
Abstract. We propose a new approach to exploring relativistic
compound systems in an external magnetic field. A relativistic
Hamiltonian that includes confinement, one-gluon exchange,
and spin±spin interaction has been obtained applying the path
integral formalism. The masses of the quark±antiquark states
that correspond at zeromagnetic field to the q- and p-meson and
neutron mass have been calculated as a function of the magnetic
field. The most interesting phenomena occur in superstrong
magnetic fields on the order of 1018ÿ1020 G that emerge for a
short time in peripheral collisions of relativistic heavy ions.

Keywords: relativistic Hamiltonian of quark system, magnetic field,
pseudomomentum, color Coulomb and spin±spin interactions,
regularization, constituent separation method

1. Introduction

The behavior of hadrons, quarks, and atoms in strong
magnetic fields (MFs) has been the focus of attention over
the last few years [1±3] in connection with the generation of a
superstrongMF, eB � L2

QCD � 1019 G,where e is the electron

charge, B is the magnetic field induction, and LQCD is the
quantum chromodynamics (QCD) scale constant,1 at the
initial stages of relativistic heavy ion collisions at the
Relativistic Heavy Ion Collider (RHIC) and Large Hadron
Collider (LHC) [4±6]. Such MFs are the strongest among
those created under laboratory conditions. It is predicted that
a field weaker by four orders of magnitude exists on the
surface of magnetars, a special class of neutron stars [7, 8].
The MF of eB � L2

QCD exerts a direct influence on quark
dynamics inside hadrons. The magnetic radius (Landau
radius) lB � �jejB�ÿ1=2 ' 0:45 fm for the field of eB ' 1019 G
is smaller than the characteristic hadron radius. The analog of
such a critical field is the `atomic field' of Ba � a 2m 2

e =jej �
2:35� 109 G, corresponding to the equality between mag-
netic and Bohr radii of the hydrogen atom: aB � �ame�ÿ1.
Electron motion in the plane normal to the MF direction
becomes relativistic as the critical or Schwinger [9] magnetic
field of Bcr � m 2

e =jej � a 2Ba � 4:414� 1013 G is achieved.
The energy spectrum in the symmetric gauge A � �1=2�B� r
used herein is expressed as

e 2 ÿm 2 ÿ p 2
z � jejB

�
2n? � 1�

�
jsj ÿ es

jej
��
ÿ eszB ; �1�

where the MF is directed along the z-axis, n? � 0; 1; . . . ; s is
the projection of angular momentum onto the MF direction,
and s � �1 is the double spin projection onto the z-axis.

The lowest Landau level (LLL) corresponds to states with
es5 0, n? � 0, and esz > 0. Electron motion along the MF
remains nonrelativistic until the binding energy exceeds me;
therefore, the LLL has energy e ' m� p 2

z =�2m�.
Another characteristic MF value extensively discussed in

recent years concerns Br � m 2
r=jej ' 1020 G, where mr is the
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r-meson mass. Regarding the r-meson as an elementary
particle with the gyromagnetic ratio gr � 2 (see below) and
writing down the dispersion relation (1) yield for the LLL of a
charged r-meson the following:

m 2
r��B� � m 2

r��B � 0� ÿ eB : �2�

In a more detailed representation, eB should be substi-
tuted by the expression �er�sz�B, sz � �1 for r� and rÿ,
respectively. It follows from Eqn (2) that mr��Br� � 0, and
the mass becomes virtual for B > Br. The vanishing of
charged r-meson mass suggests the possibility of forming a
condensate of charged vector mesons. Formula (2) was
proposed for the first time in Ref. [10], where the authors
emphasized that it does not reflect the internal structure of the
r-meson. It is worth noting that whether or not gr � 2
requires special consideration, bearing in mind that the r-
meson field is not the Yang±Mills field and does not possess
the renormalization property. However, an overview of
numerous studies dealing with this problem is beyond the
scope of the present article. To be brief, the equality gr � 2 is
fulfilled with fairly good accuracy in both experiment and
lattice calculations. A recent lattice computations [11] show
that gr � 2:11� 0:001, the QCD sum rule gives 1:8� 0:3 [12]
and 2:4� 0:4 [13], and an analysis of the BaBar experiment
yields 2:1� 0:5 [14]. Paper [15] emphasizes the role of large
radiative corrections for gr.

Ten years after the publication of Ref. [10], the generation
of an MF on the order of Br became possible in heavy ion
collisions, and r-meson condensate turned into the subject of
numerous studies. Investigations performed byMNCherno-
dub and co-workers [16, 17] are worthy of special note here.
Various aspects of the r-meson condensate problem are
discussed in the literature. The authors of Ref. [18] maintain
that condensation is in conflict with the Vafa±Witten theorem
[19] stating that the spontaneous break of global internal
symmetries, such as isotopic symmetry, is impossible in QCD
type vector theories. Residual diagonal isotopic U�1�I3 -
symmetry is retained after the introduction of a constant
MF along the z-axis. The appearance of condensate breaks
U�1�I3 , which must give rise to a Goldstone boson, in
accordance with the Vafa±Witten theorem. The authors of
Ref. [18] are of the opinion that the absence of this boson is
equivalent to the absence of condensate. They argue in
response to criticism offered in Ref. [20] that a massless
boson becomes the longitudinal photon mode. It was shown
in Ref. [21] that the condensate lacks homogeneity; therefore,
its presence is at variance with the theorem. Finally, Ref. [22]
proposes a weaker formulation of the Vafa±Witten theorem
that allows the existence of condensate.

The vanishing of the charged r-meson mass in a strong
MF and the condensate problem were considered in the
context of lattice calculations [11, 17, 18, 23±25]. Reference
[23] demonstrated the appearance of a condensate with
quantum numbers of the charged r-meson in a strong
magnetic field. On the other hand, Refs [11, 17, 24, 25]
reported that the mass of r�-mesons remains finite, while
both the condensate and tachyon mode are absent in a strong
MF. Paper [11] gave evidence that the vanishing of the
charged r-meson mass in a strong MF is precluded by the
quadratic-in-field term in the dispersion relation for the
energy corresponding to magnetic dipole polarization.
Combined analytical and lattice calculations reported in
Ref. [25] indicate that the mass remains finite. Importantly,

the common disadvantage of lattice calculations consists in
the impossibility of taking account of the splitting of u and �d
��u; d� components in the r�-meson wave function in a strong
MF.

We believe that the central role in this discussion belongs
to the fact that r-mesons have an internal structure. The
Landau radius corresponding to Br is only lB ' 0:3 fm.
Investigations into the hadron's internal structure and
spectrum in an MF amounting to Br or a higher value are
the key topic of the present review. The problem of the
vanishingÐor rather nonvanishingÐof the r�-meson
mass was consistently solved in the aforementioned Ref. [25].
Formally, its conclusion can be confirmed by the variant of
the Vafa±Witten theorem presented by Weinberg [26],
according to which composite particles cannot be massless if
their constituent components have a nonzero mass. Similar
discussions about charged r-meson condensate took place in
the past concerning the `Sawidy vacuum' [27±29] or inter-
mediate W-bosons [30, 31]. We think that a discussion of
gluon orW-boson condensation ismoremeaningful than that
of the r-condensate, because the respective theories are
renormalizable.

The above assertions lead to the conclusion that taking
account of the r-meson internal structure in a magnetic field
higher than Bs � s=jej, where s � 0:15ÿ0:18 GeV2 is QCD
string tension [32, 33], e.g., for B0Br, is of importance, since
it ensures its stability (see Sections 5, 6, and 10). Investigations
into the hadron internal structure and spectrum in an MF
amounting to or exceeding Bs are the central topic of the
present review describing a new approach based on the Fock±
Feynman±Schwinger representation for the quark Green's
function. The method for the construction of the Green's
function in the form of a continual integral in QCD is
generalized to include magnetic fields. An electromagnetic
field either directly affects quarks or influences the gluon
structure via quark loops. The theory first developed for
quark systems with a zero full electric charge is now extended
to charged systems, such as r�- and p�-mesons. It will be
shown that an arbitrary strong MF fails to cause the collapse
of a quark system.

Studies on the properties of compound quantum systems
in a strongMF have a long history and there is hardly a place
for its detailed presentation here. We confine ourselves to
mentioning a small amount of the most important research.
The pioneering study by Shiff and Snyder [34] reports a
solution to the issue of a hydrogen atom in a strong MF in
the adiabatic approximation employed in all subsequent
studies. This problem has been further developed in the last
decade (see reviews [35, 36]). In quantum mechanics [37], the
ground state energy of hydrogen atoms increases logarith-
mically with increasing B as e0 � l20 Ry, l0 � ln �B=Ba�.

Recent studies have demonstrated that this observation
holds true only as an estimate by order of magnitude. A
more accurate result was obtained in paper [35] by equating
the logarithmical derivatives of wave functions of the
internal short-range and Coulomb potentials over a z range
satisfying the condition lB 5 z5 aB. As an MF amounts to
B0 �3p=a�Bcr ' 5:7� 1016 G, radiative corrections leading
to the screening of the Coulomb potential become essential.
As a result, the ground state energy turns to be `frozen' [36±
38] at E1 ' ÿ1:7 keV [36]. When the proton finite radius is
taken into account, the energy level is pushed upward to the
binding energy value of E 01 ' ÿ0:65 keV. It will be shown in
Section 5 that a similar screening of the Coulomb potential of
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one-gluon exchange plays an important role in meson
spectrum stabilization in the strong MF responsible, inter
alia, for the modification of the Zeeman effect in hydrogen
atoms, e.g., a small shift in the well-known 21-cm radio line
[39].

Reference [40] contains a detailed discussion of radiative
and relativistic corrections to the energy levels of hydrogen-
like atoms.

The formalism for solving the problem of the bound state
in the MF is extremely varied. Let us consider two central
points: the analytical expression for the propagator, and
separation of external and internal variables in an MF. The
expression for the relativistic propagator in a uniform MF
was derived by Schwinger [9] using the proper time formalism
introduced earlier by Fock [41]. Another well-known formula
for the propagator was proposed by Ritus [42]. The studies
discussed in the present review made use of the propagator in
the Fock±Feynman±Schwinger representation in the form of
a continual integral. The relevant data are presented in
Section 4.

To calculate the spectrum of levels of a compound system
in anMF, one should first of all distinguish the motion of the
center of mass. Because the total momentum operator in the
MF does not commute with the Hamiltonian, a pseudo-
momentum or a magnetic momentum (the integral of motion
for an electrically neutral system) is introduced. The defini-
tion and properties of this quantity are discussed in Section 2.
Reviews [43, 44] deal with the quantum mechanics of
compound systems in an MF; monographs [45, 46] describe
physical processes in external electromagnetic fields.

Let us consider in brief the calculated results on hadron
spectra and wave functions contained in the literature,
including lattice calculations [18, 24±49]. The main conclu-
sions based on these data reduce to the fact that the masses of
a rÿ-mesonwith a spin projection sz � ÿ1 ontoMFand a r�-
meson with sz � �1 decrease with increasing field but do not
vanish, which would correspond to the r-meson condensa-
tion [16]. As far as the r0-meson mass is concerned, lattice
calculations invariably reveal r0ÿp0-mixing in the MF,
which may account for the mass loss in the r0-meson with
sz � 0 [47]. Another difficulty encountered in lattice calcula-
tions is the separation of contributions from u�u and d�d states
to the meson structure. Our results need to be discussed and
compared with lattice calculations of meson mass spectra in
an MF, reported by Bali et al. [50]. Such a comparison is
presented in Section 11. Here, suffice it to mention that the
authors of Ref. [50] failed to observe r-meson condensation.

In Refs [51, 52], the dependence of meson masses on the
MF strength was estimated by analytical methods. The
influence of a static uniform MF on charmonium and
bottomonium energy levels was explored in Ref. [51], which
reported masses of different states and MF dependences of
their formation probabilities. The nonrelativistic formalism
was adopted, which is justified for heavy quarks, along with
the pseudomomentummethod (see Section 2) and the Cornell
potential. Because even the application of pseudomomentum
failed to fully separate the variables, the spectrum of bound
states in an MF appeared to depend on the center-of-mass
momentum.

The authors of paper [53] considered the influence of an
MF on the constituent mass of quarks. They showed that
hadron masses in an MF depend on the sum of quark masses
which, in turn, depend on the sign of quantity es, where
s � �1 if the quark spin is oriented along theMF, and s � ÿ1

if it is oriented against the field. The authors of Ref. [53]
regard the quark mass as the LLL energy. The trajectories of
the field strength dependence of the mesonmass in anMF are
split in accordance with the sign of quantity es.

