
Abstract. A relation underlying the electromagnetic analogy
method is derived from the Biot±Savart and Coulomb laws:
the magnetic field B generated by a current I in a conducting
loop L and the electric field E of a thin double charged layer of
area S bounded by the same loop L are linked by the formula
B � �e 0l 0I=p1e�E, where p1e is the electric moment per unit
area S, and e 0 and l0 are the permittivity and permeability of
free space. Examples are given where this electromagnetic
analogy can be used for solving electro- and magnetostatics
problems.

Keywords: electrostatics, magnetostatics, electric dipole, mag-
netic dipole, capacitance, inductance

1. Introduction

The analogy between magnetic and electric fields has been
noted in a number of textbooks [1±5]. For example, it is
mentioned in Stratton's textbook [2] that every magneto-
static field can be replaced with an electrostatic field of the
identical structure created by the corresponding distribution
of dipoles and double layers of charge. In his textbook [4],
Smythe notes an experimental fact that two small current
loops interact with the same forces and torques as electric
dipoles situated in place of the loops and oriented normal to
their planes. In Purcell's book [5], the expression for the B
field of a magnetic dipole is compared with the expression

for the E field of the electric dipole: these expressions are the
same up to a constant factor. When comparing the B field of
a homogeneously magnetized cylinder and the E field of a
uniformly polarized cylinder, Purcell notes that these fields
coincide outside the cylinder, and the B field can be
calculated in the same way as in electrostatics, if one
introduces magnetic charges or the scalar magnetic poten-
tial related to currents.

In this article, we derive a relation between the magnetic
field B created by a current I in a conducting loop L and the
electric field E of a thin double layer of charge with an area S
bounded by the same loop L. This relation is then used to
derive the expression for theB field of a point magnetic dipole
to prove the theorem about the magnetic curl and flux in
magnetostatics and to derive an expression for the solenoid
inductance with edge effects taken into account. Each of the
problems mentioned can be solved based on the laws of
magnetostatics, but the electromagnetic analogy method
suggested in this article allows an easier solution based on
the corresponding problems in electrostatics.

The electromagnetic analogy ``works both ways,'' and
some problems of electrostatics can be solved via simpler
problems of magnetostatics. As an example, we consider the
problem of calculating the capacitance of a planar capacitor
and the electric field outside it.

2. Electromagnetic analogy

We consider a double layer of charge with one surface
charged uniformly with a surface density �s and the other
one with a surface density ÿs. The layer thickness d is
assumed to be small compared with its lateral dimensions.
We can then consider this system as a surface S with a
uniformly distributed dipole moment with the surface
density p1e � jp1ej � sd. The dipole moment of an elemen-
tary area dS is directed along its normal and is equal to
dpe � p1e dS. According to Coulomb's law, the electrostatic
field potential created by an elementary `dipole' area dS can
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be expressed at a point A as [1±3]

dj � r dpe
4pe0r 3

;

where r is the vector directed from the elementary area
towards the point A. Then the field potential at A created by
the whole double layer is

j � p1e
4pe0

�
S

r dS

r 3
� p1e

4pe0
O ;

where O � �S r dS=r 3 is the solid angle of the surface S with
respect to the point A and the sign of O is chosen so as to
coincide with the sign of the charge of the surface side closest
to A. The electric field vector of a double layer can be
calculated using the expression

E � ÿgradj � ÿ p1e
4pe0

gradO :

We find the variation of the solid angle dO caused by the
translation of the point A by dq [1]. We assume that the point
A does not change its position, while every point of the surface
S is translated by ÿdq , as shown in Fig. 1. Then dO ��
DS r dS=r

3, where DS is the side face of the skew cylinder
defined by dr (see Fig. 1). The elementary area of this surface
can be expressed as dS��ÿdqdl �. Using a cyclic rearrange-
ment in the mixed product, we obtain r dS � ÿdq �dlr� and
dO � ÿdq �L�dlr�=r 3. Because dO � dq gradO, we have
gradO � ÿ �L�dlr�=r 3 and

E � p1e
4pe0

�
L

�dlr�
r 3

: �1�

We note that expression (1) is equivalent up to a constant
factor to the expression

