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Abstract. A Fermi gas described within the Bardeen—Cooper—
Schrieffer (BCS) theory can be converted into a Bose — Einstein
condensate (BEC) of composite molecules (dimers) by adiaba-
tically tuning the interaction. The sequence of states that
emerge in the process of such a conversion is referred to as the
BCS-BEC crossover. We here review the theoretical and
experimental results obtained for the BCS — BEC crossover in
three- and quasi-two-dimensional quantum gases in the limiting
geometry of traps and on optical lattices. We discuss nontrivial
phenomena in the hydrodynamics of superfluid quantum gases
and fluids, including the collective excitation spectrum in the
BCS-BEC crossover, the hydrodynamics of rotating Bose
condensates containing a large number of quantized vortices,
and the intriguing problem of the chiral anomaly in the hydro-
dynamics of superfluid Fermi systems with an anisotropic p-
wave pairing. We also analyze spin-imbalanced quantum gases
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and the potential to realize the triplet p-wave pairing via the
Kohn-Luttinger mechanism in those gases. Recent results on
two-dimensional Fermi-gas preparation and the observation of
fluctuation phenomena related to the Berezinskii—Kosterlitz—
Thouless transition in those gases are also reviewed. We briefly
discuss the recent experimental discovery of the BCS-BEC
crossover and anomalous superconductivity in bilayer gra-
phene and the role of graphene, other Dirac semimetals (for
example, bismuth), and 2D optical lattices as potential refer-
ence systems that exhibit all of the effects reviewed here.

Keywords: BCS-BEC crossover, hydrodynamics of superfluid
quantum fluids, Feshbach resonance, composite fermions and
bosons, rotating Bose condensates, chiral anomaly, fermion
Goldstone mode, collective excitation spectrum, imbalanced
Fermi gas, anomalous pairing, Kohn-Luttinger mechanism,
Berezinskii-Kosterlitz—Thouless transition, bilayer graphene

1. Introduction

The physics of Bose condensation in ultracold quantum
gases has been rapidly developing in recent decades, being
explored using both experimental [1] and theoretical [2, 3]
methods and attracting the attention of the scientific
community both in Russia and abroad. The aim of this
review is to present some interesting phenomena in this area,
focusing primarily on the problem of the BCS-BEC cross-
over for extended and local pairs [4-12] and nontrivial
hydrodynamic phenomena in superfluid Fermi—Bose gases
and mixtures [13—18] (here and below, BCS is an abbreviation
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for Bardeen—Cooper—Schrieffer and BEC is an abbreviation
for Bose—Einstein condensate). We plot the global phase
diagrams of three-dimensional and quasi-two-dimensional
Fermi gases [19-22] in the Feshbach resonance regime [23]
and analyze the spectrum of collective excitations [24-27]
(sound and orbital waves, breathing modes in traps) and the
contribution of those excitations to the thermodynamic
properties (in particular, thermal capacity and normal
density) in the fermion and boson areas of the phase diagram
for superfluid s-wave and p-wave pairing [18]. We also
determine critical velocities at which superfluidity breaks up
by applying the Landau criterion [28] for extended (Cooper)
and local pairs. In interconnecting the physics of high-
temperature superfluidity and superconductivity, we solve
the problem of composite fermions and bosons in resonance
quantum gases and mixtures and plot corresponding phase
diagrams [29-32].

We also review the BCS-BEC crossover scenario for the
pairing of two composite holes (two spin polarons or two
strings) in the d-wave channel for weakly doped cuprates [33].
Another bridge connecting the physics of ultracold gases and
the physics of electrons in metals is the concept of a spatially
separated Fermi—Bose mixture that was proposed by an
author of this review to describe superconducting bismuth
oxides in [34, 35]. In passing from the thermodynamic
description to the hydrodynamic one, we outline the concept
of Landau’s classical approach to deriving hydrodynamic
equations based on conservation laws written in differential
form. In developing this approach, we work out the quantum
hydrodynamics of rapidly rotating superfluid condensates
[36] that contain a large number of quantum vortices [37-43]
and analyze the interesting phenomena (in particular, the
second-sound spectrum [16, 44] and the friction force between
normal excitations and vortices [40, 42, 43]) that occur in that
hydrodynamic system.

We outline other approaches to the development of
complex hydrodynamic systems based, in particular, on
applying generalized Poisson brackets [45, 46]. We explore
the spectrum of Tkachenko waves [47, 48] and Lord Kelvin
bending vibrations [49] specific to vortex lattices in rotating
superfluid helium and analyze the behavior of the displace-
ment correlator of vortex lines and the vortex-fluid—vortex-
crystal transition in rotating Bose condensates with various
densities and dimensions [18]. In applying this to anisotropic
p-wave pairing in the A-phase of superfluid He-3 [50, 51] and
in 100% polarized triplet Fermi gases, we explore in detail the
involved and still unresolved problem of chiral anomaly [52—
56] and the failure of the momentum conservation law for the
superfluid component in fermionic systems with a nontrivial
symmetry and zeros of the superfluid gap [52, 53] (see also
later studies and monographs [18, 25, 50, 57-59]). In this
context, we discuss two approaches to solve the problem.
One is based on adding the fermionic Goldstone mode to the
set of quantum hydrodynamic equations, and the other is
based on a formal analogy between Bogoliubov—de Gennes
equations [60, 61] for fermionic quasiparticles in the nonuni-
form distribution texture (liquid-crystal type [62]) of the
orbital momentum vector 1 of a Cooper pair and the Dirac
equation [63] for massless particles in the magnetic field
B = rotl.

From an experimental perspective, we review, in some
detail, the significant progress made recently in designing
traps for 2D Fermi gases [21, 22], the new options provided by
those traps, and a class of problems that have not yet been

resolved experimentally but will be in the future. In particular,
we expect to obtain an experimental confirmation of the
occurrence of Kohn—Luttinger anomalous superconductivity
[64] for triplet p-wave pairing [65, 66] in a quasi-two-
dimensional Fermi gas with strongly imbalanced ‘up’ and
‘down’ spins [67-69]. We also plan to experimentally
determine the regions where nonuniform Larkin—Ovchinni-
kov—Fulde—Ferrell superconducting states [70, 71] and
clustering and phase separation [72, 73] occur in imbalanced
quasi-two-dimensional Fermi gases [74, 75].

Finally, we explore regions in the phase diagram of quasi-
two-dimensional resonance gases where the Berezinskii—
Kosterlitz—Thouless fluctuation corrections [76-82] to
mean-field results [79, 83-85] for the BCS-BEC crossover
manifest themselves most conspicuously. In responding to the
problem of topological insulators and Dirac semimetals (in
particular, graphene), which is currently enjoying great
popularity, we briefly discuss the problems of how special
(highly symmetric) Dirac points appear and vanish in quasi-
two-dimensional hexagonal optical lattices [86] and how
superconductive p-wave pairing [87, 88] occurs, induced by
the proximity effect [89], in a graphene monolayer in contact
with a bulk superconductor. We conclude this review with a
brief discussion of the anomalous superconductivity and the
BCS-BEC crossover in a twisted graphene bilayer [90], which
have been discovered recently in experiments.

2. Feshbach resonance

One of the most significant events in condensed matter
physics was the discovery in the 1990s of the BEC phenom-
enon [7] in bosonic 8Rb, 2*Na, and "Li isotopes [1, 91, 92] in
the restricted geometry of magnetic traps [93]. At the
beginning of this century, in experiments performed in the
Feshbach resonance regime [23] in dipole optical traps, Jin’s
[94], Grimm’s [95], Ketterle’s [96], and Salomon’s [97] groups
also discovered the Bose condensation of molecules (compo-
site bosons) °K, and °Li, consisting of two fermionic atoms
(f1f1) with spins directed “‘up’ and ‘down’. The experiments
also discovered composite fermion molecules ( fb) that consist
of the “°K fermionic isotope and 8 Rb bosonic isotope [98].
We recall that the magnitude and sign of the quantum
mechanical s-wave scattering length rapidly vary in the
Feshbach resonance if the external magnetic field B comes
close to the resonance field B (see, e.g., [18, 99, 100]). The
effective scattering lengths a can be represented in this case as

AFCS
a(B):abg<l+ﬁ>> (1)

where ay, is the ‘bare’ scattering length and A, is the effective
width of the resonance. Rather frequently, even in the absence
of the external magnetic field, the absolute value of the bare
scattering length (for quasiresonance vibration levels in a
two-atom interaction potential) is rather large and has
characteristic values |aps| =~ 15—-20 A. At the same time, in
magnetic fields B whose strength is close to that of the
resonance field B, the characteristic values of the effective
scattering length can be as large as 2000-3000 A.. The effective
scattering length tends to infinity in the very important
unitary limit where B = By, and hence 1/a — 0 [101]. Tt is
noteworthy that the bare scattering length for a quasireso-
nance level in the absence of a field a,, < 0, while the effective
length a <0 if AB=B—B,s>0 and a>0 if AB=
B — B, <0 (Fig. 1).
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Figure 1. Feshbach resonance describing the s-wave scattering length a as a
function of the magnetic field AB = B — By [19, 21, 22, 33, 100]. If a
magnetic field is applied, two terms in open and closed channels cross. As a
result, the bound state in the system (in the closed channel) at « > 0 is
replaced with a virtual level at a < 0. By is the resonance magnetic field,
and p, is the magnetic moment of the atom.

In Fig. 1, an analogy with the Heitler—London theory for a
hydrogen molecule [102] (that describes the two-particle
singlet and triplet terms) is used to depict the closed (singlet)
channel (or term) and the open (triplet) channel; it is of
importance that a two-particle bound state occurs in the
closed singlet state alone, while there is no such state in the
open channel. The energies of the terms behave differently
depending on the applied magnetic field B. The Feshbach
resonance can then be interpreted as the crossing of the singlet
and triplet terms in the resonance field Bs. Consequently, if
concentrating on the closed channel alone, in fields B > Bies,
we have the effective length ¢ < 0 and the singlet term
contains only a virtual bound state. But if B < Bis, we have
the effective length @ > 0, and a real bound state or molecule
occurs in the closed channel, with the biding energy
|Ev| = 1?/ma® for two particles with the same mass. Conse-
quently, the following is observed in substance (3D Fermi
gas) in the B < B region. Local pairs or molecules
consisting of two elementary fermions with opposite spin
projections first emerge at higher temperatures 7% ~ |Ey|, and
then, at lower temperatures 73EC, they experience Bose
condensation. However, if B > B, both the extended
Cooper pairs and Bose condensate emerge at the same
temperature 7.5EC.

If the magnetic field varies adiabatically slowly, a smooth
transition, or crossover, between the local pairs (molecules)
and extended (Cooper) pairs is observed. This is the essence of
the BCS-BEC crossover phenomenon in a resonance Fermi
gas. We stress that such a simplified single-channel approach
is only applicable if the system is not too close to the unitary
limit where the two-channel nature (related to decays in the
open channel of two-particle bosonic states into two single-
particle fermionic states and inverse processes of conversion
of two Fermi particles into composite bosons or molecules) is
of importance. If the Feshbach resonance is explored in more
detail [103], a situation actually occurs that is described by the
Alexandrov—Ranninger theory of a Fermi—Bose mixture [104,
105]. Our consideration is limited in this review to the single-
channel approach, which brings the physics of resonance
quantum gases close to the physics of high-temperature
superconductivity (if described using models similar to the
Hubbard model [106]). We stress that the Feshbach

resonance [99, 103, 107] (or, more accurately, the Fano—
Feshbach resonance [108, 109]) is currently under intense
scrutiny in different areas of solid state and plasma physics,
including the physics of electron correlations in the tunnel
density of micro-contact states [110].

3. BCS-BEC crossover in 3D systems

The theory of BCS-BEC crossover and experimental results
for three- and quasi-two-dimensional resonance Fermi
systems are reviewed in detail in numerous classic [§—11] and
more recent [78, 79, 83-85, 101, 103—-105, 111-124] publica-
tions, including our papers [19, 20], reviews [21, 22, 31-33, 88],
and monographs [18, 100]. To avoid repetition, we briefly
discuss only the most important aspects here.

A global phase diagram of the BCS-BEC crossover for a
3D resonance Fermi gas is shown in Fig. 2. The vertical axis
shows the dimensionless temperature 7/ef, and the horizon-
tal axis, the inverse gas parameter 1/apg. The BCS region of
extended Cooper pairs corresponds to negative values of the
scattering length ¢ < 0 and a positive value of the chemical
potential u > 0. At the same time, in the BEC region (for local
pairs), we have the scattering length a > 0 and chemical
potential y < 0.

In the weak correlation region (in the dilute BCS limit as
1/apr — —o0), Cooper pairing occurs close to the Fermi
surface, and hence u= ¢r = p2/2m in that case. The critical
temperature in the BCS region can be determined using the
well-known Gor’kov—Melik-Barkhudarov formula [12]

TBCS ~ (.28 ). 2
C SF eXp 2|a|pF ( )

As 1/apr — 0, we come close to the so-called unitary
limit [101]. In this limit, the system does not have any small
parameter, and therefore all the quantities, including the
total energy of the system, the chemical potential, and the
critical temperature, can be expressed in terms of only the
Fermi energy [125]. The chemical potential and critical
temperature calculated using the quantum Monte Carlo
method are as follows: p = 0.44er > 0 and T3S = 0.15¢¢
[126-128]. These values imply that we are still in the region
of positive u values characteristic of extended Cooper
pairs. The chemical potential u at the critical temperature
T. vanishes (and then changes its sign) only if the gas
parameter value is apg ~ 2.5 (1/apr = 0.4) [19], i.e., in the
positive scattering length region, a > 0. It is noteworthy
that for intermediate gas parameter values 1 < apg <3
(1/3 < 1/apr < 1), we have the dimensionless fermion

. T/er
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TS 03 lows L
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1 : 1
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Figure 2. Global phase diagram of a resonance 3D Fermi gas. The BCS
region corresponds to Cooper pairing, and the BEC region to Bose
condensation of local pairs [19, 21, 88, 100].
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density na® = pfa®/3n® < 1, which means that the overlap of
quasilocal pairs in this intermediate region is not yet strong
(unlike the dilute BCS limit), and the pairs only touch each
other. We can assert that, in a sense, we are dealing with a
Fermi-Bose mixture of quasilocal pairs and unpaired
fermions [18, 104, 105]. If 1/apr > 0.4, we pass to the BEC
region. The critical temperature of Bose—Einstein condensa-
tion can be found in this region in the limit of weak
correlations (in the dilute BEC limit at 1/apg > 1) using the
Einstein formula [7] with the nontrivial corrections calculated
in [116]:

TEEC = 0.26p [1 + 1.3a2_on'?]. (3)

We note that Eqn (3) contains an important quantity: the
scattering length of a local pair (molecule or composite
boson) on a molecule (another composite boson) a;_». We
show in Section 4 that a;_» = 0.6]a| > 0, where « is the
scattering length for an elementary fermion on a fermion
[31, 32, 114]. We also note that 0.2¢¢ = 3.31(1/2)*>/2m, in
accordance with the standard formula for the temperature of
Bose—Einstein condensation in a gas of composite bosons
with the density n/2 = p2/6n* and mass 2m. We stress that
another temperature is specific to the dilute BEC region,
which is determined using the Saha formula [129]; this
temperature describes a smooth crossover between local
pairs and unpaired fermions:

_ | Ep| o 7BEC
TG (Bl (4)

where |Ey| is the absolute value of the binding energy of the
composite boson (or molecule). This temperature can be
found from the condition of thermodynamic equilibrium
between the unpaired fermions ng and molecules (composite
bosons) ng:

We observe a new interesting state of matter in the inter-
mediate temperature range T2E¢ < 7' < T.: a normal (non-
superfluid) Bose gas of composite bosons (molecules) with the
mass 2m and density n/2 [18-20]. A Bose gas of charged
particles (local electron pairs or bipolarons with charge 2ein a
normal, nonsuperconducting, state) exhibits nontrivial
dependences of the thermal capacity and resistance on
temperature and a tunnel contact with nontrivial properties
(in particular, transparency) between the normal (nonsuper-
conducting) gas of local electron pairs and a standard BCS
superconductor with extended Cooper pairs.

4. BCS—-BEC crossover
in quasi-two-dimensional systems

The kinematic dimension available for observing the BCS—
BEC crossover and studying collective mode spectra and
similar phenomena in experiments with ultracold gases [130,
131] chronologically varied as follows: first, gases were
fabricated with the dimension D = 3 in spindle-shaped traps
with the harmonic potential near the bottom and the
frequencies w,,w, > w:; next, gases with the dimension
D =1 in similar traps with only the lower level of motion
along x and y populated; and only recently did a transition to
the dimension D = 2 occur (disc-shaped traps with frequen-

cies wy, w, < ;) [22, 132-134]. Thermodynamic and trans-
port properties in quasi-two-dimensional layered systems,
thin films, and purely two-dimensional electron monolayers
have been explored in depth in the physics of high-tempera-
ture superconductivity and strongly correlated Fermi systems
for many years, at least since the early 1980s, when the
quantum Hall effect was discovered [135, 136] and, not
infrequently, significantly earlier. The origin of these experi-
mental studies dates to times when the semiconductor
industry for microelectronics was being built and super-
lattices, inverse layers in heterostructures, interfaces, twin-
ning layers, etc. were explored in depth.

Also beginning in the early 1990s, He-3 monolayers on
Andreev levels on the free surface of thin superfluid He-4
films or on the free surface of graphoil (peeling off graphite)
were created and studied in depth (from the perspective of
thermodynamic properties), using both experimental and
theoretical methods, in the physics of quantum liquids and
crystals [18, 68, 137-143]. The interest in 2D systems in
condensed matter physics has lately been related to studies
of transport, elastic, and thermodynamic properties and
possible anomalous superconductivity of graphene mono-
and bilayers and graphene heterostructures (and similar
structures) such as h-BN (boron nitride or ‘white graphite’)
and interfaces such as that of SrTiO;/LaAlO; heterostruc-
tures [87-89, 144-149].

To return to the physics of ultracold gases with 2D
kinematics, we note that a number of experimental issues
had to be resolved to have them obtained and studied. The
main issue is how motion along the z axis can be excluded.
This can be done by placing the gas into a heavily anisotropic
potential

2.2 202, 2
mw?z?  moi (x* + %)
V) =—F—+—>3 ,

@ > @y, (6)

where m is the fermion atom mass. A sequence of potentials
like (6) can be obtained using a standing electromagnetic
wave created by two counter-propagating laser beams whose
frequency is tuned to be far below electric dipole transitions in
the atom. The standing wave in the case of Gaussian-mode
beams generates the potential

mo? (x* +)7)

35Ens >0052 (kz)} , (7)

V(x) = SEre {1 ~exp (—

where k is the wave vector of the electromagnetic wave,
Eee = h2k2/2m is the photon recoil energy, and s is the
dimensionless depth. The shape of the potential near an
antinode is close to (6) with the frequency along the tight
confinement direction w, = 24/sE./h. Trapping of the
atomic gas in antinodes is schematically shown in Fig. 3a.
Such potentials were created in [132, 133] using lasers with
wavelengths of 10.6 pm and 1.064 pm. The gas cloud in each
antinode is an isolated 2D system.

