
Abstract. We discuss the most recent results in studies of high-
energy electroproduction in an atomic field. Production of an
e�eÿ pair by a relativistic electron, relativistic muon, or light
nucleus and production of a l�lÿ pair by a relativistic electron
are reviewed. We focus on an accurate account of the interac-
tion of the incoming particle and produced pair with the atomic
field (Coulomb corrections). In all the considered cases, inter-
action of the particle that produces a virtual photon with the
atomic field is shown to significantly change the differential
cross section of the process (differential with respect to the
momentum of the photon-emitting particle), in disagreement
with the generally accepted opinion. However, the process
cross section integrated over that momentum is only weakly
affected by the interaction. Pair production in an unbound or
bound state (positronium, muonium, and dimuonium) is dis-
cussed.

Keywords: electroproduction, positronium, muonium, dimuonium,
strong atomic field

1. Introduction

Processes of e�eÿ and m�mÿ pair production in collisions of
charged particles with atoms (electroproduction) are funda-
mental processes of quantum electrodynamics. Exact know-
ledge of their cross sections is of utmost importance for the
description of interactions between charged particles and
matter. This is why theoretical studies of electroproduction
began as early as the 1930s; a large number of papers have been

published since then. Differential cross sections and various
integral characteristics of electroproduction of electron±
positron pairs by an ultrarelativistic electron in an atomic
field are studied in Refs [1±9] in the lowest order of the
perturbation theory in the parameter Z � Za (the Born
approximation), where Z is the atom charge number, a is the
fine structure constant, and �h � c � 1. Many papers are
devoted to the electroproduction of e�eÿ pairs by a heavy
particle (muon or nucleus) in an atomic field [10±16] and m�mÿ

pairs by a relativistic electron in an atomic field [1, 2, 17].
A pair of produced particles can be either in the unbound

or in a bound (positronium, dimuonium) state. Properties of
dimuonium have been discussed in numerous papers [18±30].
Because this hydrogen-like atom is 200 times smaller than
positronium, it is promising for the search for new physics.
The production of dimuonium has not been discovered thus
far, but there are several suggestions as to how to find it. An
experimental setup based on the production of dimuonium in
e�eÿ annihilation [31] is being developed at the Budker
Institute of Nuclear Physics, Siberian Branch, Russian
Academy of Sciences. At the Jefferson Laboratory (USA), it
is planned to produce dimuonium through the interaction of
electrons with a tungsten target [32]. At the Fermi National
Laboratory (USA), it is proposed to find dimuonium in
Z! g�m�mÿ� decays, where the Z meson is created in the
interaction of protons with a beryllium target [33]. An
experiment is also discussed on dimuonium production
using a low-energy muon beam [34].

The question arises as to whether anything qualitatively
new and interesting can still be found given such a long
history of studying electroproduction? The answer to this
question turns out to be positive: in electroproduction on
heavy atoms, the parameter Z � Za is not small and we have
to go beyond the perturbation theory in this parameter, i.e.,
find Coulomb corrections. The Coulomb corrections can be
related to interactions of the particles of the produced pair, as
well as the particle emitting a virtual photon, with the atomic
field. All the Coulomb corrections discussed thus far have
been related to the process of virtual photon conversion into a
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pair, whereas corrections related to the virtual photon
emission have been completely ignored. It was simply
assumed that they do not influence the process cross section.
The incoming particle was considered to be either a source of
equivalent photons or the source of an external field for
motion along a straight trajectory with a fixed impact
parameter; alternatively, the wave function of the incoming
particle was modeled as a plane wave. Solving the problem
with the interaction of both particles in the produced pair and
the particle emitting a virtual photon with the atomic field
taken into account exactly was technically extremely difficult.

This situation changed with the development of the
method of semiclassical Green's functions, enabling a
qualitative leap in accurately describing quantum electro-
dynamic processes in strong electromagnetic fields at high
energies. A detailed description of the semiclassical method
and a review of numerous latest results obtained with that
method can be found in Ref. [35].

The essence of the semiclassical method consists in
accounting for contributions from large angular momenta
l � pr of particles involved in the process, where r is the
characteristic impact parameter and p the particle momen-
tum. The impact parameter can be estimated from the
uncertainty relation as r � 1=p?, where p? � py and y is the
scattering angle. Hence, for y5 1, we have l � 1=y4 1. As a
consequence, the expansion in 1=l used in the semiclassical
approximation is in fact the expansion in small angles
between the momenta of the initial and final particles. Just
this range contributes most essentially to cross sections of
processes in external fields at high energies. The relative
accuracy of results for differential cross sections obtained in
the semiclassical framework can be estimated by the max-
imum angle between the momenta of the final particles and
the momentum of the initial particle. The accuracy is also
governed by the expansion in 1=gi � mi=ei 5 1, where mi and
ei are the energy and mass of the ith particle. The interaction
with an external field is treated exactly in the field parameters
(the parameter Z in our case). In addition, the semiclassical
method allows treating the deviation of the atomic field from
the Coulomb one at short distances (the effect of a finite
nucleus size) and at long distances (screening of the nucleus
field by atom electrons).

Relying on the semiclassical method, the processes of
e�eÿ pair production by a relativistic electron [36, 37] and a
relativistic muon or light nucleus [38], and also the production
of a m�mÿ pair by a relativistic electron [39] can be described
exactly in the atomic field parameters. It turned out that in all
cases the Coulomb corrections to differential cross sections
substantially modify the results obtained in the Born
approximation. This concerns corrections related to virtual
photon emission and to interactions between the particles of
the produced pair and the atomic field. However, the
Coulomb corrections related to virtual photon emission do
not change the cross section integrated over the final
momentum angles of the particle emitting a virtual photon.
Our aim in this review is to discuss all these and some other
questions related to the electroproduction process.

2. Amplitude of the electroproduction process

In this section, we consider the basic structure of the
electroproduction amplitude. Let a charged particle with a
massm1, initial momentum p1, and final momentum p2 create
a particle and its antiparticle with massesm2 and momenta p3

and p4 in an atomic field. Figure 1 shows the Feynman
diagram that corresponds to the process amplitude. The
electroproduction amplitude T can be written as

T �
X3
a; b�1

�
dk

�2p�3 D
abj aJ b ;

D ab � ÿ 4p
o2 ÿ k 2 � i0

�
d ab ÿ kakb

o2

�
;

�1�
j �

�
dr exp �ÿikr��uÿp2�r�c u�p1�r� ;

J �
�
dr exp �ikr��uÿp3�r�c v�p4�r� ;

where o � e1 ÿ e2 � e3 � e4, ei �
����������������
p2i �m2

i

p
is the energy of

the ith particle, Dmn is the photon propagator (Dm0 � 0), gn

are the Dirac matrices, u�p �r� and uÿp �r� are the positive-
frequency solutions of the Dirac equation in the atomic
potential V�r�, v�p �r� is the negative-frequency solution of
the Dirac equation in this potential, and the minus (plus)
superscript implies that the asymptotic form of the wave
function at long distances contains a spherically converging
(diverging) wave in addition to the plane one. The function j
corresponds to the amplitude of virtual photon emission with
the momentum k, and the function J corresponds to the
amplitude of particle±antiparticle production by this photon.
The functions j and J are calculated in the same way as for the
bremsstrahlung amplitude of a real photon [41, 42] and the
amplitudes of particle and antiparticle production by a real
photon in an atomic field [43].