In Ref. [54], the problem of identifying the hadronmass in
an MF was explored with the employment of the Nambu±
Jona±Lasinio model [55]. Quark propagators were written
out in the Ritus representation [42], and the sum of the quark
loops was presented in the form of the Schwinger±Dyson
equation. It was shown that the mass of a r�-meson with
projection sz � �1 in the LLL approximation does not tend
toward zero with growing field, but vanishes even in a
moderate MF, if the highest Landau levels (up to n � 20)
are taken into account. This result seems contradictory.

In Ref. [56], meson properties in an MF were considered
in terms of Schwinger±Dyson and Bethe±Salpeter equations
involving the Ritus representation for the propagator [42].
Special attention was given to the dependence of the density
of meson states, which proved to be proportional to B 2. The
linear potential alone was taken into consideration in quark±
quark interactions. It was concluded, at variance with the
above results of lattice calculations, that meson masses are
virtually independent of the MF strength.

In Ref. [57], the dependence of the r-meson mass on a
weak MF was determined on the assumption of the pre-
dominance of virtual decay r! pp. The masses of r0- and
r�-mesons were shown to decrease with increasing MF.

The behavior of r-meson masses in a growing MF at a
finite temperature was explored in paper [52]. It was argued
that mesons lose mass near critical temperatures as the
temperature increases and gain it as the MF grows.

The layout of the review is as follows. Section 2 contains a
description of the quantummechanics of a compound system
in anMF. It introduces the notion of pseudomomentum used
to separate external and internal degrees of freedom. The
central Sections 3 and 4 describe the constriction of the
nonrelativistic Hamiltonian of the compound system with
the use of the Fock±Feynman±Schwinger continual integral,
taking account of the MF and confinement; also, analytical
expressions for the mass spectra and wave functions of
mesons and neutrons are derived. The constituent separation
method is proposed in Section 4 to study the behavior of
charged mesons in anMF based on the hadron wave function
representation in the form of the product of wave functions of
individual quarks. In addition, analytical expressions are
obtained for the asymptotic form of mass spectra in the
eB!1 limit.

Section 5 is devoted to perturbative corrections arising
from one-gluon exchange and spin-spin interaction. These
corrections could lead to the collapse of the ground state,
unless the influence of theMF on the virtual quark loops and
regularization of the point spin±spin interaction are taken
into consideration.

Section 6 deals with magnetic focusing. It is shown that
this phenomenon causes displacement of the hydrogen 21-cm
radio line in a strong MF.

Mixing and splitting of the wave functions of hadrons
with different spin projections under the influence of an MF
are discussed in Section 7.

Section 8 considers the influence of a strong MF on one-
pion exchange, which effectively increases the hyperfine
interaction constant for baryons.

Chiral effects in anMFmaintaining the finite pionmass in
an arbitrary strong field are dealt with in Section 9.
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Section 10 contains the general statement that hadrons
remain stable in arbitrary strong MFs.

Section 11 presents a detailed description of calculated
data, mass versus MF plots, and their comparison with the
results of lattice calculations.

In the concluding Section 12, themain results obtained for
hadrons in anMF by the relativistic Hamiltonian method are
summarized, and problems to be considered in the future in
the framework of the given formalism are briefly discussed.

2. System of fermions
in a constant uniform magnetic field

The energy levels of a spin-1/2 charged particle placed in a
constant uniformmagnetic field directed parallel to the z-axis
and given in symmetric gauge A � �1=2�B� r are found by
solving the Dirac equation and are defined by formula (1).

Let us consider a system of two interacting particles with
interaction potential V�r1 ÿ r2�. In the absence of anMF, the
particles form a bound state characterized by a discrete
spectrum with respect to the coordinate g � r1 ÿ r2 of their
relative motion, and the continuous spectrum of the free
center-of-mass motion with momentum P. As mentioned in
the Introduction, the operator of the center-of-mass momen-
tumP in theMFdoes not commute with theHamiltonian. An
electrically neutral system is significantly different from a
system charged as a whole. The former has an integral of
motion, i.e., a pseudomomentum [43, 44, 58±62] responsible
for translational invariance of the system as a whole in the
MF and describing the continuous part of the spectrum. The
initial idea of the integral of motion in the MF for a single
particle originates from the classical equation _p � e�_r� B�.
Generalization for the quantum case gives

K̂ � p̂� eB� r̂ � P̂ÿ eÂ� eB� r̂ ; �3�

where p̂ is the usual (kinetic) momentum, and P̂ � ÿiH is the
generalized (canonical) momentum. In the quantum case, K̂
becomes the integral of motion, too, i.e., �K̂; Ĥ� � 0, but
components K̂x and K̂y (with MF direction Bkz) cannot be
diagonalized simultaneously, �K̂x; K̂y� � ÿieB. From the
mathematical standpoint, the existence of K̂ follows from
Hamiltonian invariance with respect to a group of magnetic
translations (translational invariance of the guiding center of
the Landau orbit in the MF) and the gauge group. If
component Kx is diagonalized in the stationary state, the
position of the guiding center of the Landau orbit is given by
the expression

y0 � ÿKx

eB
; �4�

and the degeneracy multiplicity in the xy plane having the
area S � LxLy is given by formula

g � Lx

�
dKx � jejSB ; �5�

where L is the linear size of the system.
In the symmetric gauge A�r� � �1=2�B� r, the pseudo-

momentum assumes the form

K̂ � P� 1

2
B� r : �6�

The notion of pseudomomentum is generalized for the
case of an electrically neutral system of two or several
particles in a constant uniform magnetic field. Let us
consider two nonrelativistic particles with charges e1 �
e > 0, e2 � ÿe and masses m1, m2. The Hamiltonian lacking
riB terms and spin-dependent interaction has the form

Ĥ � ĤB � V̂ � 1

2m1

ÿ
p1 ÿ eA�r1�

�2
� 1

2m2

ÿ
p2 � eA�r2�

�2 � V�r1 ÿ r2� : �7�

Introducing variables

R � m1r1 �m2r2
M

; M � m1 �m2 ;

P � p1 � p2 � ÿi
q
qR

; g � r1 ÿ r2 ;

p � ÿi q
qg

; m � m1m2

M
; s � m1 ÿm2

M

leads in the symmetric gauge to

ĤB � 1

2M

�
Pÿ e

2
B� g

�2

� 1

2m

�
p ÿ e

2
B� R� s

e

2
B� r

�2

:

�8�

For this two-particle system the operator of pseudomomen-
tum commuting with Hamiltonian (7), (8) has the following
form in the symmetric gauge:

K̂ �
X2
i�1

�
pi �

1

2
eiB� ri

�
� P� e

2
B� g

� ÿi q
qR
� e

2
B� g : �9�

Because the pseudomomentum is the integral of motion,
eigenfunctions C�R;g� can be chosen so that they are
eigenfunctions of all three components of operator K̂:

K̂C�R;g� � KC�R;g� ; �10�

where K̂ is the pseudomomentum operator, and K is its
eigenvalue. Let us represent the wave function as
c�R;g� � exp �imR�j�g� with the yet unknown vector m.
Then, one obtains

K̂C�R;g��
�
m� e

2
B� r

�
exp �imR�j�g� � K exp �imR�j�g� :

�11�
Hence, m is found and we gotC�R;g� in the form

C�R;g� � exp

�
i

�
Kÿ e

2
B� g

�
R

�
j�g� : �12�

Using formula (12), the equation ĤC � EC is reduced to the
equation for j�g�:�

K2

2M
ÿ e

M
�K� B�g � p2

2m
� e 2

8m
�B� g�2

ÿ e

2

s

m
B�g � p� � V�g�

�
jK�g� � EjK�g� : �13�
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A complete separation of variables R and g fails to occur,
because the second item in equation (13) relates the
motion of the center of mass to the internal motion. The
relationship has the form of an electrostatic potential of
the electric field �K? � B�=M, where K? � Kxgx � Kygy,
and the MF is directed along the z-axis. In other words,
the Stark effect takes place owing to the motion of the
center of mass. The relationship between internal and
external variables is reminiscent of the influence of
electron angular motion in a hydrogen atom on the radial
motion due to item l�l� 1�.

Equation (13) allows an analytical solution for the
oscillator potential. Consideration of this case is of impor-
tance for further discussions, because the oscillatory approx-
imation for quark±quark interaction will be used at the first
stage of the study of the MF strength dependence of the
meson mass.

Let us choose this potential in the form

V�r� � s
2g

r 2 � sg
2

;

its subsequent minimization in parameter g reproduces the
linear potential in the range of values being considered with a
5% accuracy. (In this section, we omit the additive parameter
sg=2 that will be considered later in Section 4). Quark masses
are assumed to be identical: m1 � m2 � m, and the orbital
moment l of the relative motion equal to zero. In this case,
energy levels are expressed as

E�K; n?; nz; l � � 2O�2n? � 1� � o
�
nz � 1

2

�
� 1

4m

�
K 2

x � K 2
y

1� ge 2B 2=�2sm� � K 2
z

�
; �14�

O � eB

m

���������������������
1� 2sm

ge 2B 2

s
; o �

���������
s

2gm

r
: �15�

It follows from formula (14) that the ground state for the
oscillator potential matches the state with K � 0.

Let us briefly touch upon the separation of variables
and pseudomomentum for a system of three particles
(neutrons are meant) [44, 63], two with charges ÿe=3 and
coordinates r1 and r2, respectively, the third having charge
2e=3 and coordinate r3�e > 0�. The sum of their masses is
designated as m� � 2m�m3. Let us further choose (as
before) the symmetric gauge of the MF and introduce
the Jacobi coordinates with the respective conjugate
momenta:

g � r1 ÿ r2���
2
p ; n �

��������
mu

2M

r
�r1 � r2 ÿ 2r3�; R � 1

M

X3
i�1

mi ri :

�16�
p � ÿi q

qg
; q � ÿi q

qn
; P � ÿi q

qR
: �17�

The pseudo-momentum of such a system has the form

K̂ � Pÿ e

2

���������
M

2m3

r
B� n : �18�

Calculations similar to those that have led from Eqn (7) to
Eqn (13) yield the following expressions for the Hamiltonian
in the externalMF, but without interaction between particles,

and for K � 0:

ĤB � ÿ 1

2m
�Dx � DZ� � 1

2m

�
eB

4

�2� m 2
�

m 2
3

�n?�2 � �g?�2
�

� eB

4m

�
m3 ÿ 2m

m3
L�x� � L�Z�

�
: �19�

Here, L�x� and L�Z� are the orbital momenta in terms of the
respective Jacobi coordinates commuting with each other. In
Section 5, formulas (18) and (19) will be utilized to explore the
MF strength dependence of the neutron mass.

The above procedure of separating the variables proves
impossible in a charged system. The formal introduction of a
pseudo-momentum does not ensure simultaneous diagonali-
zation of components Kx and Ky, as in the case of a single
charged particle. The center of mass of the charged system
loses translational invariance and precesses in the plane
perpendicular to the MF direction with frequency O �
�e1 � e2�B= �m1 �m2�. The motion of the center of mass is
not confined to trivial precession, the internal and external
degrees of freedom remaining inseparable. The motion of the
center of mass gives rise to an oscillating electric field, and
the system as a whole moves in a fairly complicated way [64].
Separation of variables is possible only in a system with
equal masses, m1 � m2 [65]. Its impossibility in a charged
system makes necessary the search for approximate methods
to solve the problem. The authors of Ref. [25] proposed
the constituent separation technique, with the zero-order
approximation describing the totality of noninteracting
particles (see Section 4).

3. Relativistic formalism for a quark system
in a magnetic field

This section is designed to introduce the reader to the
general relativistic formalism allowing a description of
systems with quantum-electrodynamic (QED) and quan-
tum-chromodynamic (QCD) interactions in an external
MF in terms of the relativistic Hamiltonian (RH). The
proposed approach is applicable to a large class of
systems, including atoms, molecules, nuclei, and hadrons
placed in an arbitrarily strong magnetic field. To recall, a
strong MF not only affects charged constituents but also
changes the interaction kernel itself. Moreover, the ability
of a strong MF to make a vacuum unstable should be
borne in mind. These circumstances impose limitations on
the application of the Bethe±Salpeter method, because the
nonperturbative QCD interaction cannot be described in
terms of the perturbation theory by the totality of
exchange diagrams. Moreover, enhanced interaction in
the context of the Bethe±Salpeter equation in the relati-
vistic theory leads to collapse [66]. The path integral
method proposed in paper [67] and further developed in
Refs [68±72] permits avoiding the said issues and consis-
tently solving the problem of finding spectrum and wave
functions.