The requirement of kinematic two-dimensionality for the
Fermi gas of N noninteracting identical fermions at 7= 0 is
equivalent to the condition ¢r < /iw, for the Fermi energy
(Fig. 3b). Because ¢ = fiw | /2Ny, the maximum number of
atoms that can be located in the trap without violating the
two-dimensionality requirement is N = ©?/(20w?). Tt is
therefore desirable to increase the ratio of frequencies
w:/wy;. While in [132] w./w, =54.6, thus allowing
Nimax = 1490, the ratio w./w, =640 was attained in
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Figure 3. (Color online.) (a) Confinement of 2D gas clouds at antinodes of a standing electromagnetic wave. The gas is displayed in dark-red color, and the
intensity distribution of radiation with a wavelength of 10.6 pm in light magenta. (b) 2D ideal Fermi gas at 7= 0 whose motion along the z axis is limited
to a single state, while its motion along x and y is almost free. (c) Image of gas clouds along the y direction presented in [132]. (d) Homogeneous Fermi gas.
Gas concentration distribution in the plane (above) averaged over several dozen repeated experiments and the concentration along the diameter cross

section (below) (reported in [150]).

subsequent studies [133, 151], enabling the number of
particles to be increased to Njpax = 2 X 10°.

The requirement of the maximum possible ratio w./w
can be fulfilled by increasing w.; however, this makes the
requirement regarding the stability of trapping radiation
intensity more stringent. Intensity fluctuations are known
to result in gas heating with a rate ~ w? [152, 153]. We
note that rather deep degeneracy was attained in the
above-mentioned experiment [132] with a relatively small
value w./(2n) = 5.57 kHz, and gas was cooled to the
temperature 7 = 0.lep. However, at a higher frequency
®./(2m) = 78.5 kHz, this deep degeneracy was not observed,
and the temperature was T = 0.27¢r [151]. The directional
stability of the beams that create the standing wave is also of
importance, because angular instability easily results in
swinging oscillations of the centers of mass of clouds in the
xy plane.

Two-dimensionality breakup can be caused, apart from
the chemical potential exceeding %, by thermal excitation,
interactions, or the nonequilibrium population of energy
levels in the process of preparation. For example, an excited
Bloch band can be filled in a gas with a small number of
collisions when the standing wave is activated if, prior to
activation, the chemical potential exceeds the recoil energy
Erec~

The breakup of two-dimensionality by interaction
between particles remains an involved issue [21, 154-156].
Even an insignificant interaction between two atoms mixes
the states of the atom motion along the z axis. At the same
time, the motion of the pair of atoms remains strictly two-
dimensional, because the problems of the center-of-mass
motion and pairwise interaction are separated in the
harmonic potential. The contribution from three-, four-,
and multiparticle interactions to the kinematic dimension
has to be clarified. Such interactions are apparently effective
in the strong-coupling regime, i.e., if the energy of interaction
between particles is of the order of the kinetic energy.
Experimental data reported in [155] indicate a breakup of
kinematic two-dimensionality in the case of strong attraction
between atoms. However, the same data can be explained
without involving the breakup of kinematic two-dimension-
ality [21]. The effect of kinematic two-dimensionality and
interactions on the atom spin flip in a high-frequency
magnetic field was explored in [157].

Another important issue in the experimental setup was
taking images of gas directly in traps without deactivating the
trapping potential and the subsequent flying apart. If flying
apart continues for a long time, particles from clouds with
different populations (and hence, presumably, occupying
different collective states) become intermixed, thus compli-
cating the interpretation of data. Figure 3¢ shows images of
the gas in a series of traps [132] obtained without deactivating
the trapping potential. The images were taken along the plane
of 2D systems.

Images taken along the z direction yield more profound
information about the properties of the system and, in
particular, enable measuring correlation properties and
searching for the vortices that are supposed to emerge if, for
example, superfluidity breaks up in accordance with the
Berezinskii—Kosterlitz—Thouless mechanism [76, 77]. A sin-
gle system has to be fabricated to make such images. A single
trap close to potential (6) was created in the flattened focus of
a laser beam with a short Rayleigh distance [134]. Another
way to create a single system is to fill only one minimum in the
standing wave [155, 158]. Images were taken in [155, 158]
along the z direction. We note that the number of atoms in the
2D gas was significantly increased in these studies, which
made the system more macroscopic. Reportedly, N ~ 10°
atoms have been prepared, compared with N ~ 1000 involved
in earlier experiments [122, 132—134, 151, 154, 159].

An important step that has been made recently was to
create a homogeneous 2D Fermi gas [150] in which weak
parabolic confinement in the xy plane was substituted with a
rectangular potential. An image of the homogeneous Fermi
gas is shown in Fig. 3d. The removal of inhomogeneous
confinement is of interest for a number of reasons. First, the
absence of homogeneity limits correlation radii near phase
transitions. Second, such a trap enables observing Fulde—
Ferrell-Larkin—Ovchinnikov superfluidity [70, 71] and pair-
ing in the p-wave channel according to the Kohn—Luttinger
mechanism [64-66] for partly spin-polarized Fermi gases,
problems that are discussed in Section 9.

Quasi-two-dimensional traps are of interest in the
theoretical context owing to the manifestation of the fluctua-
tion corrections [18, 21, 78, 79, 88] related primarily to the
nature of the Berezinskii—Kosterlitz-Thouless mechanism in
2D systems [76-82, 160-163] and the nontrivial power-law
decrease of phase correlators in those systems [164-169]. We
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first summarize the main results of the mean-field theory for
the BCS-BEC crossover in the 2D system obtained in [83—85]
as part of the Leggett self-consistent theory [9] and in [78],
where a special Hartree—Fock ansatz was used for the
chemical potential of a weakly nonideal 2D Bose gas with
repulsion. We note that two phenomena concurrently exist
for symmetric attractive potentials in 2D Fermi systems
regardless of the potential strength |U| (without the occur-
rence of a threshold): pairing of two particles in a vacuum (in
real space) and Cooper pairing of two particles on the
background of the filled Fermi sphere in the momentum
space. This is the most substantial manifestation of the
difference between the 2D world and the 3D world (where a
bound state of two particles only emerges for sufficiently
strong potentials with the amplitude |U| > W, where
W~ hz/mr(z) is the characteristic energy of zero-point oscilla-
tions and r is the range of the potential). Miyake’s results [83]
show that the mean-field critical temperature in the BCS
region (at |Ep| < 2¢p) can be calculated using the formula

TES = \/2¢¢|Ey| . (8)

Consequently, at low temperatures T < |Ep| < 2¢F, the
chemical potential has the form

F—— =0. 9)

The mean-field temperature in the BEC region (at |E,| > 2¢F)
according to the results in [78] is
BEC ér

Te T 4ln(1/f) ]

where f>_, corresponds again (as in the correction to Einstein
formula (3) in the 3D system) to the scattering amplitude of a
dimer (composite boson or molecule) on a molecule. We show
in Section 5 that in accordance with [113],

o 1
2 T in (1.6]Ey| /265)

(10)

(11)

We note that in 2D systems, the Galitskii—-Bloom standard
dimensionless gas parameter [170, 171], which is related to the
scattering amplitude of the elementary fermion on a fermion,
has the form

1 1
fO(PFa2D) - 2 ln (pFagD) - 11’1 (|Eb|/25‘p) ’

(12)

where ayp is the 2D scattering length. Equation (12) correctly
describes both the BEC region with strong attraction, where
|Ep| > 2¢g, and the BCS region with weak attraction, where
|Ep| < 2¢p. As aresult, to plot the phase diagram of the BCS—
BEC crossover for 2D systems (by analogy with the inverse
gas parameter 1/(app) in the 3D case), it is helpful to
introduce another dimensionless parameter

1 1 (|E|
= =—In{=—"). 13
& ZfQ(])F[IZD) 2 n (2?1: ( )
Equations (8) and (10) for the critical temperature in the BCS
and BEC regions can be expressed as 7.2 /er ~ 2exp g and
TBEC /er ~ 1/[41n (6.4g)], and we can qualitatively plot the

mean-field phase diagram of the BCS-BEC crossover in 2D
system using variables 7/er and g [21]. The global phase

T/SF

BCS BEC

0 g

Figure 4. Global phase diagram of the BCS-BEC crossover for 2D systems
plotted in the mean-field approximation [21]. The vertical axis shows the
dimensionless temperature 7/¢p, and the horizontal axis the dimensionless
parameter g = (1/2) In (|Ep|/2er), which is convenient for describing 2D
situations. The left-hand part of the phase diagram at g <0 (and,
consequently, at |Ey| < 2¢g) shows the BCS region for extended Cooper
pairs, and, located in the right-hand side of the phase diagram at g > 0 and
|Ep| > 2eF, is the BEC region of local pairs. The intermediate region of
strong fluctuations corresponds to absolute values of the binding energy
|Eb| ~ 28]:.

diagram of the BCS-BEC crossover in the 2D system is
shown in Fig. 4. We note that the chemical potential in the
BEC region at low temperatures and in the intermediate case
|Ep| = 2¢r is still controlled (up to small corrections) by
Eqn (9). A very unusual pseudogap phase of the normal
(nonsuperfluid) gas of composite bosons emerges in this
region, totally similarly to the situation in weakly doped
superconducting cuprates at higher temperatures 7 > T,
[112]. But the chemical potential in the dilute BEC region at
|Ep| > eF takes the value u ~ —|Ey|/2 or, more accurately, if
scattering of a dimer on a dimer in the 2D case is taken into
account, we obtain
|Eb| TNID

S T

Sz, (14)
where nyp is the 2D concentration. Hence, for the boson
chemical potential we have

mn

2D
ﬂBose%2M+|Eb‘37f2*2>ov (15)

as it should be in a weakly nonideal gas of repulsing
composite bosons. We also note that similarly to the 3D
case, there is one more characteristic temperature of the
smooth crossover between the paired and unpaired
fermions in the dilute BEC region, which is determined by
the Saha formula. In 2D systems, this temperature has the
form

| Eb|

" In (|Eol/2er) (16)

If TBEC < T < T., the normal Bose gas phase reemerges in 2D
systems with an unusual behavior of the thermal capacity and
other thermodynamic and transport characteristics.

5. Fluctuation corrections and the Berezinskii—
Kosterlitz—Thouless transition

Important estimates have been obtained in [78, 79] for the
difference between the exact Berezinskii—Kosterlitz—Thouless
critical temperatures TPXT and the mean-field temperatures
in the BCS and BEC regions for a 2D Fermi gas. The results in
[78] show that the difference between the exact and mean-field
critical temperatures in the dilute BEC region of local pairs (at
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|Ep| > ep) is small in the 2D case and can be calculated using
the formula

L ]

~fra<l. (17)

BEC
Tc

The difference between the exact and mean-field tem-
peratures in the dilute BCS region of extended Cooper pairs
at |Ep| < ¢F is again small and, according to [79], is

|TCBKT _ TCBCS| N TCBCS N @ <1
TQBCS EF EF ’

The difference between the exact and mean-field tempera-
tures (and hence the effective width of the fluctuation region)
becomes significant in the intermediate region at |Ey,| ~ 2ep
[21]. It is noteworthy that the region of strong fluctuations
coincides well with the pseudogap phase region in the BCS—
BEC global phase diagram, where T > T,. We stress that the
additional suppression of fluctuations in the quasi-two-
dimensional situation, where the trap effectively contains
two or more 2D layers, can be related to Josephson tunneling
between the layers [172, 173], a phenomenon that can result in
the transformation of the standard 2D quadratic form for the
fermionic spectrum &(p)) = pi/2m to e(py,p:) = pjf/2m+
J[1 — cos (p-d)], where d is the distance between the layers
and J is the amplitude of tunneling between the layers. Owing
to the emergence of an additional term, proportional to J, in
the fermion spectrum, the spectrum rather rapidly becomes a
3D spectrum and thus suppresses the fluctuations [174]. We
note that the emergence and dissociation of a vortex—
antivortex pair characteristic of the Berezinskii—Kosterlitz—
Thouless transition and the specific power-law decrease in the
phase correlator are primarily exhibited near the exact critical
temperature, while at low temperatures these features are
manifested much more weakly, as a result of which the
accuracy of the mean-field approximation is much better
[18, 21, 88]. The interesting experiment [148] where the
layered (bilayer) LaAlO;—SrTiO; system was explored
should be noted in this context.

The emergence [165] and pairing [167] of vortices have
been experimentally observed in weakly nonideal Bose gases
of atoms. Similar effects have not yet been observed for either
Fermi atoms or even two-atom molecules on the boson
asymptote of the BCS-BEC crossover. At the same time,
another specific signature of the Berezinskii—Kosterlitz—
Thouless transition has been discovered: the correlation
decrease law changes with temperature from a power-law
dependence to an exponential one [164]. In [164], a gas
consisting of N = 103 ®Li atoms equally distributed between
two spin states was explored experimentally. The s-wave
interaction was controlled using an external magnetic field,
which was selected to be in the vicinity of the Feshbach
resonance, located at B, = 832 G. The 2D kinematics was
ensured by confining particles in a disc-shaped trap with the
frequency ratio w./w,; ~ 310. The first-order correlation
function g;(r) was obtained from the experimentally mea-
sured momentum distribution 7i>p (k):

(18)

gi(r) = JﬁgD(k) exp (ikr) d’k . (19)

The distribution 72;p (k) was measured using the focusing
technique, which we now describe. After the gas had been

prepared at a given level of s-wave attraction, the magnetic
field was rapidly, during a time < 1/w,, decreased to
B = 692 G, a value that corresponds to the Bose side of the
resonance, and [./a =7.11, where I, = \/Ii/(mw.) is the
characteristic thickness of the 2D system. The radial size of
the gas does not change during the switching, and the atoms,
at least those initially paired, form compact molecule dimers.
Immediately after the interaction is tuned, the optical trap is
switched off. As a result, trapping vanishes in the longitudinal
direction and weakens in the radial direction, and the cloud
begins flying apart along the z axis. The particles move in
radial directions in the residual magnetic potential with a
frequency wexp/(2m) =~ 10 Hz. An image of the cloud is taken
after a quarter of the period 7/4 = n/(2weyp ), owing to which
this observation method is referred to as focusing. If
interaction between the particles can be disregarded, the
residual potential in the radial direction acts as a lens, under
the effect of which the 2D concentration distribution after
flying apart, nop(r, ¢ = t/4), coincides up to a factor with the
initial momentum distribution 7,p (k, f = 0). It was assumed
in [164] that the obtained image of density distribution
corresponds to the momentum distribution immediately
before the release. Interpretation of the images is therefore
dependent on the assumption about the collisionless motion
of particles after the optical potential is switched off. An
argument in favor of this assumption is that the weakening of
the interaction as a result of a decrease in B and flying apart
along the z axis crucially diminish the collision rate.

The measured correlation function g; (r) [164] is shown in
Fig. 5. The measurements were made for the same interaction
parameter In (kpaxp) ~ —0.5 that corresponds to the strong-
coupling regime and, at various values of the dimensionless
temperature t = T/ T3gc, where T = erv/3/m is the ideal
Bose-gas condensation temperature. We can see that the
correlation function decreases at rather low temperatures
in accordance with the power law g;(r) oc r17) with an
exponent #(7'), while at higher 7 it decreases exponentially.
Switching from the exponential decrease to a power-law
behavior manifests the emergence of superfluidity. It is
noteworthy that the measured exponent n =0.6—1.4 is
significantly higher than the value # < 0.25 that would be
expected for a homogeneous gas. A Monte Carlo simula-
tion confirms that # can increase as a result of inhomo-
geneity [164].

10° In (k[:dz])) ~ —0.5
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Figure 5. (Color online.) First-order correlation function g (r) at various
temperatures and In (kpaxp) = —0.5. The t = T/ T3 temperature scale is
used. At temperatures above a certain value, the correlation function
decreases exponentially, as is expected for a normal gas. At lower
temperatures, a power-law decrease with the exponent #(7) is observed.
(Quoted from [164].)
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The described measurement of the g(r) correlation
function [164] is based on the assumption that after the
confinement is switched off, the cloud flies apart along the z
axis without collisions [21]. The superfluid phase can fly apart
according to a different scenario that follows from the
hydrodynamic equations for superfluid gases [21]. This
would make both the relation between nyp(k,7/4) and the
sought 7,p(k,0) and the calculation of g;(r) using the
measured nyp(r,7/4) more involved. However, flying apart
in the normal phase is supposed to occur almost without
collisions due to small collision cross sections. Therefore, the
measured power-law decrease in g;(r) cannot be obtained in
the normal gas and is therefore evidence of superfluidity.
Calculations of the 1 exponent performed recently take the
inhomogeneity of the trapped gas [166, 168] and the
contribution of the normal component [168] into account.
The calculated results are close to the measured one [168], and
this can be regarded as an argument against the hydro-
dynamic-expansion model.

6. Strongly interacting mixture of spinons
and holons in high-temperature superconductors

There is another nice analogy between the physics of
composite particles in the BCS-BEC crossover for quantum
gases and the physics of composite holes (spin polarons or
magnetic strings) in cuprate high-temperature superconduc-
tors (HTSCs) with a small concentration of holes. This
analogy, suggested in review [33], is related to Laughlin’s
ideas [175, 176] regarding the confinement of spin and charge
in strongly correlated 3D and 2D systems and the classic
results of Bulaevskii-Nagaev—Khomskii [177] and Brink-
man—Rice [178], who used the analogy with quark physics to
predict the emergence of a linearly growing trace of wrongly
oriented frustrated spins (string confinement potential) when
a hole propagates on the antiferromagnetic background.
Actually, following Laughlin’s ideas, we can regard the hole
as a composite object resembling a quark bag, containing a
holon and a spinon connected with a string or confinement
potential. It should be kept in mind that according to
Anderson’s suggestion [179], the physical hole /;, at a site i
with spin ¢ in the so-called adjoint representation can be
represented as

hirr :fmbl ’

where f;, is the spin part of the composite hole, or spinon,
with spin ¢ at the site i, and b; is the charge part of the
composite hole (or holon). Usually, the spinon is a fermionic
excitation (fermion) with S = 1/2 and Q = 0, and the holon
is a boson with spin S = 0 and charge Q = e. By solving the
Schrodinger equation with a linear confinement potential,
the binding energy E}, can be determined for the ground state
of the string oscillator (spin polaron or composite hole),
while taking the probability of quantum tunneling (actually,
quantum fluctuations in the exchange interaction) into
account yields a large but finite mass me ~ 1/J of the spin
polaron. As a result, the composite-hole spectrum on a
square 2D lattice characteristic of HTSC cuprates has the
form [180]

(20)

Ey = Ey + J(cospyd + cosp}.al)2 . (21)

At the same time, the Cooper pair with a low hole density is a
pair of composite holes A,/ with opposite spins at the sites

i, j of the crystal lattice or a quadruple (fi;b;, fj—sb)) consisting
of two holons and two spinons. We note that the bound state
of two composite holes (two strings) on a square 2D lattice
can emerge due to a residual dipole—dipole interaction
between them in the d,>_,>» channel [181, 182]. This interac-
tion in the 2D #—J model has the form

(22)

If the hole concentration is low, we can speak about the
formation of local pairs from composite holes at the smooth
crossover temperature 7, ~ |Ey| and their subsequent Bose
condensation at a (lower) critical temperature TBEC ~ Jx,
where x is the hole concentration in the 2D system [33, 100].
We note that the linear dependence of the critical temperature
on the hole concentration agrees with Uemura’s scaling
results [183] based on the boson superconductivity scenario
in weakly doped HTSC systems. At the same time, if the hole
density is higher (and hence the electron density is lower),
extended Cooper pairing of two composite holes (two spin
polarons) is shown to occur in the r—J model [184, 185].
Therefore, we can conclude with some caution that the BCS—
BEC crossover occurs for the pairing of two composite holes
(two spin polarons or two strings) in the d-wave channel for a
weakly doped HTSC system. However, this crossover seems
not to be smooth and must contain a quantum critical point
or even intermediate phases on the boundary between the
BCS and BEC regions [100, 186, 187].