B � m0I
4p

�
L

�dlr�
r 3

; �2�

which, according to the Biot±Savart law, gives the B field
created by the current I in a thin wire placed along the loop L
at the point A. This means that the magnetic field B of a
current I running through a thin wire along the loopL and the
electric fieldE of a thin double layer of chargeS bounded byL

are related as

B

m0I
� e0

p1e
E : �3�

Equation (3) follows form the Biot±Savart and Coulomb
laws, and it is valid for an infinitely thin wire with a current
and an infinitely thin double layer of charge with a dipole
moment p1e uniformly distributed over its surface. If the
closed wire has a finite cross section with the characteristic
dimension D, then it can be split into infinitely thin closed
conductors with corresponding infinitely thin double layers
of charge. The superposition of these layers leads to the
formation of a double electric layer with the thickness D.
Due to the superposition principle, Eqn (3) remains valid for
all points located outside the double layer with thickness D at
a distance r4D from thewire. Equation (3) can be used as the
basis for the electromagnetic analogy method, which allows
replacing magnetostatic problems with electrostatic ones and
vice versa. We discuss examples where this method is used in
what follows.

3. Field of a point magnetic dipole

As the first example for the application of the electromagnetic
analogy method, we use Eqn (3) to derive the expression for
the B field of a point magnetic dipole. We assume that the
expression

E � 1

4pe0r 3

�
3�per�

r

r 2
ÿ pe

�
�4�

for the E field of the electrostatic field created by a point
electric dipole is already known (see, e.g., [3]).We consider the
point electric dipole as an elementary dipole area DS with the
dipolemoment pe � p1e DSn, and the pointmagnetic dipole as
a current loop I along the boundary of the area DS. The
magnetic moment of such a dipole is pm � IDSn, where n is
the normal to DS. Equations (3) and (4) imply that

B � m0
4pr 3

�
3�pmr�

r

r 2
ÿ pm

�
: �5�

The derivation of expression (5) directly from the Biot±Savart
law is much more complicated [5].

4. Proof of theorems on the magnetic curl
and flux

The proof of the magnetic curl theorem�
C

B dl � m0I �6�

inmagnetostatics is muchmore complicated than the proof of
the corresponding theorem�

C

E dl � 0 �7�

in electrostatics (here, C is an arbitrary geometric contour).
This is the reason why in general physics textbooks the proof
of theorem (6) is often either omitted [6, 7] or considered in the
specific case where the currents I run in infinitely long straight
wires [5, 8]. The electromagnetic analogy method allows
proving theorem (6) based on electrostatics theorem (7). As

dq

A

L

S

DS

dl

r

O

ÿ dq

Figure 1. Illustration of the derivation of Eqn (1). LÐclosed loop around

the surface S, dlÐelementary segment of this loop, rÐvector directed

from dl to point A. Direction of circulation around the loop is related to

the direction p1e by the right-hand screw rule.
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the first step, the arbitrary closed wire with a current I is
replaced with a double electric layer having the surface
density �s and the thickness d, which we further send to
zero such that the surface density of the electric moment
p1e � �sd�d!0 remains finite. Let a geometric contour C cross
the current loop and hence the double electric layer (Fig. 2).
Integral (7) can be expressed as the sum�

ext

Eext dl�
�
int

Eint dl � 0 :

The first integral is taken along the part of the contourC that
is located outside the double electric layer, and the field Eext is
the `dipole field' calculated as the vector sum of single dipole
fields (4). The second integral is taken along the part of the
contour located inside the electric layer:�

int

Eint dl � ÿ sd
e0

����
d!0

� ÿ p1e
e0

:

Hence,�
ext

Eext dl � p1e
e 0

:

When calculating the B field curl for the corresponding
current loop and the same geometric contour C (see Fig. 2),
we take into account that relation (3) holds at every point
outside the double electric layer. Therefore,�

ext

B dl � e0m0
I

p1e

�
ext

Eext dl � m0I :

According to the Biot±Savart law, the magnetic field is finite
in regions without currents and, because d! 0, the integral�
int B dl � 0. This means that

�
C B dl� �ext B dl � m0I. If the

geometric contour C does not encompass the current loop L,
then the curl of B is obviously zero.

