
Abstract. Orbital binding energies in the ground state of many-
electron elements obtained in experiments or in quantum-
mechanical calculations are studied. Their dependences on the
atomic number and on the degree of ionization are analyzed.
The Bohr ± Sommerfeld semiclassical quantization condition is
used and filled-shell orbital binding energy approximate scaling
is shown. The scaling is similar to the one in the Thomas ± Fermi
model, but with two other functions-coefficients. The effective
method of the demonstration of binding energies in a large
number of atoms through these two functions is proposed. As a
result, special features of the elements of the main and transi-
tion groups and the influence of relativistic effects are vividly
manifested. Simple interpolation expressions are built for the
two functions. One can use them to estimate orbital binding
energies in the filled shells of many-electron atoms and ions to
within 10% for middle elements and from 10% to 30% for
heavy ones. The estimate can be used as the initial approxima-
tion in precessional atomic computations and also for rough
calculations of the ionization cross sections of many-electron
atoms and ions by electrons and heavy particles, failing more
precise data.

Keywords: periodic system, semiclassical approximation, electron
binding energy, atomic number scaling, ionization state, orbital
angular momentum

1. Introduction

Mendeleev's Periodic Table of elements is known to place
atoms in order of ascending atomic number (nuclear charge
Z) [1] and arrange them in periods in accordance with the
electron shell configuration of an atom, each period ending
with an inert gas. Therefore, the electron configuration of
elements in each next period is often represented, for brevity,
as the symbol of the inert gas followed by the description of
the structure of the electron shells filled in this element, e.g.,
the electron configuration of nickel can be specified as [Ar]
3d84s2, and that of cadmium as [Kr] 5s2. Also, elements are
distinguished by their belonging to the main or transition
groups; in the latter, d- and f-states are filled. These `school'
information raises the following questions: `What do these
features reflect in quantitative values of electron binding
energies and other atomic characteristics?' `How do electron
binding energies in atoms and ions depend on the atomic
number and ion charge?' `What is this dependence like in the
elements of the main groups and how does it differ from the
dependence in the elements of the transition groups?' `What
can the influence of relativistic effects lead to?'

The present study was designed in an attempt to answer
these questions based on the statistical Thomas±Fermi (TF)
model [2±4], i.e., a quasiclassical approximation in the
framework of the nonrelativistic self-consistent field model,
as the starting point. The TF model was and is not
infrequently used to estimate atom and ion characteristics
[5±8], despite its low accuracy compared with that of
quantum-mechanical calculations [9±14] taking account of
relativistic effects.

In our approach [15±17], the TF model is exemplified as a
tool in the search for atomic number and degree of ionization
scaling by means of successive analysis of experimental and
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theoretical orbital binding energies in many-electron atomic
systems.

The source of experimental data on atomic energy levels
of elements from hydrogen to uranium was data booklet [18],
summarizingmaterial fromRefs [19±22] for atoms. Results of
calculations for atoms and ions by density functional [11, 13,
23] and self-consistent field [9, 10, 12, 24] methods served as
theoretical data. It should be here noted the lack of literature
information on the characteristics of heavy element ions
needed for both experimental studies and basic research.

The paper layout is as follows. Section 2 is devoted to the
behavior of the intraatomic potential in atomic systems.
Experimental and theoretical binding energies of s-electrons
in atoms are considered in Section 3 and calculated binding
energies in ions in Section 4. Section 5 presents the
quasiclassical analysis of the dependences of binding energies
on the orbital angular momentum in atomic potentials.
Section 6 concerns research on experimental and theoretical
binding energies of electrons with nonzero orbital angular
momenta with regard to and regardless of relativistic effects
in atoms. Calculated data for ions of middle and heavy
elements are discussed in Sections 7.1 and 7.2, respectively.