7. Composite fermions and bosons, trios
and quartets in resonance gases and mixtures

We can actually say that in the HTSC systems we are dealing
with a strongly interacting Fermi—Bose mixture of spinons
and holons, with a linearly increasing repulsive confinement
potential acting between the fermions and bosons. We note
that a short-range repulsive (or van der Waals) potential
between fermionic He-3 and bosonic He-4 atoms is usually
observed in solutions of He-3 in He-4. At the same time, both
short-rage repulsion and short-range attraction can emerge in
resonance fermion—boson mixtures. We consider in more
detail how bound complexes consisting of three and four
elementary particles are created. We also explore the
amplitude of dimer scattering on an elementary particle and
on another dimer in the resonance approximation when the
two-particle scattering length is much larger than the
potential radius a > ry. We recall that the amplitude of the
(fs f-s) dimer scattering on a dimer, a;_», determines the
nontrivial correction to Einstein formula (3) for the critical
temperature of Bose condensation in the BEC region for 3D
resonance Fermi gases. The 2D amplitude of dimer scattering
on the dimer, f; ,, determines the mean-field critical
temperature (10) in the BEC region for a weakly nonideal
2D resonance Fermi gases. Composite fermions (f;b) and
bound complexes consisting of three (f,;b,b) and four
(fob, f—ob; f5b, bb) elementary particles emerge in a natural
way in fermion—boson mixtures with attraction between
fermions and bosons [29, 31-33]. Two-boson states (bh)
consisting of bosons of different species can emerge in boson—
boson mixtures under certain conditions and subsequently
undergo Bose condensation; the same is true for three-particle
(b1, b1by), four-particle (b1b,,bb>), and multiparticle boson
droplets [18, 30-33]. Finally, the scattering length a, | of an
elementary fermion f, on a dimer (f; f_,) plays an important



March 2019

BCS-BEC crossover, collective excitations, and hydrodynamics of superfluid quantum liquids and gases 223

] )3
Figure 6. Coordinate y (which coincides with R in Eqn (25)) describes the
distance between the elementary boson / and the center of mass of the
molecule consisting of two bosons (2 and 3) [33, 100].

role in determining the lifetime of metastable quasiresonance
states of a Fermi gas confined in a magnetic trap [188]. A
crucial difference between 3D and 2D systems must be noted
here. An important role in 3D systems is played by the so-
called Efimov effect [189, 190], according to which, ifa > r(in
the 3D case, a large number

1
N~—-In 2 (23)
T ro
of three-particle levels emerge in the energy range
1 1
— < |E3l < —5 . 24
ma? 12l mr? (24)

0

This phenomenon, which occurs in space dimensions
2.3 < D < 3.8 1isrelated to the presence of an attractive part
o

Vet = —=—5 <0

R (25)

in the three-particle Schrodinger equation (Fig. 6), with the
coefficient o in (5) depending on the space dimension D. As a
result, the phenomenon of falling on the center occurs in the
3D system of three bosons, and three-particle complexes
emerge whose binding can be arbitrarily strong. At the same
time, the Efimov effect does not exist in 2D systems [191]. The
reason is that in this case, the three-particle Schrodinger
equation contains a repulsive term Ve ~ f/R? > 0 instead
of'an attractive one. The number of three-particle levels with a
negative energy E; < 0 becomes finite in the 2D case. The
kernel of the Skorniakov-Ter-Martirosian integral equation
[192] for the three-particle T-matrix in a 2D system also
becomes finite. The exact solution of this equation in the 2D
case shows that the system of three bosons interacting in a
resonance way has only two levels, whose three-particle
binding energies [193, 194] are

E!" =164E,, E? =13E,, (26)
where E, < 0, as before, is the two-particle binding energy
(for two elementary bosons). Similarly, there is only one
bound level [31] in the scattering of an elementary boson b
on a composite fermion f;b or scattering of an elementary
boson b; of one species on a molecule by b, (consisting of two
elementary bosons of different species); the energy of this
level is [31]

E; =2.4F, (27)
for two identical boson and fermion masses mp = mg. We
stress again that the binding energies of the three-particle
complexes Ej3 in (26) and (27) are functions of only the two-
particle binding energy Ej,.

In contrast to the situation with bosons, the Pauli
principle plays a decisive role in analyzing the three-fermion
problem: it results in an effective repulsion between the
elementary fermion f; and the molecule f,f_,, irrespective
of the space dimension. As a result, the exact solution of the
Skorniakov-Ter-Martirosian equation (found for the first
time in [192] for the scattering of a neutron on a deuteron)
yields the classical result in the 3D case:

ar_| = 1.18|a| >0. (28)

We now proceed to the four-particle problem and first
consider the scattering of an f;f , molecule on another
molecule. In this case, owing to the Pauli principle, we also
have repulsion in both 3D and 2D systems. The exact formula
for the scattering amplitude in the 3D case,

ay_ ) = 06\a\ > 0, (29)
which takes into account the dynamics and possible existence
of virtual intermediate states that contain not only two
molecules (pairs or dimers) but also three particles and one
particle, was obtained in [114] at the level of a correctly chosen
ansatz for the four-particle Schrodinger equation and in [31]
at the level of an exact diagram approach to solving a
Skorniakov—Ter-Martirosian-type integral equation for the
four-particle T-matrix. We note that in [195], the diagram
approach in the so-called ladder approximation (which is
related to multiple rescattering of pairs without losing their
identity and does not take the possible formation of triplets
and singlets in the intermediate state into account) yielded a
somewhat larger value (compared to the exact one),
ay—» = 0.75]a] > 0. In the 2D case, similarly, Eqn (11) for
the scattering amplitude f;_, was obtained in [113].

In proceeding to the analysis of four-particle boson
complexes, we note that in the 3D case we again observe an
analog of the Efimov effect involving the fall on the center and
the emergence of strongly bound four-particle complexes. At
the same time, this effect is again absent in the 2D case, and we
again obtain a finite number of bound states. For four
elementary bosons bbbb interacting in a resonance way,
there are two bound states with the energies

E{" = 194E,, E{ =24E,. (30)
The energies of these levels were first determined in [196]. For
fsb, f—-b complexes consisting of two elementary bosons and
fermions or the byby, b1by complex consisting of bosons of
different species, we again have two bound states with the
energies [31]

EMN =107E,, E® =29E,. (31)
Finally, for the complex f;b, bb in the case of equal masses
mpg = mpg, there is only one level [31]

Ey=4.1E,. (32)
We note that the energies of bound states of four-particle
complexes in Eqns (30)—(32) in the 2D case are again
expressed (similarly to three-particle complexes) in terms of
the two-particle binding energy alone. The results obtained in
the preceding section enable us to complete the construction
of the phase diagrams of 3D and 2D resonance fermion—
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boson mixtures with attraction between fermions and bosons
and mixtures of bosons belonging to different species [18, 29,
30, 68]. We stress that in a fermion—-boson mixture with
equal densities of fermions and bosons, ng = ng, and strong
(resonance) attraction between fermions and bosons, if the
binding energy of a composite fermion is much larger than
the fermion and boson degeneration temperatures,
|Ev| > {Tos, Tor}, then all elementary particles can combine
pairwise into composite fermions f;b or (if relations (27) and
(31) are satisfied) into quartets f,b, f_ ;b containing two
fermions and two bosons or into large droplets with the
number of particles N > 4 [18].

8. s-wave and p-wave pairing in solutions
of He-3 in He-4. Kohn—Luttinger mechanism

One of the most challenging problems in low-temperature
physics that has yet to find an experimental resolution is the
search for superfluidity in 3D and especially 2D (thin films,
submonolayers) solutions of He-3 in He-4. The solution of
He-3 in He-4 is known to be the simplest diluted Fermi system
of He-3 atoms (the maximum He-3 concentration in an
unpolarized solution is x =9.5% under the pressure
P =10 atm) placed into inert superfluid He-4 condensate.
The solutions are therefore an ideal subject for developing
and testing various theoretical methods for low-density Fermi
liquids, i.e., actually, the Fermi gas theory of Galitskii—-Bloom
[170, 171]. The first classical results in which Cooper pairing
in the diluted fermion subsystem of He-3 atoms was predicted
were published by Bardeen, Baym, and Pines [197]. Those
results were obtained in the late 1960s shortly after the BCS
theory had been formulated [4-6].

The theory of fermion superfluidity for He-3 atoms in
solutions was further advanced by Bashkin and Meyero-
vich [198] and an author of this review [68]. We recall that
the critical temperature of Cooper pairing in dense super-
fluid He-3 (with the He-3 concentration x = 100%) is
2.5 mK (under the pressure P = 34 atm) and corresponds
to the transition of this dense Fermi liquid into a superfluid
state with triplet p-wave pairing (the state with the total
Cooper-pair spin S = 1 and relative orbital momentum of
the pair /= 1) [50, 51]. Only two of 18 possible superfluid
phases of 3D He-3 have been observed in experiment: the
so-called isotropic triplet B phase and anisotropic triplet
A-phase [199-203]. The isotropic B phase is paramagnetically
suppressed in magnetic fields H > 1 T, as a result of which the
phase diagram of superfluid He-3 becomes trivial. The
normal He-3 phase transforms in strong magnetic fields into
the superfluid triplet Al phase with the Cooper pair spin
projection S, = 1, and afterwards, at lower temperatures, the
global minimum of the Ginzburg—Landau functional corre-
sponds to the A2 phase, which also contains Cooper pairs
with the projection S, = —1 [50, 51]. At the same time, it was
predicted in [68, 198] that singlet s-wave pairing (S =/=0)
occurs in diluted solutions of He-3 in He-4 in both 3D and 2D
situations (for submonolayers) at low He-3 concentrations
(x < xg), while at higher concentrations, triplet p-wave
pairing occurs. In addition, it was shown in [67, 68, 204] that
the critical temperature of the triplet pairing can be
significantly increased in a spin-polarized solution or strong
external magnetic fields.

We note that the critical temperature of s-wave pairing in
3D solutions is again determined by Gor’kov—Melik-Barkhu-
darov formula (2) for extended Cooper pairs. The Galitskii

effective gas parameter (which is contained in the exponent
for T¢) is now determined by the formula

2 1/3
1= aproX 7
T

(33)
where prg is the Fermi momentum of dense He-3 and x is the
He-3 concentration in a diluted solution. In this approach,
the scattering length « depends on the concentration and
changes sign at x = x. It corresponds to attraction (a < 0)
at x < xo and becomes repulsive (a > 0) at x > xy. Spin
diffusion experiments performed in the 3D case suggest that
xo ~ 4% [204]. The estimates in [198] show that the critical
temperature of s-wave pairing attains a maximum at the
concentration x ~ 1% and is of the order of T,y ~ 10~* K.
However, according to the Frossati group’s estimates [204],
the maximum critical temperature corresponds to the He-3
concentration x ~ 2% and is an order of magnitude lower:
Teo ~ (5 x 1076—1073) K. For the concentration x > 4%,
the scattering length becomes positive, and s-wave pairing
is no longer possible. However, superfluid p-wave pairing
in the triplet channel is possible in this concentration
range [68], being driven by the generalized Kohn—Luttin-
ger mechanism [64—66]. The Kohn—Luttinger mechanism
was initially suggested in the classic study [64] for d-wave
pairing in the 3D case. It is related to the presence of the
Kohn singularity of the form (¢ — 2pg)In|g — 2pg| [205]
(Friedel oscillations cos (2pgr)/(2pgr)® [206]) in the effective
interaction of two fermions via polarization of the fermionic
background. These results were later generalized in [65, 66] to
triplet p-wave pairing, where the Kohn singularity and
Friedel oscillations play only a minor role in determining the
critical temperature.

It was assumed in [207] that for the p-wave pairing to
occur, it is sufficient that the effective interaction in the
momentum space between two fermions via polarization of
the Fermi background increases in the important interval
from 0 to 2py (and afterward decreases in the case of a diluted
Fermi gas at larger momenta p > 1/ry, where ry is the
effective radius of the potential and pgro < 1). The critical
temperature of p-wave pairing then has the form [65, 66]

13
Te1 ~ eFexp )

where the effective gas parameter A follows from Eqn (33) and
the Fermi energy in a 3D solution is &p = &rgx >/ (Where &g is
the Fermi energy of pure He-3). Importantly, the critical
temperature of p-wave pairing is determined by the second
order in the effective gas parameter, in contrast to s-wave
pairing, where Ty ~ ¢rexp (—1/|1|). We note that the pre-
exponential in Eqn (34) is determined by the third- and
fourth-order diagrams in the gas parameter and retardation
effects. It was calculated exactly in [208].

Kagan and Chubukov [66] have also shown that the
critical temperature of p-wave pairing can be significantly
increased in a spin-polarized Fermi gas and in a two-band
situation [209]. These results were generalized in a later study
[69] to the Fermi gas of neutral particles at ultralow
temperatures in a restricted geometry of magnetic traps and,
in [174], to an increase in the critical temperature in the
charged electron layer in a magnetic field parallel to the layer.
The main underlying idea is that the channels are separated:
two ‘up’-spin fermions (of the same species) create a Cooper

(34)
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Figure 7. Separation of channels with Cooper pairing and effective
interaction in a spin-polarized Fermi gas. The effective interaction is
related to two ‘down’ spins, while the Cooper pairing in the triplet channel
is related to two ‘up’ spins.
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Figure 8. Critical temperature TJJ of triplet p-wave pairing in the A1 phase
as a function of the polarization degree o in the 3D case [33, 67, 68].

pair, while their effective interaction is generated by two
‘down’-spin fermions (belonging to another species) (Fig. 7).
This mechanism enhances the role of the Kohn singularity,
which now acquires the form (¢; — 2pg)) In |q; — 2pg;|, which
leads to the emergence of the anisotropic triplet Al phase.
The critical temperature of p-wave pairing for this phase is
an essentially nonmonotonic function of spin-polarization
degree

_}’IT—I’ll

= 35
RS (35)

whose maximum is attained at the polarization degree
o = 48%. The p-wave pairing temperature at the maximum
can be significantly higher than the critical temperature in the
absence of spin polarization [66] (Fig. 8):

7
max TCTJ = TJJ(oc = 0.48) ~ &gy exp (7 —2) .

7 (36)

The maximum temperature for superfluid He-3 is [18, 66]

T (0= 48%) = 6.41T,; . (37)
Similar estimates for TCTIT have been obtained in [204] using a
more phenomenological approach based of the Landau
Fermi-liquid theory for the Al phase of superfluid He-3.
We stress that A ~ 1.4 for dense He-3, and therefore our
theory is more of a qualitative nature. Nevertheless, it yields
reasonable estimates for both pure He-3 in the absence of an

external magnetic field and the Al phase width in experi-
mentally available magnetic fields H < 15 T. We note that
Frossati et al. [210, 211] observed a 20% increase in the
critical temperature of triplet p-wave pairing in the Al phase
of superfluid He-3 in the magnetic field H =15 T (and
polarization degree « = 7%). Estimates in [68] show that the
maximum temperature of p-wave pairing in 3D solutions can
be attained at the maximum permissible concentration of
He-3 atoms x ~ 9.5% and for the optimum spin polarization
can reach the values 7| ~ (1075 —10%) K.

Another important observation reported in [212, 213]
that may result in an increase in TJIT is that the maximum
solubility in highly polarized solutions can exceed the
maximum solubility concentration at « = 0 by a factor of
3 to 4. We note that hopes to create a highly spin-polarized
solution of He-3 in He-4 in experiment, as in the case of
pure He-3, are related to the elegant technique of fast
melting of spin-polarized quantum He-3 crystals proposed
in [214].

We next consider the phase diagram of superfluid 2D
solutions. The s-wave pairing region in these solutions is
divided into two subregions. If the He-3 concentration is very
low (x < 1% and |Ep| > 2¢F), then, first, dimers consisting of
two He-3 atoms emerge at a higher temperature of smooth
crossover T, ~ |Ep| [215] and, second, they undergo Bose
condensation at a lower critical temperature determined by
Eqn (10), which in this case contains the 2D-solution Fermi
energy ep = epoX. A subregion of Cooper pairing emerges at
higher concentrations (1% < x < 3%), where the critical
temperature is determined by Miyake formula (8). Finally, if
x > 3% in the 2D case, triplet p-wave pairing occurs whose
critical temperature can again be significantly increased by
applying an external magnetic field. This strong increase in
the critical temperature is related to a strong 2D Kohn
singularity having a one-sided nature, Re+/¢ —2pg, and
being not effective for the Cooper pairing problem (where
momentum transfers ¢ < 2pg are of importance). But if an
external magnetic field is applied or spin polarization occurs,
the character of the Kohn singularity changes to
Re \/q; — 2pr), as a result of which (because pr; > pr|) the
strong 2D Kohn singularity becomes effective in the Cooper
pairing problem, and therefore T JIT significantly increases in
the second order in the gas parameter f;. The maximum
critical temperature corresponds to the polarization degree
o = 60% but in the 2D case, in contrast to the 3D case, the
maximum is very broad and effectively spans the spin
polarization range from 10% to 90% (Fig. 9).
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Figure 9. Critical temperature TJ]T as a function of the polarization degree
o in the 2D case [33, 67, 68, 87, 88].
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The critical temperature at the maximum is given by the
formula

max 7)1 = T/l (@ = 0.6) ~ erexp (— LQ) , (38)

2f;

where the Bloom effective gas parameter in the 2D case
Jo=1/In(1/pda?) is determined by Eqn (12) and the Fermi
momentum is pr = prox /2. Estimates in [68] show that if the
magnetic field is # = 15 T and the 2D density of He-3 atoms
is of the order of n3 ~ 0.05 monolayer (the spin polarization
degree is then o ~ 10%), we can expect experimentally
measurable critical temperatures T, JIT ~ 1 mK [68, 208].