It is convenient to represent the propagator D ab as

D ab � D ab
? � D ab

k ;

D ab
? � ÿ

4p
o2 ÿ k 2 � i0

�
d ab ÿ kakb

k 2

�
� ÿ 4p

o2 ÿ k 2 � i0

X
l��

s a�l s bl ; �2�

D ab
k � ÿ

4p
o2k 2

kakb ; sl � 1���
2
p �s1 � ils2� ;

where s1 and s2 are the unit vectors perpendicular to the
vector k. Inserting this expression into Eqn (1), we find

T � T? � Tk ;

T? � ÿ4p
X
l��

�
dk jl Jl

�2p�3�o2 ÿ k 2 � i0� ;

Tk � ÿ 4p
o2

�
dk

�2p�3 jk Jk ;
�3�

jl � j s�l ; Jl � Jsl ; jk � j
k

k
; Jk � J

k

k
:

p1 p2

p4

p3

Figure 1. Feynman diagram for the electroproduction amplitude T. The

wave line denotes the photon propagator; solid lines correspond to wave

functions of charged particles in an atomic field.
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Here, T? and Tk are the respective amplitudes for which the
polarization of the virtual photon is perpendicular and
parallel to its momentum k. Each of the amplitudes T? and
Tk can be written as a sum,

T? � T
�0�
? � T

�1�
? ; Tk � T

�0�
k � T

�1�
k ; �4�

where T
�0�
?; k correspond to the amplitudes that do not take the

interaction between the produced pair and the atomic field
into account, while such an interaction is accounted for in
amplitudes T

�1�
?; k. In other words, the terms T

�0�
?; k correspond

to the bremsstrahlung of a virtual photon decaying into a free
pair. We note that T

�0�
?; k necessarily takes the interaction of an

incoming particle with the atomic field into account, because
a free particle cannot produce a free pair. The interaction of
an incoming particle with the atomic field can be absent in
amplitudesT

�1�
?; k because such an interaction is not required to

emit a virtual photon that creates a pair interacting with the
field. For the reader's convenience, explicit expressions for
the amplitudesT

�0�
?; k andT

�1�
?; k are given in theAppendix. Here,

we note only the structure of these expressions:

T
�0�
? � A�D0�t �0�? ; T

�0�
k � A�D0�t �0�k ;

T
�1�
? �

�
dD? A�D? � p2?�t �1�? �D?� ;

T
�1�
k �

�
dD? A�D? � p2?�t �1�k �D?� ; �5�

A�D� � ÿ i

D2
?

�
dr exp

ÿÿiDrÿ iw�r��D?HH?V�r� ;
w�r� �

�1
ÿ1

dzV
ÿ ����������������

z 2 � r 2
p �

; q � r? ;

D0 � p2 � p3 � p4 ÿ p1 ;

where t
�0�
?; k and t

�1�
?; k are some functions, V�r� is the potential

energy of the incoming particle in the atomic field, and X? is
the component of X perpendicular to p1: X? �
Xÿ p1�Xp1�=p21. Because the amplitudes T

�0�
?; k do not contain

the interaction of the produced pair with the atomic field, the
functions t

�0�
?; k are independent of the parameters of the

atomic potential; in contrast, the functions t
�1�
?; k depend on

these parameters. Thus, all the Coulomb corrections related
to the interaction between the incoming particle and the
atomic field are determined by the function A�D� alone,
while the Coulomb corrections related to the interaction
between the produced pair and the atomic field are deter-
mined by the functions t

�1�
?; k. We note that A�D� also describes

the Coulomb corrections to the bremsstrahlung amplitude of
a real photon in an atomic field (see Ref. [41]). For Dk � 0,
with Dk � Dp1=p1, the following relation is valid:

A�D?� � ÿ i

D2
?

�
dq exp

ÿÿiD?qÿ iw�r��D?HH?w�r�
� i

�
dq exp

ÿÿiD?qÿ iw�r�� : �6�

Therefore, A�D?� does not vanish in the absence of the
potential, but is converted into another function:

A�D?� ! i�2p�2d�D?� : �7�

Thus, in the absence of interaction between the incoming
particle and the atomic field, the amplitudes T

�1�
?; k do not tend

to zero [see Eqns (5)]:

T
�1�
?; k ! i�2p�2t �1�?; k�ÿp2?� : �8�

The function A�D?� has the following remarkable prop-
erty, which is valid for any localized potential V�r� and
arbitrary function G�D?� independent of p2?:�
dp2?

�
dD? A�D? � p2?�G�D?�

���� ����2� �2p�4 � dp2?��G�p2?���2 :
�9�

Relation (9) can be easily proved using expression (6):�
dp2?

����� dD? A�D? � p2?�G�D?�
����2 � �� dxdyG�x�G��y�

�
��

dq1 dq2 exp
h
i
ÿ
w�r2� ÿ w�r1�

�� iyq2 ÿ ixq1

i
�
�
dp2? exp

�
ip2?�q2 ÿ q1�

�
: �10�

Integrating first over p2? and then over q1, q2, and y, we
obtain Eqn (9). It is owing to Eqn (9) that the Coulomb
corrections to the electroproduction amplitude coming from
the interaction between the incoming particle and the atomic
field have little effect on the magnitude of the cross section
integrated over the momentum p2?. But these corrections
strongly affect the differential cross section in p2?.

The integral representation of the function A�D� is very
convenient for treating the screening of the nucleus Coulomb
field by atomic electrons and the effect of a finite nucleus size.
For Rÿ1 4D?; Dk4 rÿ1scr , where R is the nucleus radius and
rscr is the screening radius, A�D� can be replaced by the
Coulomb function

AC�D� � ÿ 4pZ�LD�2iZ
D2

G�1ÿ iZ�G�2ÿ iZ�

� F 1ÿ iZ; iZ; 2;
D2
?

D2

� �
; �11�

where F �a; b; c; x� is the hypergeometric function, G�x� is
Euler's function, and L � rscr. The parameter L enters only
the common phase of the process, and the cross section is
therefore independent of L. For D?4Dk, the functionAC�D�
transforms into the asymptotic form

Aas�D?� � ÿ 4pZ�LD?�2iZG�1ÿ iZ�
D2
?G�1� iZ� : �12�

The differential cross section of the electroproduction process
for distinct particles takes the form

ds � a2

�2p�8 de3 de4 dp2?dp3?dp4?
1

2

X
mi��1

jTm1m2m3m4 j2 ; �13�

where mi � �1 is the helicity of a particle with the momentum
pi, and �mi � ÿmi. To describe the production of an e�eÿ pair
by a relativistic electron in an atomic field, we need to take the
identity of particles into account, i.e., replace the amplitude
Tm1m2m3m4 with another one, namely

T m1m2m3m4 � Tm1m2m3m4 ÿ eTm1m2m3m4 ;eTm1m2m3m4 � Tm1m3m2m4�p2 $ p3� : �14�
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We are now in a position to discuss differential and
integral electroproduction cross sections in various cases.