We now prove the theorem on the B field flux. As the
magnetic field source, we also consider a stationary current I
in a thin closed wire placed along the contour L. We consider
an arbitrary simply connected closed surface S0 that does not
intercept the contour L. We can choose the surface of the
double layer S bounded by L such that all of it is located
outside a closed surface S0. The electric field flux through the

closed surface S0 is zero according to the Gauss theorem:�
S0

EdS � 0 :

Because the B field of the current and the E field of the dipole
surface S are related by Eqn (3), it follows that�

S0

BdS � 0 : �8�

To consider the case of a multiply connected surface S0, we
need an additional analysis, which we omit here. Using the
superposition principle, the proofs of theorems (6) and (8) can
be generalized to an arbitrary system of closed stationary
currents.

5. When do magnetic field lines
form closed curves?

It is known [1, 9, 10] that even in simple current configura-
tions, the magnetic field lines do not necessarily form closed
loops. We can pose the question: in which cases do magnetic
field lines form closed curves? The electromagnetic analogy
method provides a broad variety of current configurations in
which magnetic field lines are closed curves: such is any
system of closed currents located in one plane.

This statement can be derived directly from magneto-
statics, but switching from currents to corresponding double
charged layers makes the proof easy and clear. Indeed, it
follows from the symmetry of the electrostatics problem that
if a magnetic field line originates from a point on a flat double
electric layer, then it is mirror symmetric with respect to the
layer plane and must therefore return to the initial point from
the other side of the layer. According to (3), the magnetic line
of the contour with the same configuration must follow the
same pattern. We note that the condition mentioned above is
sufficient, but not necessary for the magnetic field lines to be
closed.

6. Magnetic field of a solenoid

If a solenoid has a round cross section, then it is not difficult
to use the Biot±Savart law to calculate the magnetic field at
points on the solenoid axis [5]. For other points, the
integration becomes complicated, and even greater problems
arise if the solenoid cross section is not round.

If we assume that the solenoid is infinitely long, the
theorem on the magnetic curl can be used to calculate the
field at any point located inside the solenoid:B0 � m0nI, where
n is the number of coils per unit length. A derivation of this
expression is demonstrated in almost all textbooks under the
assumption that the magnetic field outside the solenoid is
zero. However, it is not easy to rigorously prove this fact in the
framework of a general physics course [11].

The electromagnetic analogy allows replacing the pro-
blem of the solenoid magnetic field with an electrostatic
problem. As always, we ignore the discreteness of the coils
and consider a solenoid to be a straight cylinder with the
current flowing around it. We assume that the cylinder axis is
parallel to the x axis and the transverse cross section has an
area S with an arbitrary shape. Stationary current is flowing
along the side face of the cylinder perpendicular to the x axis
with a constant linear density IS � IN=l � In, where N is the

L
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Figure 2. Illustration of the proof of the theorem about the B field curl.

(a) LÐclosed conducting loop with the current I, CÐan arbitrary

geometric contour. (b) Double electric layer bounded by the loop L and

the geometric contour C.
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number of coils, I the length of the solenoid, and n � N=l. We
conceptually split the solenoid into narrow layers perpendi-
cular to the x axis, each with a thickness dl. Each layer carries
the current dI � In dl, running along its perimeter, and can be
replaced by a double charge layer with a surface charge
density �s and the electric dipole moment density dp1e �
s dl (Fig. 3). The array of such layers creates the same electric
field as two bases of a cylinder uniformly charged with
densities �s. According to (3), the magnetic field of the
solenoid at the points located outside the cylinder can be
calculated as

B � b�E1 � E2� ; �9�

where b � e0m0nI=s and E1 � E2 in the electric field at the
same points created by two bases of the cylinder with the
respective surface charge density �s and ÿs. For points
located far from the cylinder bases (at a distance much longer
than the characteristic dimension of the cylinder cross
section), the charges on the cylinder bases can be regarded
as point charges, and

E � sS
4pe0

�
r1

r 31
ÿ r2

r 32

�
; B � B0

S

4p

�
r1

r 31
ÿ r2

r 32

�
; �10�

where the vector r1 is directed towards the `observation point'
from the north pole of the solenoid, and r2 from the south
pole. We note that expression (10) is valid for a cross section
of any shape.

If the solenoid is long, the magnetic field B near its edge in
the outer space coincides up to a constant factor with the
electric field E � E1 of a uniformly charged surface aligned
with the solenoid base, because the field of the second charged
base can be disregarded. In particular, this implies that 1) the
normal component of the magnetic field near the edge of a
long solenoid is uniform in its plane; 2) magnetic field lines
outside a long solenoid are symmetric with respect to the
plane of the solenoid edge; 3) magnetic field lines originating
from the boundary points on the solenoid edge are straight
and perpendicular to its axis. The magnetic field lines
B � bE1 of a semi-infinite solenoid are shown in Fig. 4. The
field E1 of a uniform charged disk was calculated using
numerical integration, and the method for the calculation of
the B field inside the solenoid is discussed in what follows.