In concluding this section, we repeat that experimental
observation of fermionic superfluidity of He-3 atoms in 3D
and 2D solutions of He-3 in He-4 remains one of the most
serious challenges in the physics of low and ultralow
temperatures. It is worth mentioning the progress in experi-
mental exploration of 2D He-3 submonolayers in the
degenerate (Pauli) regime at low 2D densities and ultralow
temperatures and search for the superfluidity by the Saunders
group [216, 217]. We note that a mixture of Li—°Li boson
and fermion isotopes [218] and a *K —%Rb mixture of a
bosonic Rb isotope and a fermionic K isotope [29, 33, 219,
220] are now explored in experimental and theoretical studies
of ultra-cold quantum gases. We stress that these mixtures
contain both a diluted fermion subsystem (Fermi gas) and a
diluted Bose gas. If a short-range repulsion between all
mixture components is in effect (for {Ugg, Ugp, Upp} > 0),
then, according to theoretical results reported in [218],
Cooper pairing in the triplet p-wave channel is possible in
the fermion subsystem via the Kohn—Luttinger mechanism
enhanced owing to density fluctuations in the bosonic
component. Attractive resonance interactions between a
fermion and a boson and between two bosons can be realized
in a mixture of potassium and rubidium isotopes. In this case,
experimental [220] and theoretical [33] studies suggest that for
ng > ng, large droplets can emerge and the boson component
collapses.

9. Imbalanced Fermi gas. Phase separation

The ideology of Cooper pairing driven by the enhanced
Kohn-Luttinger mechanism was generalized in [69] to the
imbalanced ultra-cold Fermi gas of neutral particles in a
restricted geometry of optical dipole traps. We note that Stoof
et al.[221] predicted that singlet Cooper s-wave pairing occurs
in the Fermi gas of °Li atoms with equal densities of trapped
hyperfine components in the case of an attractive scattering
length a < 0 according to the Gor’kov—Melik-Barkhudarov
formula (2). The critical temperature for the maximum
possible densities of the trapped fermion gas and resonance
scattering lengths |a| ~ (2—3) x 10 A (for which 4 < 1) can
be as high as 107® K. We note that if A > 1, the system
compressibility k ! ~ C2 < 0 becomes negative (the speed of
sound squared becomes negative), and the system becomes
unstable with respect to clustering or phase separation.

The authors of [69] noted an important circumstance: in
the case of even a small imbalance between the hyperfine
component densities (if, for example, for two components
Pr1 — pr2 = Too/vr, where vgp = prp/m is the Fermi velocity
and Ty is the critical temperature in the absence of
imbalance), Cooper pairs acquire a finite center-of-mass
momentum owing to the Landau superfluidity criterion, to
become unpaired at larger imbalance values. Strictly speak-

J J ] J
1 1 + ..+ v v

Figure 10. Loop diagrams that in the second order of the perturbation
theory in the gas parameter determine the effective interaction between
atoms belonging to the same component via excitation of virtual pairs of
the particle-hole type of the other component [69]. This sum does not
include the i = j term.

ing, first, a narrow strip of the Larkin—Ovchinnikov—Fulde—
Ferrel inhomogeneous superfluid phase appears in the phase
diagram [70, 71] in the case of a small imbalance, and, next,
s-wave pairing is fully suppressed. The trapped Fermi gas can
nevertheless become superfluid in this case as well, owing to
possible triplet p-wave pairing with the Al-phase symmetry.
As shown in Section 8, the most efficient pairing occurs in this
case between fermionic particles with larger pg; (or density
n, = p3,/6n?) via polarization of the components with lower
densities. The polarization diagrams that contribute to the
effective interaction Ve in the second order in the gas
parameter are shown in Fig. 10. Summing those diagrams in
the case of v trapped hyperfine components yields the triplet
p-wave pairing temperature in the absence of imbalance [69]

13
T ~ erexp (— m) )

where the gas parameter 4 depends on the density of
individual components. If v = 2, we naturally reproduce the
result for He-3 in (34). The optimal imbalance that is needed
to obtain the maximum critical temperature corresponds to
the density ratio n;/n; ~ 3 (or the Fermi momentum ratio
Prj/pri ~ 1.4). We note that the critical temperature in the
optimal situation is

7
Tc) ~ erjexp (—W) ’
- “eff

where 12, = (2a/m)’pg; pri. As a result, for the 3D imbal-
anced °Li gas (with the number of components v =
271+ 1 =3, where I = 1 is the nucleus spin) and densities at
which Aer < 1, we obtain the optimal critical p-wave pairing
temperature of the order of Ty; ~ 108 K. As follows from
Eqn (38), if the relation between the hyperfine component
densities in a quasi-two-dimensional imbalanced gas is
optimal, the maximum value of T, is supposed to be
significantly higher. Based on this result, one may hope that
Cooper pairing driven by the enhanced Kohn-Luttinger
mechanism can be observed experimentally in quasi-two-
dimensional imbalanced gases. If Aep > 1, the partial com-
pressibility and the speed of sound in each (or one) of the
subsystems is C2 ~ 0°E/0n? ~ dy;/0n; < 0, and the system is
again unstable with respect to phase separation. We also note
that following [222], a prerequisite for recalculating the
formulas for critical s-wave and p-wave pairing temperatures
for a trap is that the semiclassical approximation criterion be
satisfied (which requires the Cooper pair coherence length to
be less than the characteristic radius of the trap at the energy

(39)

(40)
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Figure 11. Triplet-pairing temperature as a function of the relative density
ny/ny in a 2D fermion—fermion mixture with two particle species [209].

Figure 12. Leading contribution to the effective interaction for Cooper
pairing of heavy particles via polarization of light particles. Unfilled circles
show the vacuum T-matrix 77 [223-226].

equal to the Fermi energy):

@~%<mm, (41)

where R ~ vp/ in the Thomas—Fermi approximation.
The condition for the validity of the semiclassical
approximation can be represented as

3F>T0>hwv (42)

where the estimated characteristic frequency of the harmonic

potential of a 3D spherically symmetric trap is
EF

w~—N1/3.

(43)

Here, N is the characteristic number of particles in the trap:

3
EF 6

N ~ (hw) ~ 10°.

Similarly, the maximum critical temperatures are to be
attained in quasi-two-dimensional gases at the optimum ratio
of the 2D densities of hyperfine components n;/n; = 4 or the
ratio of their Fermi momenta pg;/pr; = 2 (Fig. 11). We note
that all the results quoted above refer to the case where the
masses of different components are the same: m; = m;. For a
mixture of fermions of two different species with unequal
masses m; > mp, we can see that new exciting phenomena
related to polaron effects occur in the system [223, 224]. In
particular, the larger mass m; can be additionally (and
significantly) increased as a result of ‘dressing’ the heavier
particle with a coat of soft (low-energy) virtual particle—
antiparticle pairs of light particles [223]. The additional
increase in the ‘heavy’ mass is effectively controlled by the
parameter liff In (m; /my) > 1 related to the potential Uy, of
interaction between the light and heavy particles.

A similar phenomenon in electron systems in metals,
which is referred to as the electron polaron effect, is observed
in the mixed-valence regime in narrow-gap multiband
systems, such as uranium heavy-fermion compounds. In
such systems in the so-called unitary limit of the Hubbard
interaction between the heavy and light particles, starting
from the bare-mass ratio m; /m, ~ 10, one-particle calcula-
tions based on the local-density LDA method allow obtaining
the effective mass of the heavy particle m; /my ~ 100 if
polaron-type collective effects are taken into account. It was
shown in [223-226] that the maximum temperature of the
superfluid transition corresponds to the Cooper pairing of

(44)
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Figure 13. (Color online.) Linear concentration profiles measured in units
Ni/Rrr in a field of 775 G for ey /Ey = 0.75 (Rrp1 = /2651 /(ma?) is
the Thomas-Fermi radius for the spin majority and Ej is the binding
energy of two atoms in the trap). Green curves are plotted for the majority
(1), red for the minority (2), and dotted blue lines show the difference
between the profiles. Each plot is labeled with the corresponding
imbalance N,/N; value. The presence of a flat center part flanked by
two peaks in the difference plots is in agreement with complete pairing in
the core. (Quoted from [74].)

heavy particles occurring via polarization of light particles
(Fig. 12). We note that the large effective masses of heavy
particles are characteristic of many heavy-fermion com-
pounds. We also note that if the bare imbalance of the initial
densities and masses is very large (at /lgffmlppl /nappr = 1),
then phase separation can occur in the mixture [223, 224]. The
Ketterle group was the first to experimentally observe phase
separation in imbalanced ultracold Fermi gases [73].
Ketterle and coauthors detected a pairwise state (Bose
condensate of composite bosons with equal densities of
components n; =n) in the center of a 3D trap, while
excessive ‘up’ spins were primarily concentrated at the trap
periphery. The situation is reversed in kinematically 1D gases:
balanced paired fermions are located at the periphery, while
excessive ‘up’ spins are concentrated in the trap center [227].
The first experimental results for phase separation in
quasi-two-dimensional gases were obtained by the Thomas
group [74]. The experimental data show that the situation in
the quasi-two-dimensional geometry is similar in qualitative
terms to that in the 3D case: balanced paired fermions are
located in the trap center. The concentration profiles of atoms
in two spin states are shown in Fig. 13. The images are made
along the motion plane, and therefore the profiles show an
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Figure 14. (Color online.) Optical depth profiles of spin-majority atoms after 3 ms of flying apart, normalized to the maximum value, and the result of
fitting with two Gauss functions for the polarization values (a) (N — N2)/(Ny + N2) = 0.25, (b) 0.55, and (c) 0.75 in the 780 G field. The thermal part is
shown in red, and the condensed one in grey. The error ranges show the standard deviation of the mean in averaging by azimuth. Each image corresponds

to averaging over 30 iterations of the experiment. (Quoted from [75].)

integral over the concentration distribution along one
direction. The flat central parts of the plots of the difference
between the distributions (blue broken line) indicate that the
spin concentrations in the center are the same.

Further explorations of phase separation [75] indicate the
absence of discontinuities in spin polarization or concentra-
tion profiles near the phase transition line, in qualitative
contrast to phase separation in 3D systems [228], where a
first-order phase transition is observed. It is assumed in [75]
that the absence of discontinuities is related to fluctuations,
whose the role is enhanced if the dimension decreases.

Motion along the z axis can be of importance for
imbalanced quasi-two-dimensional gases. A spin-minority
atom moving in the majority’s field can be in a superposition
of states that include excited states of the oscillator along z.

Images of a spin-imbalanced gas made after the trap is
disabled and the gas flies apart in free space [75] are shown in
Fig. 14. The bimodal structure of the concentration distribu-
tion is clearly seen. The gas was initially prepared on the Bose
side of a 3D Feshbach resonance, owing to which the
disabling of tight confinement does not result in the rupture
of dimer molecules. The dimer concentration profile can be
closely related to the velocity distribution prior to flying
apart, while the bimodal structure is interpreted as a
signature of Bose condensation of dimer molecules [75]. It is
noteworthy that the bimodal distribution is seen in expanded-
gas images, regardless of whether phase separation occurs.
The bimodal structure has been observed in a 2D Bose gas
with weak repulsion without Bose condensation [229].

In the case of an external harmonic potential effective in
the xy plane, the tendency of gas to form a spin-balanced core
prevents other interesting phenomena — Fulde—Ferrell-Lar-
kin—Ovchinnikov superfluidity [70, 71] and p-wave pairing
driven by the Kohn-Luttinger mechanism [64-66], which
require concentration imbalance— from being observed. A
trap with rigid walls and a flat interior is needed for obtaining
these effects. Confinement of a 2D Fermi gas in such a trap
was recently reported in [150].

10. BCS-BEC crossover
in the 100% polarized superfluid A1 phase

We note that new ways of studying triplet p-wave pairing in a
100% polarized superfluid Fermi gas have been provided by
recent experiments related to Feshbach resonance in ultracold
°Li and “°K gases in the p-wave channel [230-232]. These
experiments bring studies of resonance quantum gases closer
to the physics of superfluid He-3 and of anomalous complex

superconductors, for example, Sr,RuQy4, U;_,Th,Be;3, and
UNi,Al; [233]. We note that in studying the p-wave Feshbach
resonance, we are dealing with the BCS-BEC crossover
between local and extended pairs for the triplet Al phase, in
which particles with the total spin projection S, = 1 pair. A
detailed description of the Feshbach resonance for the p-wave
channel is contained in the first part of [25]. We only note here
that the p-wave pairing occurs in a 100% polarized gas in the
third order in the gas parameter (in the Fermi momentum) for
the effective interaction in accordance with the Pauli principle
(absence of ‘down’ spins) and general quantum mechanical
results for the scattering amplitude of slow particles in a
channel with the orbital momentum / [25, 102]. As a result,
according to [18, 25, 66], the critical temperature T¢, in the
dilute BCS region is

T
Te, ~0.1¢ - 45
w=otwe (-5 ) @
with the coupling constant (effective gas parameter)
dp ~ aprgpi <0, (46)

where rq is the effective radius of the potential and aj is
the negative p-wave scattering length. We stress that in the
p-wave Feshbach resonance, it is the scattering length a, (or
more precisely, the scattering volume ¥}, = ria,) that changes
sign in passing through the resonance field By. A qualitative
scheme of the p-wave Feshbach resonance is shown in Fig. 15
[18, 25]. The Einstein formula for the gas of composite bosons
with the spin S =S, =1 is again valid in the dilute BEC
region. According to that formula,

_— 3.31(n; /2)%?

o , (47)

2m

where 1y = pi, /6n* is the density of ‘up’ spin particles. We
note that the binding energy of composite bosons (bipolarons
with the spin S = S, = 1) for the p-wave Feshbach resonance
is

T

|Ep| = (48)

2mroayp

In the unitary limit, 1/4, =0 and T, ~ 0.1eF still corre-
sponds to the BCS region. The dotted line in Fig. 16 shows
the effective boundary between the BCS and BEC regions
that is set by the line of zero chemical potential u(7) = 0.
Also indicated is the important quantum phase transition
point [234, 235] where u(7 =0) = 0. In accordance with
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Figure 15. Qualitative scheme of the p-wave channel Feshbach resonance.
The scattering volume V), diverges at B = By [25].
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Figure 16. Qualitative diagram of the p-wave channel BCS-BEC crossover
for the 100% polarized superfluid Al phase represented as a dependence
of the temperature T on 1/7,, where A, = ¥, pi = rdapp} is the effective
gas parameter. The phase diagram displays a (dotted) line where the
chemical potential u(7') = 0 and the important quantum phase transition
point where p(7' = 0) = 0 [234, 235].

general theoretical concepts [18, 25, 50, 234, 235], the result
of calculating the quasiparticle contribution to the thermal
capacity and normal density near a quantum critical point
depends on the path the point is approached as ¢ — 0 and
T — 0, which means that the limits |u|/7T — Oand 7/|u| — 0
are not equivalent [25]. We now consider this interesting
aspect in more detail. We know that points or lines emerge
for anomalous p-wave and d-wave pairing superconductors
where the superconducting gap vanishes. For example, in
the 3D Al phase of superfluid He-3, the gap squared
A% = A% sin? 0 as a function of the polar angle 6 (with respect
to the z axis of orbital momentum quantization) vanishes at
two points on the Fermi surface: the north and south poles
0=0 and 0 =n. As a result, the energy spectrum of
quasiparticles in the superfluid A1 phase at low temperatures
T < T has the form [50, 51]

2 2
p? |Ap|
E,— (2= - 49
() 4
where
A= Ay(e, +1iey) (50)

Figure 17. Superfluid gap topology in the Al phase. Two points are
distinguished that correspond to the north and south poles on the Fermi
surface where the quasiparticle energy and superfluid gap vanish [25].

is the complex-valued order parameter in the Al phase, and
Ay is the superfluid gap amplitude. It is easy to see that

|Ap[* = 45 p sin 0 = AG[p < 17, (51)
where 1 = e, x e, is the unit vector of the orbital momentum
of a pair (Fig. 17). We note that the low-temperature

quasiparticle spectrum for a normal s-wave pairing super-
conductor has the form

2
) + 4.

We also note that the quasiparticle energy in the (bosonic)
BEC region at negative chemical potential values u =
—|¢| < 0 for both s-wave and p-wave pairing is nonvanishing
everywhere because p2/2m — p = p2/2m+ |u| > 0. At the
same time, the quasiparticle energy in the dilute BCS region
with p-paring vanishes at two points: p?/2m = pand 0 = 0; x.
As a result, a nontrivial quasiparticle contribution to the
thermal capacity emerges at small || and low tempera-
tures 7 in the classical limit |u|/T — 0 (more precisely, if
] < T < 43 /ex):

(52)

(2mT)*? SFTO( 7572

WA 2)

Vo~

But the quasiparticle contribution to the thermal capacity in
the quantum limit 7/|u| — 0 (if T < |u| < 43/er) behaves
differently in the BCS (1 > 0) and BEC (u < 0) regions. The
quasiparticle contribution in the BCS region is described as
before by a power-law function, but the exponent is
different:

1 m3? egT

oo o mmeers 3
Cy w A(Z) T xT".

(54)
At the same time, this contribution is exponentially small in
the BEC region:

(2mT)*? <|u|>38FT ( Iul> 1 ( |u|)
Cy~v—— = | —exp|—= —exp|——= ).
o 1) 2P\ )P T

(55)

We note that the order of magnitude of all three formulas
(52)—(54) becomes the same at |u| ~ T. The normal density p,
behaves similarly in the classical and quantum limits. We
obtain a more expectable result for the quasiparticle con-
tribution to the thermal capacity for small values of |u| and
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intermediate temperatures |u| < A%/sp < T < 4y:
mT)*?

P o« T2,

Cy~ (56)
It is noteworthy that the fermionic (quasiparticle) contribu-
tion to the thermal capacity can easily be separated from the
bosonic contribution related to sound oscillations using the
exponential in the temperature dependence. The phonon
contribution to the Al-phase thermal capacity is

1 73

3
NﬁC_SO(T s

cP (57)
where C; is the speed of sound in the BCS-BEC crossover for
the Al phase. The speed of sound in the BCS regions is

VR
Cpcs ~ —

\/§ )
in accordance with the thermodynamic identity C2 = dP/dp
for the derivative of the pressure P with respect to the mass
density p = mn in a normal (nonsuperfluid) Fermi gas at low
temperatures 7 < ¢ [28]. The speed of sound in the dilute
BEC region is given by the thermodynamic identity

C _ (nB d:“Bose) /2
BEC — b
mp dng

(58)

(59)

where ng =ny/2, mp=2m, and ug,e =2p+ |Ep|. The
solution of the self-consistent Leggett system of equations
shows that Cggc o< vp(prrg) < vr in the dilute BEC system. It
is shown in [25] that the phonon contribution to thermal
capacity (57) and a similar contribution to the normal density
near the quantum critical point,

B T4
pnNﬁv

N

(60)

exceed the fermion contribution near the quantum critical
point and are the dominant ones.