3. Production of an e�eÿ pair
by a relativistic electron in an atomic field

In this section, we discuss how various effects influence the
differential and integral cross sections of the e�eÿ pair
electroproduction by a relativistic electron in an atomic
field. The section is based on Refs [36, 37]. We are interested
in the magnitude of contributions from the amplitudes T �0�

and eT �0� to the cross section (i.e., the contribution from the
emission of a virtual photon transforming into an e�eÿ pair of
particles that do not interact with the atomic field), the effect
of interference between the amplitudes T and eT (i.e., the
importance of accounting for the identity of electrons), and
the influence of Coulomb corrections related to the interac-
tion of both the incoming particle and the produced pair with
the atomic field.

We begin with the fully differential cross section. We
consider the quantity

S �
X
mi��1

���� e1m 4
e T m1m2m3m4

Z�2p�2
����2 ; �15�

which is the dimensionless differential cross section, with me

being the electron mass. Figure 2 shows the dependence of S
on the transverse positronmomentum p4? for an atomof gold
(Z � 79) for some values of ei, p2?, and p3?. In this figure, the
exact result (solid curve) is compared with results obtained in
the following approximations:
� the lowest (Born) approximation in the parameter Z

(dotted curve);
� disregarding the interference between the amplitudes T

and eT (dashed-dotted curve);
� disregarding the interaction of the incoming electron

with the atomic field (long-dash curve);
� disregarding the amplitudes T �0� and eT �0� (short-dash

curve).

It can be seen that the Born result differs substantially
from the exact one, being almost twice as large. Accounting
for interference leads to a difference of about 50%, and
accounting for the interaction of the incoming electron with
the atomic field changes the cross section by about 15%. The
contribution of the amplitudesT �0� and eT �0� is noticeable, but
is not large (about 5%). The influence of atomic screening is
negligibly small for the parameter range shown in Fig. 2. We
note that the relative contribution of the effects we are
interested in to the differential cross section strongly depends
on pi. However, in all cases, the Born cross section deviates
substantially from the exact one, even for moderate values
of Z.

To observe experimentally how the interaction between
the incoming electron and the atomic field influences the
differential electroproduction cross section, it suffices to
measure the transverse momentum or the final momentum
angles of one of the electrons. For the cross section ds= dp2?,
the magnitude of this effect is large in the range p2?=me91.
Such an experiment seems to be well realizable for not very
large g � e1=me9100.

Interestingly, for a polarized incoming electron, the
differential cross section exact in Z is characterized by
asymmetry A:

A � S� ÿ Sÿ
S� � Sÿ

; S� �
X
m2m3m4

���� e1m 4
e T �m2m3m4
Z�2p�2

����2 : �16�

In the Born approximation, the asymmetry disappears for
any momenta pi owing to the relation

T B
m1m2m3m4

� ÿm1m2m3m4 T B
m1m2m3m4

� ��
; �17�

which does not hold if the Coulomb corrections are taken into
account. The asymmetryA is shown in Fig. 3 as a function of
j3 (the angle between p3? and p4?) for some values of ei, pi?,
and j2 (the angle between p2? and p4?). As we expect,
asymmetry disappears if all momenta lie in the same plane
(j2 � 0; p and j3 � 0; p in Fig. 3). It can be seen that the
asymmetry can reach several dozen percent.

We now consider the differential cross section in the
transverse electron momentum, ds=dp2?. This cross section
is shown in Fig. 4a for Z � 79 (gold) and e1 � 100me. These
results are obtained under the assumption ei 4me; therefore,

14
S

12

10

8

6

4

2

0 0.2 0.4 0.6 0.8
p4?=me

Figure 2. Quantity S as a function of p4?=me [see Eqn (15)] for Z � 79,

e1 � 100me, e2=e1 � 0:28, e3=e1 � 0:42, e4=e1 � 0:3, p2? � 1:3me,

p3? � 0:5me, p3? k p4?; the angle between the momenta p2? and p4? is

p=2. Shown are the exact result (solid line), the Born approximation

(dotted line), the result obtained disregarding the interference between T

and eT (dashed-dotted line), the result obtained disregarding the incoming

electron with the atomic field (long-dash line), and the result obtained

disregarding T �0� and eT �0� (short-dash line).

0.4

A
0.2

0

ÿ0.2

ÿ0.4

0 1 2 3 4 5 6
j3, rad

Figure 3.AsymmetryA [see Eqn (16)] as a function of j3 for e2=e1 � 0:28,
e3=e1 � 0:42, e4=e1 � 0:3, p2? � 0:3me, p3? � 0:5me, p4? � 1:2me, and

Z � 0:6 for j2 � 0 (solid line) and j2 � p (dashed line); ji is the angle

between pi? and p4?. In the Born approximation, A � 0.
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the question arises as to the lower limit for integration over
the energies of final particles in the computation of ds=dp2?.
It turns out that varying the lower limit by a quantity
comparable to me only weakly influences the final result and
does not substantially modify the relation between contribu-
tions from different corrections. Figure 4a shows the result of
integration over the entire kinematically allowed domain.
Figure 4b shows d, the relative deviation of the approximate
result for ds=dp2? computed without accounting for the
amplitudes T �0� and eT �0� or without interference from the
exact one. It can be seen that both effects make a noticeable,
but not very large contribution to the cross section (d4 5%).
It follows from Fig. 4a that the exact result is markedly
different from the Born approximation (the difference peaks
at 50%), and taking the interaction of the incoming electron
with the atomic field into account leads to a substantial
reduction in the cross section at the peak (� 20%) and a
weak increase over a broad range of momenta p2? outside the
peak. These deviations (positive and negative) effectively
compensate each other in the cross section integrated over
transverse electron momenta p2? and p3?. This statement is
illustrated in Fig. 5, which shows the differential cross section
in the transverse positron momentum, ds=dp4?, for Z � 79
and e1 � 100me.

As follows from Fig. 5a, the Born approximation for
ds=dp4? is substantially different from the exact one (by

approximately 30% at the peak). Figure 5b shows d1, the
relative deviation of the approximate result for ds=dp4?
(computed disregarding the interaction between the incom-
ing electron and the atomic field or the contribution from the
amplitudes T �0� and eT �0� or interference) from the exact one.
All values of d1 are significant (d1 4 6%). The cross section
obtainedwithout taking the interaction between the incoming
electron and the atomic field into account and the cross
section that include the amplitudes T �0� and eT �0� are very
close to each other. This indicates that the Coulomb
corrections related to the interaction of the incoming
electron with the atomic field lead to a very small shift in
ds=dp4?, whereas ds=dp2? changes rather substantially.