In the approach under consideration, the interaction
between components of a compound system is introduced
using relativistic and gauge-invariant Wilson loop formal-
isms. Let us begin with a consideration of the one-particle
Green's function of fermion in 4D Euclidean space [73]:

S�x; y� � �m� D̂�ÿ1xy ; D̂ � q̂ÿ igÂÿ ieÂ �e� ; �20�
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where Am � �la=2�Aa
m �a � 1; 2; . . . ; 8�, A �e�m are the vector

potentials of gluon and electromagnetic fields, respectively.
Let us then determine the scalar Green's functionG�x; y�with
the aid of the Dirac projection operator according to the
relation S�x; y� � �mÿ D̂�G�x; y�. Function G�x; y� can be
represented as the continual integral (Fock±Feynman±
Schwinger representation, FFSR) [70]:

G�x; y� �
�

1

m 2 ÿD 2
m

�
xy

�
�1
0

ds �D4z�xy exp �ÿK�F�x; y�Fs�x; y� ; �21�

where K is the kinetic kernel:

K � m 2s� 1

4

� s

0

dt
�
dzm
dt

�2

; �22�

and F and Fs are dynamic kernels:

F�x; y� � PA exp

�
ig

� x

y

�gAm � eA�e�m � dzm
�
;

Fs�x; y� � PF exp

�� s

0

dt smn�gFmn � eBmn�
�
:

�23�

Here, �D4z�xy is the measure of integration encompassing
all paths and connecting points y and x in the 4D
Euclidean space, PA and PF are path and surface ordering
operators, respectively, because Am and Fmn contain color
matrices, and smnFmn and smnBmn are 4� 4 Dirac matrices,
smn � �gmgn ÿ gngm�=�4i�, for example

smnFmn � rH rE
rE rH

� �
: �24�

An important difference between the relativistic continual
integral (22) and the nonrelativistic analog is as follows. In
quantum mechanics, the measure of integration has the form
D3z � D3z�t�, and time t plays the role of an order parameter,
since sequential sections of trajectory z�t� are ordered in time.
In the relativistic path integral, this role is played by
monotonically growing proper time t, while z4�t� contains
monotone ��z4�t��, and fluctuating �~z4�t�� components, i.e.,
z4�t� � �z4�t� � ~z4�t�. Evidently, ~z4�t� corresponds to the part
of the trajectory that is called theZ-graph and contains e�eÿ-
and q�q-pair production. These trajectories need to be
considered in order e 4 for QED and g 4 for QCD. Ignoring
this effect in the first order allows time �z4�t� to be regarded as
proportional to t: �z4�t� � 2ot � tE. Quantityo is related in a
similar way to the total self-time s in accordance with the
formula s � T=�2o�, where T is the total Euclidean time:
T � jx4 ÿ y4j. As a result, Green's function (21) takes the
following form (with Fs omitted for simplicity):

G�x; y� � �m 2 ÿ D̂ 2�ÿ1xy

� T

�1
0

do
2o2
�D3z�xy exp

ÿÿK�o��
F�x; y�� ; �25�
where

K�o� �
� T

0

dtE

�
o
2
�m 2

2o
� o

2

�
d�z

dtE

�2�
; �26�

and hF�x; y�i � � Dz4F�x; y� is expressed (disregarding fluc-
tuations) as

hF�x; y�i �
���������
o

2pT

r
exp

�
i

� x

y

�
eA�e�m ��z; tE� � gAm��z; tE�

�
dzm

�
;

�27�

where dzm � �dzi; dtE�. This representation of Green's func-
tion of a quark±antiquark pair looks like

G1�x; y�G2�x; y�

� T

8p

�1
0

do1

o3=2
1

�1
0

do2

o3=2
2

�D3z1�xy�D3z2�xy exp
ÿÿA�W��hWi ;

�28�
where A � K1�o1� � K2�o2�, and hWi is the Wilson loop
containing electromagnetic and gluon fields:


W�A;A �e��� � �P exp

�
i

�
�eA �e�m � gAm� dzm

��
: �29�

In what follows, the term electromagnetic fields means the
external uniformMFA �e�m � �A�e�m ; 0�; averaging is performed
over vacuum fields Am with the nonzero correlator Fmn. The
relationship betweenWilson loop averaging and the potential
is well known [74]. Setting up our problem in the Gaussian
approximation [32] yields [67, 75±79]

hWi � ZW exp

�
ÿ
�
V0

ÿ
r�tE�

�
dtE

�
; �30�

where r�tE� � j�z1�tE� ÿ �z2�tE�j, and V0�r� is the sum of the
nonperturbative confinement potential and the one-gluon
exchange (OGE) contribution:

V0�r� � Vconf�r� � VOGE�r� ; �31�

where Vconf and VOGE are expressed through the Gaussian
correlators of stochastic color fields:

Vconf�r� � 2r

� r

0

dl
�1
0

dnD�l; n� ! sr ; r!1 ; �32�

VOGE�r� �
� r

0

l dl
�1
0

dnD1�l; n� � ÿ 4

3

as
r
; �33�

s � 2

�1
0

dn
�1
0

dlD�l; n� ; �34�

where as is the strong interaction constant, and s is the string
tension of the linear confinement potential. Scalar functions
D andD1 are included in the representation for the gluon field
quadratic cumulant (correlator) [32, 78, 79]:

Dmnls�x; y� � g2
1

Nc
tr


Fmn�x�FFls�y�F

�
� �dmldns ÿ dmsdnl�D�xÿ y�

� 1

2
qm
n��hldns ÿ hsdnl� � �ml$ ns��D1�xÿ y�

o
; �35�

where hm � xm ÿ ym, Nc is the number of colors. At the
concluding stage, Green's function presented in the form of
the path integral can be written out using the evolution
operator. By way of example, for a single particle in the
absence of an external field, one obtains�

�D3z�xy exp
ÿÿK�o�� � hxj exp �ÿH�o�T � jyi ; �36�
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where H�o� is the relativistic Hamiltonian of a free particle:
H�o� � �p2 �m2�=�2o� � o=2. Themain focus in this review
being the characteristic of hadron ground states in an MF at
different orientations of quark magnetic moments in the
T!1 limit, integrals over o in expressions (25) and (28)
can be calculated by the stationary phase method, i.e., under
conditions of satisfying the equality

qH�o�
qo

����
o�o0

� 0 : �37�

Therefore, one finds for a free relativistic particle:
o0 �

�����������������
p 2 �m 2

p
, H�o0� �

�����������������
p 2 �m 2

p
. The Green's function

of the quark±antiquark system in an external MF (28) can be
expressed, by analogy with formula (36), in the form

G1�x; y�G2�x; y�

� T

8p

�1
0

do1

o3=2
1

�1
0

do2

o3=2
2



x
��exp �ÿH�o1;o2; p1; p2�T

���y� :
�38�

The Hamiltonian in Eqn (38) includes potential V0 defined in
Eqn (31). In the symmetric gauge, taking into account that�
dt smnBmn �

�
dtE=�2o�rB, we arrive at

Ĥ �
X2
i�1

��
pi ÿ �ei=2��B� ri�

2oi

�2

� o2
i �m 2

i ÿ ei riB

2oi

�
� V0�r� � HB �Hs � V0�g� ; �39�

where HB and Hs denote the first and second terms beneath
the summation sign.

The entire nonperturbative meson dynamics are con-
tained in Hamiltonian (39). To calculate the ground state
mass, it is necessary to distinguish in the Green's function the
projection onto the space of internal degrees of freedom, i.e.,
to perform the following integration in formula (38):�

d3�xÿ y� 
x��exp �ÿH�o1;o2; p1; p2�T
���y�

�
X
n

j 2
n �g� exp

�ÿMn�o1;o2�T
�
; �40�

where jn�g� is the wave function of an internal motion. The
ground state mass M0 may be found by computing integral
(38) using the stationary phase technique. Therefore, the
nonperturbative or dynamic mass is given by the following
set of equations

Ĥjj0i �M0�o1;o2�jj0i ; �41�
qM0

qoi

����
oi�o�0�i

� 0; i � 1; 2 : �42�

A detailed discussion of the solution to the Hamiltonian (39)
spectrum issue is presented in Section 4. The total massMtot is
the sum of the nonperturbative massM0 corresponding to the
ground state of Hamiltonian (39) and perturbative correc-
tions of three types:

Mtot �M0 � DMOGE � DMSS � DMSE : �43�

Here, DMOGE � hj0jV̂OGEjj0i is the contribution from one-
gluon exchange, DMSS arises from color-magnetic spin±spin

interaction, andDMSE is the contribution from the quark self-
energy.

All three summands will be considered in Section 6. Here,
suffice it to mention that one-gluon exchange and spin±spin
interaction may be responsible for emerging the spectrum
instability (fall on attracting center).

4. Methods for calculating hadron spectra
in a magnetic field

It was shown in Section 2 that the problem of an electrically
neutral system placed in an MF allows quasiseparation of
external and internal variables to be implemented. The
spectrum of Hamiltonian (7) energy levels is given by
equation (13) owing to the introduction of pseudomomen-
tum. The relativistic analog of formula (7) is Hamiltonian
(39), obtained in Section 3, which depends on quark `dynamic
masses' oi. In a relativistic case, expression (8) should be
replaced by

ĤB � 1

2�o1 � o2�
�
Pÿ e

2
�B� g�

�2
� 1

2~o

�
p ÿ e

2
�B� R� � e

2
sB� g�

�2
: �44�

The quantities entering this formula are defined in Section 2
within the accuracy ofmi ! oi, m! ~o substitutions. Follow-
ing the formalism set forth in Section 2 (formulas (9)±(13)), we
introduce the pseudomomentum and arrive at the equation
for the wave function jK�g� of internal motion:�

1

2�o1 � o2�
�
Kÿ e�B� g��2 � 1

2~o

�
p � e

2
s�B� g�

�2
� V0�g�

�
jK�g� � e�o1;o2�jK�g� : �45�

It follows from nonrelativistic formula (13) and its
relativistic analog (45) that the center-of-mass motion
affects the internal motion owing not only to the term
K2=2�o1 � o2�, but also (which is more important) to the
expression �K� B�g=�o1 � o2�. Due to this, the wave
function jK�g� has subscript K. The analytical solution of
equation (45) gives the explicit physical picture. The first step
is separation of motion in the plane perpendicular to the field
and along the MF direction. Function jK�g� can be
represented as follows [58±62]:

jK�g� � exp

�
ÿi s

2
K?g

�
j 0K�g0� ; �46�

where

K? � exKx � eyKy ; g0 � g ÿ g0 ; g0 � ÿ
K� B

eB 2
: �47�

Substituting expressions (46) and (47) into (45) yields the
equation�

K 2
z

2�o1 � o2� ÿ
1

2~o
q2

qZ 0 2z
ÿ 1

2~o

�
q2

qZ 0 2x
� q2

qZ 0 2y

�
ÿ eB

2

s

~o
l 0z

� e2B 2

8~o
�Z 0 2x � Z 0 2y �

�
j 0K�g0� � e�o1;o2�j 0K�g0� : �48�
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The transverse part of equation (48) describes the Landau
levels of a charged particle in an MF [37] with the center
displaced by g0 due to the effective electric field acting on
internal variables. We are interested in meson ground states
and therefore assume l 0z � 0 in equation (48). Then, for
eigenvalues e�o1;o2� one obtains

e�o1;o2� � K 2
z

2�o1 � o2� �
p 2
z

2~o
� eB

2~o
�2nr � 1� ; �49�

where r2 � Z 0 2x � Z 0 2y , nr � 0; 1; 2; . . . . Notice that expression
(49) does not reduce to the sum of eigenenergies of two
unrelated particles at Landau levels with zero orbital
momentum:

e 0�o1;o2� � p 2
z1

2o1
� eB

2o1
�2nr1 � 1� � p 2

z2

2o2
� eB

2o2
�2nr2 � 1� :

�50�
Evidently, formulas (49) and (50) give equivalent spectra and
similar degrees of state degeneracy.