We outline the specific features of the BCS-BEC cross-
over in the 100% polarized 2D Al phase. Using the
terminology adopted for thin films of superfluid He-3, it is
referred to as the axial phase [18, 50, 236]. The order
parameter in this phase again has the form

2 2 2.271/2
P Ayp
a- (G ]

F
where p? = p? +pf. Quasiparticle energy spectrum (61)
vanishes at a single point p = u = 0. The results in [237]
show that this point is the point of a topological phase
transition that separates the gapped region of the quasiparti-
cle spectrum from the gapless region, while the axial phase
itself is characterized by the presence of a nonzero topological
invariant (topological charge) [50, 103]

(61)

T d*p
=—¢,3 | —— n[0,n, 0 62
0 =3 e | G ieun yn (62
where n is the unit vector with the components
1
n :F(_Aopxal‘opyaip) (63)
P

and ¢, = p*/2m — u. This invariant, introduced in the physics
of quantum gases and superfluid He-3, was taken from the

physics of the quantum Hall effect, where it controls
quantization of the Hall conductivity. According to Pokrov-
skii, the nontrivial topology in lower-dimension spaces is
controlled in qualitative terms by the sites in the crossing of
nearby paths in the approach based on Feynman path
integrals. At the same time, nearby paths can ‘bypass’ each
other in the 3D space without linking, and the nontrivial
topology is not so evident in the 3D case. Formula (62), taking
conditions (63) into consideration, can be transformed for the
100% polarized axial phase into the easily comprehensible
form

_m
Q_Z(Hlu\)'

Formula (64) obviously shows that Q =0 in the BEC
region (for negative values of the chemical potential) and
Q =1 in the BCS region (for positive values of the chemical
potential). Thus, we conclude that the BCS region for the 2D
axial phase is topologically nontrivial. The quantum critical
point p = u = 0 is actually a boundary between the topologi-
cally trivial and topologically nontrivial phases. We note that
the results for thermal capacity and normal density near the
quantum critical point differ in the classical and quantum
limits in the 2D case just as in the 3D A1 phase. We stress that
in both the 3D and 2D cases, we always effectively use the
classical limit |u|/T — 0 because the chemical potential is
always continuous near u = 0. Therefore, the real (quantum)
phase transition only occurs at 7' = 0 [234, 235]. Finally, it is
worth noting a kink in compressibility in the 100% polarized
axial phase at the point u = 0. This kink, which can be
deduced using both analytic [25, 57] and numerical [238,
239] methods, is given by the formula

(64)

ony

0 (65)

o<l+'u—82F[1—signu],
4

where signp =1 if ¢ > 0 and signu = —1 if u < 0. Conse-
quently, we have the compressibility dn; /0pu ~ 1 as u — +0
and On; /Op =~ 1 + 2uer/ A% as u — —0.

In concluding this section, we note that according to [240],
the existence of a nonzero topological invariant Q # 0 causes
the existence of anomalous spin current in thin films of the
superfluid Al phase in He-3 (in the BCS region) in the
presence of a nonuniform magnetic field H(r):

- spin

jcd ~ si_,klzakHj . (66)
Here, /= [. is the unit quantization vector of the orbital
momentum of the pair and H,;d = 0, where d is the spin
vector in the 2D (thin) film of the He-3 superfluid A1 phase.
Another possible manifestation of the nontrivial topology in
the 2D case can be related to attempts to find so-called
Majorana fermions [241] in experiment, for example, in
boundary states on the interface of superfluid He-3B and a
rough wall or on the surface of a wire oscillating in superfluid
He-3 in Lancaster experiments [242].

11. Critical velocities and spectrum
of collective excitations in the BCS—-BEC
crossover for s-wave and p-wave pairing

In this section, we briefly discuss the spectrum of collective
excitations in the BCS-BEC crossover for s-wave and p-wave
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pairing. We note that the main collective mode in the BCS
region in the case of resonance s-wave pairing in the Fermi gas
of neutral (uncharged) particles is Bogoliubov—Anderson
sound oscillations [243-246], while in the BEC region,
Bogoliubov’s results for a weakly nonideal Bose gas with
repulsion (in this case, the gas of composite bosons with mass
2m and density n/2) hold. However, both spin and orbital
waves can also be excited in the case of triplet p-wave pairing
[25, 50-53, 57].

The spectra of collective excitations for s-wave pairing in
gases and high-temperature superconductors have been
theoretically explored in many studies [24, 247-251]. We
first outline the results reported in [24]. The speed of sound
and the critical velocity of the breakup of superfluidity have
been calculated in this work, not only in dilute-gas BCS and
BEC regions but also in the involved transition regime. The
spectrum of collective excitations for a negative scattering
length a < 0 and positive chemical potential u ~ ¢r (deep in
the BCS region) is linear, in agreement with the Anderson—
Bogoliubov theory:

Q* = Cies?’s (67)
where the speed of sound is again Cpcs ~ vp/ V/3. At the same
time, if the scattering length is positive, @ > 0, and the
chemical potential is negative, ¢ < 0 (deep in the BEC
region), the spectrum of collective excitations is described by
the Bogoliubov formula

2\ 2
q
Q= Ciped” + <E) ; (68)
where
Cprc = | PBose (69)
mp

is the Bogoliubov speed of sound and the boson chemical
potential in the 3D case is represented as

47'[612,21’13

HBose = (70)

mp

The scattering length in Eqn (70), a,_» = 0.6]a| > 0, is the
length of repulsive dimer—dimer scattering, ng = n/2 is the
boson density, and mp = 2m is the composite boson mass.
For the absolute value of the gas parameter |a|pp < 1, we can
easily show that Cggc < Cpcs. The speeds of sound only
become comparable in the intermediate region where
|a|pr = 1. We note the speed of sound C; ~ 0.4vg, as shown
in [24] in the unitary limit 1/a — 0 by solving the self-
consistent Leggett system of equations for the superfluid
gap and the superfluid density. Figure 18 shows the behavior
of the dimensionless speed of sound Cs/vp and the dimension-
less critical velocity at which the superfluid flow is suppressed
as a result of spontaneous generation of normal excitations
according to the Landau criterion [13, 28]. We note that the
critical velocity in a superfluid Fermi liquid or Fermi gas can
be found from the formula [24]

. VA w2 -\
ve=mind ¢, (Y220 L (71)

m

where A4 is the superfluid gap amplitude (for Cooper pairing).
The speed of sound deep in the dilute BCS region at small

0.6

1/apg

Figure 18. Dimensionless speed of sound C/vr and the dimensionless
critical velocity ve/vp (in units of the Fermi velocity vp) in the 3D BCS—
BEC crossover for standard s-wave pairing as a function of the inverse gas
parameter 1/apg [24].
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Figure 19. Collective excitation spectrum in the dilute BEC region. The
solid curve shows the Bogoliubov spectrum for pointlike bosons. The
dashed curve shows corrections to the Bogoliubov spectrum at large wave
vectors ¢ > 1/a > 1/&, [24].

values of the gas parameter |alpr < 1 is Cs = UF/\/§, while
ve = 4/pr < C; as aresult of Cooper pairs being unpaired. It
is natural that the critical velocity coincides in the dilute BEC
region with the speed of sound, v. = C;. It is noteworthy that
there are nontrivial corrections to Bogoliubov spectrum (68)
and (69) due to the composite character of bosons in the
resonance Fermi gas in the BEC region. Those corrections are
shown in Fig. 19 [24]. They are most significant at large wave
vectors ¢ = 1/a > 1/&,, where

1
VB2
is the Bogoliubov-gas coherence length [28, 252, 253] whence

S = (72)

%N (na®) "> 1. (73)

The speed of sound in an ultracold Fermi gas has been
measured in [27]. The sound is excited in a spindle-shaped gas
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Figure 20. (Color online.) (a) Green beam, whose short-time activation
excites a sound wave in the atomic cloud (shown in red). (b) Speed of
sound as a function of the transverse coordinate x (dots) showing that the
wave front is flat. For comparison, the dashed line shows the values
obtained in the isotropic model (74) by averaging over y. The coordinate x
is normalized to the Thomas—Fermi radius. (Quoted from [27].)
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cloud of lithium-6 atoms confined in an optical dipole trap.
The atoms are uniformly distributed between two internal
states with the minimum energy. The interaction parameter
1/kpais varied by changing the s-wave scattering length a and
the wave vector kg = /2meg /h, where ep = h(3Na)xwya)z)1/3
is the Fermi energy of a noninteracting Fermi gas in the same
trap. The length ais in turn controlled using the magnetic field
B, the strength of which is selected in the range 700-1100 G,
spanning both sides of the Feshbach resonance located at
Bies = 832 G[107] (it was believed at the time of measurement
that the resonance occurred at B..s = 834 G [254], but this
circumstance weakly affects the interpretation of the results).
The Fermi wave vector kr depends on the variable frequen-
cies of the trap and the total number of atoms N, which varies
from 6 x 10* for molecular BEC to 5 x 10° near and above
the Feshbach resonance. Temperatures that are close to the
lowest values attainable in such experiments are estimated to
be ~ 0.1¢r. Sound waves are excited using a green-light beam
(Fig. 20a), which is switched on for a short time. The green
beam creates a repulsive potential because its wavelength
532 nm is shorter than 671 nm, the wavelength that
corresponds to the strongest electric dipole transition in
lithium. A similar excitation method was used earlier for the
BEC of atoms [255]. The sound waves propagate from the
excitation plane to the edges along the long direction z. The
waves were detected by variations in density.

The sound wave front is flat despite the nonuniformity of
the cloud in radial directions, as can be seen in Fig. 20b, which
shows the distribution of the speed of sound along the
transverse coordinate. The calculated function obtained in
an isotropic propagation model, shown for comparison in the
same figure,

/n d
Clocal (n(x7y7 Z)) = Zd_‘z’

predicts that the wave front is curved. The isotropic
approximation obviously disagrees with the data. The
sound propagation is therefore close to the narrow
cylindrical channel approximation, owing to which the
measured speed of sound can be related to the equation of
state for the chemical potential of an atom at zero
temperature u = pu(n) [256]:

_ Jn(x,y,z)dxdy '
m [ (du/dn)"'dxdy

(74)

c(z) (75)

The speed of sound was measured in an experiment in a
larger part of the BCS-BEC crossover. Figure 21 shows

6
l/kpa

Figure 21. (Color online.) Normalized speed of sound ¢, /v as a function
of the interaction parameter 1/kga. The respective filled and open circles
correspond to measurements in a trap whose depths are 140-500 nK and
0.6-80 pK. The solid red lines shows calculations done using the Monte
Carlo method. The dashed line is plotted using the mean-field method. The
dotted line corresponds to Eqn (76) for BEC molecules at a,_, = 0.6a.
(Quoted from [27].)

results of the measurements: the normalized speed of sound
¢o/vr (vp = hkp/m) plotted as a function of the interaction
parameter 1/kpa. The speed of sound in the central cross
section of the cloud z = 0 is plotted.

The only parameter of the system in the 7= 0 approx-
imation is the interaction parameter 1/kga. If |1/kpa| < 1,
the gas is in the strong-coupling regime; if 1/kra < —1, the
gas is a weakly coupled Fermi system; and if 1/kpa > 1, it is
a Bose—FEinstein condensate of molecules. Using the mean-
field approximation [10] and the quantum Monte Carlo
method [127], we can derive the equation of state for all
coupling regimes. The mean-field approximation yields the
speed of sound (the dotted curve in Fig. 21), which is
systematically higher than the speed measured for virtually
all values of 1/kpa. Calculations based on the quantum
Monte Carlo algorithm [127, 257], which are shown with the
solid red line, agree much better with the measured results.

The state of the system in the BEC regime, at 1/kpa > 1,
can be regarded as a BEC of pointlike molecules interacting
with the s-scattering length a,_;. Using equation of state (70)
in formula (75) for ¢y, we find

1/5
Co o 1/5
E = 4 (2 k]:a272> .

The model that exactly takes the scattering of four
fermions into account predicts a,_», = 0.6« [114]. Formula
(76), where this scattering length is used, yields a speed of
sound that coincides with the measurements (shown in Fig. 21
with a dotted line). The mean-field theory [10] where the
ground state in the form of a direct product of Cooper pairs is
used predicts in contrast a;_» = 2a, a value that yields a speed
of sound 27% higher than that observed in the BEC regime.
The results obtained using the quantum Monte Carlo method
[127, 257] are still higher than the measured speeds in the
larger part of the BEC region, although being closer to the
measured data.

The lower speed observed in the larger part of the BEC
regime at 1 < 1/kpa < 5 can be a consequence of mixing of
the first and second sounds [258]. The speed of the second
sound is lower, as a result of which the excitation propagation
speed can become smaller. The nonzero temperature can
hardly be a reason for the sound being slowed down: first,
the thermal component has not been detected in the BEC of

(76)
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molecules and, second, an opposite effect is observed in the
Feshbach resonance: an increase in temperature results in the
growth of ¢.

Measurements at the Bose asymptote of the crossover
have been made for the largest values of the 1 /kpa parameter
attainable in the experiment. To reach the value 1/kpa > 5,
both the magnetic field and the trap depth were tuned in such
a way that both kg and a were concurrently minimized. If
1/kpa > 5, the measurements show that the ratio ¢o/vg
grows. Taking images in this regime is complicated by
insufficient expansion of the cloud after its release from the
optical trap: the chemical potential is not large enough in
comparison with the magnetic field potential for the cloud to
fly apart to the extent that would enable accurate measure-
ment of the sound-wave front position.

Sound propagation is not observed in the furthermost
Fermi part of the resonance, at 1 /kra < —1.3. In this case, the
dip in density is simply filled in as in an ideal Fermi gas. The
gas is not necessarily in the superfluid phase for the lowest
temperatures attained in the weak-coupling region. Hydro-
dynamic propagation of sound is maintained in this case due
to collisions rather than the superfluid component.

The vibrational modes of an ultracold gas confined in a
spindle-shaped potential can be a source of information
about the gas properties [259-270]. The breathing mode in
the radial direction has been studied in depth in experiments
[26, 111, 271-273]. The behavior of the mode frequency and
decrement evidence the occurrence of superfluidity in the
Fermi-atom gas in the strong s-coupling regime [111, 272] and
the breakup of the superfluid state if the interaction becomes
weaker [26, 271]. The dependence of the frequency on the
interaction parameter was used to verify the equation of state
of the gas [26, 273], to discover a deviation from the mean-
field model [273].

The breathing mode is excited if the spindle-shaped
potential of the trap is switched off for a short time < 1/w, .
After the potential is restored, the gas oscillates in the trap for
atime tp014. Then, to observe small-amplitude oscillations, the
trap is fully disabled, and the cloud flies apart in free space in a
fixed time > 1/w, . Images of the gas after expansion, which
correspond to various oscillation phases, are shown in Fig. 22.
To find the oscillation frequency o and the decrement 1/7, the
cloud size as a function of the oscillation duration was fitted
using a damped sinusoid,

Aexp (24 cos (0t + ). (77)
as shown in Fig. 23.

The frequency w of the radial breathing mode can be
calculated under the assumption that the system is a super-
fluid liquid. The particle motion is described in this case by
Euler’s equation without rotation and the continuity equa-

150pm 200 pm 250 pm 300 pm 350 um 400 pm 450 pm

Figure 22. (Color online.) Transverse breathing mode. A cloud of atoms
after oscillations in a trap during a variable time 04 (indicated below the
images) and subsequently flying apart for 1 ms. Experiment parameters
[272]): N =2 x 10°, , /(2m) = 1700 Hz, and w./(2n) = 70 Hz.
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Figure 23. Transverse breathing mode [272]. The Thomas—Fermi radius
of the dissipated cloud as a function of the oscillation duration ftyo4.
Data are shown as dots, and the fitting sinusoid as a solid line. (Quoted
from thesis [274].)
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Figure 24. Normalized frequency of the transverse breathing mode for
different values of detuning from the Feshbach resonance. Data are shown
as dots, and the results of simulation in the mean-field approximation
[264,267] as a solid line. The broken line corresponds to the hydrodynamic
frequency at the resonance @ = 1/10/3w, . The detuning is set on the
lower horizontal axis in units of 1/kga, and the corresponding magnetic
field on the upper axis with a nonlinear scale. (Quoted from [26].)
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where n(x, ) is the total concentration of atoms, u(x, #) is the
velocity field of atom pairs, Pis the total pressure, and V(x) is
the confining potential. Assuming that the equation of state is

P =constn’*!, (80)

we can deduce that the breathing-mode frequency in the
elongated cylindrically symmetric field depends only on the
exponent y and the transverse frequency [264, 266]:

o=2+1w (81)
The breathing-mode frequency for the exponent y calculated
in the mean-field approximation of Cooper pairs [264, 267] is
shown in Fig. 24. Approximation (80) arises in a natural way
in at least three cases:

— Pisequal to the pressure of a noninteracting Fermi gas
on the fermion asymptote of the BCS-BEC crossover with
weak attraction between atoms; this yields y =2/3 and

=/ ]0/3 ],

— the leading contribution to the pressure at the boson
asymptote comes from the mean field of molecules (70)
and hence the mean-field approximation yields y =1 and
w = 2w, ;and
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Figure 25. Normalized decrement and frequency of the transverse breath-
ing mode for different values of detuning from the Feshbach resonance.
Data for decrements are shown with filled circles. Data (open circles) and
calculations done in the mean-field approximation [264, 267] (solid curve)
are displayed for the frequency. The detuning value is set to the lower
horizontal axis in units of 1/kra, and the corresponding magnetic field to
the upper axis with a nonlinear scale. (Quoted from [26].)

— in the unitary limit, y = 2/3, as is the case of weak
attraction, because the pressure has the form [275, 276]

2 2 L 025
P(”):(l'i'ﬁ)g”SF:(1'1'!3)5%(3“) n>?, (82)

where f = —0.63 [107, 277].

For the gas of noninteracting particles, w = 2w/, which
coincides with the boson limit in the case of hydrodynamic
oscillations.

Measured frequencies [26] of the radial breathing mode
are also shown in Fig. 24. The experimental setup was similar
to that of the experiment where the speed of sound was
measured, as described above in this section [27]. The
coupling between two Fermi atoms in two spin states is
varied by tuning the magnetic field in the range 700-1100 G.
The estimated temperature is ~ 0.lep. The measured frequen-
cies agree as a whole with the mean-field calculation results;
we can also see the agreement in the unitary limit 1 /kga = 0.