We consider the total cross section s of the process under
study. This cross section is shown in Fig. 6a for Z � 79 as a
function of e1=me. The solid line corresponds to the exact
result, the dotted line depicts the Born approximation, and
the dashed-dotted line shows the ultrarelativistic asymptotic
behavior of the Born result [2] (the Racah formula). We note
that the small difference at relatively small energies between
the Born approximation and the result computed with the
Racah formula is related to two factors. First, our result for
the total cross section involves an uncertainty rooted in the
selection of the lower limit for integration over energies.
Second, the Racah formula [2] ignores the identity of
electrons. It can be seen that the Born result for the total

a8

m
e
sÿ

1
0

d
s=

d
p
2
? 6

4

2

0 1 2 3 4 5
p2?=me

b0.06

d

0.04

0.02

0

ÿ0.02
0 1 2 3 4 5

p2?=me

Figure 4. (a) Dependence of ds=dp2? on p2?=me in units of s0=me �
a 2Z2=m 3

e for Z � 79 and e1=me � 100; shown are the exact result (solid

line), the Born approximation (dotted line), the result obtained without

disregarding the interaction between the incoming electron and the atomic

field (dashed line). (b) The quantity d as a function of p2?=me, where d is

the deviation of the approximate result ds=dp2? from the exact one in

units of exact cross section; the dashed-dotted line plots the result obtained

disregarding the interference between T and eT; the dashed line plots the

result obtained disregarding T �0� and eT �0�.
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?
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Figure 5. (a) Dependence of ds=dp4? on p4?=me in units of

s0=me � a 2Z2=m 3
e for Z � 79 and e1=me � 100. The solid line plots the

exact result and the dotted line plots the Born approximation. (b) The

quantity d1 (the relative deviation of the approximate result from the exact

one) for ds=dp4? as a function of p4?=me. The dashed-dotted line depicts

the result obtained disregarding the interference between T and eT, the
long-dash line presents the result obtained without the contribution from

T �0� and eT �0�, and the short-dash line presents the result disregarding the

interaction between the incoming electron and the atomic field.
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cross section differs considerably from the exact result (by
more than 20% in the entire domain that is shown). Figure 6b
shows the relative deviation d2 of the approximate result for s
from the exact one. The corrections to the total cross section
due to T �0� and eT �0� and the Coulomb corrections due to the
interaction between the incoming electron and the atomic
field are small, even for moderate energies e1. The effect of
interference, which is important at moderate energies,
decreases as energy is increased.

4. Positronium production
in electron±atom collisions at high energies

Using formulas obtained for differential cross sections for the
electroproduction of an e�eÿ pair with given momenta, we
can readily find the electroproduction cross section for
positronium (the bound state of e� and eÿ). Positronium
can be produced either in a state with zero total spin
(parapositronium, having the positive C-parity) or with the
total spin equal to one (orthopositronium, having a negative
C-parity). The electroproduction cross section sPP for
parapositronium with the angular momentum l � 0 and
principal quantum number n takes the form [26, 28]

dsPP � a2E

�2p�52me

��cn�0�
��2 dE dp2? dP?

1

2

X
m1m2

��T m1m2

��2 ; �18�

where E and P are the positronium energy and momentum,
E � �P 2 � 4m 2

e �1=2, and cn�0� is the positronium wave
function at the origin, jcn�0�j2 � a 3m 3

e =�8pn 3�. The ampli-
tude T m1m2�p1; p2;P� is expressed in terms of the amplitude
T m1m2m3m4�p1; p2; p3; p4� [see Eqn (14)] as

T m1m2�p1; p2;P�

� 1���
2
p
�
T m1m2�ÿ

�
p1; p2;

P

2
;
P

2

�
ÿ T m1m2ÿ�

�
p1; p2;

P

2
;
P

2

��
:

�19�
Wenow determine the total positronium production cross

section

dstot � a 2E

�2p�52me

��cn�0�
��2 dE dp2? dP?

� 1

2

X
mi��1

����T m1m2m3m4

�
p1; p2;

P

2
;
P

2

�����2 : �20�

Then the production cross section for orthopositronium is
expressed as

dsOP � dstot ÿ dsPP : �21�

Figure 7 shows the dependence of parapositronium and
orthopositronium spectra SPP � Sÿ1dsPP=dE and SOP �
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Figure 6.Total cross section s as a function e1=me in units of s0 � a 2Z2=m 2
e

for Z � 79. The solid line shows the exact result, the dotted line shows the

Born approximation, and the dashed-dotted line shows the result obtained

with the Racah formula [2]. (b) The quantity d2 (the deviation of the

approximate result s from the exact one in units of exact cross section) as a

function of e1=me. The dashed-dotted line presents the result ignoring the

interference between T and eT, the short-dash line present the result

without T �0� and eT �0�, and the long-dash line presents the result without

the interaction between the incoming electron and atomic field.
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(b) orthopositronium SOP � Sÿ1 dsOP=dE, where S is defined in

Eqn (22) as a function of E=e1 for Z � 79 and e1 � 1000me. Shown
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Sÿ1 dsOP=dE on E=e1, where

S � Z2

Em 5
e

��cn�0�
��2 ; �22�

for Z � 79 and e1 � 1000me. There are two contributions to
the production amplitude of positronium from an electron
with a momentum p3 and a positron with a momentum p4. In
the first case, positronium is formed from the electron and
positron produced by a virtual photon (the amplitudeT ), and
in the second case the positron is captured by the electron
emitting a virtual photon (the exchange amplitude eT ).
Figure 7 shows that for E � e1, the exact result (the solid
line) is substantially different from the result obtained by
disregarding the exchange diagram (the long-dash line). In
both cases, the result exact in Z is substantially different from
the Born approximation (the short-dash and dotted lines,
respectively). We note that the result exact in Z for the
spectrum of positronium production was obtained in
Ref. [40] without taking the exchange contribution into
account. Our results shown in Fig. 7 by the long-dash line
agree with those in Ref. [40].

5. Production of an e�eÿ pair
by a relativistic muon in an atomic field

The e�eÿ pair production by a relativistic heavy particle in
an atomic field is a very important process because its cross
section is even larger than the bremsstrahlung cross section
for a heavy particle in the atomic field. This is why it
contributes substantially to energy losses of heavy particles
in detectors. The cross section of e�eÿ pair production by a
relativistic heavy particle in an atomic field was calculated in
the Born approximation many years ago [1, 2]. In this
approximation, the cross section depends on the atom
charge number Z and the charge number of the heavy
particle Zp (the ratio of its charge to that of the proton) as
Z 2Z 2

p . The interaction between the heavy particle and the
atomic field was ignored in [1, 2]. Later, the Coulomb
corrections related to the interaction of the e�eÿ pair with
the atomic field were obtained in Refs [10, 11] using plane
waves for the particle wave function and Coulomb wave
functions for the electron and positron. The results in Refs
[10, 11] for the cross section are therefore exact in the
parameter Za, but depend on Zp as Z 2

p (Zp enters only the
amplitude of a virtual photon). The authors of Refs [10, 11]
obtained the cross section both differential in the heavy
particle final momenta and integrated over these momenta.
In the latter case, the cross section was also obtained in
another framework (see Refs [15, 16] and reviews [44, 45]), by
computing the cross section for a given impact parameter r of
a heavy particle relative to the atom center, which means
ignoring the interaction between the heavy particle and the
atomic field. The result was then integrated over the impact
parameters. Thus, the final result corresponds to the cross
section integrated over the momenta of a heavy particle.

We note that the energy o of the produced pair e�eÿ,
which makes the main contribution to the cross section, is
much smaller than the energy of a heavy particle. As a
consequence, the process cross section does not depend on
the spin and massmp of the heavy particle but depends on the
relativistic factor g � ep=mp, where ep is the heavy particle
energy. The final formulas for electroproduction cross
sections of an e�eÿ pair by a muon or light nucleus coincide
(with due regard for the respective charge number).

