quasi-particle (an exciton in the optical spectral region or an
optical phonon in the IR region). This circumstance is
manifested in the denominators of sums entering expressions
for ei j �o; k� (see [1; 18, } 12]). At frequency o close to some
resonance frequency o0 of an atom or a molecule at rest, the
dominator in ei j �o; k� is �h�oÿ o0� ÿ �e� p� �hk� ÿ e�p�� �
�h�oÿ o0� ÿ �hkv�p�, where e�p� is the kinetic energy of a
particle (an atom or a molecule) and v�p� is its velocity.
Now, close to the resonance, the spatial dispersion becomes
substantial not for k5o=v0 but for k5 joÿ o0j=�v, where �v
is the mean velocity of the particle [6, } 103], i.e., now k0 �o� is
not determined from expression (4.12), but from the expres-
sion

k0�o� � joÿ o0j
�v

: �4:14�
Now, we have from (4.11) [instead of (4.13)]���� 1

m�o� ÿ 1

���� � ��v

c

� 2� o
oÿ o0

� 2

je�o�j ; �4:15�

and the difference between m�o� and unity can be noticeable.
Of course, one should bear inmind that the detuning joÿ o0j
cannot be too small, because the field energy dissipation is
ignored everywhere.

At frequencyo close to some resonance frequencyo0 of a
condensed medium [1; 6, } 106; 18, } 12], the dielectric
permittivity tensor ei j�o; k� contains a term with the dom-
inator �h�oÿ o0� ÿ �h 2k 2=�2mex�, where �ho0 is the energy of

an immobile exciton (or an optical phonon) and mex is its
effective mass. This mass can also be negative. The spatial
dispersion becomes considerable for k 2 5 jmex�oÿ o0�j=�h,
i.e., k0 �o� is determined not from expression (4.12) but from
the expression

k 2
0 �o� �

jmex�oÿ o0�j
�h

: �4:16�
From (4.11) [instead of (4.13)], we obtain���� 1

m �o� ÿ 1

���� � �ho
jmexjc 2

o
joÿ o0j je �o�j ; �4:17�

the difference between m�o� and unity can also be noticeable.
The low-frequency magnetic susceptibility w0 � w�o�jo�0

is not necessarily equal to the static magnetic susceptibility
wst � w�k�jk�0, where w�k� � w�o; k�jo�0, because functions
w�k� and w�o� � w�o; k�jk�0 are obtained from w�o; k� by
expanding in powers of different small parameters. For
example, w�o� for monatomic gas [20] is obtained by
disregarding a small parameter kaB=�o=oR�5 1, where
aB � �h 2=�me 2� is a quantity of the order of the atomic
`radius' and �hoR � �h 2=�ma 2

B� is the characteristic electron
energy. The limiting value of the susceptibility w0 is then
obtained by disregarding the small parameter o=oR 5 1 and
consists of two temperature-independent parts corresponding
to the Langevin diamagnetism andVanVleck paramagnetism
[20, 21]. The susceptibility w�k� is obtained by ignoring the
small parameter

�ho

��hk� 2=M 5 1 ;

where M is the molecule mass. The static susceptibility wst is
then obtained by disregarding the small parameter
�hk=�M�v�5 1, where �v is the mean velocity of molecules. It
differs from w0 by the term � 1=T, corresponding to the
Langevin paramagnetism [20, 21].

In the electron collisionless plasma [17, } 26], w �o� is
obtained from w�o; k� by expanding in powers of the small
parameter k�v=o5 1, where �vÐmean velocity of electron [see
(4.5) and (4.12)], and static susceptibility w�k� is calculated
from w�o; k� by small parameter o=�k�v�5 1 expansion. In a
homogeneous field, wst � w�k�jk�0 is obtained from w�k� by
expanding in powers of another small parameter
�hk=�m�v�5 1, where m is the electron mass, and corresponds
to the Pauli paramagnetism and Landau diamagnetism [17,
} 26].