Let us turn to the solution of the problem of finding
the spectrum of Hamiltonian (39), including Hamiltonian
(44) as a constituent component. The problem with the
linear confinement potential V0�g� � Vconf�Z� � sZ, s �
0:18 GeV 2 [80] has only a numerical solution. Therefore, we
use the confinement potential representation in the quadratic
form. The accuracy of this method for calculating eigenvalues
amounts to about 5% [80]. In the substitution

V0�g� � sZ! s
2

�
Z2

g
� g
�
; �51�

g is the positive variation parameter.Minimization of formula
(51) over g leads back to the initial confinement potential, and
the assumption of zero orbital momentum to the search for
eigenvalues and eigenfunctions of the Hamiltonian

Ĥ � ĤB � s
2g

g2 � sg
2
�
X2
i�1

o2
i �m 2

i ÿ eiri B

2oi
: �52�

Expression (46) should be replaced by [62]

jK�g� � exp

�
ÿi s

2
aK?g

�
wk�r� ; �53�

where

a �
�
1� �o1 � o2�s

ge 2B 2

�ÿ1
;

�54�

r � g ÿ ag0 �
�
Zx �

a
eB

Ky; Zy ÿ
a
eB

Kx; Zz

�
;

andg0 is defined by formula (47). Substituting expression (53)
into equation ĤjK�g� �MjK�g� yields, after simple calcula-
tions, the result for eigenvalues:

MK; n? ; nz�o1;o2; g� � 1

2~o

"
eB

���������������������
1� 4s~o

ge 2B 2

s
�2nr � 1�

�
����������
4s~o
g

s �
nz � 1

2

�#
�
X2
i�1

o2
i �m 2

i ÿ eiriB

2oi
� sg

2

� 1

2�o1 � o2�
�
K 2

z � K 2
?�1ÿ a�� : �55�

We are interested in the masses of ground states with nr �
nz � 0. It follows from formula (55) that the minimalM value
corresponds to K � 0. It is a peculiar feature of oscillator
potential Vconf. The dependence of eigenvalues on the
magnitude of pseudomomentum is discussed in detail in
Ref. [49]. An important property of the oscillator approxima-
tion is the simple relationship between the mean value of the
system's kinetic momentum P � sj�ÿiHHj ÿ ejAj� and the
pseudomomentum value [49]:

hPi �
�

4Kx

1� ge 2B 2=�4s~o� ;
4Ky

1� ge 2B 2=�4s~o� ; Kz

�
: �56�

Because formula (55) always contains a < 1, the ground state
meson in the oscillator approximation remains at rest by
virtue of expression (56). The wave function of the ground
state with n? � nz � 0,K � 0, and, accordingly, r � g has the
form

j�g� � 1�����������������
p3=2r 2?rz

p exp

�
ÿ Z2?
2r 2?
ÿ Z2z
2r 2z

�
; �57�

r? �
���������
2

jejB

s �
1� 4s~o

ge 2B 2

�ÿ1=4
; rz �

�
g
s~o

�1=4

: �58�

Aswasmentioned in the Introduction, the influence of the
MF is determined by the dimensionless parameter eB=s. In
relation to the hadron spectrum problem in an MF, the field
will be referred to as weak if eB=s5 1 (i.e., eB5 1019 G), and
strong if eB=s4 1. It can be shown [80] that r? �

�����������������
2=�jejB�p

,
rz � 1=

���
s
p

in the strong field, and the meson wave function
takes the form of an oblong ellipsoid, the size of which along
the z-axis is limited by string tension, whereas there is no such
limitation in the case of a hydrogen atom. A comparison of
formulas (49) and (55) shows that, in the strong field limit, the
energy spectrum responsible for the motion in the plane
normal to the magnetic field has the form of Landau energy
levels e�n?� � �eB=�2~o���2n? � 1�. As shown above, the
spectrum of levels (49) is equivalent to the sum of eigenvalues
of two independent particles at the Landau levels in an MF.
This observation provides a basis for the constituent separa-
tion (CS) method, whose central idea is considered in this
section below. The relationship between the motion in the
plane perpendicular to the MF and that along the field arises
in the case of simultaneous minimization ofM�o1;o2; g� over
all three parameters. In a weak field, eB=s5 1, the MF
dependence of the energy is defined by the term eiriB in
expression (55), i.e., by the interaction of quark magnetic
moments with the MF.

Thus, we have calculated the spectrum and found wave
functions of Hamiltonian (41). The dynamic mass of the
ground state is expressed as

M�o1;o2; g� � 1

2~o

"
eB

���������������������
1� 4s~o

ge 2B 2

s
�

�������
s~o
g

s #

�
X2
i�1

o2
i �m 2

i ÿ eiriB

2oi
� sg

2
; �59�

while the wave functions have the oscillator form (57), (58).
According to expression (46), the total meson mass is the

sum of the dynamic mass (59) and perturbative corrections
DMOGE, DMSS, and DMSE (see Section 5).

Let us consider the neutron dynamic mass in an MF [81]
making use of nonrelativistic Hamiltonian (19) obtained in
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Section 2 for three particles in the MF. First of all, we
substitute mi ! oi and assume orbital momenta in the
ground state to be zero. Then, we add items describing the
interaction between quark magnetic moments and the MF,
confinement, color Coulomb interaction, and spin±spin
forces. This leads to the followingHamiltonian for a neutron:

ĤN � ĤB � Vs � Vconf � VOGE � VSS � DMSE ; �60�

where ĤB is derived from expression (19) by means of the
above substitution, and the potentials take the form

Vs � ÿ
X3
i�1

eiriB

2oi
; Vconf � s

X3
i�1
jxi ÿ xYj : �61�

Coordinate xY corresponds to the string branch point
(Torricelli point). The fact that three quarks in a baryon
form the so-called Y-configuration emerges from the explicit
calculation by themethod in question [33] and is confirmed by
lattice calculations [82±84]. Expressions for the contributions
from one-gluon exchange and the self-energy part are
analogous to the respective quantities for mesons. The
confinement potential is approximated by the oscillator
expression

Vconf � s
X3
i�1
jxi ÿ xYj ! 3

sg
2
� s
2g

X3
i�1
�xi ÿ xY�2

! 3sg
2
� s
2g

�
o2

3 � 2o2

o�o3
n2 � g2

�
; �62�

where o1 � o2 � od � o, o3 � ou, o� � 2o� o3. The last
chain in formula (62) corresponds to the identification of the
Torricelli point xY, with the center of mass providing a good
approximation for virtually equal masses. The equation for
the neutron ground state, disregarding contributions from
DMOGE, DMSS, and DMSE, has the form

�ĤB � Vs � Vconf�j�g; n� �M0�oi; g�j�g; n� : �63�

The total baryon wave function is the product of
coordinate j�g; n� and spin-flavor functions. A few symme-
tries are simultaneously broken in an MF:

(1) states J � 1=2 and J � 3=2 are mixed;
(2) isotopic states I � 1=2 and I � 3=2 are similarlymixed;
(3) summands of the Hamiltonian HB and Vconf lack

symmetry with respect to inversion g! ÿg.
It can be shown [81] that, in the case of switching on the

MF and with regard to the above symmetry considerations,
the spin-flavor function dÿdÿu� corresponds to the lowest
state. In approximation (62) for Vconf, equation (63) reduces
to the equation for the potential in the form of the sum of
potentials of two oscillators, known in quantum mechanics.
The expression for the neutron dynamic mass is obtained by
solving the spectral problem (63) for the three-particle
generalization of Hamiltonian (39), taking into account
expression (62) as well as spin and relativistic terms Vs for
the dÿdÿu� configuration:

M0���
s
p � Ox? � OZ? � 1

2

�
Oxk � OZk

�
� 3

���
s
p

g
2

�m 2
d � o2 ÿ eB=2

o
���
s
p �m 2

u � o2
3 ÿ eB

2o3

���
s
p ; �64�

where

Ox? �
��

eB

4s

�2 a2�
a2a23

� a23 � 2a2

baa�a3

�1=2
;

OZ? �
��

eB

4s

�2
1

a2
� 1

ba

�1=2
; �65�

Oxk �
�
a23 � 2a2

baa�a3

�1=2

; OZk � 1������
ba
p

and notationso � a
���
s
p

,o3 � a3
���
s
p

, g � b=
���
s
p

, a� � 2a� a3
are introduced. Parameters a, a3, and b are found from the
conditions

qM�oi; g�
qoi

����
oi�o�0�i

� 0;
qM0�oi; g�

qg

����
g�g�0�

� 0 : �66�

The wave function is factorized in the form of the
product of four oscillator functions: j�g; n� �
j1�Z?�j2�Zk�c1�x?�c2�xk� corresponding to the motion
along coordinates g and n in the plane perpendicular to the
MF and along the MF. Similar to mesons, neutrons undergo
compression in the plane perpendicular to the MF, whereas
their characteristic size along the field is determined by string
tension s.

Thus, the involvement of pseudomomentum permits
separating variables only in certain special cases. For
example, electroneutrality of the system is the necessary
condition for mesons, whereas an additional restriction on
quark spin projections is imposed for baryons. It follows
from formulas (14) and (15) that the eB=s ratio is the
dimensionless parameter characterizing hadron mass spec-
trum in an MF. In the strong field mode �eB=s4 1�, the
influence of confinement in the plane orthogonal to the MF
direction is markedly suppressed; this permits considering
quarks moving independently in their Larmor orbits. The
use of the oscillator approximation for the confining
potential (53) allows the motion along the MF (determined
largely by confinement) to be distinguished from the motion
in the perpendicular plane. It is therefore possible to write
down the sum: M�o1;o2; g� �M? �M3. The independent
quark approximation makes possible representation of the
wave function as the product

C�r1; r2� � c?1 �r �1�? �c?2 �r �2�? �cz�z �1� ÿ z �2�� : �67�

The calculated contribution from longitudinal motion is
analogous to the result obtained for neutral mesons (55),
namely

M3 �
����������
4s~o
g

s �
nz � 1

2

�
� K 2

z

2�o1 � o2� :

The oscillator potential of quark±quark interaction can be
represented asÿ

r
�1�
? ÿ r

�2�
?
�2 � ÿr �1�? ÿ r 0?

�2 � ÿr �2�? ÿ r 0?
�2

ÿ 2
ÿ
r
�1�
? ÿ r 0?

�ÿ
r
�2�
? ÿ r 0?

�!X2
i�1

ÿ
r
�i�
? ÿ r 0?

�2
; �68�

where r 0? is the position of the meson center of mass. When
calculating the ground state of a compound system with
potential (68), it can be assumed that the center of mass is
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motionless in the xy plane and put r 0? � 0. The assumption
holds for charged mesons, because translational symmetry
for the center of mass is clearly broken in anMF. For neutral
mesons, equally true is the assumption of a meson resting in
the ground state, because the system's energy is minimal when
the pseudomomentum is K � 0. On the other hand, the
pseudomomentum of the ground state is proportional to the
center-of-mass momentum hPi (56), hKi � hPi for oscillator
potential (62). Approximation (68) leads to efficient lengthen-
ing of the confinement string. To extend the scope of
applicability of the constituent separation method to weak
fields, eB=s < 1, effective tension can be introduced for each
part of the string, s1 and s2, connecting quarks to the center
of mass as follows:

s1 � s
1� o1=o2

; s2 � s
1� o2=o1

: �69�

The string tension `renormalization' procedure is described at
length in the Appendix to Ref. [25]. The confinement
potential eventually takes the form

Vconf � s1
2g

ÿ
r
�1�
? ÿ r 0?

�2 � s2
2g

ÿ
r
�2�
? ÿ r 0?

�2 � sg
2
: �70�

`Renormalization' of tension s results in the dynamic part of
the neutral meson mass calculated by the CS method
coinciding numerically with the mass calculated exactly with
the use of the pseudomomentum (14) over the entire range of
the MF of interest. The motion in plane xy makes the
following contribution to the energy spectrum:

M? �
X2
i�1
�2n �i�? � 1�Oi ; Oi � 1

2oi

�����������������������������
�eiB�2 � 4sioi

g

s
: �71�

The constituent separation method is generalized in a
trivial fashion for the case of a three-body system. The
main advantage of the CS technique is the possibility of
considering charged and neutral hadrons in a single
approach. Moreover, the introduction of effective string
tension permits the results obtained to be reproduced
using the pseudomomentum technique with an accuracy
of about 5%.