In our recent study [38], we computed the differential
cross section of e�eÿ pair production in an atomic field by a
relativistic muon or light nucleus taking the interaction
between the heavy particle and the atomic field into
account. The results obtained are exact in both parameters
Z � Za and Zp � ZpZa � ZpZ. It was shown that the cross
section differential in the final particle momentum strongly
depends on Zp, contradicting well-accepted views. For light
nuclei in the field of a heavy atom, this parameter can be large,
Zp0 1. However, the cross section integrated over the final
momenta of the heavy particle does not depend on Zp.
Experimental observation of a strong dependence of the
cross section differential in p2? on Zp for not very large
values of the relativistic factor g seems to be fully plausible.

The differential process cross section is given by Eqn (13),
and the Feynman diagram for the amplitude T in the Furry
representation is shown in Fig. 1. The leading contribution to
the cross section comes from the range of electron and
positron energies e3; 4 9gme, where g � e1=mp 4 1, whence
o=e19me=mp 5 1.

We first consider the process in the Coulomb field and
then discuss the effect of screening. In the e�eÿ pair
electroproduction by a heavy relativistic particle, the con-
tribution T �0� is not large compared to T �1�. The contribution
T �1� is the sum of contributions,T �1� � T? � Tk, which in the
Coulomb field take the form

T?�8iZ
o

��G�1ÿ iZ���2� dD?Aas�D? � p2?�
�Q2 � D2

0k�M 2�o2=g2 � D2
?�

�
x2
x1

�iZ

M ;

M� ÿ dm3�m4

o

�
e3�e�m3D?��em3I1� ÿ e4�e�m4D?��em4I1�

�
� m3dm3m4

me���
2
p �e�m3D?� I0 ; �23�

Tk� ÿ 8iZe3e4
o3

��G�1ÿ iZ���2 � dD?Aas�D?� p2?�
�Q 2� D2

0k�M 2

�
x2
x1

�iZ
I0dm3�m4 ;

where o � e3 � e4, el � �ex �iley�=
���
2
p

, ex and ey are unit
vectors orthogonal to the vector p1 and to each other, and the
function Aas�D?� is defined by Eqn (12) with the replacement
Z! Zp. The following notation is adopted in Eqn (23):

D0k � ÿ 1

2

�
o
g 2
� o�m 2

e � z 2�
e3e4

� d 2

o
� p 2

2?
e1

�
;

M 2 � m 2
e �

e3e4
g 2
� e3e4

o2
D2
? ;

Q � D? ÿ d ; q1 �
e3
o
Qÿ f ; q2 �

e4
o
Q� f ;

f � e4
o

p3? ÿ
e3
o

p4? ; d � p3? � p4? ; �24�
I0 � �x1 ÿ x2�F �x� � �x1 � x2 ÿ 1��1ÿ x� F

0�x�
iZ

;

I1 � �x1q1 � x2 q2�F �x� � �x1q1 ÿ x2 q2��1ÿ x� F
0�x�
iZ

;

x1 �
M 2

M 2 � q 2
1

; x2 �
M 2

M 2 � q 2
2

; x � 1ÿQ 2x1x2
M 2

;

F �x� � F �iZ;ÿiZ; 1; x� ; F 0�x� � qF �x�
qx

;

where F �a; b; c; x� is the hypergeometric function. To take
screening into account, we have to replace Aas�D?� ! A�D?�
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(see our paper [36]) in Eqn (23),

A�D?� � i

�
dq exp

ÿÿiD?qÿ iZpw�r�
�
;

�25�
w�r� �

�1
ÿ1

dzV
ÿ ����������������

z 2 � r 2
p �

;

whereV�r� is the atomic potential, andmultiply the integrand
in Eqn (23) by the atomic form factor Fa��D? ÿ d �2 � D2

0k�. In
the absence of interaction between the heavy charged particle
and the atomic field, the influence of screening on the process
cross section is studied in Ref. [4]. In this case, screening is
important for g4merscr � Zÿ1=3=a. For the cross section
differential in p2?, the effect of screening is essential for
g4 �o=me�merscr 4merscr. Therefore, up to very high values
of g for the heavy particle, we can useAas�D� in (12) instead of
A�D� in (25), yet accounting for the atomic form factor Fa.We
skip the details of how screening influences the electroproduc-
tion process.

In terms of the variables f , d , and p2? [see relations (24)],
the leading contribution to the total cross section comes from
the integration domain z; d; p2?9me, and o9meg. In this
domain, o=e19me=mp and p2?=e1 5 p3?=e3; p4?=e4, which
means that the angle between the momenta p2 and p1 is much
smaller than the angles between p3, p4, and p1. We consider
the cross section integrated over p2?. In this case, we can
disregard the last term p 2

2?=e1 inD0k [see Eqn (24)] because it is
small compared to the other terms (its relative contribution to
D0k is of the order ofme=mp). Then the variable p2? is present
in the expression for the amplitude T only as the argument of
the function Aas�D? � p2?� [see Eqns (23)]. Using Eqn (9), we
find that the cross section integrated over p2? does not depend
on the parameter Zp (the cross section is insensitive to the
interaction between the heavy particle and the atomic field).
Therefore, the cross section integrated over p2? can be
obtained based on amplitudes computed in the limit Zp ! 0
with the help of Eqn (8). The cross section ds0 in this limit is
given by Eqn (13) with the change T! T0 � T0? � T0k,
where

T0? � ÿ
32p2Z

��G�1ÿ iZ���2M0

oD2
0M

2�o2=g 2 � p 2
2?�

�
x2
x1

�iZ
;

M0 � dm3�m4

o

�
e3�e�m3p2?��em3I1� ÿ e4�e�m4p2?��em4I1�

�
ÿ m3dm3m4

me���
2
p �e�m3p2?�I0 ; �26�

T0k �
32p2Ze3e4

��G�1ÿ iZ���2
o3D2

0M
2

�
x2
x1

�iZ
I0dm3�m4 :

Here, the notation agrees with that in Eqn (23) after the
replacement D? ! ÿp2?. Result (26) agrees with the respec-
tive result in Ref. [10].

Although the cross section integrated over p2? does not
depend on Zp, the differential cross section in p2? is strongly
dependent on this parameter. This statement is based on the
results of computations shown in Fig. 8, where the quantity

S � ds
Sdp2? de3 de4

; S � �Zpa�2
o2m 3

e

; �27�

which is the cross section differential in p2? (in units of S),
integrated over p3? and p4?, is given as a function of p2? for
o � meg=4, e3 � e4 � o=2, g � 100, Z � 79, and several
values of Zp.

It can be seen that the influence of the interaction between
the heavy particle and the atomic field on the cross section
differential in p2? is very strong. For small values of p2?=me,
the cross section exact in Zp is substantially lower than the
cross section obtained in the limit Zp ! 0. For large values of
p2?=me, the relation between these cross sections reverses.
The integral

�1
0 S dp2? is independent of Zp, as it should.