Consider dispersion equation (3.38) for transverse waves.
It follows from (3.37) and (4.7) that, by ignoring the spatial
dispersion, we should assume that m�o� � 1 in this equation
and write it in the form

k 2 � o 2

c 2
e�o� : �4:18�

Correspondingly, the phase velocity of the wave is
vph�c=�e�o��1=2 (and, therefore, the refractive index is n �
�e�o��1=2). Equation (4.18) is also obtained from (3.26) taking
into account (4.7). In this case, of course, condition (4.5)
should be fulfilled, which is used to obtain (4.18):�

k

k0�o�
�2

� e�o� o 2

c 2k 2
0 �o�

5 1 : �4:19�
6 This result is presented already in the first (1957) issue ofElectrodynamics

of Continuous Media [6, } 60]).
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At frequencieso far from the resonance frequencies o0 of the
medium, k0�o� is determined from (4,12), e�o� � 1 and
condition (4.19) is reduced to the inequality �v0=c� 2 5 1,
which is always fulfilled. At frequency o close to some
transition frequency o0 in a gas medium, k0�o� is determined
from (4.14), and condition (4.19) restricts the minimal value
of joÿ o0j:
joÿ o0j

o
4

���������
e�o�

p �v

c
: �4:20�

Acomparison with (4.15) shows that, in this case, as expected,
jm�o� ÿ 1j5 1. At frequency o close to some transition
frequency o0 in a condensed medium, k0�o� is determined
from (4.16), and condition (4.19) also restricts the minimal
value of joÿ o0j:
joÿ o0j

o
4 e�o� �ho

jmexjc 2 : �4:21�

A comparison with (4.17) shows that, in this case, as should
be, jm�o� ÿ 1j5 1. If condition (4.20) [or (4.21)] is not
fulfilled, dispersion equation (4.18) is not valid, and exact
dispersion equation (3.26) or (3.38) should be solved.

If the spatial dispersion is small, it can be taken into
account in (3.26) or (3.38) by the perturbation theory, thereby
refining dispersion equation (4.18). Not increasing the order
of algebraic equation (3.26) determining k 2, we substitute
into it the expression for the transverse dielectric permittivity,

e tr�o; k� � e�o� � qe tr�o; k�
qk 2

����
k�0

k 2 : �4:22�

As a result, we obtain instead of (4.18) a more accurate
equation,

k 2 � o 2

c 2
e�o� ~m�o� ; �4:23�

where the function

~m�o� � 1� o 2

c 2
qetr�o; k�

qk 2

����
k�0

; �4:24�

which is close to unity, does not coincide with the magnetic
permeability determined from the expression [see (4.10) for
jm�o� ÿ 1j5 1]

m�o� � 1� o 2

c 2
q

qk 2

ÿ
e tr�o; k� ÿ e l�o; k����

k�0 : �4:25�

Thus, we should assume that m�o� � 1 in the generally
accepted dispersion equation for transverse waves (1.1) and
in the expression for the phase velocity (1.2), and accounting
for the difference between m�o� and unity is `the obvious false
precision' [6, } 79]. However, the authors of review [1] obtain
the usual equation (1.1) as the dispersion equation for
transverse waves. How do they do it? For the convenience of
readers, we will attach to formulas from [1] the numbers of the
same formulas from the present paper. For example, (19)±
(4.10) denotes formula (19) from [1] and the same formula
(4.10) from our paper. The authors of [1, p. 1056] write: ``It is
easy to see that, if we set

e tr�o; k� � e�o� � c 2k 2

o 2

�
1ÿ 1

m�o�
�
; �20�ÿ�4:26�

in the dispersion equation (16)±(3.26) for transverse polar-
itons, then (16)±(3.26) becomes identical to equation (3)±
(1.1).'' This is really easily seen: by substituting (4.26) into
(3.26), we obtain (1.1). But is it possible to `set' (20)±(4.26)?
Taking into account (18)±(4.7), we can rewrite equality (20)±
(4.26) used in [1] in the form