To calculate the magnetic field inside a solenoid with the
shape of a straight cylinder (not necessarily with a round cross
section), we conceptually make a narrow slit in it with a
thickness D5

���
S
p

, perpendicular to the cylinder axis (Fig. 5).
The magnetic field inside the slit is then almost the same as
inside the uncut solenoid (except for a narrow region with a

thickness � D! 0 near the cylinder surface). According to
the electromagnetic analogy, the problem corresponds to the
calculation of the electric field induced at a point A by four
uniformly charged flat edges of two solenoids (denoted as 1±4
in Fig. 5), with the subsequent recalculation using the
expression

B � B1 � B2 � B3 � B4 � b�E1 � E2 � E3 � E4� :

The electric field E0 � jE3 � E4j � s=e0 is induced by two
uniformly charged surfaces with charge densities �s and ÿs
located infinitely close to the point A, while the fields E1 and
E2 are induced by the charged edges of the initial solenoid.
The magnetic field jB0j � bE0 � m0In is the same in all cross
sections of the solenoid, while the calculation of the field
B1 � B2 � b�E1 � E2� in general requires the use of numerical
methods. In the specific case of a round cylinder, the field
E1 � E2 on its symmetry axis can be expressed analytically.
The electric fields of a negatively charged disk with radius R
located at x � 0 and of a positively charged disk with the
same radius located at x � l are given by the respective
expressions

E2x � ÿ s
2e0

�jxj
x
ÿ x�����������������

x 2 � R 2
p

�
;

E1x � s
2e0

 
jxÿ l j
xÿ l

ÿ xÿ l����������������������������
�xÿ l �2 � R 2

q !
:

ÿ
ÿ
ÿ

12

�

l

x

x

l

dl

dI

dl

ÿs

�
�sÿs

� x

�
�s

�
�

x
�
�

�
�

�
�

�
�

� � � �
�
�

�
ÿ
ÿ

ÿ
ÿ
ÿ

ÿ
ÿ
ÿ

ÿ
ÿ
ÿ

ÿ
ÿ
ÿ

ÿ
ÿ
ÿ

ÿ

Figure 3. Illustration of the calculation of the magnetic field outside a

solenoid.

AdI

ÿs �s �sÿs
A

B1 � B2 B0

E0E1 � E2

0 x l x

1342

�

�
�

�
�
�

ÿ
ÿ
ÿ

ÿ
ÿ
ÿ

Figure 5. Illustration of the calculation of the magnetic field inside a

solenoid.

Figure 4. B field lines near the edge of a semi-infinite solenoid.
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Figure 6a shows the dependence of the field E1x � E2x on the
position x. Adding a uniform field E0 to E1x � E2x in the
region 0 < x < l, we obtain an expression valid for any x:

Ex � s
2e0

 
x�����������������

x 2 � R 2
p ÿ xÿ l����������������������������

�xÿ l�2 � R 2

q !
;

which does not have discontinuity points (Fig. 6b). According
to the magnetoelectric analogy, the magnetic field on the axis
of a round solenoid can be expressed as

Bx � bEx � m0In
2

 
x�����������������

x 2 � R 2
p ÿ xÿ l����������������������������

�xÿ l�2 � R 2

q !
:

Of course, this expression can also be obtained directly from
the Bio±Savart law [5].

We note that the fieldE1 � E2 is an electrostatic one, while
the `slightly' corrected field E � E1 � E2 � gE0 (where g � 1
inside and g � 0 outside the cylinder) is not. The latter field is
nonpotential and divergence-free: its tangential component is
discontinuous on the cylinder surface, while the normal
component changes continuously across the charged sur-
faces at x � 0 and x � l.