The wave function of the hadron ground state in an MF
obtained by the CS method has the form

C0 �
�

~o �0�Oz

p

�1=4

exp

�
ÿ ~o �0�Oz

2

ÿ
z �1� ÿ z �2�

�2 �
�
Y2
i�1

�
o�0�i Oi

p

�1=4

exp

�
ÿo�0�i O1

2

ÿ
r
�i�
?
�2 �

: �72�

To recall, wave function (72) is obtained by continuous
deformation of the wave function in zero MF and for zero
quark angular momenta l1 and l2. In the superstrong
magnetic field eB=s4 1 and independent quark approxima-
tion, it is necessary to take into consideration the fact that the
ground state is infinitely degenerate in angular momenta
projections m1 and m2 by analogy with Landau level
degeneracy for a single particle in the symmetric gauge. For
this reason, wave functions need to be modified in the
calculation of perturbative corrections. This problem is
considered in the Appendix B to Ref. [25].

The CS method can be employed to derive analytical
expressions for the asymptotic form of hadron mass trajec-

tories in an MF. In the case of a weak MF, eB< s, the mass
can be expanded in the small parameter eB=s to obtain

M0�B� �M0�B � 0� ÿ
X2
i�1

eir
�i�B

2o�0�i

�M0�B � 0� ÿ lB� cjeBj ; �73�

where l is the magnetic moment, and item cjeBj corresponds
to the precession energy of the charged hadron center of mass
in the magnetic field (the lowest Landau level). Calculation of
meson magnetic moments by the correlator method reported
in Refs [85, 86] demonstrates excellent agreement with the
results of lattice calculations.

The situation is more complicated in the strong magnetic
field regime eB5s. Let us first consider the case in which all
quarks and antiquarks are at the lowest Landau levels,
i.e., n

�i�
? � 0 and spin orientations eis�i�z � jeij, i � 1; 2. The

dynamic mass of these states tends to be constant in the
eB!1 limit. Indeed, if the dynamic mass is represented
as

MZHS �M0�eB4 s� �M? �M3 � sg
2

'M3 �
X2
i�1

m 2
i � o2

i

2oi
� sg

2
; �74�

the calculation of stationary values o�0� � o�0�i �
���
s
p

=2,
g�0� � 1=

���
s
p

gives

MZHS � 2
���
s
p

: �75�

A similar result for neutral mesons can be obtained by the
pseudomomentum method from formula (59). We shall use
the abbreviation ZHS (Zero Hadron State) to denote these
states.

A different situation takes place when one of the meson
quarks distorts the equality eis�i�z � jeij. For e2s�2�z 6� je2j, the
following equation holds for the ground state mass:

M I �M 0
? �M 0

3 �
o1

g
� s
ge1B

� s
ge2B

� 1

2

�������
s
~og

r
� o2

2 � 2e2B

2o2
� sg

2
; �76�

which leads to the stationary values o�0�1 � 2ÿ5=6
���
s
p

,
o�0�2 �

����������
2e2B
p

, and g�0� � 1=
������
2s
p

. The respective asymptotic
behavior is called type I:

M I �
����������
2e2B

p
�

������
2s
p

: �77�

In the third variant, there is no single quark at the LLL,
i.e., eis�i�z 6� jeij. The stationary point calculation, in analogy
with (77), yields o�0�i �

���������
2eiB
p

, g�0� � 2ÿ2=3�s~o�0��ÿ1=3 and
respective (type II) asymptotic behavior

M II �
����������
2e1B

p
�

����������
2e2B

p
: �78�

In a word, all meson mass trajectories in the MF
corresponding to different orientations of quark spins
with respect to the field can be classified based on three
types of asymptotic behavior: two growing with the MF as
� ������

eB
p

(I and II), and the third one tending to be constant
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(ZHS):

ZHS: e1s�1�z > 0; e2s�2�z > 0; ~MZHS
d �eB4s� � 2

���
s
p

; �79�

I: e1s�1�z > 0; e2s�2�z < 0; ~M I
d�eB4s� �

����������
2e1B

p
�

������
2s
p

; �80�

II: e1s�1�z < 0; e2s�2�z < 0; ~M II
d �eB4s� �

����������
2e1B

p
�

����������
2e2B

p
:

�81�

It was shown in Ref. [81] that the main nonperturbative
contribution to the total hadron mass is supplemented by a
significant (up to 30%) contribution from perturbative
corrections. The influence of an MF on the perturbative
corrections is considered in Section 5.

To conclude this section, one more method for accurate
variable separation needs to be mentioned (see Ref. [84]). The
method based on the assumption of e1 � e2 � e and o1 � o2

describes nonphysical mesons with charges of 4/3 for u�u and
2/3 for d�d. This model allows analytical results to be obtained
and can be used for estimative calculations. The transition to
the center-of-mass variables in Hamiltonian (39) is associated
with cancellation of cross terms, which results in the
separation of the center-of-mass and the relative motions:

Hq1�q2 �
P2

4o
� e 2

4o
�B� R�2 � p2

o
� e 2

16o
�B� g�2

� 2m 2 � 2o2 ÿ e�r1 � r2�B
2o

� s
2

�
Z2

g
� g
�

� VOGE � VSS � DMSE : �82�

As could be expected, the charged meson center of mass
performs a precessing motion. The corresponding eigen-
energies are easy to calculate:

Mn�o; g� � eB

2o
�2N? � 1� �

����������������������������
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�2
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2
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� sg

2
�m 2 � o2

o

� DMOGE � DMSE � haSSi : �83�

5. Perturbative corrections

Section 4 presented the relativistic Hamiltonian (41) describ-
ing nonperturbative quark dynamics inside a meson, i.e., the
motion in the confinement potential and external MF. In
addition, the energy spectrum of this Hamiltonian was
described and wave functions found for neutral and charged
mesons. A similar problem was solved for a three-quark
neutron �ddu�. According to expression (64), the total
meson mass includes, inter alia, perturbative corrections
that can be calculated in the first order of the perturbation
theory, if the ground state wave function is known.

The first of the corrections present in formula (64) is
DMOGE; arising from gluon exchange. The source of theVOGE

potential is the perturbative part of correlator (35). The
matrix element DMOGE � hj0jVOGEjj0i is negative; its
contribution increases with the strength of the MF. It was
shown in Ref. [80] that the expression

DMOGE ' ÿ
���
s
p

ln ln
eB

s
�84�

may serve as an estimate for massless quarks in the eB4 s
limit. This phenomenon is analogous to an increase in the
ground state energy of a hydrogen atom in anMF, which was
discussed in the Introduction. The collapse, i.e., the unlimited
decrease in the meson mass, does not occur, as in the
hydrogen atom. The color Coulomb potential is screened
owing to the influence of the MF on the virtual quark±
antiquark loops.

Let us consider in more detail the derivation of the
expression for the one-gluon exchange potential in an MF.
The gluon propagator with regard to vacuum polarization by
quark and gluon pairs takes on the form

D�q� � 4p

q 2 ÿ �g2�m20�=�16p2�� ~P�q� ; �85�

where polarization operators of gluons and quarks in the one-
loop approximation are expressed as

Pgl�q� � ÿ 11

3
Nc ln

jq 2j
m20

; ~Pq�q�q� � ÿ 2

3
nfq

2 ln
jq 2j
m20

; �86�

where nf is the number of flavors. TheMF into which a gluon
is placed begins to affect quark±antiquark loops inside the
polarization operator Pq�q. In a strong field, a quark±
antiquark pair can be regarded as occupying the lowest
Landau level, which results in the modification of the
polarization operator:

a�0�s

4p
Pq�q�q� � ÿ a�0�s nfjeqBj

p
exp

�
ÿ q 2

?
2jeqBj

�
T

�
q 2
3

4m 2

�
; �87�

T�z� � ÿln �
�����������
1� z
p � ���

z
p ������������������

z�z� 1�p � 1 �
2

3
z ; z5 1 ;

1 ; z4 1 :

8<:
Such a behavior reproduces, up to the aQED ! a�0�s nf=2
substitution, that of the electron±positron polarization
operator of a hydrogen atom in the MF (see Refs [34±36]).
The mass parameter m in formula (87), corresponding in
QED to the renormalized electron mass, is replaced by the
characteristic quark±antiquark pair energy in the confine-
ment regime, i.e., 4m 2 ! 4s. Notice the absence of the
nonperturbative quark±antiquark interaction inside a vir-
tual pair, as a consequence of the confining string topology
(Fig. 1).

The final expression for the one-gluon exchange potential
in the momentum representation in a strong MF [87] looks
like

VOGE�Q� � 3a�0�s

1

3

�
Q 2

�
1� a�0�s

4p
11

3
Nc ln

�
Q 2 �M 2

B

L2
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��

� a�0�s nfjeBj
p
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�
ÿ Q 2

?
2jeqBj

�
T

�
Q 2

3

4s

��ÿ1
; �88�

�q

q

Figure 1.One-gluon exchange between a static quark and antiquark in the

one-loop approximation at large Nc. Hatched area corresponds to

nonperturbative interaction (film of minimal area).
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where Nc � 3, nf � 2, a�0�s � 0:42, LQCD � 0:3 GeV, and
M 2

B � 2ps � 1:1 GeV 2. The appearance of parameter M 2
B

calculated in Ref. [88] prevents the appearance of Landau
singularity. Parameter M 2

B emerges in the examination of
gluon propagator Gÿ1gl � �D�B��2abdmn ÿ 2gFc

mn �B� f abc in the
background stochastic field Bm, Am � am � Bm. The gluon
polarization operator in the expression for the running
coupling constant in averaging over the stochastic back-
ground field, namely

1

g 2�Q 2� �
1

g 2�m 2� ÿ
11

3
NcPgl �Q 2; m 2� �89�

can be interpreted at large Nc as an object defined by the
closed double gluon line (see Fig. 1), inside which a confining
string is contained in the fundamental representation. As a
result, the gluon polarization operator acquires natural
infrared regularization determined by the gluon loop mass
MB.

Calculation of the perturbative correction for the meson
mass, resulting from one-gluon exchange, reduces to aver-
aging the matrix element (88) over the wave function (57) of
the meson ground state:

DMOGE �


V�Q��

mes
�
�
V�Q�c2�q?; q3� d

2q? dq3
�2p�3 : �90�

Therefore, stretching the wave function into an ellipsoid
of revolution with the characteristic radii r? �

��������������
2=�eB�p

and r3 �
��������
2=s

p
no longer results in the `color Coulomb

catastrophe' (Fig. 2). The solid curve shows that the
correction is included in the saturation regime in an
asymptotically large magnetic field; however, it decreases
in an uncontrolled manner in the absence of MF influence
on virtual quark±antiquark pairs (dashed curve). In a
similar way, the inclusion of quark loops ensures regular-
ization of the contribution from one-gluon exchange to
the neutron mass [81].

Spin±spin interaction VSS�r� originates from spin-depen-
dent kernels Fs�1�Fs�2� (see formula (25)) averaged over the
stochastic vacuum gluon field hsmn�1�Fmn�x�srl�2�Frl�y�i.
Here, the perturbative part of the correlator stands for the

relativistic spin±spin interaction:

VSS � as
3o1o2

�
3�r1r1��r2r2�

r 5
ÿ r1r2

r 3

�
� 8pas
9o1o2

�r1r2�d �3��r� :
�91�

Setting i � j in the correlator hs�i�Fs� j�F i yields the non-
perturbative self-energy part for each quark:

DMSE�i� � ÿ 3s

2po�0�i

: �92�

It follows from formula (91) that, in the case of oi ! mi

substitution, hyperfine interaction coincides up to a constant
with spin±spin interaction in quantum mechanics. The first
term (tensor forces) in Eqn (91) is disregarded in considering
the meson ground state. Consideration of the Zeeman effect
in the hydrogen atom placed in an MF [39] (Section 6) gives
evidence that these forces become noticeable only when the
wave function elongates into a needle-like shape along the
superstrongMF. Averaging (91) over the meson ground-state
wave function (57) reveals aweakerMFdependence than that
of the term with the d-function, which makes it possible to
disregard the contribution of the tensor term. As a result, the
hyperfine interaction correction assumes the form

DMSS � 8pas
9o1o2

��c�0���2�r1r2� : �93�

The structure of formula (93) suggests that hyperfine
interaction not only makes allowance for the mass correction
but also leads to the mixing of levels with different spin
projections, as shown in Section 7.