The dependence ofS ono=�meg� for p2?=me � 2 is shown
in Fig. 9a, and for p2?=me � 0:5 in Fig. 9b for e3 � e4,
g � 100, Z � 79, and several values of Zp. It can be seen
that the dependence ofS onZp is very strong for anyo=�meg�.
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Figure 8. Dependence of S on p2?=me [see Eqn (27)] for o � meg=4,
e3 � e4 � o=2, g � 100, and Z � 79 for Zp � 3 (solid line), Zp � 2

(dashed line), Zp � 1 (dashed-dotted line), and Zp ! 0 (disregarding the

interaction between the heavy particle and the atomic field) (dotted line).
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The dependence of S on x � e3=o for o � meg=4,
g � 100, Z � 79, and several values of Zp is plotted in
Fig. 10a for p2?=me � 2, and in Fig. 10b for p2?=me � 0:5.
As in the preceding cases, taking the interaction between the
heavy particle and the atomic field into account is very
important for the differential cross section.

The situation with the dependence of the electroproduc-
tion cross section on Zp is reminiscent of that with the
dependence of Coulomb corrections to the relativistic muon
bremsstrahlung cross section in an atomic field (see Ref. [42]).
The Coulomb correction to the bremsstrahlung cross section
and the differential cross section in the muon and photon
momenta lead to substantial deviations from the result
obtained in the Born approximation. However, this correc-
tion reduces to zero when integrated over the momentum of
the muon (or photon).

To observe the strong dependence of the differential
process cross section on the parameter Zp, one needs to
measure the final momentum angles of the final heavy
particle. The angle between the momenta p2 and p1 is
substantially smaller than the angles between the momenta
p3, p4, and p1. However, experiments for moderate values of
the relativistic factor g seem to be possible.

6. Positronium and muonium production
in collisions of relativistic muons with atoms

The electroproduction cross section sPP for parapositronium,
characterized by the angular momentum l � 0 and the
principal quantum number n, in a collision of a heavy
particle with an atom takes the form [cf. Eqn (18)]

dsPP � a2E

�2p�52me

��cn�0�
��2 dE dp2? dP? jT j2 ; �28�

where E and P are the positronium energy and momentum,
E � �P 2 � 4m 2

e �1=2,cn�0� is the positroniumwave function at
the origin, and jcn�0�j2 � a3m3

e=�8pn3�. The amplitude
T�p1; p2;P� is expressed in terms of the amplitude
Tm3m4�p1; p2; p3; p4� [see Eqn (23)] as

T �p1; p2;P
�

� 1���
2
p
�
T�ÿ

�
p1; p2;

P

2
;
P

2

�
ÿ Tÿ�

�
p1; p2;

P

2
;
P

2

��
: �29�

We recall that the process amplitude is independent of the
heavy particle spin. The total positronium electroproduction
cross section dstot is given by the formula

dstot � a 2E

�2p�52me

��cn�0�
��2 dEdp2? dP?

�
X

m3;4��1

����Tm3m4

�
p1; p2;

P

2
;
P

2

�����2 : �30�

The orthopositronium production cross section is then
expressed as

dsOP � dstot ÿ dsPP : �31�

Figure 11 shows the dependence of dimensionless quantities
SPP and SOP on p2?,

SPP � dsPP
S dp2? dE

; SOP � dsOP

S dp2? dE
; S � Z2

Em 6
e

��cn�0�
��2 ;
�32�

forZ � 79, g � 100, E � meg=4, and several values ofZp (the
heavy particle charge in units of jej).
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It can be seen that just as for an unbound electron and
positron, taking the interaction between the heavy particle
and the atomic field into account substantially affects the
positronium electroproduction cross section differential
in p2?. Furthermore, the orthopositronium production cross
section is substantially lower than for parapositronium. This
is due to the preservation of C-parity, because for the
production of orthopositronium an exchange of at least two
photons with the atomic field is needed, while one-photon
exchange is sufficient for parapositronium.

The positronium production cross section integrated over
p2? does not change if the interaction between the heavy
particle and the atomic field is taken into account. The
dependence of positronium spectra on E=me,

S1PP � dsPP
meS dE

; S1OP � dsOP

meSdE
; �33�

where S is defined in Eqn (32), is plotted in Fig. 12. These
spectra do not depend on Zp.

In addition to positronium production in collisions of a
heavy charged particle with an atom, a bound state of a heavy
particle and a positron can form, for example, muonium (a
mÿe� atom). The cross section of this process is

dsme � a2g

�2p�5
��cn�0�

��2 dEdp3? dP?

�
X

m3;4��1

����Tm3m4

�
p1;P; p3;

me

mm
P

�����2 ; �34�

where E and P are the muonium energy and momentum,
E � �P 2 �m 2

m �1=2,cn�0� is the muoniumwave function at the

origin, and jcn�0�j2 � a 3m 3
e =�pn 3�. Because the process

amplitude is independent of the heavy-particle spin, the
cross sections of muonium production with spin zero and
spin one are respectively equal to sme=4 and 3sme=4. The
dependence of the cross section (in units of S1)

Sme � dsme
S1 dp3? dE

; S1 � Z2

gm7
e

��cn�0�
��2 ;

on p3?=me is shown in Fig. 13. We note that jcn�0�j2 for
positronium is 1=8 that for muonium.

Because the energy conservation law requires that E �
mmgÿ e3, the muonium spectrum has a peak in the range
E � mmg of the widthDE � meg, as indicated in Fig. 14, where
the dependence of the spectrum S1me � dsme=meS1 de3 on
e3=meg is plotted.

We note that the total positronium production cross
section is amplified only logarithmically (by about ln g
times) compared to the total muonium production cross
section. However, jcn�0�j2 for muonium is eight times larger
than for positronium.

7. Production of a l�lÿ pair
by a relativistic electron in an atomic field

The process of m�mÿ pair production by a relativistic
electron in an atomic field has a particular feature that the
Coulomb corrections to the cross section (the difference
between the results exact in Z and those obtained in the
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Figure 12.Dependence of (a) S1PP and (b) S1OP on E=�meg� [see Eqn (33)]

for g � 100 and Z � 79; the exact result in Z (solid line) and the Born

approximation (dashed line). The production cross section for orthoposi-

tronium is zero in the Born approximation.
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Born approximation), related to the interaction of the m�mÿ

pair with the atomic field, are strongly suppressed by the
nuclear form factor [46], as in the case of photoproduction of
a m�mÿ pair [47]. The Coulomb corrections due to the
interaction between the electron and the atomic field were
discussed in our recent work [39]. It turned out that these
corrections can significantly change the process cross section
differential in the electron final momentum angles, just as for
the e�eÿ pair electroproduction in an atomic field by a
relativistic heavy particle [38] and a relativistic electron [36,
37]. But the cross section integrated over the final momen-
tum angles of the final electron does not change if interaction
between the electron and the atomic field is considered.