7. Inductance of a solenoid

We have shown that the magnetic field inside a solenoid with
the shape of a straight cylinder can be expressed as Bint �
b �E0 � E1 � E2�, where jE0j � s=e0 and E1 � E2 is the
electric field induced by the cylinder bases uniformly charged
with surface densities �s and ÿs. We now calculate the
inductance L of this solenoid with a length l, a cross section
area S, and the winding density n � N=l. The magnetic flux
through the solenoid coils is F � � l0 F1�x� n dx, where the
magnetic flux through the cross section at the coordinate x
(see Fig. 5) is

F1�x� � bE0S� b
�
S

�E1 � E2� dS :

Introducing the notation

F1x � ÿs
�
S

E1 dS ; F2x � s
�
S

E2 dS ;

we can write

F � bE0Snl� b
s

�l
0

�F2x ÿ F1x� dx : �11�

The quantity F2x�x� has a simple physical meaning: it is equal
to the projection of the force with which the negatively
charged cylinder base acts on the positively charged one if
the cylinder length is x. This means that the integral
ÿ � l0 F2x�x� dx is equal to the work of the external forces that
is needed to slowly separate two oppositely charged plates
(cylinder bases) initially separated by a distance l. This work
equals the change in the electric energy of the system. The
initial energy of the system with two uniformly charged plates
carrying surface densities �s pressed against each other is
zero. Thus, we can write the energy WC of two plates
separated by a distance l as

WC � ÿ
�l
0

F2x�x� dx :

In the same manner, we obtain

WC � ÿ
�0
l

F1x�x� dx �
�l
0

F1x�x� dx :

Substituting the calculated integrals in (11), we obtain the
magnetic flux

F � bE0Snlÿ 2
bn
s

WC :

We now substitute the expressions for E0 and b, and after
simple transformations obtain the inductance L � F=I of the
solenoid

L � L0

�
1ÿ WC

q 2=2C0

�
; �12�

where L0 � m0N
2S=l and C0 � e0S=l. The meaning of this

notation is clear: L0 is the inductance of a solenoid in the limit
case where l4

���
S
p

and the edge effects for the B field are
negligible, and C0 is the capacitance of the capacitor formed
by the plates coinciding with the solenoid edges when l5

���
S
p

,
and with edge effects disregarded. Equation (12) can also be
rewritten in a symmetric way:

WL

�L0I 2=2� �
WC

�q 2=2C0� � 1 ; �13�

whereWL � FI=2 is the energy of the solenoid magnetic field
for the current I andWC is the electrostatic field energy of two
plates coinciding with the solenoid edges with uniformly
distributed charges q and ÿq. Expressions (12) and (13) are
valid for a broad range of parameters. The only assumptions
are that the solenoid has the shape of a straight cylinder and
its winding is thin and dense. The cross section of the cylinder
can have an arbitrary shape and the ratio between the cylinder
length l and its cross section diameter can also be arbitrary.

We use Eqn (12) to calculate the inductance of a long
solenoid with edge effects taken into account.We assume that
the solenoid has a round cross section with radius R and
length l4R. In this case, the energyWC can be represented as
WC � 2W1 �W12, whereW1 � 2s 2R 3=3e0 is the energy of a
single uniformly charged disk, and the energy of interaction
between two oppositely charged distant disks is

W12 � ÿ q 2

4pe0l
� ÿ s 2p 2R 4

4pe0l
:

�E1x � E2x�=E0 Ex=E0

1.0

x=l

x=l

ÿ0.5

ÿ0.5

0 0.5

0.5

1.0

ÿ0.5 0

0.5

0.5 1.0

a b

Figure 6. (a) Electric field on the axis of two oppositely charged parallel

disks. (b) Field of the same disks with an added uniform field E0 �l=R � 5�
in the region between the disks.
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These relations can be used to obtain WC, which we then
substitute in (12):

L � L0

�
1ÿ 8

3p
R

l
� 1

2

R 2

l 2

�
: �14�

Expression (14) gives the inductivity of a long solenoid with
edge effects taken into account and coincides in the first- and
second-order approximations with the expression obtained
by directly solving a much more complicated magnetostatics
problem [12].

Using (13), we can calculate the inductance of a short
solenoid (R4 l ):

L � m0N
2R

�
ln

8R

l
ÿ 1

2

�
: �15�

However, in this case, the calculation of WC involves elliptic
integrals and the derivation is not so simple anymore (see the
Appendix).

8. Electric field and capacitance of a capacitor

We consider a flat capacitor with the plate area S and
separation l. At a remote point (r4

���
S
p

), the electric field
of the capacitor coincides with the field of a point dipole with
the dipole moment pe � e0SU, where U is the voltage on the
capacitor. The electrostatic field near a charged capacitor
was studied in [13]. When the distance between the plates is
much less than all other characteristic dimensions
(l5 r;

���
S
p

), the boundary value problem can be solved and
expressions for the electric field potential and strength can be
obtained for points near the capacitors with round and
rectangular plates.