Formulas (57) and (58) indicate that the wave function of
the meson ground state in a strong MF is an ellipsoid of
revolution. Due to the shortening of the transverse radius as
r? �

�����������������
2=�jejB�p

, quantity jc�0�j2 � eB; i.e., it grows linearly
with the strength of the MF, which inevitably leads to the
uncontrolled rapid decrease in the matrix element (93). If the
minus sign of the ground state is taken into account, this
correction can be a cause of collapse in a magnetic field
eB ' 0:4 GeV2. This defect occurs in the first order of the
perturbation theory, but the singular nature of the d-like
interaction makes impossible the consistent recording of
hyperfine interaction in all orders of the perturbation
theory. At the same time, the characteristic correlation
length of vacuum stochastic fields over which averaging is
performed in the calculation of a given matrix element is
l ' 1 GeV2. Therefore, d-interaction can be `smeared' over
the ultraviolet parameter l using a Gaussian form factor:

d �3��x� !
�

1���
p
p

l

�3

exp

�
ÿ r 2

l2

�
: �94�

This regularization procedure results, as in the case of one-
gluon exchange, in correction (93) being included in the
saturation at eB ' 0:4 GeV2, and the scenario of hyperfine
interaction collapse is not realized.

In this section, we considered two possible scenarios of the
collapse emergence and mechanisms to prevent them. The
results agree with the general statement that eigenvalues of
the relativistic Hamiltonian are invariably positive in the
absence of external electric fields, which means that the MF
cannot be a cause of mass spectrum instability. This theorem
is considered at greater length in Section 10.
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Figure 2. Contribution of one-gluon exchange to the meson mass as a

function of the MF strength. Solid curveÐ taking into account the MF

influence on q�q loops; dotted curveÐnot taking into account the MF

influence on q�q loops.
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6. Magnetic focusing

It was shown in Section 5 that, in an external MF
comparable to the characteristic energy of pairwise
particle interactions in the system, a rise in jc�0�j2, called
`magnetic focusing' of the wave function, markedly affects
perturbative corrections [39, 65]. Let us turn back to
expression (13) for the Hamiltonian of a two-particle
system in an MF and take notice of the diamagnetic term
e2�B� g�2=�8m� that assumes the oscillatory form
�eB�2r2=�8m�. This interaction gives evidence that quantity
jc�0�j2 in an MF should increase almost linearly with the
field strength, jc�0�j2 � �jejB�k, where k is the character-
istic momentum of internal motion along the z-axis.

Reference [39] shows that magnetic focusing affects the
frequency of the 21-cm radio line. It was mentioned in the
Introduction that the energy of the hydrogen atom ground
state energy in an MF logarithmically increases in absolute
value. The wave function elongates in the direction of the
field, and the longitudinal/transverse size ratio grows in
accordance with expression (35),

rk
r?
�

����
H
p

lnH
; �95�

whereH � B=Ba. Focusing increases the wave function value
at the origin of coordinates. In theH4 1 limit, one obtains��c�0���2 � H lnH : �96�

Deviation of the wave function from a spherical shape results
in the appearance of tensor forces. This and an increase in
jc�0�j2 give rise to the correction for the 21-cm line frequency
amounting in the limit of H4 1 to the following [39]:

dn ' a6
�
me

mp

�
me�H ln2 H� ' 10ÿ6�H ln2 H� �MHz� : �97�

Factor jc�0�j2 affects reactions in the MF involving
oppositely charged particles in both the initial and final
states [65]. The probability of the process in the presence of
two oppositely charged particles in the final state increases in
proportion to

r�eB� � w�eB�
w�0� '

jejB
k 2

; �98�

where w�eB� is the phase volume in the MF, and w�0� � k 2 is
the two-dimensional phase volume in the absence of an MF.
The major contribution to the enhancement comes from the
LLL. The effect of b-decay enhancement in an MF was
known earlier [89]. The influence of an MF on positronium
annihilation was explored in Refs [90, 91]. Other processes in
MFs were discussed in Refs [44, 45].

One more important aspect of magnetic focusing relates
to the hyperfine spin±spin interaction. It was shown above
following study [39] that focusing the spin±spin interaction
changes the frequency of the 21-cm radio line. For QCD
systems in an MF, such as mesons, the hyperfine interaction
can at first sight lead to vacuum instability. To recall, spin±
spin interaction viewed in the context of the perturbation
theory can be represented in the form of the volume integral
of an expression containing d�r1 ÿ r2� [73, 92]. Taking into
account higher order effects smears the d-function, which

prevents a fall on the center or collapse. Section 10 presents a
theorem [71] stating that an arbitrary strong MF (in the
absence of external electric fields) cannot affect the stability of
the hadron spectrum.

An unexpected result of magnetic focusing is aniso-
tropy of QCD string tension. Recent lattice calculations
[93±96] have demonstrated that the confinement potential
V�R� in an MF decreases in the R direction parallel to B,
but increases in the perpendicular direction. Direct inter-
action between an MF and gluon field is absent. The
influence of an MF on the string is mediated through
virtual quark±antiquark pairs generated by gluons in states
3S1 and

3P0. Due to magnetic focusing, pairs moving in the
plane perpendicular to the MF receive an additional energy
DE � 2�m 2

q � jeqBj�1=2, whereas DE � 0 when the pairs
propagate along the MF [100]. Confinement anisotropy is
disregarded, since the accuracy of calculations of meson
and baryon spectra in an MF made in this review is
insufficient for its estimation.

7. Mixing and splitting of mass trajectories
in a magnetic field

The external magnetic field breaks spin and isospin symmetry
and thereby causes the splitting of levels for different spin±
isospin sates of hadrons.

The relativistic Hamiltonian (39) of hadrons in an MF
contains terms describing in a nonperturbative way the
interaction of quark magnetic moments with magnetic fields
and the perturbative correction for hyperfine interaction
depending on the mutual orientation of quark spins (91).

To study the behavior of mesons with different spin
projections onto the MF direction, the relativistic Hamilto-
nian projection can be represented in a compact form in the
space of spin states:

M̂total �
h
hc0jM̂�B�jc0i � VOGE � DMSE

i
1̂

ÿ
X2
i�1

eir̂i B

2o�0�i

� 8pahf

9o�0�1 o�0�2

��c�0���2 r̂1 r̂2 : �99�

After calculating stationary values for oi using minimization
of Hamiltonian (39) for each of all possible configurations of
quark spins, j � �i, j � ÿi, j ÿ �i, j ÿ ÿi, it is necessary to
diagonalize expression (99) in the space of spin states. From
themathematical standpoint, this problem is analogous to the
quantum-mechanical problem of the Zeeman effect.

In the absence of anMF, hadron isospin and total spin are
conserved quantum numbers that can be used to classify p-
and r-mesons, as shown in Table 1.

In the strong field regime, eB4 s, the third term in
formula (99) responsible for the mixing of levels is small
compared with the remaining ones; therefore, splitting of
mass trajectories is largely determined by quark magnetic
moment projections onto the MF direction. The asymptotic
behavior of mass trajectories in the eB4 s limit was
calculated by the constituent separation method (see for-
mulas (79)±(81)). The type of asymptotic behavior, I, II, or
ZHS, for all 12 meson states is specified in the second column
of Table 1.

States 1 and 2 of a r�-meson are regarded as `pure' and do
not undergo mixing as the MF increases. States 3 and 4 of
mesons r� �s � 1, sz � 0� and p� in the absence of anMF are
a mixture of ju" �d#i and ju# �d"i states in different propor-
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tions. In a growing field, wave functions start mixing as

p��B�; r��B�

� a
ju" �d#i � ju# �d"i���

2
p � b

ju" �d#i ÿ ju# �d"i���
2
p �100�

with coefficients a and b depending on eB and hyperfine
interaction constant ahf. As a result, eB!1, while
p�B �B!1� � ju# �d"i and r�B �eB!1� � ju" �d#i, i.e.,
mesons p� and r��sz � 0� occur at eB � 0 in equal propor-
tions.

The situation is somewhatmore complicated in the case of
neutral p0- and r0-mesons. Because the isospin is clearly
distorted due to different charges of u- and d-quarks, states
9±12 undergo additional double splitting; namely, mass
trajectory 9, rÿ�s � 1; sz � 1�, is split into two branches:
rÿ�s � 1; sz � 1��u�u� and rÿ�s � 1; sz � 1��d�d�. States 10
and 12 corresponding to mesons r0�s � 1; sz � 0� and p0,
respectively, experience not only mixing analogous to that of
charged mesons but also double splitting. As a result, the pair
of states of mesons p0 and r0�s � 1; sz � 0� at eB � 0 gives
rise to four mass trajectories and the 12 meson states at
eB � 0 listed in Table 1 give rise to 16 trajectories. The
families of states 1±4, 5±8, and 9±12 in Table 1 have a similar
spin structure but differ in isospin configuration. Therefore,
each family contains an asymptotic form of all three types;
I, II, and ZHS.

The most `dangerous' as regards the fall on the center are
ZHS states in which the nonperturbative part of the mass
becomes constant in fields eB4 s. The behavior of these
states in the eB > s region is largely determined by perturba-

tive corrections that fail to cause the collapse of all ZHS states
(except for the p0-meson state) owing to the mechanisms
discussed in Section 5. The p0-meson has a small mass,
mp0 � 135 MeV, by virtue of chiral effects. Therefore, the
formal application of the results presented in Section 5 is
insufficient. The influence of anMF on the chiral structure of
p0-mesons is considered at length in Section 9.

A similar situation with mixing and splitting of energy
levels with different spin projections arises in the three-body
problem. The mixing of neutron and D0-resonance states
under the influence of an MF is discussed in paper [81].
Moreover, this study showed that the color-magnetic hyper-
fine interaction cannot be responsible for the level splitting at
eB � 0 observed in experiment; this finding was explained in
terms of the one-pion exchange mechanism, considered at a
greater length in Section 8.

8. One-pion exchange in a magnetic field

The spin±spin interaction (91) discussed above cannot
support the necessary splitting of mass trajectories of the
neutron and D0 in a zero magnetic field. It follows from
Ref. [81] that the difference between neutron (n) and D0-
resonance masses is 6d ' 0:15as

���
s
p ' 20 MeV for as � 0:35,

and 6d ' 100 MeV for as � 1:72. On the other hand, the
measured splitting of n and D0 is on the order of 300MeV. As
is known [101,102], this difference can be obtained by adding
the perturbative interaction VOPE in the form of one-pion
exchange. The one-pion exchange is given by the matrix
element

V
�i j�
OPE � 4pg 2

qqps�i�s� j �
Gi Gj

k2 �m 2
p

�
L2

L2 � k2

�2

; �101�

where Gi � r�i�k=�oi �Mi�, o �
�����������������
k2 �m 2

i

q
, and s �i� are

Pauli matrices in isospin space. It can be seen that in the
limit of mu � md � mp ! 0 the last formula gives

VOPE � �ri k��ri k�
oiojk

2
! ri rj

oioj
;

i.e., the operator form of this interaction in the spin space is
entirely analogous to the spin±spin one: VOPE � r�i�r� j �.

Thus, it is possible to introduce, up to the form factor in
expression (101), the effective hyperfine interaction constant
ahf � as � aOPE. It is shown in Refs [101,102] that such an
approach ensures correct physical splitting for n and D0 levels
(ÿ471 MeV and ÿ79 MeV, respectively).

Let us consider the influence of a strong MF on one-pion
exchange by distinguishing in expression (101) contributions
from meson p0, p�, and pÿ exchanges:

Vi j
OPE �

4pg 2

oioj

� �ri k��rj k�
k 2 �m 2

p�
2t i�t

j
ÿ �
�ri k��rj k�
k 2 �m 2

pÿ
2t iÿt

j
�

� �ri k��rj k�
k 2 �m 2

p0
2t i3t

j
3

��
L2

k 2 � L2

�2

: �102�

It was shown in Ref. [103] and in lattice calculations [104]
that the masses of p�-mesons increase with MF strength in
proportion to � ������

eB
p

. As a result, the first two addends in
formula (102) are markedly suppressed for eB5

���
s
p

. On the
other hand, the p0-meson mass becomes somewhat smaller
and tends to remain constant afterwards as eB increases.

Table 1. Classiécation of p- and r-mesons by the type of asymptotic
behavior.