1ÿ 1

m�o� �
o 2

c 2k 2

ÿ
e tr�o; k� ÿ e�o��

� o 2

c 2
qe tr�o; k�

qk 2

����
k�0

; �4:27�

which shows that this equality does not contradict the
definition of m�o� given by expression (19)±(4.10) only when���� qe tr�o; k�qk 2

����
k�0

4

���� qe l�o; k�qk 2

����
k�0

: �4:28�

Note that only when this inequality is valid does function
~m�o� (4.24) not differ from the magnetic permeability m�o�
(4.25). However, there are no grounds for fulfilling inequality
(4.28). In fact, the authors of [1] introduce by their expression
(20)±(4.26) a new function, denoting it as the magnetic
permeability. By comparing (4.27) and (4.24), we see that
their function coincides with our function ~m�o� (4.24).
However, the authors themselves [1, p. 1065] write then that
``equation (20)±(4.26) specifies already some effective perme-
ability.'' Therefore, we believe that in fact our result
concerning a transverse wave in an isotropic medium in the
case of a small spatial dispersion does not contradict the
corresponding result in [1].

5. Conclusions

The main results of our paper are as follows:
1. It is shown howwithin the framework of linearmaterial

equations for a homogeneous isotropic medium we can
rigorously move from electrodynamic Maxwell±Lorentz
equations for fields E and B (3.1) to Maxwell's equations for
four fields, E, B, D, and H (1.5). This possibility is
substantially related to the fact that the number of indepen-
dent scalar functions characterizing the electrodynamic
properties of such a medium �e l�o; k�; e tr�o; k� or
e�o; k�; m�o; k�� is equal to the number of new vectors (P, M
or D, H) according to (3.12) and (3.23). In this case, first the
dielectric permittivity e�o; k� and magnetic permeability
m�o; k� are determined taking into account the frequency
and spatial dispersion, and only then are the Fourier
components of fields Dok and Hok determined by expres-
sions (3.31) (and, therefore, the fields D�r; t� and H�r; t�
themselves).

2. A similar problem for anisotropic media is much more
complicated. It is necessary to know the principle of dividing
one vector (the current density in the medium) into two
vectors (called the polarization and magnetization) [see
expression (3.4)]. Or, which, in fact, is the same thing, how
to introduce unambiguously, instead of the conductivity
tensor si j �o; k� (3.20), two tensors, one determining the
electric induction Diok � ei j�o; k�Ejok and the other deter-
mining the magnetic field strength Biok � mi j�o; k�Hjok. We
do not know the solution to this problem and because of this
considered only isotropic media.

3. The known result of Landau and Lifshitz that the
magnetic permeability is m �o� � 1, related, as pointed out in
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[6, } 79], to a small spatial dispersion, is valid, generally
speaking, not only at optical frequencies but also for all
frequencies. Exclusions can be at resonance frequencies
close to transition frequencies between the corresponding
states of the medium.

4. Transverse waves with a negative group velocity do not
exist within the framework of a theory dealing with the
dielectric permittivity e �o� and magnetic permeability m�o�
(i.e., by ignoring the spatial dispersion in them). This
conclusion is in no way connected to the Rautian postulate
[7] about the absence of optical frequencies at which the
dielectric permittivity e �o� and magnetic permeability m�o�
take negative values. The conclusion directly follows from the
correct dispersion equation for transverse waves, which is
described by expression (4.18) for all isotropic nongyrotropic
media (including so-called metamaterials) by ignoring the
spatial dispersion. This equation can be obtained fromknown
equation (1.1) assuming in it that m�o� � 1. The considera-
tion of a weak spatial dispersion leads to dispersion equation
(4.23) containing some function ~m�o� (4.24) different from the
magnetic permeability m�o� (4.25). Therefore, the propaga-
tion of electromagnetic waves is a process for which
accounting for the difference between m�o� and unity is a
false precision [6, } 79]. Waves with the negative group
velocity can exist only at frequencies for which the spatial
dispersion becomes considerable [1, 8, 20]. In this case, the
dispersion equation is written in form (3.26) or (3.38).
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