The electromagnetic analogy method allows obtaining
the main results in [13] much easier. A planar capacitor in
the approximation l5 r;

���
S
p

can be regarded as a double
electric layer with the area S and dipole moment density
p1e�ql=S�e0U, bounded by a contour L. It follows from (3)
that the electric field outside the capacitor is

E �
�

U

m0I

�
B ; �16�

where B is the magnetic field of the current I running along
the edges of the plates. Expression (16) implies that the E
field lines of a planar capacitor with an arbitrary shape at a
distance r much longer than l coincide with the B field lines
of the current l that flows along the edges of the plates.
Notably, close to the edges of a planar capacitor
(
���
S
p

4 r4 l ), the lines of the electric field E are circles. A
similar approach was used previously in [14], where it was
shown that if constant potentials are set on a plane inside and
outside some contour, then in the half-space bounded by this
plane, the conventional Dirichlet problem can be reduced to
the Biot±Savart problem.

We find the electric field on the symmetry axis of a planar
capacitor with round plates. First, using expression (2), we
calculate the magnetic field on the axis of a circular current
loop

B � m0I
2

R 2

�z 2 � R 2�3=2
;

and then, using relation (16), we can find the electric field on
the capacitor axis

E � UR 2

2�z 2 � R 2�3=2
;

where z is the distance from the center of the plates to the
observation point, measured along the symmetry axis, and
R the plate radius. This expression coincides with the one
obtained in [13]. If the capacitor plates are square, then, using
the same method, we obtain the expression

E � Ua 2

2p�z 2 � a 2=4�
���������������������
z 2 � a 2=2

p
for the electric field outside the capacitor on the z axis that
passes through the centers of the plates (a is the square side).

We now estimate the correction to the planar capacitor
capacitance due to edge effects. We first consider two
uniformly charged plates, one of which has charge q and the
other ÿq. The plates are located, as in a planar capacitor,
parallel to each other at a distance l. The electric energy of
such a system can be represented using (12) as

WC � q 2

2C0

�
1ÿ L

L0

�
: �17�

If we now `free' the charges by making the plates conductive,
the charges redistribute such that each plate becomes
equipotential. After this process, the electric energy of the
system decreases and reaches the value q 2=2C, where C is the
capacitance of the capacitor. Knowing that q 2=2C <WC and
using expression (17), we can derive the inequality

C >
C0

1ÿ �L=L0� ; �18�

which can be represented in a symmetric way:

C0

C
� L

L0
< 1 : �19�

Inequalities (18) and (19), as well as expressions (12) and (13),
are valid for any shape of the plates and any distance between
them.

In the special case where the capacitor plates are round
and the distance between them is much shorter than their
radius R, it follows from (15) and (18) that

C > C0

�
1� l

pR

�
ln

8R

l
ÿ 0:5

��
:

The capacitance correction caused by edge effects can now be
estimated as

dC � Cÿ C0

C0
>

l

pR

�
ln

8R

l
ÿ 0:5

�
:

This result is in agreement with the well-known Kirchhoff
formula [15]

dC � l

pR

�
ln

16pR
l
ÿ 1

�
� l

pR

�
ln
8R

l
� 0:84

�
:
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9. Conclusions

The electromagnetic analogy manifested by relation (3) can
be compared to Amp�ere's theorem [1±4], which states the
equivalence of the magnetic fields created by a magnetic sheet
and a constant electric current flowing along the edge of this
sheet. Conventionally, the magnetic sheet is a surface two
sides of which are uniformly covered with respective `north'
and `south' magnetic charges of the same surface density.
Hypothetical magnetic charges are in many ways equivalent
to electric ones and, in particular, satisfy `Coulomb's
magnetic law' [1±4], and hence it is not a surprise that there
is an electrostatic analogue of Amp�ere's theorem.

The electromagnetic analogy method does not require
complicated mathematics, and it can be justified without
rigorous derivation of expression (1) by just noting the
remarkable fact that the E and B fields of point electric and
magnetic dipoles are similar, and their expressions differ by
only a constant factor. This method can then be used to prove
the theorem on the magnetic curl in magnetostatics at a level
accessible to first year students.