No. Meson state Type of asymp-
totic behavior

1

2

3

4

5

6

7

8

9

10

11

12

r��sz � 1� � ju" �d"i
r��sz � ÿ1� � ju# �d#i

r��sz � 0� � 1���
2
p ÿju" �d#i � ju# �d"i�

p��sz � 0� � 1���
2
p ÿju" �d#i ÿ ju# �d"i�

r0�sz � 1� � 1���
2
p ÿju" �u"i � jd" �d"i�

r0�sz � ÿ1� � 1���
2
p ÿju# �u#i � jd# �d#i�

r0�sz � 0� � 1���
2
p
�

1���
2
p ÿju" �u#i � jd" �d#i�

� 1���
2
p ÿju# �u"i � jd# �d"i��

p0�sz � 0� � 1���
2
p
�

1���
2
p ÿju" �u#i � jd" �d#i�

ÿ 1���
2
p ÿju# �u"i � jd# �d"i��

rÿ�sz � 1� � jd" �u"i
rÿ�sz � ÿ1� � jd# �u#i

rÿ�sz � 0� � 1���
2
p ÿjd" �u#i � jd# �u"i�

pÿ�sz � 0� � 1���
2
p ÿjd" �u#i ÿ jd# �u"i�

ZHS

II

I

I

I

I

ZHS� II

ZHS� II

II

ZHS

I

I
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Both effects account for a three-fold decrease in the
effective one-pion interaction constant, aOPE�eB4s� �
�1=3�aOPE�eB � 0�, in the strong MF regime.

9. p0-meson and the fall to the centerÐ
the influence of chiral effects

Pions, unlike r-mesons, are pseudo-Nambu±Goldstone
mesons, which implies the necessity to take into considera-
tion how chiral degrees of freedom change under the effect of
a strong external MF.

The influence of an MF on chiral effects has been
investigated with the use of the chiral perturbation theory,
the effective chiral Lagrangian method [105±110], the
Nambu±Iona-Lasinio model [111], and other theoretical
tools [112±114]. Lattice calculations of chiral properties in
an MF were made in Refs [104, 115±120]. The Nambu±Iona-
Lasiniomodel predicts augmentation of the chiral condensate
according to Ref. [121], referred to in the literature as
magnetic catalysis (see Ref. [122]).

In the vacuum correlator method used in this review,
chiral effects are described with the aid of the effective chiral
Lagrangian (ECL), obtained directly from the QCD Lagran-
gian in the absence [123±126] and presence [127] of an MF:

LECL � Nc tr log
��D̂�mf�1̂�MÛ

�
; �103�

where mf is the current quark mass, M�x� is the scalar
interaction (confinement), i.e.,M�x� � sjxj at large jxj, and

Û � exp �ig sf̂�; f̂ � fat
a : �104�

The Dirac operator in formula (103) is defined as
D̂ � gm�qmÿ ieAm�, where A� �x�B�=2. In a recent study
[128], Lagrangian (103) was invoked to derive the first six
terms of the standard chiral perturbation theory up to the
order O�p 4�. Also, the ECL method was employed to obtain
all standard relations of the chiral theory, including the Gell-
Mann±Oakes±Rentier (GMOR) relation. The influence of an
MF on the chiral condensate and GMOR relations was
studied in Ref. [129], pion decay constants were calculated
in Ref. [130], and the action of an MF on the pion ground
state mass was explored in Refs [103,130].

Pion masses in the chiral theory can be derived from the
GMOR relation connecting pion mass, the size of the chiral
quark condensate, and decay constants:

m 2
p f

2
p � �m

��h�qqi�� ; �m � mu �md

2
: �105�

It was shown in Ref. [130] that the effective chiral
Lagrangian in an external MF is diagonal with respect to
quark flavors. Therefore, the p0-meson in an MF splits into
two independent components, ju�ui and jd�di; a specific
GMOR relation holds for each of them:

m 2
pu�u

f 2pu�u
� mu

��h�uui�� ; m 2
pd�d

f 2pd�d
� md

��h�ddi�� ; �106�

while quark (chiral) condensate h�qqi can be calculated
according to Ref. [123]:

ÿh�qqi �
�
tr

1

M�mq � q̂

�
� ÿÿM�0� �m

�
G�0��k � 0�;

�107�

where G �0��k� is the Green's function of the pseudoscalar q�q-
meson, M�0� ' sl ' 0:15 GeV, where s is the QCD string
tension, and l is the correlation length of vacuum gluon fields.
Importantly, all quantities in the effective chiral theory
constructed by the correlator method are calculated in terms
ofM�0� � sl � 0:15GeV and the nonchiral Green's function
spectrumG �0��k�. The calculation of this quantity is described
in Section 2. The spectral expansion of Q �0��k� in eigenstates
of nonchiral relativistic Hamiltonian (55) allows the expres-
sion for the quark condensate to be obtained:

ÿhq�qi � Nc

ÿ
M�0� �mi

�X1
n�0

��cn�0�
��2

mn
: �108�

Expression (108) is readily generalized to the case of an
external MF taking into account each quark spin projection
onto the MF direction:

X1
n�0

��cn�0�
��2

mn
! 1

2

X1
n�0

���c��ÿ�n; i �0�
��2

m
��ÿ�
n; i

�
��c�ÿ��n; i �0�

��2
m
�ÿ��
n; i

�
; �109�

where c����n; i is the total set of meson wave functions obtained
using the nonchiral formalism, and n is the radial quantum
number.

In accordance with the asymptotic behaviors (79)±(81) for
the p0-meson, mÿ�n; i rapidly increase with increasing MF.
Therefore, only summands with spin projection j � ÿi in
formula (109) can be taken into consideration, meaning that
the asymptotic behavior of the p0-mesonmass in a strongMF
is described by the dependence

m 2
p0 �

�m

M�0� � �m
��ÿ��2 ; �110�

where �m��ÿ� is a mass similar to the ground state massmn; i of
the nonchiral pion. As shown above, the effective chiral
Lagrangian is diagonal with respect to quark flavors; there-
fore, the p0-meson trajectory in the MF splits into two
independent trajectories, p0�u�u� and p0�d�d�. The resultant
mass p0�u�u� reported for the first time in Ref. [103] is
presented as a function of the MF in Fig. 3. It shows that
the trajectory of the p0-meson mass calculated using the ECL
(solid curve) is significantly different from the pion mass
trajectory predicted by the standard chiral perturbation
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Figure 3. p0-meson mass taking into account chiral degrees of freedom

depending onMF strength (solid curve) in comparison with the prediction

of the chiral perturbation theory without accounting for nonperturbative

dynamics (dotted curve).
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theory in the range of eB > 0:1 GeV2, whereas the result
obtained with the use of the ECL is in excellent agreement
with that of the lattice calculations [18, 25, 48].

The situation is radically different in the case of charged
p�- and pÿ-mesons that lose chirality in the external magnetic
field eB > s. Their asymptotic behavior in a strong MF
corresponds to type I, in accordance with the general
asymptotic classification (79)±(81). Thus, the trajectory of a
p�-meson consisting of u- and �d-quarks splits into two
trajectories, depending on spin projections of individual
quarks onto the MF direction: M�ÿ�eB > s� ' ������������������2=3�eBp
and Mÿ��eB4 s�� ������������������4=3�eBp

, corresponding to p�- and
r�-mesons, respectively. The GMOR relation yields the
asymptotic behavior for the charged chiral pion:

M�ÿ�B� �
����������������������������
m 2

p �0� �
2

3
eB

r
; �111�

where m 2
p �0� is the charged pion mass at eB � 0.

The resulting trajectories of charged pÿ-pions, M�ÿ�B�,
are presented in Fig. 4, which illustrates in addition the
behavior of a nonchiral pÿ-meson: it can be seen that the
mass as eB! 0 is much greater. Moreover, Fig. 4 presents
results of lattice calculations [104, 131] consistent with those
obtained with the use of the ECL.

In summing up this section, it can be concluded that chiral
effects do not cause qualitative changes in the behavior of
pseudo-Nambu±Goldstone mesons in an MF. The asympto-
tic behavior of the trajectories obtained in the framework of
the chiral theory (see formulas (79)±(81)) remains unaltered.
Importantly, consideration of chiral degrees of freedom and
GMOR relations makes pion masses similar to physical ones
at a near-zero MF. The growth of the chiral condensate with
increasing MF is another important result obtained with the
employment of the ECL in the correlator method.

10. Theorem of spectrum stability
in a magnetic field

The results of analyses of the perturbative corrections in
Section 5 allow the conclusion that the hadron ground state
remains stable in an arbitrary strong externalMF.Notice that
both Coulomb and hyperfine interaction corrections also
become saturated as a result of the action of quite different

mechanisms; therefore, final stabilization looks like some-
thing artificial. This section is designed to discuss the general
statement appeared in Ref. [71] that holds true for any
QCD+QED system placed in an external MF.

Let us consider theGreen's function of a fermion placed in
an electromagnetic field A�e�m � A�e�extm � a �e�m , where A�e�extm is
the external background electromagnetic (EM) field and a �e�m
is the quantum perturbation. By analogy, for a color field we
have Am � Avac

m � Am, and Avac
m is the vacuum background

field. Let us start from the expression for the fermion
propagator:

S�x; y� � �m� D̂�ÿ1 ; Dm � qm ÿ ieA�e�m ÿ igAm : �112�

It should be emphasized that m � 1; 2; 3; 4; because the
Euclidean formulation of the field theory is adopted. Then,
it is assumed that both the EMand color fields are Hermitian;
�A�e�m �� � A�e�m and A�m � Am. Real electric fields are absent;
therefore, iA

�e�
0 � A

�e�
4 � 0. These relations are satisfied if (1)

the external EM field Aext
m is Hermitian, as in the case of a

purely magnetic external field, (2) vacuum color fields C vac
m

are Hermitian, and (3) quantum fields Cm and am are likewise
Hermitian and the space, i.e., states jini and jouti, contains no
quanta of fields cm and am.

Provided these conditions are fulfilled, the Green's
function of the bound state for a quark±antiquark system
q�q or for the positronium can be represented in the form of
the path integral performed over Euclidean quantum fields am
and cm:

Gf�f �x; y� �


trG1S�x; y;A;C �G2S�y; x;A;C �

�
� Zf�f

�
DaDcDcD�c exp

ÿÿA�c; �c;A;C ��htrG1SG2S i ;
�113�

where G1, G2 are g-matrices of fermions in the vertices. The
fermion Green's function can be expressed using the Dirac
projection operator through the scalar propagator:

S�x; y� � �mÿ D̂�x�m 2 ÿ D̂ 2�ÿ1xy : �114�

Turning back to formula (112) allows us to see that
relation �iD̂�� � iD̂ holds for Hermitian fields A�e�m and Am;
therefore, eigenvalues of operator iD̂ are real:

iD̂un � lnun ; ln 2 < ; �115�

while eigenvalues of the squarable operator

ÿD̂ 2un � �iD̂�2un � l2nun ; l2n 5 0 ; �116�

are positively defined. It follows from the expansion of scalar
propagator �m 2 ÿ D̂ 2�ÿ1 in terms of the eigenvalues:

�m 2 ÿ D̂ 2�ÿ1 �
X
n

un�x�u�n �y�
m 2 � l2n

; �117�

that the propagator nowhere becomes infinite. It follows from
expressions (115) and (116) that operator �ÿD̂ 2� is positive
definite.

To recall, in the case of a composite particle consisting of
fermions, eigenvalues (117) in (113) originate eventually from
squarable fermion propagators. For the simplest composite
particle formed from noninteracting constituents, quark

0 0.5

0.8

0.6

0.4

0.2

1.0 1.5

1.0

1.2

1.4

M
,G

eV

2.0
eB, GeV 2

pÿ, lattice, Bali et al.
pÿ, lattice, a � 0:115 fm

pÿ, nonchiral
pÿ, chiral
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propagators can be obtained from the solution of the Dirac
equation in an MF:

E 2 � m 2
q � p 2

z � �2n� 1�jejBÿ �eB�sz ; sz � �1 ; �118�

as a result, the quark ground state has energyE 2
0 � m 2

q , which
accounts for the absence of singularities in initial quark±
antiquark Green's function (113) of the composite particle
and vacuum instability. In the case of the point vector particle
with spin s � 1 and g � 2 considered in Ref. [16], the initial
Green's function takes the form (117) with the appropriate
spectrum:

E 2 � m 2 � p2z � �2n� 1�jejBÿ 2�eB�sz ; sz � ÿ1; 0;�1 ;
�119�

whence the possibility of E 2 < 0 for e > 0, sz � ÿ1 at
B � Bcrit. This result is a direct evidence that the description
of hadron properties in an MF requires consideration of the
internal structure of hadrons.