Deviations of the breathing-mode frequency from the
frequency that follows from the mean-field theory are also
of interest. Figure 25 displays the enlarged central part of the
plot in Fig. 24, where measured decrements are added. In
moving away from the resonance to the Fermi side,
B > 832 G, we can see that the frequency values system-
atically deviate from the predictions of the simple hydro-
dynamic model. First, in the range 0 > 1/kpa > —0.7, the
frequency is systematically lower than the theoretical curve,
and the frequency rapidly increases in the range
l/kga < —0.7 (B > 1050 G). Located at the parameter value
where the frequency starts rapidly growing, 1/kga = —0.74
(B = 1080 G), is the damping decrement peak. The width of
the peak as a function of the magnetic field is much smaller
than the Feshbach resonance width; therefore, the decre-
ment peak values cannot originate from a process related to
the mean field or the particle collision rate. The only process
that features a steep dependence on changes in B is the
resonance between the breathing mode oscillations and the
Cooper pair binding energy. Therefore, the damping peak
near B = 1080 G is most probably related to the breakup of
Cooper pairs by phonons. It was found in a similar
experiment performed earlier [271] that the peaking of the
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Figure 26. Normalized breathing mode frequency f. = w/w, as a function
of the interaction parameter 1/kpa. Data are shown by filled and open
circles. The calculated curves that refer to the mean-field BCS theory
(lower curve) and the calculations done using the quantum Monte Carlo
method (upper curve) are based on the result in [268]. Horizontal lines
show the values in the BEC limit (f. =2) and the unitary limit

(fe = 4/10/3). (Quoted from [273].)

decrement is accompanied by the rapid growth of the
breathing mode frequency. It was not possible in [271] to
relate the decrement peak to the deviation from the frequency
predicted in the superfluid-gas hydrodynamics because of an
unaccounted systematic shift in trap frequency measure-
ments. The rapid growth of collective mode damping near
the phase transition from the superfluid state to the normal
one was predicted in [260].

In shifting away from the Feshbach resonance to the Bose
side (1/kpa > 0), we can see in Figs 24 and 25 that the
breathing frequency mode goes down with respect to the
prediction of the mean-field model at 7' = 0. It was shown in
[273] that the breathing mode frequency decreases if the
temperature is not zero. The authors of the experiment in
[273], having decreased the temperature relative to the
experiment in [26], have shown that the breathing mode
frequency in the Bose region lies higher than the mean-field
model predictions (Fig. 26). The upward deviation of the
frequency from the mean-field model is due to the Lee-
Huang—Yang fluctuation corrections [278, 279]. For compar-
ison, Fig. 26 shows the calculations done using the quantum
Monte Carlo method including the fluctuation corrections.

12. Orbital wave spectrum
and orbital momentum paradox
in the hydrodynamics of the superfluid A1 phase

There is another interesting branch that is observed in the
collective excitation spectrum in the superfluid A phase of
He-3 and resonance Fermi gas if the anisotropic A phase is
realized (or, more precisely, for the Al and A2 phases in
strong magnetic fields or in the case of strong imbalance): the
so-called orbital waves related to the rotation of the
quantization vector of the Cooper pair orbital momentum 1
about the axis perpendicular to that vector. The spectrum of
this mode is quadratic for small wave vectors (the A phase of
superfluid He-3 is often referred to as an orbital ferromagnet;
the A1 phase is also a spin ferromagnet) and in the bosonic
limit (BEC) @ ~ ¢*/m, where z is the quantization axis of
orbital momentum l. The situation becomes much less trivial
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in the BCS region, where the orbital wave spectrum for small
wave vectors has the form [36, 50, 53]

2 A
q: In 0

(p—Co)Q=p = ‘
m - vglg:|

(83)

The conclusions on the values of the C, factor at low
frequencies and small wave vectors that are reported in the
literature are very controversial. The relative difference
between density and this coefficient in the single-particle
approximation in the dilute BCS region Cy ~ p and, more-
over, in the weakly coupled theory (at T¢; < &f) is

—Cy A3
u,\,fggl,
P ép

(84)

We have the value 49 ~ Ty ~ 1 mK in the A phase of
He-3 in the weak-coupling approximation while ¢g ~ 1 K,
whence 43 /¢ ~ 10~°. A matter of discussion is whether this
conclusion persists in the hydrodynamic limit with multi-
particle interactions taken into account. We note that all
researchers agree that the coefficient

2
where N(0) denotes the density of states on the Fermi surface,
vanishes in the BEC region: Co = 0 at &, = p?/2m + |u| > 0.
At the same time, formula (85) determines the full density in
the BCS region at negative values £, < 0, whence Co = p.
Therefore, the orbital wave spectrum in the BEC region has
the form

2 A
Q:q—zln< 0 >
m VF|q:|

Using spectrum (83), we can obtain a similar estimate for
the internal orbital momentum density in the BCS region:

(85)

(86)

h
L:—(p—CO)l,

o (87)

while in the BEC region we have a more natural expression:

h

L=—pl.
2mp

(83)

Itis of importance that in the BCS region, as we see below,
the Cy coefficient also determines the anomalous term in the
mass current, and therefore for Cy # 0 the conservation law
for the total momentum is not satisfied at zero temperature,
and hence the hydrodynamic description fails. The nature of
the anomalous term in the current is often related to the chiral
anomaly that is responsible for the axial current nonconserva-
tion in quantum electrodynamics [54-56], and the factor C
(by analogy with the topological charge in 2D systems) is
often referred to as the topological coefficient.

We note that the value of the coefficient Cy was
determined in the well-known experiments [50, 280] using
measurements of the nondissipative-friction factor d, in the
scattering of quasiparticles on vortices. The measurements
were performed in the ballistic collisionless regime at low
temperatures in He-3B and the hydrodynamic regime at high
temperatures, 7> 0.827T., in He-3A (we discuss this in more
detail in Section 14). However, the collisional region at very
low temperatures in the anisotropic A phase remained

unexplored. It is specifically this region that has led to
discussions regarding the value of Cy. We stress that the
problems related to the emergence of the chiral anomaly and
the applicability of the hydrodynamic description at nonzero
temperatures are actually nonexistent; the reason is that the
normal (temperature) component is in this case an indepen-
dent hydrodynamic variable in the scheme for deriving
quantum hydrodynamic equations developed by Landau. It
is owing to the presence of this independent variable that the
conservation law for the total momentum of the system is
restored at nonzero temperatures.

We stress that the anisotropic A-phase is only realized
(being the global extremum) in the absence of an external
magnetic field in the phase diagram of superfluid He-3 at
temperatures close to the critical temperature 7. If there is no
magnetic field, the isotropic B phase alone is realized at zero
temperature. For the A phase to ‘sprout’ to zero temperature
in the phase diagram of superfluid He-3 (in the form of the so-
called A2 phase), rather strong magnetic fields are needed,
H > 1 T, which paramagnetically suppress the B phase.

Moreover, in order to pass to the hydrodynamic region of
large wavelengths, large experimental cells 0.5 to 1 cm in size
are needed to ensure that in any event the wavelength is
shorter than the sample size in measuring the collective
excitation spectrum and damping

It would be of interest to extend the results measured in
[280] to very low temperatures 7' < T. and the collisional
regime for the A2 phase of superfluid He-3 in strong magnetic
fields and to explore whether the topological coefficient Cy
experiences a significant change in passing to the hydro-
dynamic limit of very long wavelengths at temperatures
tending to zero.

Another very important aspect in understanding experi-
mental data is the so-called Mermin—Ho identity in the
hydrodynamics of superfluid He-3A,

Vﬂ)s,' — V/'Usi = % 1 (6,1 X 6,1) s (89)
which relates the local vorticity of the superfluid component
to nonsingular textures (gradients) of the local orbital
momentum l.

We note that as a consequence of the Mermin—Ho
identity, the setup for rapid rotation of cells containing
superfluid He-3A (the ROTA facility at the Helsinki-based
low-temperature laboratory) can be used to create orbital
textures nonuniform in space and time, which can be further
used for measuring the nondissipative friction coefficient d
and the topological coefficient Cy in the experiments in [50,
280].

Finally, an additional proposal by the authors of this
review that may be of significant interest for experimental
exploration is to measure the coefficient Cy in the anomalous
current term in moderately pure superfluid He-3A. We note
that the role of impurities is played in superfluid He-3 by an
aerogel that consists of interwoven quasi-one-dimensional
filaments.

It would be of interest in this context to check the
predictions in [52] and [25, 57] regarding suppression of the
chiral anomaly and restoration of the hydrodynamics at low
frequencies and to measure the orbital wave spectrum and
damping in an aerogel. This would make it possible to use
these data to directly extract the frequency dispersion and the
value of the coefficient Cj in the anomalous term in the ‘dirty’
(hydrodynamic) limit of small frequencies Qt < 1 (at large
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aerogel concentrations), to gradually decrease its concentra-
tion afterwards, thus making the system increasingly pure and
passing to the ballistic region of high frequencies, Qt > 1,i.e.,
to the ultra-pure limit in the concentration of impurities.

It will be necessary to take into account the changes that
occur in the global phase diagram of superfluid He-3 in the
presence of large amounts of aerogel [281]. We note that
Volovik and Stone adhere in this case to the opposite opinion
and believe that the larger the concentration of impurities, the
easier (in the 2t < 1 regime) the chiral anomaly is restored in
accordance with the spectral flow concept (see Section 13).

We note that calculations done by different groups for
the orbital momentum density disagree even in the BCS
region. The calculations done in [282, 283] for 1 = const
yield Eqn (88) without the coefficient Cy even in the BCS
limit. If nonuniform textures of the 1 vector are included,
Eqn (87) is recovered, however. Based on the results
in [282, 283], we note the paradox of internal orbital
momentum in the A phase of superfluid He-3. We stress
that according to Leggett [284], the N-particle Hamiltonian
H exactly commutes with the z projection of the orbital
momentum L. = hN/2. This circumstance favors Eqn (88).
We note that similar calculations of the internal orbital
momentum in superfluid He-3A, the BCS phase for 2D
superfluid Fermi gases, and topological superconductors
with anomalous p-wave and f-wave pairing have been
performed in Volovik’s earlier [285] and later [286]
studies, in papers by Japanese theoreticians [287, 28§],
and by Sauls [289].

Volovik [285, 286] explored the BCS phase of superfluid
liquid or gas with a Cooper pair orbital momentum v at the
level of eigenvalues of the combined orbital-gauge symmetry
operator Q =1 - vN/2, where . is the operator of the
z projection of the orbital momentum corresponding to SO(2)
rotations and N is the gauge symmetry operator related to the
global U(1) symmetry, which ensures conservation of the
total number of particles.

In [285], Volovik studied the so-called adiabatic transition
from the BEC phase to the BCS phase, i.e., actually, the
transition from negative values of the chemical potential u to
positive values. We return to analyzing this transition in
subsequent sections.

We stress that an interesting discussion occurred based on
calculations by Sauls [289] and Tada [287] and Volovik’s
comments [286] on those results; the matter of that discussion
was the internal orbital momentum in the BCS phase for
p-wave pairing in the restricted 2D disc geometry.

We note that all of these results [286-288] for the 2D disc
show a significant decrease (in the A/ep parameter) in the
total momentum with respect to AN/2 values due to the
particle-hole asymmetry of boundary conditions at large
orbital momenta v=3 (for f-wave pairing). However,
according to Tada’s results [287] for a more essential case
v=1 (p-wave pairing), the intuitively expected result of
Leggett, iN/2, is reproduced in the BCS phase.

We stress that the orbital momentum density was
determined in Sauls’s studies [289] by the boundary condi-
tion type. Leggett’s result [289] persists in the case of mirror
scattering on the boundary and fails for diffuse scattering.

Volovik disagreed in 2015 [286] with Tada’s result [287]
for p-wave pairing. He noted, in agreement with Sauls, that
the result depends on the boundary conditions. Boundary
conditions for the disc geometry were chosen in Volovik’s
study [286] such that axial symmetry was not violated, while

parity was. The parity violation in the boundary conditions is
controlled by the phase «. It is noteworthy that if o =0,
Leggett’s result is recovered, while if o =m/2, a result is
obtained for / =1 that is similar to Tada’s result for /=3
but with a significantly smaller total momentum. Generically,
the decrease in the total momentum is controlled in [286] by
the sin® o parameter.

We stress that all the calculations in [285-288] were done
at the level of solving single-particle Bogoliubov—de Gennes
equations without consideration for strong many-body
correlations (residual interactions) and quasiparticle damp-
ing. We return to discussing those results in subsequent
sections when considering the spectral flow concept.

As was briefly noted above, the paradox of internal
orbital momentum in the A-phase is closely related to
another difficult problem: nonconservation of the anoma-
lous current (chiral anomaly) in the quantum hydrodynamics
of the superfluid A phase at low temperatures 7'— 0. We note
that the hydrodynamics that assumes the conditions of local
thermodynamic equilibrium to be satisfied describes all low-
frequency (Goldstone) collective modes for which w — 0 as
q — 0. The applicability area of the hydrodynamic equations
is actually restricted by the conditions wt <€ 1 and ¢g/lyr < 1,
where Iyr ~ vgt is the mean free path and 7 is the free
propagation time. We note that the hydrodynamic descrip-
tion involves a limited set of hydrodynamic variables in a way
proposed by Landau, where the left-hand side of the
hydrodynamic equations usually contains a partial time
derivative of the density of a conserved hydrodynamic
variable, while the right-hand side contains a generalized
divergence of the corresponding flow (mass, momentum,
energy, etc.).

We note that as T — 0, according to general symmetry
considerations, the total mass—current density in the BCS
region has the form

jtot = jB + jan ’ (90)
where the anomalous current is
h
jan = —— Co(lrotD)1. (91)

4m

In (91), the coefficient is Cyp =0 in the BEC region for
composite bosons with S = / = 1, and there is no anomalous
current. The full mass current is then equal to the bosonic
current

jg = pvs + % rot %l ) (92)
where p = mmn is the total density, L = (//2m)pl is the orbital
momentum density, and vy is the superfluid velocity. How-
ever, Cy = p in the single-particle approximation in the BCS
region, and therefore the presence of anomalous current (91)
in formula (90) results in nonconservation of the total mass
current (or total momentum) j,,, at 7 = 0. This observation
implies that it is not possible to represent the partial time
derivative of the total current as a generalized divergence of
the momentum flow tensor,

0j 0
/ (ITy.).

i
ot -
ot 7& Oxy,
Thus, the momentum conservation law is not satisfied. This
implies that the presence of the anomalous term destroys the
hydrodynamics of superfluid liquid in the A phase as 7' — 0.

(93)
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The contribution of the time derivative of the anomalous
current in Eqn (93) can only be compensated by adding a term
with the normal density and the relative normal velocity
pn(T = 0)(vq — vs) to the total current already at T' = 0 [53,
58, 59, 290]. Adding this term is in disagreement with our
intuitive understanding that the hydrodynamics of a quantum
superfluid liquid at zero temperature can be described in
terms of the superfluid component alone (without involving
the normal component). However, if it were possible to show
that Cy =~ p in the high-frequency (collisionless) region, while
in passing to low frequencies (collisional frequency range) this
coefficient experiences strong dispersion and becomes very
small, Cyp(wt < 1) — 0, we would recover the hydrodynamics
at 7= 0 in terms of the superfluid component alone.

This concept has been suggested by Andreev and an
author of this report in [52] and later studies and mono-
graphs [18, 25, 57]. An approach has been developed in [52]
that involves incorporating the fermionic Goldstone mode
(which is due to the presence of zeros in the superfluid gap for
the A phase) in the general scheme of hydrodynamic
equations. As a result, superhydrodynamics of superfluid
He-3A was developed in [52]. At the same time, Volovik and
coauthors asserted in [53] that the coefficient C, in the
anomalous current term is always of the order of the total
density p due to important topological factors related to the
existence of a zero mode in the solutions of Bogoliubov—
de Gennes equations for the quasiparticle spectrum in the
nonuniform texture of the vector 1. If 1 || rotl, these equations
are equivalent to the Dirac equation in the magnetic field
B = rotl for massless particles. Consequently, the authors of
[53] relate the nature of the anomalous current in (91) to the
chiral anomaly in quantum electrodynamics [291].

13. Two approaches to the involved problem of
chiral anomaly in the A phase of superfluid He-3

We now consider two elegant approaches to the involved
problem of chiral anomaly in the superfluid A-phase of He-3
in more detail. In the first approach, the authors of [25, 52, 57]
described the total hydrodynamic action Sy, at small
frequencies and wave vectors as a sum of bosonic and
fermionic parts:

Stot = SB + SF, (94)

where Sg(p, vs, 1) is the bosonic part of the action and Sk is the
fermionic part, related to the superfluid gap zeros (Fig. 27).
The main idea in [25, 52, 57] was to check whether the chiral
anomaly (or, more precisely, the term j,,vs in the formula for
the total energy) is directly related to superfluid gap zeros.
The authors of [25, 52, 57] assumed that the only reason for
the occurrence of the anomaly in a condensed system at low
frequencies can be related to the presence of infrared
singularities. We note that unlike quantum electrodynamics,
condensed matter physics does not contain ultraviolet
singularities. Strong (critical) fluctuations are also sup-
pressed in 3D systems. Thus, the main idea in [25, 52, 57]
was to explore dangerous infrared regions where the super-
fluid gap could practically vanish.

We can say in more general terms that the main idea in
[25, 52, 57] was to develop supersymmetric hydrodynamics
that describes all gapless Goldstone modes, including the
fermionic Goldstone mode related to gap zeros. The authors
of [52] were inspired by the elegant study by Volkov and
Akulov [292], who were the first to include the massless

Figure 27. Qualitative illustration of two contributions to the fermionic
(Sr) and bosonic (Sp) parts of the total hydrodynamic action Sy for the
A phase as T — 0 [25, 52, 57].

neutrino in the effective infrared Lagrangian of the weak
interaction. Having integrated over fermionic variables, the
authors of [25, 52, 57] derived the effective bosonic interaction
and explored the infrared singularities that it contained. As a
result, they obtained

ST = Sp + ASs, (95)
where the contribution from the hazardous regions near the
gap zeros to the ‘liquid crystal’ part of the effective action
[293], which is related to the gradient orbital energy, has a
form characteristic of the zero-charge situation in quantum
electrodynamics:

2 2 2
_ _Pru | 4 2, Y 2 e
ASp = 32752Jd x{[lxrotl] +v12 (Irotl) }(m ’42>.

(96)

Here, x = (r, t), and the radius vector r varies within the range
&y < r < Iur, where & ~ vp/ 4y is the coherence length and
Imr 1s the mean free path. Formula (96) has a general
character and holds in both the weak and strong coupling
regimes. We emphasize that the transverse velocity
v ~ vpdo/er < v in Eqn (96) while the longitudinal velo-
city is v; ~ vg in the weak-coupling regime. We see that the
expression for ASp contains only weak logarithmic diver-
gences. At the same time, in (96), we do not observe any traces
of strong divergences, which should have a J-function
character, because the fermionic density py that is contained
in formula (95) for Sk and related to the regions near gap
zeros is small in comparison to the total density: pgp < p. In
other words, we do not see any traces of the anomalous
contribution

. i/

Jan¥s = = Co(Irot1)(1vy) (97)
to ASg. Thus, even if there is a chiral anomaly in the BCS
region for the superfluid A phase, it is not directly related to
the hazardous regions in the momentum space close to the
gap zeros. Therefore, the nature of the chiral anomaly is not
an infrared one.