We note that in the process considered in this section,
taking nucleus screening by atomic electrons into account is
important only for very large energies,

e10
m 2

m

aZ 1=3me
� 1TeV ;

and can typically be disregarded. However, accounting for
the finite nucleus sizeR is indispensable. The reason is that for
heavy atoms, the Compton length of the muon lm � 1=mm is
shorter than R. To simplify computations, we consider the
nucleus potential V�r� in the form

V�r� � ÿ Z�����������������
r 2 � R 2
p : �35�

For this potential, the form factor F �Q 2� and the function
A�D?� [see Eqn (6)] are expressed as

F �Q 2� � QRK1�QR� ;

A�D?� � Aas�D?� �D?R�
1ÿiZ K1ÿiZ�D?R�

2ÿiZG�1ÿ iZ� ;
�36�

whereKn�x� is themodified Bessel function of the second kind
and Aas�D?� is defined in Eqn (12). We remark that the
difference between the results obtained for the real andmodel
form factors does not exceed 10% (see Ref. [28], where the
cross section is considered in the Born approximation). The
weak dependence of results on the form of the potential does
not affect the qualitative analysis of the importance of
Coulomb corrections due to the interaction between the
electron and the atomic field.

We consider the dimensionless quantity

S � ds
Sdp2? de3 de4

; S � Z2

o2m 2
mme

; �37�

which is the cross section integrated over p3? and p4?,
measured in units of S. The dependence of this quantity on
p2? is plotted in Fig. 15 for o � e1=2, e3 � e4 � o=2,
e1 � 50mm, and Z � 79. It can be seen that the effect of
interaction between the electron and the atomic field is large
for the cross section differential in p2?. In the region
p2? � me, the exact cross section is substantially smaller
than the one found in the Born approximation (the deviation
is about 20±30%). For p2?4me, the exact solution is larger
than the Born one (the deviation is about 10%). However, the
Coulomb corrections to the cross section integrated over p2?,
i.e., to the quantity

S1 � 1

me

�1
0

S dp2? ; �38�

are strongly suppressed. Figure 16 presents the dependence
of S1 on o=e1, where the exact result practically coincides
with the Born one for all o � e3 � e4. It is of interest to
consider the relative contribution of the amplitude T �0� to
the cross section. For o5 e1, the amplitude T �0�, in
contrast to the amplitude T �1�, is suppressed by the factor
o=e1. Hence, the contribution of T �0� to the cross section is
only important for o � e1. This conclusion follows from
the results of computations shown in Fig. 16, where the
function S1 computed without the contribution from T �0�

is plotted by a dotted curve.
Taking the amplitude T �0� into account leads to

asymmetry in the differential cross section under permuta-
tion of the momenta of m� and mÿ, p4 $ p3. Because of the
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Figure 15. Dependence of S on p2?=me [see Eqn (37)] for o � e1=2,
e3 � e4 � o=2, e1 � 50mm, and Z � 79. The respective solid and dashed

lines present the exact result and the Born approximation.
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Figure 16. Dependence of S1 on o=e1 [see Eqn (38)] for e3 �
e4 � o=2, e1 � 50mm, and Z � 79. The respective solid and dashed

lines show the exact result and the result without the contribution

from T �0�.
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relations

T �0�m1m2m3m4
�p1; p2; p3; p4� � T �0�m1m2m4m3

�p1; p2; p4; p3� ; �39�
T �1�m1m2m3m4

�p1; p2; p3; p4� � ÿT �1�m1m2m4m3
�p1; p2; p4; p3� ;

asymmetry in the cross section is caused by interference of the
amplitudes T �0� and T �1�. We consider the cross section
integrated over p2?, ds�p3; p4�, and define the asymmetry as

A � ds�p3; p4� ÿ ds�p4; p3�
ds�p3; p4� � ds�p4; p3�

: �40�

Figure 17 presents the dependence of A on o=e1 for several
values of p3 and p4. In can be seen that the asymmetry can
reach several dozen percent for o � e1.

The charge asymmetry accompanying the m�mÿ photo-
production in an atomic field was studied in [49]. Asymmetry
in the cross section occurs if the first semiclassical correction
to the process amplitude is taken into account. The cross
section computed in the leading semiclassical approximation
does not exhibit this asymmetry. A question arises as to
whether a beam of relativistic electrons can be used as a
source of equivalent photons to observe the charge asymme-
try in photoproduction due to the correction to the leading
term of the semiclassical approximation. Because the charge
asymmetry due to the interference of the amplitudes T �0� and
T �1� is large for o � e1, observing charge asymmetry due to
the first semiclassical correction to the amplitude of m�mÿ pair
production by a virtual photon in the electroproduction
process can be problematic.

8. Production of paradimuonium
by a relativistic electron in an atomic field

Using formulas obtained for the differential cross sections of
electroproduction of m� and mÿ with given momenta p3 and
p4, we can readily find the electroproduction cross section for
dimuonium (the bound state of m� and mÿ). In this process,
dimuonium is produced mostly in the state with the total spin
zero (paradimuonium with positive C-parity), because in this
case the amplitude T �1� is governed by only a single exchange
by a virtual photon between the m�mÿ pair and the atomic
center. Production of orthodimuonium (negative C-parity
and the total spin one) requires either the exchange by two
virtual photons between m� mÿ and the atomic center, which is

suppressed by the form factor in the amplitude T �1�, or the
contribution of the amplitude T �0�, which is small compared
to T �1�.

The electroproduction cross section sPD for paradimuo-
nium with the angular momentum l � 0 and the principal
quantum number n takes the form [26, 28]

dsPD � a 2E

�2p�52mm

��cn�0�
��2 dEdp2? dP?

1

2

X
m1m2

jTm1m2 j2 ; �41�

where E and P are the dimuonium energy and momentum,
E � �P 2 � 4m 2

m �1=2, cn�0� is the dimuonium wave function at
the origin, and jcn�0�j2 � a 3m 3

m=�8pn 3�. The amplitude
Tm1m2�p1; p2;P� is expressed in terms of the amplitude
Tm1m2m3m4�p1; p2; p3; p4� as
Tm1m2�p1; p2;P�

� 1���
2
p
�
Tm1m2�ÿ

�
p1; p2;

P

2
;
P

2

�
ÿ Tm1m2ÿ�

�
p1; p2;

P

2
;
P

2

��
:

�42�

For the amplitude Tm1m2 , we find

Tm1m2 �
4
���
2
p

iZe1
E

�
dD? A�D? � p2?�F �Q 2 � D2

0k�
�Q 2 � D2

0k�M 2�m 2
e E

2 � e 21D
2
?�
M ;

M� ÿm1dm1m2
�
e1�e�m1D?��em1Q� ÿ e2�em1D?��e�m1Q�

�
� dm1�m2

meE
2���

2
p

e1
�em1Q� ; �43�

M 2 � m2
m �

E 2m 2
e

4e1e2
� e1
4e2

D2
? ; Q � D? � p1? ÿ P? :

The electroproduction cross section of paradimuonium
has properties analogous to those of the electroproduction of
unbound m� and mÿ: the cross section differential in
transverse momenta p2? contains large Coulomb correc-
tions, contrary to accepted views [19, 20, 30, 46]. To illustrate
this statement, Fig. 18 shows the dependence of the
dimensionless quantity SPD on p2?,

SPD � dsPD
SPD dp2? dE

; SPD � Z2

Em 5
mme

��cn�0�
��2 ; �44�

for Z � 79 and e1 � 50mm.
It can be seen that the exact result is smaller than the Born

one by about 20% near the peak. In the wide region
me 5 p2?9mm, the exact result is about 10% higher than
that of the Born approximation. Just as in other cases, the
exact cross section coincides with the Born one after
integration over p2?, shown in Fig. 19, which plots the
dependence of the spectrum on E=e1,

S1PD � dsPD
meSPD dE

;

for Z � 79 and e1 � 50mm. This dependence is very similar to
that of S1 on o=e1 in Fig. 16.