Applying the electromagnetic analogy method to the
investigation of a solenoid magnetic field revealed a number
of interesting features. The magnetic field B outside a straight
solenoid is similar to the electric field E of two oppositely
charged plates located at the edges of the solenoid, while the
magnetic field B inside the solenoid is similar to the electric
field of these plates with an additional uniform field. These
properties persist for any length of the solenoid and any shape
of its cross section.

To summarize, the electromagnetic analogy method was
used to obtain a formula that relates the magnetic energy of a
solenoid and the electric energy of two oppositely charged
plates located at the edges of the solenoid. This formula was
used to find an expression for the inductance of a long
solenoid with edge effects taken into account. The expression
obtained coincides with the known formula in the first- and
second-order approximations. The electromagnetic analogy
method was also used to derive expressions for the electro-
static field outside a planar capacitor, which had previously
been derived in a much more complicated way. An inequality
was derived for the capacitance of a capacitor and the
inductance of a coil with the same geometry, and it is valid
for any shape of the plates and any distance between them.
This inequality was used to estimate the correction to the
capacitance of a planar capacitor due to edge effects.

Most probably, the electromagnetic analogy method can
also be efficiently applied to other problems of electro- and
magnetostatics.

10. Appendix.
Inductance of a short solenoid

We calculate the energy WC by considering the process of
capacitor charging as the transfer of positive charge by
infinitely small portions dq � 2prsdr from the negative
plate to the positive one. At each step, the transferred charge
is assumed to be distributed with a constant density s over a
ring with radius r and thickness dr. The energy increase is
dWC � �jA ÿ jB� dq, where jA and jB are potentials at the
edges of positively and negatively charged disks, eachwith the
radius r, and jB � ÿjA. Due to the superposition principle,
jA � j1 ÿ j2, where j1 � sr=pe0 is the potential at point 1
on the edge of a single uniformly charged disk with the radius

r, and j2 is the potential of the field created by the same disk
at point 2 located at a distance l from the disk plane and at the
distance r from the disk axis (Fig. 7a).

By splitting the disk into annular zones centered at point 1
(Fig. 7b) and using the superposition principle, we obtain the
expression for the potential at point 2:

j2 � j1

�p=2
0

a sin a cos a������������������������
d 2 � cos 2 a

p da ;

where d � l=2r: After integrating by parts, this expression
takes the form

j2 � j1

�
E�r�

��������������
1� d 2

p
ÿ pd

2

�
;

E�r� �
�p=2
0

����������������������
1ÿ sin2 a

1� d 2

s
da :

The energy of two oppositely charged plates is given by the
integral

WC � 4ps
�R
0

�j1 ÿ j2� r dr

�W0

�
1� 8R

3pl
ÿ 8

plR 2

�R
0

E�r� r 2
��������������
1� d 2

p
dr

�
;

where W0 � q 2=�2C0� and q � spR 2. Changing the integra-
tion order in the right-hand side, we obtain

WC

W0
� 1� 8R

3pl

ÿ l 2

3pR 2d 3
0

�p=2
0

�
�cos2 a� d 2

0 �3=2 ÿ d 3
0

�
da

cos2 a
;

where d0 � l=�2R�: The integration result is valid for any
value of l=R, and it can be represented as

WC

W0
� 1� 4

3pd0
ÿ 4

3p

�
�D� 1

�
E

�
; �20�

where D and E are the elliptic integrals

D �
�p=2
0

sin2 a da��������������������������
1ÿ k 2 sin2 a

p ; E �
�p=2
0

��������������������������
1ÿ k 2 sin2 a

p
da ;

with k � 1=�1� d 2
0 � and � �

���������������
1ÿ k 2:
p

We are interested in
the case where d0 5 1 and the elliptic integrals can be
represented as [16]

E � 1� 1

2

�
lÿ 1

2

�
� 2 ; D � lÿ 1� 3

4

�
lÿ 4

3

�
� 2 ;

where l � ln �4=�� and expression (20), after some transfor-
mations, implies

WC

W0
� 1ÿ l

pR

�
ln

8R

l
ÿ 1

2

�
:

b

1

2

l
a

1

2

l

r a

Figure 7.Derivation of expression (15).
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Using (12), we can now easily obtain expression (15) for the
inductance of a short solenoid. This formula coincides with
the corresponding expression obtained by directly solving the
magnetostatics problem [12].
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