We stress that the authors of [53, 58, 59, 290] suggested
another very nice approach based on the formal similarity
between the anomalous current problem in the A phase of
He-3 and the chiral anomaly problem in quantum electro-
dynamics. They assume that the anomalous current with the
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large coefficient Cy ~ p in the BCS region for the superfluid
A phase is not directly related to gap zeros and therefore does
not exist, even in superhydrodynamics [25, 52, 57]. In their
opinion, the anomalous current is related to global topologi-
cal factors, and therefore the topological term should be
added by hand to the scheme of supersymmetric hydro-
dynamics. To illustrate this approach, the authors of [53,
290] solve microscopic Bogoliubov—de Gennes equations for
fermionic quasiparticles in a nonuniform orbital texture of
the vector 1 with 1 || rot1. More specifically, they consider the
case where

1=1y+ 38, (98)
and
l.=lk;=e, l,=08,=Bx, =0, (99)

where e. is the direction of the unperturbed vector 1. In this
case,

I,
Irotl =, =2 = B = const,

. (100)

whence

. h
Jan = —E COBe: .

(101)
After being linearized, the Bogoliubov—de Gennes equations
become equivalent to the Dirac equation in a uniform
magnetic field B =1rotl. A solution of the Dirac equation
determines the structure of energy levels for fermionic
quasiparticles:

En(Pz) = :l:\/ éz(p:) + 2137

where &(p.) =p2/2m—u, e =p./pr = £1 is the electric
charge,

(102)

A? = 2nvlprle|B (103)
is the gap squared, and the transverse velocity is
v ~ vpdo/er. All energy levels in (102) corresponding to the
principal quantum number n # 0 (Fig. 28) have a gap 4,, # 0
and are doubly degenerated with respect to p, — —p.. Thus,

Figure 28. Energy level structure for the Dirac equation in the magnetic
field B=1rotl. All levels with quantum numbers n # 0 are doubly
degenerate. The zeroth level is a chiral one. It passes through the origin
at|p.| = pr in the BCS region. This figure also illustrates the concept of the
spectral flow, which is briefly discussed at the end of this section [53].

their contribution to the total current is zero at T — 0.
However, if n = 0, the gap vanishes (210 =0), and we have
an asymmetric chiral branch that exists only if p, < 0 or, more
precisely, for only one sign of eB (see [53]). The energy
spectrum for #n = 0 has the form

Ey = ¢(p-). (104)
We can conclude that there is no gap in the spectrum for the
zeroth Landau level and, moreover, in the BCS region, Ey = 0
at |p.| = pr. This implies that the chiral branch passes
through the origin (see Fig. 28), and we have the zero mode.

We note that Ey > |u| in the BEC region, and the zeroth
Landau level does not pass through the origin. The absence of
the zero mode in the BEC region is the physical reason
explaining why Cy =0 there. The zeroth Landau level
makes an anomalous contribution to the total mass current
in the BCS region:

R N P= __hG
Jan(r = 0) = —e-(Irotl) L_<O o 46p:) = = (lrotle:,
i (105)
where
(Irotl)p.  eB J .2 dpy
A I A — 7 1
2752]7F 22 |f0‘ o’ ( 06)

and hence Cy =~ p in the BCS region. We note that fj in (106)
is the wave function of the zeroth Landau level. We can easily
see that the leading contribution to integrals (105) and (106)
comes from a narrow cylindrical tube inside the Fermi sphere
of the length pr directed parallel to the z axis and the cylinder
radius squared equal to (Fig. 29)

(p}) ~ prleB|. (107)

In accordance with the ideas in [53, 58, 59, 285, 290], this
tube plays the role of an effective vortex in the six-
dimensional k—r space, in this way ensuring the emergence
of a normal core that at 7= 0 connects the north and south
poles on the Fermi sphere (see Fig. 29), where the superfluid
gap in He-3A vanishes.

We stress that according to the results obtained by
Volovik, Stone, and Combescot [53, 58, 59, 283, 290], it is
along this normal core of the vortex that the spectral weight is
transferred from the normal component to the superfluid one
(from negative to positive energy values) in the effective
electric field E ocl directed along the vortex axis. This
momentum transfer is needed in order to cancel the chiral
anomaly by adding a Schwinger term proportional to

—
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Figure 29. The leading contribution to the anomalous coefficient Cy is due
to a narrow cylindrical tube whose length is pr and width (p?) ~ preB|
inside the Fermi sphere [25, 52, 57].




March 2019

BCS-BEC crossover, collective excitations, and hydrodynamics of superfluid quantum liquids and gases 239

E B  Irotl and recovering the conservation law for the total
momentum.

The approach proposed by Andreev and Kagan is in a
sense more pragmatic. There is no problem in the hydro-
dynamic description of He-3A at T = 0 at the level of the first
two terms in the total momentum. It is therefore more
practical and easier to ensure the vanishing of the coefficient
at the third anomalous term in the current at low frequencies
than to salvage the situation by adding an artificial fourth
term, at the same time violating the Landau hydrodynamic
scheme for a superfluid liquid.

Itis important that according to Kagan and Efremov [25,
57], the exact cancelation of the anomalies in the nonconser-
ving terms of the equations for time derivatives of the
anomalous current and the normal component current at
T = 0 must be explicitly demonstrated in superfluid He-3A
via exact derivation and solution of nonlinear kinetic
equations for the dynamics of gapless fermionic quasiparti-
cles in a nonequilibrium texture of the orbital momentum
vector 1.

Kopnin [294, 295], who shared this approach, tried to
implement it by analyzing another important problem
with the zero chiral mode for the energy levels of
quasiparticles localized in vortex cores and an additional
nondissipative friction force (the so-called Kopnin spec-
tral friction force [58]). We consider this problem in more
detail in Section 14 below.

We note that as was briefly discussed above, an attempt to
explicitly demonstrate the cancelation of anomalies owing to
the spectral flow was made by Volovik [285] in exploring an
adiabatic transition from the state that does not have gap
zeros and whose chemical potential is negative (u < 0) in the
BEC phase to the state with a positive value (¢ > 0) in the
BCS phase. However, Volovik assumed in this approach that
only the chemical potential changes with time while consider-
ing nonuniform but stationary textures of the vector L. In our
opinion, this treatment violates self-consistency in the
derivation of hydrodynamic equations, with its coupling of
time derivatives of various hydrodynamic variables, includ-
ing the time derivative of the variable that is of critical
importance for the chiral anomaly problem, the orbital
momentum vector 1.

We note that the main results in [53, 290] related to the
absence of a gap for the zeroth Landau level are very
persistent with respect to small variations of the vector 1
texture in Eqn (99). The analysis that we have performed
shows that the account of small bending corrections that
results in the emergence of the transverse projection of the
magnetic field [I x rotl] # 0 or small nonuniformity of the
magnetic field (as a result of which a two-well potential is
formed) do not suppress the zero mode in the Bogoliubov—
de Gennes equation, i.e., do not result in the emergence of a
gap for the zeroth Landau level. Despite the stability of the
zero mode, the authors of [25, 52, 57] expressed doubts
regarding the calculation of the anomalous coefficient Cy
based on solving the Dirac equation in a uniform magnetic
field B = lrotl. In their opinion, the calculation of C, based
on Eqns (105) and (106) is too strong a simplification of the
involved multiparticle problem. They especially emphasize
the role of finite damping 7y =1/t and other residual
interactions in the suppression of chiral anomaly (related to
the states inside the Fermi sphere in Fig. 29) and restoration
of the superfluid hydrodynamics without additional contri-
butions (containing the normal velocity v, and the normal

E,

Ey

Figure 30. Possible role of damping (and other residual interactions) in
washing out the zeroth Landau level and recovering superfluid hydro-
dynamics at low frequencies [25, 52, 57].

density p, ). Indeed, if, for example, the damping y (or another
residual interaction) is much larger than the distance between
Landau levels wy = v pp(1rot l/pp)l/2 in the case &(p.) =0,
the zeroth Landau level would be washed out by damping,
and the hydrodynamic regime at low frequencies would be
recovered (Fig. 30). These arguments are considered in more
detail in [25, 52, 57]. We invite experimentalists to actively
participate in resolving this very difficult problem. It would
be very interesting from the experimental perspective to
measure the spectrum and damping of orbital waves at low
temperatures T < T, both in pure superfluid He-3A and in
the presence of impurities (the role of impurities in superfluid
He-3 is played by aerogel).

We stress again that while the authors of [25, 52, 57] use
damping as an argument in favor of the possible suppression
of chiral anomaly at low frequencies, in the approach
developed by Volovik [53, 58, 59], Combescot [290], and
Stone [283], the damping plays quite the opposite role of
ensuring the spectral flow along the vortex core (see Fig. 28).
Similarly, the hopes of various groups of theorists are
opposite as regards using the Ward identities in the infrared
region for possible suppression or stabilization of the chiral
anomaly in going beyond the one-particle problem and
accounting for many-body correlations and quasiparticle
damping in superfluid He-3 and other systems discussed in
this review (see [25, 57, 296]).

14. Hydrodynamics of superfluid quantum
liquids and gases. Collective modes

in rotating He and Bose—Einstein condensates
of quantum gases

The discussion in the preceding section was primarily
focused on the specific features of orbital hydrodynamics in
superfluid Fermi systems with Cooper pairing. Here, in
contrast, we concentrate on collective modes (related to the
presence of vortex lattices) and the friction force between
normal excitations and vortices in the superfluid Bose liquid
of He-4 [15-18, 36-48] (see also the classic result [49] for
bending oscillations of the vortex line in a normal liquid) and
Bose—Einstein condensates of quantum gases [297-301]. We
note that vortex lattices in He-3A and He-3B superfluid
Fermi liquids [50, 51, 280, 294, 302] and in resonance Fermi
gases in the BCS-BEC crossover regime [303, 304] have been
studied in detail using experimental (in the case of He-3) and
theoretical methods owing to the nontrivial topology and
wealth of vortex phases and topological excitations in these
systems, especially in the case of anisotropic p-wave pairing.
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E(p: = 0: Q)

0 0
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Figure 31. Level structure in the He-3A vortex core [25, 57]. All branches
are even functions with respect to the generalized angular momentum Q,
the only exception being the branch E(p. = 0, Q) = —w(Q thatcrosses 0 at
Q = 0. This branch is chiral (an odd function of Q). According to [50, 302],
this branch is involved in the momentum exchange between the vortex core
fermions and the thermal reservoir.

Our understanding of the physics of various topologically
nontrivial vortex states and vortex lattice structures and the
structure of extended cores of vortices (whose radius is large
compared with the interatomic distance, &, > d) with possible
various transformations of the order parameter inside the
cores in the A and B phases of superfluid He-3 was
considerably enriched by Volovik (see, in particular, a
presentation of this set of problems in monographs [50, 302]).

We note that an interesting problem of superfluid systems
with a complex order parameter in the fermionic BCS phase,
such as superfluid He-3, is connected with the energy
spectrum of the quasiparticles localized inside vortex cores.

The results obtained by Volovik and Kopnin for a vortex
with a cylindrical geometry in He-3A show that the energy
level structure is very similar to the level structure of
quasiparticles in the field of nonuniform textures of the
orbital momentum vector 1 (see Section 13). The vortex core
has only one asymmetric (chiral) level that crosses the zero-
energy line. Being a function of the generalized angular
momentum Q, this energy level crosses the horizontal axis at
Q = 0 at zero temperature and corresponds to a discrete set of
points with integer momenta Q = 1,2,..., separated from
each other with a mini-gap Qy = 4°/er (Fig. 31).

This result is of utmost importance because of the
following reasons. As was briefly noted in previous sections,
in the mid-1990s, Kopnin, Thouless, and Stone extended the
discussion about the existence of chiral anomaly in condensed
matter physics, shifting it to the problem of the possible
contribution of the chiral zero mode in vortex cores to the so-
called Kopnin spectral (nondissipative) friction force, which,
along with Tordanskii and Magnus forces that are standard
for rotating Bose systems, can emerge in the vortex dynamics
of fermionic He-3A in the scattering of quasiparticles on
vortices. In that discussion, Stone supported Volovik’s
stance, while Thouless and Ao did not believe in the
emergence of the spectral force, and Kopnin was somewhere
in between, relying on specific results of his own calculations.

We note that Kopnin’s friction force is again fully
determined by the transfer of spectral weight from the zero
mode (Q =0) to states with Q > 0 along the vortex core.
Thus, a certain difficulty occurs here in justifying the results at
strictly zero temperature 7=0 and in the absence of
impurities when the scattering of quasiparticles is completely

absent. Therefore, we are again in the ballistic region in the
parameter Qyt(7 = 0) > 1, where we have a discrete set of
points corresponding to the quantum number Q =0, 1,2,...,
and, in accordance with Volovik’s and Stone’s ideology, the
spectral flow is in this case fully suppressed. Thouless and
Ao’s result [305] regarding the suppression of the spectral
friction forces is thus recovered (Thouless and Ao call this
situation the Berry phase).

The spectral flow is restored only at finite temperatures,
Qo7(T') < 1, when the variable Q again becomes continuous.

We note that the presence of spectral friction forces was
theoretically demonstrated in Kopnin’s and Stone’s calcula-
tions at Qpt < 1 for high temperatures close to the critical
temperature 7, in the A phase of He-3. As we emphasized in
Section 12, this result has been confirmed by measurements of
the nondissipative friction coefficient d;, in He-3A experi-
ments performed by Bevan et al. (see [280] and Fig. 18.5 in
monograph [50], where d; — 1 with T'— T in the Qy7 < 1
regime for the case of He-3A).

We also note that in his calculations, Kopnin explored
along with He-3A, the problem of the spectral weight transfer
due to zero modes in vortex cores in both superfluid isotropic
He-3B and normal type-II superconductors. The supercon-
ducting gap in these systems does not have zeros but the role
of topological points (gap zeros) in the fermionic quasiparti-
cle spectrum is played by the presence of vortices with
quantized circulation that create an Aharonov—Bohm-type
potential.

For these systems (in particular, singular vortices in
He-3B), Kopnin suggested an interpolation formula in the
parameters Qyt(7) and A(T)/T to discover that the non-
dissipative friction coefficient d,(7") changes its sign in
passing from the collisionless regime Qyt(7) > 1 to the
collisional regime Qy7(7) < 1 (see Eqn (25.17) in [50]).

Kopnin’s results in the collisionless region of very low
temperatures coincide again with the experimental results of
Bevan at al. [280], who measured d, for superfluid He-3B
(d. — 0atQyt > 1 and T — 0; see Fig. 25.1 in [50]).

Another interpolation result of Kopnin is related to
studying the damping y = 1/t that is due to impurities in
type-II superconductors. The value of y is not zero, even at
T = 0 in the ‘moderately clean’ limit.

In our opinion, it is of great interest to derive an
interpolation formula for Cy in the parameter Qt (where Q
is now not a constant minigap but a running frequency of the
orbital wave Q(q) — 0at ¢ — 0) based on the correct infrared
Ward identities for the vertex I'(Q,¢) and the self-energy
2(Q2,9) =ReX(Q,q) +1Im2(Q,q). The Ward identities
should be derived so as to include strong many-body
correlations (residual interactions) and quasiparticle damp-
ing in passing to the hydrodynamic limit of low frequencies
Q(g)t < 1 and wave vectors glyr < 1 (IyF is the mean free
path) for the orbital wave spectrum in superfluid He-3A at
very low temperatures.

Here, according to Andreev and Kagan’s ideology, if
strong many-body correlations (residual interactions) and
various damping mechanisms and collective excitations are
taken into account, an intermediate frequency range Qt ~ 11is
possible where the orbital momentum spectrum is over-
damped or, in a more general case, an essential re-expansion
of the real or imaginary part of the spectrum starts. It is
noteworthy that over-damped spectrum branches in super-
fluid He-3A occur in the calculations in [306] performed using
the Feynman path integral technique.
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A similar scenario, in which a transition occurs from a
propagation-type linear spectrum of antiferromagnetic spin
waves at high frequencies to an over-damped and diffusion-
type spectrum at low frequencies (actually, a scenario of
essential re-expansion in the equation for the spectrum in
the parameter Q27), was also realized at 7 = 0 in Chubukov’s
diagram calculations, where the spin wave spectrum and
damping in weakly doped HTSC cuprates were explored
using the impurity diagram technique.

We note that quite recently (2014-2016), Haldane, Spivak
et al. [296, 308-310] initiated a discussion about the possible
contribution of the chiral anomaly to longitudinal magne-
toresistance in currently popular Dirac semimetals based on
bismuth, including topological insulators Bi;_,Sb, (near the
critical point in the Sb concentration x [311, 312]) and nematic
superconductors Bi,Se; doped with Cu, Sr, or Nb [313].

Theoretical studies of this class of materials are comple-
mented with very interesting experimental work [311, 312],
where longitudinal magnetoconductivity and the anomalous
contribution to it were measured at helium temperatures of
2-4 K. This is not only of great importance for the
development of basic condensed matter physics but also
very promising for nanoelectronics and spintronics applica-
tions. We discuss this class of materials in more detail in the
concluding section.

We stress that vortex lattices in superfluid He-4 and Bose—
Einstein condensates (for composite bosons with spin S = 0)
are significantly simpler from the topological perspective.
This is due to the scalar nature of the order parameter for this
class of systems (in contrast to the tensor order parameter for
superfluid He-3 with the pair spin S = 1). The basics of the
vortex lattice theory for rotating superfluid He-4 and key
experimental results in this area are presented in Khalatni-
kov’s classic monograph [16], the well-known paper by
Bekarevich and Khalatnikov [40], and Andronikashvili and
Mamaladze’s [41] and Sonin’s [42] reviews. We recall that the
first vortex emerges in superfluid He-4 at the angular
frequencies of rotation of a cylindrical helium-filled vessel
Q > Q.; the vortex emerges in the vessel center (on the
cylinder axis), while at the frequencies

Qi < Q< Qo (108)

where Q. and Q. are the first and second critical rotation
frequencies, a triangular lattice of quantum vortices emerges
in the system. The quantum vortices were predicted in
superfluid He-4 by Feynman and Onsager [37-39]. A theory
of the vortex state in type-II superconductors has been
developed by Abrikosov [314]. We note that the first critical
frequency in a dense Bose liquid (for He-4) is Q¢; ~ 0.1 57!,
while the second critical frequency (related to overlapping of
vortex cores) is very large, Qo ~ 10! s~!, and cannot be
attained in experiment. The size of the vortex core in dilute
Bose gases is significantly larger (see Eqn (72)), and hence the
frequency Q. is not very high. We also note that in deriving
hydrodynamic equations for rotating helium with a large
number of vortices, so-called supermacroscopic averaging
[16, 36, 43] over scales much larger than the average distance
between vortices is used in [40-42]. As a result, not only the
dissipative velocity of the normal component but also the
nondissipative velocity of the superfluid component mimics
solid-state motion, vy = [Q x r], with small corrections
related to the elasticity of the vortex lattice and friction force
between normal excitations (phonons and rotons in super-

fluid helium) and vortices [40, 41, 315-317]. Therefore, the
average vorticity becomes of the order of

® =rotvy ~ 2Q, (109)
where the direction of Q coincides with the z axis in the
cylindrical geometry. Consequently, v= o /|o| is the unit
vector along the local direction (deformed in the general case)
of the vortex lattice. Related to the average vorticity is the
vortex density per cm?:

i/
—n, =2Q,
mpg

(110)

where /i/mp = I is the circulation quantum. In the case of the
He-4 Bose liquid, mp is the mass of the He-4 atom and in a
superfluid fermionic liquid or gas, mg = 2m. In constructing a
nonlinear theory of vortex lattice elasticity in a general form,
itis convenient to use field-theory variables for a curved space
(such as the metric tensor) and the number of lattice sites; the
last variable is actually a topological invariant in the absence
of lattice discontinuities (dislocations) [36, 45, 46]. As a result,
from the Euler equation for superfluid velocity, we can derive
the general form of the conservation law for the number of
vortices:

®
— =rot[v., 0],

5 (111)

where vy, is the vortex lattice velocity. The difference between
this velocity and the superfluid velocity in the direction
perpendicular to the vortex axes, v — v, receives contribu-
tions not only from the terms related to vortex lattice
elasticity [18, 36] but also from the friction force between
normal excitations and vortices, which is proportional to the
relative velocity w, = v, — vy, of the normal and superfluid
components in the direction perpendicular to the vortices and
is determined by the Hall-Vinen coefficients B and B’ [16,
316, 317]. We note that one of the coefficients, B, has a
dissipative nature, while the other coefficient, B’, is of a Hall
type and is nondissipative. Andreev and an author of this
review hypothesized in [36] that in the limit of a large number
of vortices (and high rate of umklapp processes in the
scattering of normal excitations on vortices that result in the
relaxation of quasiparticle momentum), we can pass to the
limit of the hydrodynamics of rapid rotation. In this limit,
there is a common velocity of the normal and superfluid
components in the direction perpendicular to the vortex axis,
VoL = V51, and two different velocities, vy # vy, in the
direction along the vortex axis. It may be asserted that we
have a crystal in the direction perpendicular to the vortex
axis and free superfluid liquid in the longitudinal direction.
We note that this limit is attained at low frequencies, when
not only the condition wty <€ 1, standard for hydro-
dynamics, is satisfied (where ty is the normal time of
relaxation of excitations related to their scattering on each
other) but also

oty < 1 (112)

holds, where the inverse time of scattering of normal
excitations on vortices with umklapp processes is

1
— ~ BQ.