We note that in addition to the production of dimuonium,
muonium (the eÿm� atom) can also be produced in interaction
of a relativistic electron with an atomic field. However, the
cross section of this process is much smaller than that of
dimuonium production because jcn�0�j2 for dimuonium is
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Figure 17. Dependence of A on o=e1 [see Eqn (40)] for e1 � 50mm,

e3 � e4 � o=2, p3? kÿp4?, p4? � mm, and Z � 79; the exact result for

p3? � 2:5mm (solid line) and p3? � 0:5mm (dotted line).
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much larger than its muonium counterpart �their ratio is
m 3

m=�2me�3�.

9. Conclusions

We presented the most recent results pertaining to the
electroproduction of e�eÿ and m�mÿ pairs by a relativistic
electron and also the production of positronium and
dimuonium in an atomic field. Furthermore, we considered
the process of electroproduction of an unbound e�eÿ pair and
positronium by a heavy relativistic particle (muon or light
nucleus), as well as the electroproduction of an e�mÿ atom.
Special attention was paid to taking the interaction of all
particles with the atomic field into account, which has become
possible by resorting to the method of semiclassical Green's
functions, which allows expressing solutions of the Dirac

equation in an arbitrary external field in a simple form. With
this method, we can readily account for the screening of the
nucleus field by atomic electrons and the effect of finite
nucleus size. It was shown that contrary to the commonly
accepted views, taking the interaction of an incoming particle
with the atomic field essentially modifies the differential cross
section of the process in all cases. Experimental observation
of this effect does not seem to be a very complicated task. It
turns out, however, that the interaction of the incoming
particle with the atomic field does not affect the magnitude
of the cross section integrated over the final momenta of this
particle.

This study was supported by the Russian Science
Foundation (grant no. 14-50-00080).

10. Appendix

We explicitly write the amplitude T of electroproduction of a
pair of particles withmassesm1 by a relativistic particle with a
mass m2 in an atomic field (see the Feynman diagram in
Fig. 1). The connection between the amplitude T and the
differential cross section is given by Eqn (13). The amplitude
T is the sum of four contributions

T � T
�0�
? � T

�0�
k � T

�1�
? � T

�1�
k ;

where

T
�0�
? �

8pe3e4A�D0�
m 2

2o
2 � e23e

2
4y

2
34

�
dm1m2dm3�m4

�
e3
o2
�e�m3X��em3h 34�

� �e1dm1m3 � e2dm1m4� ÿ
e4
o2
�e�m4X��em4h 34��e1dm1m4 � e2dm1m3�

�
ÿ m1m1���

2
p

e1e2
Rdm1�m2dm3�m4�em1h 34��ÿe3dm1m3 � e4dm1m4�

� m2m3���
2
p

e3e4
dm1m2dm3m4�e�m3X��e1dm3m1 � e2dm3�m1�

� m1m2o2

2e1e2e3e4
Rdm1�m2dm3m4dm1m3

�
;

T
�0�
k � ÿ

8p
o2

A�D0�Rdm1m2dm3�m4 :
�45�

Here, mi � �1 denotes the helicity of the ith particle with the
momentum pi, �mi � ÿmi, o � e3 � e4, h i j � pi?=ei ÿ pj?=ej,
the function A�D� is defined in Eqn (5), and the following
notation is introduced:

D0 � p2 � p3 � p4 ÿ p1 ; D0? � e2h 21 � e3h 31 � e4h 41 ;

D0k � ÿ 1

2

�
o
�
m 2

1

e1e2
� m 2

2

e3e4

�
� e2y

2
21 � e3y

2
31 � e4y

2
41

�
;

R � 1

d1d2

�
D2
0?�e1 � e2� ÿ 2e1e2 h 21D0?

�
;

�46�
X � 1

d1
�e3h 23 � e4h 24� � 1

d2
�e3h 31 � e4h 41� ;

d1 � oe1

�
m 2

1

e1e2
� m 2

2

e3e4

�
� e2e3y

2
23 � e2e4y

2
24 � e3e4y

2
34 ;

d2 �oe2

�
m 2

1

e1e2
� m 2

2

e3e4

�
� e2e3y

2
31� e2e4y

2
41� �e3h 31� e4h 41�2 :
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Figure 18. Dependence of SPD on p2?=me [see Eqns (44)] for o � e1=2,
e1 � 50mm, and Z � 79. The respective solid and dashed lines present the

exact result and the Born approximation.
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The contributions T
�1�
? and T

�1�
k are expressed as

T
�1�
? �

8iZe1
o

��G�1ÿ iZ���2
�
�
dD? A�D? � p2?�F �Q 2 � D2

0k�
�Q 2 � D2

0k�M 2�m 2
1o

2 � e21D
2
?�

�
x2
x1

�iZ

M ;

M� ÿ dm1m2dm3�m4

o

�
e1�e3dm1m3 ÿ e4dm1m4��e�m1D?��em1I1�

� e2�e3dm1�m3 ÿ e4dm1�m4��em1D?��e�m1I1�
�

� dm1�m2dm3�m4
m1om1���

2
p

e1
�e3dm1m3 ÿ e4dm1m4��em1I1�

� dm1m2dm3m4
m2m3���

2
p �e1dm1m3 � e2dm1�m3� e�m3D?I0

ÿm1m2o2

2e1
dm1�m2dm3m4dm1m3I0 ;

T
�1�
k � ÿ

8iZe3e4
o3

��G�1ÿ iZ���2
�
�
dD? A�D? � p2?�F �Q 2 � D2

0k�
�Q 2 � D2

0k�M 2

�
x2
x1

�iZ

I0dm1m2dm3�m4 ;

�47�

where o � e3 � e4, el � �ex � iley�=
���
2
p

, ex and ey are unit
vectors orthogonal to p1 and to each other, and the function
A�D?� is defined in Eqn (6). The following notation is used:

M 2 � m 2
2 �

e3e4
e1e2

m 2
1 �

e1e3e4
e2o2

D2
? ;

Q � D? ÿ p3? ÿ p4? ; q1 �
e3
o
Qÿ f ;

q2 �
e4
o
Q� f ; f � e3e4

o
h 34 ;

I0 � �x1 ÿ x2�F �x� � �x1 � x2 ÿ 1��1ÿ x� F
0�x�
iZ

; �48�

I1 � �x1q1 � x2q2�F �x� � �x1q1 ÿ x2q2��1ÿ x� F
0�x�
iZ

;

x1 � M 2

M 2 � q 2
1

; x2 � M 2

M 2 � q 2
2

; x � 1ÿQ 2x1x2
M 2

;

F �x� � F �iZ;ÿiZ; 1; x� ; F 0�x� � qF �x�
qx

;

with F �a; b; c; x� being the hypergeometric function.
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