Evidently, in the presence of external electric fields
�re 6� 0�, the transition to Minkowski space re ! ire
disturbs the positive definiteness of operator m 2 ÿ D̂ 2,
which gives rise to the imaginary part of Green's function
Gf�f responsible for Schwinger e�eÿ-pair creation in the
external electric field. The sole effect exerted by quantum
electric fields in the absence of an external electric field
�re � 0� is exchange processes described by Euclidean
correlators:

e 2


e�x�e�y�� � e 2

p2
1

�xm ÿ ym�2
; �120�



g2E�x�E�y�� � 16g2

3p2
1

�xm ÿ ym�2
; �121�

and Coulomb interaction potentials VCoul � ÿa=r. The main
provisions of this section lead to the conclusion that a
QCD+QED vacuum retains stability in any purely magnetic
external field in the absence of electric fields.

11. Hadron mass trajectories in a magnetic field

In conclusion, we shall consider hadron mass spectra
obtained by the vacuum correlator method. Figure 5 plots
trajectories of the total mass of a neutral r0-meson calculated

analytically with the aid of the pseudomomentum technique
for different spin configurations, taking account of perturba-
tive corrections. Obviously, these results are in excellent
agreement with the lattice calculation data [44±46]. By r� is
meant a model nonphysical meson with quark charges
e1 � e2 � 2=3 that allows variable separation [80].

The application of the constituent separation method
made it possible to develop an approach allowing the
simultaneous calculation of the mass spectra of both neutral
and charged mesons. The crux of the method is ignoring the
confinement potential in the strong field regime in the plane
perpendicular to the field direction, since the light hadron
behavior in an MF is characterized by the dimensionless
parameter eB=s4 1. This is an approximate method, in
contrast to the exact analytical calculation of dynamic mass
for neutral mesons using the pseudomomentum technique. A
comparison of results obtained by this method for neutral
mesons in u�u (Fig. 6) and d�d (Fig. 7) configurations with
those obtained by the pseudomomentum technique (see
Fig. 5) shows that the error of the CS method is about 15%
for the total neutral meson mass for eB < 0:75 GeV2, and
about 10% in the strong field regime eB5 0:75 GeV2. The
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error is mostly due to contributions of perturbative correc-
tions to spin±spin and color Coulomb interactions calculated
in the first-order perturbation theory. The next approxima-
tion is the introduction of the effective potential of a string
passing through the hadron center of mass (69) that allows
accurately reproducing the value of the nonperturbative part
of the energy (dynamic mass) in any MF. The results for all
16 trajectories taking account of the mixing and splitting of
meson spin-spin configurations (see Section 7) are presented
in Figs 4, 6±8. Also, the CS method was employed to obtain
analytical expressions for mass trajectory asymptotic beha-
vior in the eB!1 limit (79)±(81) describing the three main
types of asymptotic behavior (see Table 1).

The results for r�- and p�-mesons coincide with those for
rÿ- and pÿ-mesons up to simultaneous reversal of the signs of
quark charges and spin projections. Similar to neutral
mesons, charged hadrons whose quarks occupy the lowest
Landau levels (ZHS-states) are at risk of collapse when their
mass starts to uncontrollably decrease and becomes negative
by virtue of perturbative corrections.

This scenario is not realized for meson rÿ�sz � ÿ1� �and
therefore for meson r��sz � 1�� for the same reason as in the
case of neutral mesons; namely, screening of one-gluon
exchange by quark±antiquark pairs in an MF arrests the
increase in the respective correction, while the magnetic
focusing effect responsible for the enhancement of jc�0�j2
and, accordingly, enhancement of spin±spin interaction is
stabilized owing to the introduction of the finite correlation
length of vacuum fields, l � 0:2 fm, and regularization of
singular d-interaction on a given scale.

These procedures prove insufficient to prevent the
collapse of the p0-meson, it being a Nambu±Goldstone
particle with a small mass at eB � 0 that tends to further
decrease with increasing MF. Moreover, the CS method
overestimates the charged pÿ-meson mass at eB � 0, if
chiral degrees of freedom are disregarded (see Fig. 4). To
address this problem using the vacuum correlator method,
the effective chiral Lagrangian was proposed, allowing us
to correctly take into consideration the pion chiral nature
(see Section 9). The resulting mass trajectories of pions are
presented in Figs 3, 4, showing that consideration of chiral
properties makes it possible to obtain physical values for
pion masses at eB � 0 and provides direct evidence of the
absence of p0-meson collapse in the MF. The results of
calculations fairly well agree with the lattice data [18, 50,

131], which confirm the absence of collapse in the MF
under consideration. Furthermore, these results are con-
sistent with the conclusion that hadron collapse is
altogether impossible in an arbitrary strong MF drawn
based on the general analysis of relativistic Hamiltonian
eigenvalues in an MF (see Section 10).

A qualitative analysis of the curves in Figs 6±8 shows that
each of the families, �p0; r0��u�u�, �p0; r0��d�d�, �pÿ; rÿ�, and
�p�; r��, containing four trajectories has a single ZHS-state
[79] whose dynamic mass tends to remain constant as theMF
grows, two type I states increasing with the MF as � ������

eB
p

(80), and one type II state increasing as � ������
eB
p

(81). The
additional double splitting of trajectories �p0; r0��u�u� and
�p0; r0��d�d� is due to the difference between charges of u- and
d- quarks responsible for the similarity of the respective mass
trajectories with coefficient

���
2
p

.
It is shown in Section 4 that variable separation using the

pseudomomentum technique for neutrons is possible only on
the assumption of o1 � o2 for d-quarks, in which case their
spins must be co-directed. The mass trajectory for the
respective spin±isospin configuration jdÿdÿu�i taking into
account perturbative corrections is presented in Fig. 9. This
state has the lowest possible mass and is most vulnerable to
collapse, because all the quarks occupy the LLL in the
eB!1 limit. The CS method is believed to permit mass
spectra calculation for the entire baryon octet, but such work
remains to be done.

It is hypothesized that a � 300-MeV split between
neutron and D0 at eB � 0 is due to spin±spin interaction.
However, as playing the role of ultrafast color-magnetic
interaction constant is, unlike the constant in the case of a
meson, too small to ensure the experimentally obtained value
for the splitting in question. The result is a � 35-MeV split.
For this reason, Section 8 is devoted to themechanism of one-
pion exchange allowing an increase in the hyperfine interac-
tion constant [81, 101] and ensuring the necessary splitting
between n and D. Quantity ahf introduced in this way begins
to depend on the MF as the field changes masses of virtual
pions, which leads to ahf �eB!1� ' �1=3�ahf �eB � 0�.

The solid curve in Fig. 9 describes the dynamics of the
dÿdÿu� state for which analytical calculation is possible, with
the hyperfine interaction regarded in the first order of
perturbation theory. The neutron wave function undergoes
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Zeeman mixing with other spin configurations in the
0 < eB < 0:25-GeV2 range; therefore, the dashed curve
corresponding to the neutron mass runs below the mass
trajectory of the pure dÿdÿu� state and originates in
the case of eB � 0 at the point corresponding to the
neutron physical mass mn � 940 MeV. In the range of
0:42 < eB < 0:9 GeV2, the dotted curve corresponds to the
region in which the perturbation theory for hyperfine
interaction becomes invalid, and the mass may become
negative, if only the first order of the theory is taken into
account. The dashed curve in the 0:42 < eB < 0:9-GeV2

region describes the hypothetical behavior of a neutron
mass trajectory in conformity with the general stability
theorem considered in Section 10.

It follows from the foregoing that analytically calculated
trajectories of r- and p-mesons are in all cases in good
agreement with the results of lattice calculations, as appears
from Fig. 5 for r0- and r�- mesons and from Fig. 4 for the
pÿ-meson. Of special interest is the neutron mass trajectory
for which lattice calculations remain to be done. The observed
discrepancies for r0�sz � 1� in Fig. 7 and for rÿ�sz � 1� in
Fig. 8 can be accounted for by the low accuracy of lattice
calculations.

12. Conclusions

This review deals with the problem of the influence of an MF
on hadrons in themost general relativistic case when the fields
can be either arbitrary strong or weak compared with the
characteristic scales of the system. This required the use of the
relativistic path integral in the Fock±Feynman±Schwinger
representation. The relativistic Hamiltonian used in concrete
calculations of energies andwave functions is actually the sole
means in the case of strong interaction with confinement,
since the standard methods based on the Bethe±Salpeter
equation cannot be directly employed outside the framework
of the perturbation theory. The RH method for hadrons is
convenient to use for both weak fields �eB5 s�, where it
predicts the magnetic moments of hadrons with an accuracy
of roughly 5% [85, 86], and strong fields �eB4 s�, as shown
in the present review.

Much attention was given to analytical methods of
solving the spectral problem for nonrelativistic (Section 2)
and relativistic (Section 4) Hamiltonians in an MF. It was
shown that the introduction of pseudomomentum permits
distinguishing the center-of-mass motion for electroneutral
systems in an MF. The constituent separation method is
proposed to consider both charged and neutral hadrons using
a single formalism with the possibility of reproducing exact
results for mass spectra obtained by the pseudomomentum
technique in the framework of the CS method to within 10±
15%over the entire range ofmagnetic fields being considered.
Themost interesting application of the CSmethodmay be the
calculation of the mass spectra of all particles making up the
baryon octet in an MF and the comparison of MF effects on
neutron and proton masses.

Different stages of the dynamics evolution in atomic and
hadronic systems are worth mentioning. In the former
systems, it is possible to distinguish a critical field
eBa � a 2m 2

e and Bcr � a 2Ba that induces electron relativistic
motion, as well as the quantity �3p=a�Bcr at which radiative
corrections freeze the rise in the binding energy, whereas in
the latter case the critical field value is eBs � s �
0:18 GeV2 ' 1019 G. As a result, quarks propagating in the

plane perpendicular to the direction of large fields B perform
individualized movements.

It was shown in the review that such motion is of critical
importance for solving the problem of so-called r-collapse
[16] based on the notion of the elementary nature of the r-
meson.

Moreover, we demonstrated two more possible scenarios
of collapse in anMF: (1) collapse due to one-gluon exchange,
and (2) collapse resulting from hyperfine interaction, and
their successful resolution. In the former case, it was shown
that virtual quark loops affected by the magnetic field screen
the one-gluon potential and cause its saturation; in the latter
one, `smearing' of hyperfine interactions related to the
presence of higher orders should be taken into considera-
tion, as confirmed by the theorem of vacuum stability in an
MF.

The problem of meson mass trajectories in an MF is
complicated by the intricate QCD dynamics that require
consideration of spin and isospin degrees of freedom.
Section 4 describes trajectories of three types (I, II, and
ZHS); trajectories of certain mesons split into two and even
four lines.

Of special interest is chiral meson physics inMFs, bearing
in mind that strong fields are known to affect individual
quarks, while the standard chiral theory considers a chiral
meson to be a whole entity disregarding its quark nature. It
was shown in this review that the standard chiral perturbation
theory is not applicable to p�- and p0-mesons; the early chiral
theory (ECL) [123±126] generalized in paper [103] taking into
account theMF finds application for p0-mesons. The validity
of the theory is confirmed by its conformity with results of
lattice calculations.

Apart from the theory and phenomena related to
hadrons, the review treated some general topics, such as a
phenomenon called by the authors `magnetic focusing', which
had been observed earlier by different researchers in atomic,
molecular, and hadronic systems but remained unnamed and
unexplored. The essence of this phenomenon is the enhance-
ment of the wave function and convergence of oppositely
charged components of the system in a growing MF, as
exemplified by the frequency shift in the 21-cm radio line of
a hydrogen atom and the enhancement of interaction in the
final state proportional to the MF [see Eqn (98)].

An important aspect of the review is the investigation of
neutrons in MFs using all available approaches and bearing
in mind the key role played by the color-magnetic hyperfine
interaction and pion exchange interaction (apart from
confinement forces and gluon exchanges) in neutron sys-
tems. All these interaction components change with MF
variation. The resultant neutron mass trajectory is presented
in Fig. 9, but the region in the MF higher than 0.5 GeV2

remains conjectural, because it strongly depends on the
behavior of the hyperfine interaction.

In general, the studies discussed in this review taken
together only slightly open a window to the previously
unexplored world. In fact, we learned how to describe
phenomena with strong interactions in an MF with an
accuracy of up to 5±10% and created the relativistic
apparatus making it possible to further improve the accu-
racy, but the area of its application can be very wide,
including atoms, hadrons, nuclei, and even neutron stars, to
say nothing of noncentral nucleus±nucleus collisions and the
resulting quark±gluon plasma. All these problems await
further research and new reviews.
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