Tu

(113)
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The dimensionless Hall-Vinen coefficient at temperatures
T~ 1 K in superfluid He-4 is B~ 1, and to have the
hydrodynamics of rapid rotations realized, it is sufficient to
have the condition o < (1/ty ~ Q) satisfied, regardless of
the relation between the times ty and 7y of the scattering of
excitations on each other and the vortex lattice with umklapp
processes. We note that the second sound (related to the
relative velocity of normal and superfluid components w # 0)
in the hydrodynamics of rapid rotations only propagates
along the vortex axis, while there is a dissipative thermal
conductive mode in the perpendicular direction. In the limit
of rapid rotations, the spectrum of this mode acquires the
following form that replaces the relation w = uj¢ standard
for the second sound:

2 2\ 2
o KJ_qJ_ 2 9 KJ_qj_
=1 + 2 — ,
@ =lag,, T\ <2Cpp)

where C, is the thermal capacity under constant pressure, k|
is the coefficient of thermal conductivity of vortices in the
direction perpendicular to the vortex axis, and uyy is the speed
of the second sound. It is noteworthy that the terms with the
normal components fully disappear in the limit of low
temperatures 7' — 0 in the hydrodynamics of superfluid He-
4, and the difference between the hydrodynamics of slow and
rapid rotations is blurred. The vortex lattice velocity vi, differs
from the superfluid velocity v, in the direction perpendicular
to the vortices by the terms that are related to vortex lattice
elasticity. Linearizing the nonlinear elasticity theory devel-
oped in [36] allows finding the vortex lattice oscillation
spectrum. Tkachenko’s results [47, 48] show that collective
excitations of the vortex lattice correspond to the compres-
sion mode and the shear mode, and the shear mode has a
nontrivial dispersion

(114)

C2 4
o =t (115)
4Q° + C2q7
where
hQ
2 = g—m (116)

is the transverse sound velocity in the vortex lattice squared
and C? is the speed of the first sound squared. Thus, the
spectrum of Tkachenko shear waves at the smallest wave
vectors ¢, < 2Q/¢; is quadratic:

Ctqui

(=g (117)

In the case of large wave vectors ¢, > 2Q/c¢;, the
Tkachenko wave spectrum becomes linear: w; = ¢g,. We
stress that according to Baym [297], the quadratic character
of the Tkachenko mode spectrum in the presence of small
wave vectors in a superfluid gas and Bose—Einstein con-
densates can have dramatic consequences for purely 2D
flows with ¢. = 0. It results in a logarithmic divergence of
the average shift squared of the deviation of the unit vortex
line from the equilibrium position as a result of excitation of
long-wave Tkachenko modes:

@ Z o 1 Gmax

~—— 11
b2 QnL qmin’ ( 8)

where b = (h/2mmQ)"/? is the average distance between the
vortices, L is the height of the vessel containing helium (or the
size of the effective third dimension in quasi-two-dimensional
magnetic traps), n, and n are the densities of vortices and
particles such that the ratio p =nL/n, is dimensionless,
Gmax = 2Q/¢t, qmin =21/R, and R is the radius of the
helium-containing vessel. If (u?)/b? ~ 1, the vortex lattice in
the system melts and the vortex-crystal-vortex-liquid phase
transition occurs [300, 318, 319]. We note that the melted
vortex lattice regime is practically unattainable in dense
superfluid He-4 with the filling factor p > 1 and hence
(w?)/b? < 1. Also, it is very difficult to create purely 2D
flows in superfluid He-4. Nevertheless, Gifford and Baym
[320] also predict a logarithmic divergence of the displace-
ment correlator in this case:

(Ju(r) —u(r)*)

52 xTInR,,

(119)

at low temperatures and very large distances R? > Lb, where
R=r—r'={R,, R.}. At the same time, this criterion can be
satisfied much more easily in dilute Bose gases. The vortex-
crystal-vortex-liquid phase transition is also possible at the
temperature 7= 0 due to quantum melting of the vortex
crystal. According to Baym [297], for a dilute Bose gas at
T = 0, instead of Eqn (118), we obtain

W) 1

2

-— 120
péo’ (120)
where &, is, as before, the coherence length or vortex core
radius (72). Therefore, for quasi-two-dimensional traps with
a very small third dimension L, the limit p > 1 can be attained
and the Lindeman melting criterion can be satisfied [321]. We
stress that apart from the compression and shear modes, there
is another excitation branch in the vortex lattice and even for
an individual vortex line, namely, bending oscillations of the
vortex line. Their spectrum was determined by Thomson
(Lord Kelvin) in 1880. It has quadratic behavior
wp < ¢21n (1/g.). It seems at first glance that at small ¢. and
low temperatures, such a quasi-one-dimensional quadratic
spectrum should result in a strongly diverging infrared
displacement of the vortex line (u?) x 7 [dg./¢q? and,
analogously to polymers, to folding of the vortex line into a
globule. However, as was shown in [36], this oscillation
branch does not actually correspond to bending but is related
to rotation of the deformed line about its axis in such a way
that the vector product of the vortex displacement and the
displacement velocity is [u x ] # 0. As a result, the quanta of
the vortex line bending oscillations acquire their own
momentum /i (diamagnetic situation), and the gap iQ
emerges in the bending oscillation spectrum, which acquires
the form [36]
g 1

hay 7hQ+2m In od’
where d is the interatomic distance in superfluid He-4. The
presence of the gap in spectrum (121) stabilizes the bending
oscillations of the individual vortex line in a helium-contain-
ing vessel and at low temperatures yields a finite vortex line
displacement squared:

(121)

Tmd? d 1
R2 72 RIn(R%/d?)’

(122)
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Figure 32. Emergence of a vortex lattice in superfluid He-4 as observed in
experiments by Hall and Vinen [316, 317] and Yarmchuk, Packard, and
Gordon [322-324]. Figures a—f show how the number of vortices increases
from one to six.

Figure 33. Vortex lattice in a rotating dilute >*Na Bose gas [329].

It is owing to this circumstance that Packard et al. [322-324]
managed to observe a vortex lattice in superfluid He-4
(actually, they were taking images; see Fig. 32). The vortex
lattice was observed later in dilute Bose gases of alkali
elements (>*Na and ¥’Rb [325-329]; see Fig. 33) and in the
BCS-BEC crossover regime for composite bosons (°Li,
molecules) in the Feshbach resonance [330].

15. Conclusion

Despite the rapid growth in the number of publications over
the last 10 to 15 years and apparent progress in theoretical
and experimental studies, the problem of the BCS-BEC
crossover and the hydrodynamics of superfluid resonance
Fermi—Bose gases and mixtures are still unresolved. We have
discussed a number of interesting problems that are awaiting
resolution by theoretical and experimental methods. In this
context, we can single out the intriguing problem of quantum

viscosity limit [122, 331, 332], which is of importance not only
for ultracold quantum gases but also for cosmology and
elementary particle physics. There are other aspects related,
for example, to the rotation of vortex lattices in neutron stars,
various versions of separation into phases (‘lasagna’ or
‘spaghetti’ type) and the emergence of fermionic and bosonic
(pion) condensates in nuclear physics, multiparticle fermionic
and bosonic complexes in the physics of nonrelativistic
quarks and nucleons [333-337], and the thermodynamics
and behavior of quasiparticles in the unitary limit, which are
of interest for researchers in various areas of physics. Those
problems are waiting to be resolved are a challenge for both
experienced scientists and young researchers, whose activities
in science are at the very beginning.

Finally, we note the recent experimental discovery [90] of
anomalous superconductivity (which seems to be of the chiral
d +1id type) with the critical temperature 7, ~ 1.7 K and
strong coupling (large 7, /ef ratio) in the limit of a very low
2D density nop ~ 10'2 cm~2 in graphene bilayers that are
created as a result of twisting by a small (‘magic’) angle
0 ~ 1.2° the layered graphene superstructure. The separation
into phases [72] that occurs as a result seems to cause
fragmentation of multilayer graphene, accompanied by the
formation of a kind of AB—AA—...—AB-type superlattice
consisting of graphene bilayers with the AA and AB
structure.

We note that owing to the large ratio of the critical
temperature 7, and the Fermi energy ¢r, we can assert that
bilayer graphene is similar to the BCS-BEC crossover
situation between local and extended pairs in the d-wave
channel (see Section 6 of this review). A bridge is
established in this way between the physics and phase
diagrams of the BCS-BEC crossover in superfluid quan-
tum gases that we review here (see Sections 3-5) and
similar phenomena and superconducting phase diagrams
in the physics of high-temperature superconductors and
Dirac semimetals.

We note that quite recently Spivak et al. [308-310]
and Haldane [296] extended the discussion about the
possible contribution of the chiral anomaly proportional
to the EB scalar product in the presence of (often
parallel) magnetic (B) and electric (E) fields to inter-
valley transitions of charge carriers and longitudinal
magnetoresistance in 3D Dirac semimetals and Bi;_,Sb,
topological insulators (with topologically protected Dirac
points) in the vicinity of the critical quantum point in the
Sb concentration x (see also experimental study [311] in
Dirac and Weil semimetals and a paper on the chiral
anomaly in graphene [312]).

We note that in 3D Dirac semimetals and topological
insulators in the presence of a magnetic field, the role of the
collective mode can be played by magnetoplasmons. The
electron spectrum in strong quantizing magnetic fields and in
the so-called superquantum limit becomes quasi-one-dimen-
sional if only one (lower) Landau level is filled. Therefore, it is
possible to decrease the effective dimensionality of the
collective mode and obtain a gapless magnetoplasmon
spectrum even in 3D semimetals.

We recall that the plasmon spectrum in 3D metal systems
in the absence of a magnetic field usually has a plasmon gap
due to the presence of an ionic crystal lattice and the condition
of local electro-neutrality. At the same time, the plasmon
spectrum in 2D systems (in particular, such as a graphene
mono- or bilayer) features a characteristic square-root
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dependence of the wave vector [338] and is gapless (Gold-
stone) in a finite frequency window (range).

Consequently, the main experimental task in 3D Dirac
semimetals is, on the one hand, to measure magnetoconduc-
tivity values ¢..(B) at zero frequency and at low frequencies
(DC transport measurements) and, on the other hand, to
determine the magnetoplasmon spectrum (g, B) in the
microwave and terahertz ranges for various frequency ranges
in the parameter wrt. The last spectrum should be measured
both for the semiclassical regime of weak magnetic fields and
in strong quantizing magnetic fields in the range 1-10 T. Such
measurements may be conducted both in Russia and in a
number of leading laboratories located in the Netherlands,
France, and the USA. The main tasks for the theory are to
determine the analog of the important topological coefficient
Cy (see Section 12 and 13) in Dirac semimetals and to identify
its behavior at high and low frequencies determined by the
parameter wt.

We note that in some sense, according to Laughlin’s
ideology [339], the Larmor orbit center for strongly corre-
lated electrons in Dirac semimetals placed into strong
quantizing magnetic fields can form a kind of Wigner crystal
in the plane perpendicular to the magnetic field. The long-
itudinal magnetoplasmon lattice oscillations in that crystal
can preserve the gap due to the condition of electro-neutrality
and have a finite plasmon gap at low frequencies and wave
vectors (it is for this reason that the electron subsystem in the
regime of a fractional quantum Hall effect is considered to be
incompressible [339, 340]). At the same time, transverse
(shear) magnetoplasmon oscillations in the electron subsys-
tem may correspond to gapless Goldstone modes or have a
very small gap.

These modes may exhibit a linear (magnetoacoustic)
spectrum similar to Alfven waves in plasma hydro-
dynamics [13] or even a quadratic spectrum similar to the
helical waves of Konstantinov and Perel [341], which emerge
already in the semiclassical description of uncompensated
metals in a magnetic field.

As we have noted, such waves may be truly gapless or have
a small gap of a relativistic nature, similar to magnons in a
ferromagnet [28]. In any event, the physics of these waves is
very similar to the physics of orbital waves in He-3A, because
they always correspond to a small rotating transverse
component of the magnetic field in the background of a
large invariable longitudinal component. Owing to this, the
spectral equation for waves of that type is very similar to the
Landau-Lifshitz equation for magnons in a ferromagnet and
hence (as has been shown, for example, in [18]) to the spectral
equation of orbital waves in He-3A.

We note that already in the semiclassical limit of small
magnetic fields, we can extract important and relevant
information regarding the value of the topological coeffi-
cient Cy from the measurements of longitudinal magneto-
plasmon modes with a gap in parallel electric and magnetic
fields. This can be done using sum rules [309] that relate the
gap squared and the longitudinal magnetoconductivity
0., X cof)lr.

We stress that both the longitudinal magnetoconduc-
tivity o., (in parallel electric and magnetic fields) and the
magnetoplasmon gap squared w%l are linear functions of
Cy. The coefficient Cy itself that can be determined in the
single-particle approximation is directly proportional to
the product of universal constants such as the number of
valleys Ny in a Dirac semimetal, the Dirac velocity v, the

electron charge e, and the fine structure constant o« =
e*/he=1/137.

A task for the nearest future, of interest for both theorists
and experimentalists, is to generalize the calculated and
measured results for the plasmon gap and the longitudinal
magnetoconductivity to the quantum case of very strong
magnetic fields, very low temperatures, and very low carrier
densities (ultra-quantum limit). According to Spivak, this
limit is described by the chain of inequalities

P =1 <ol < {QupTY, (123)
where Lg = +/fic/eBis the magnetic length and the inequality
Q.7 > 1 corresponds to weakly broadened Landau levels in a
strong quantizing magnetic field. These estimates correspond
to magnetic fields whose strength is of the order of 10 T and
temperatures that are significantly lower than those in Kim’s
experiments (in the millikelvin region).

In Spivak’s opinion, very interesting infrared divergences
can be observed in this limit both in the collisional case ¢ > T
and in the collisionless case u < T in expressions for the
density of states, conductivity, and other characteristics of the
system (such as a change in the number of particles in a valley
in intervalley transitions.)

We reiterate that active experimental and theoretical
studies of quantum hydrodynamics in ultra-pure graphene
[342], the chiral anomaly in topological insulator Bi;_,Sb
[311, 312], nematic anisotropic superconductivity in Bi;Ses
doped with Cu, Nb or Sr [313], and other Dirac semimetals
that are being conducted now are of importance for the
development of basic condensed matter physics and are very
promising from the perspective of potential applications in
nanoelectronics and spintronics.

Returning to anomalous superconductivity and the BCS—
BEC crossover in a graphene bilayer, we stress again that the
phase diagram of the superconducting and normal states of
this system is very similar to the phase diagram of weakly
doped HTSC cuprates (considered in Section 6 of this review).
The BEC phase of the local pair with d-wave pairing is
supposed to be realized in the limit of low carrier densities in
the graphene bilayer (for small deviations from the half-filling
that corresponds to the Mott insulator [90]), while at higher
carrier densities, the BCS phase of extended Cooper pairs in
the chiral d-wave channel is to be realized.

The superconductivity mechanism that dominates in the
BCS phase seems again to be the Kohn—Luttinger mechan-
ism discussed in Sections 8 and 9, enhanced due to the
proximity to half-filling. We note that an author of this
review (with collaborators) has theoretically predicted
chiral d-wave pairing in an idealized ultra-pure (regarding
impurities and structural defects) AB layer of graphene
with the critical temperature 7, ~ 20—40 K at the dimen-
sionless 2D density n,p ~ 0.1 of the monolayer [149, 343].
However, as was shown in [87, 88, 149, 343], a nonmagnetic
impurity and structural defects decrease the critical tem-
peratures of d-paring in the real graphene bilayer.

Lozovik et al. [344] have shown that another important
factor responsible for decreasing T is the curvature of the real
graphene monolayer surface. According to Lozovik’s con-
cept, it plays the role of an effective magnetic field in
analyzing possible (‘diamagnetic’) suppression of supercon-
ductivity in real graphene. We note that an extended Hubbard
model was used in the weak-coupling Born approximation in
[149, 343] for exploring the graphene bilayer. The problem of
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Coulomb correlation strength in graphene remains a matter
of discussions.

Summarizing, we can assert that graphene and other
Dirac semimetal systems can be used in some sense as
reference systems that nicely combine all the effects discussed
in this review regarding the realization of the BCS-BEC
crossover scenario, the Berezinskii—K osterlitz—Thouless fluc-
tuation corrections, and the collective excitation spectrum, on
the one hand, and Kohn—Luttinger anomalous superconduc-
tivity and the role of Dirac zero modes in the quasiparticle
fermionic spectrum, on the other hand. We note that the role
of the topological coefficient Cy in 2D and layered systems
being played by the topological charge Q [296] that controls
the quantization of transverse Hall conductivity in the
quantum Hall effect and anomalous spin current in thin
films of the axial phase of superfluid He-3 [50].

We stress that graphene and other Dirac systems can be
simulated in experiments in the physics of ultracold quantum
gases using optical lattices, in particular, 2D hexagonal
optical lattices with special (highly symmetric) Dirac points
(see [86]).
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