2. Intraatomic potential

First, we consider the spherically symmetric variant of the TF
model most suitable for the description of many-electron
atomic systems (atoms and positive ions) with filled shells. In
the case of atoms, it relates to inert gases with atomic numbers
Z4 1, and in the case of ions to the systems with a number of
electrons Ne 4 1. How much greater than unity these values
should be is clear from the concrete examples below
comparing results obtained in the framework of the TF
model and quantum-mechanical models for inert gases.

In the TF model of a free ion with charge z, the electron
potential energy UTF�r� in an atom with atomic number Z is
given by the function jTF�x; a�Ðthe solution of the TF
equation [1]:

UTF�r; z;Z� � ÿZjTF�x; a�
r

; a � z

Z
;

�1�
r � c xZÿ1=3 ; c � 0:88534 ;���
x
p

j 00TF � j 3=2
TF ; jTF�0; a� � 1 ; x0j 0TF�x0; a� � ÿa : �2�

Hereinafter, Hartree atomic units are used unless otherwise
specified. At a � 0, one has x0 � 1 and equation (2)
describes the potential in a neutral atom. Function
jTF�cx; 0� for an atom is plotted as a curve in Fig. 1.

These relations show that there is an atomic number and
the degree of ionization scaling of interatomic potential in a
very simple TF model disregarding many important physical
effects (exchange, gradient, relativistic, etc.). A valid ques-
tion: Is there such a scaling, even if approximate, of the
potential calculated based on more advanced quantum-
mechanical models?

To answer this question in the case of neutral atoms, intra-
atomic potentials of five inert gases (neon, argon, krypton,
xenon, and radon) were calculated from the modified
Hartree±Fock±Slater (MHFS) model [12] and by the density
functional method with scalar relativistic corrections using
program [13]. The two approaches yielded very similar results
in the inner atomic regions of interest, while differences at the

periphery were due to taking account of the self-action effect
in the MHFS model.

Figure 1 presents, in addition to the TF function, the
results of calculations by the density functional method [13]
for inert gas atoms (symbols). The figure shows that the
results are close to the respective function in the TF model,
especially for many-electron atoms with Z5 18. This means
that for the intraatomic potential of such inert gases the
atomic number scaling in the following form is approximately
true:

ÿU�r� � Zj�rZ 1=3�
r

; �3�

where the function lgj�x� in the 04 x4 15 range can be
interpolated employing the cubic polynomial:

lgj�x� �
X3
k�0

fkx
k ; f0 � ÿ0:03379 ;

f1 � ÿ0:34948 ; f2 � 0:02880 ; f3 � ÿ0:00093 :

As is shown below, the scaling of potential leads to the atomic
number scaling of energy levels in this potential, first and
foremost for s-electrons.

3. Binding energies of s-electrons in atoms

3.1 Thomas±Fermi model
Let us consider energy levels in an atom with the atomic
number Z in the framework of the TF model (1), (2). The
nonrelativistic energy levels Enl in the central potential
depend on two quantum numbers: the principal n and orbital
l ones; in the quasiclassical approximation, they can be
determined from the Bohr±Sommerfeld quantization condi-
tion. In the case of s-states �l � 0�, it has the form

SE �
� RE

0

�������������������������
2
�
EÿU�r��q

dr � pn : �4�

1.0

ÿU
�r�
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0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 5 10 15

Figure 1. Dependence of reduced intraatomic potential ÿU�r�r=Z on

reduced radius rZ 1=3 in the TFmodel (curve) andmodel [13] for inert gases

(symbols): neon �Z � 10�Ð&, argon �Z � 18�Ð~, krypton �Z � 36�Ð
!, xenon �Z � 54�Ð}, and radon �Z � 86�Ð*.
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Here, SE is the action of an electron with energy E and zero
orbital angular momentum, U�r� is the electron potential
energy, and the region of integration is bounded by the
turning point RE.

Introducing the notation

En0 � Z 4=3en �5�

and substituting TF potential (1) for the atom �a � 0� into
formula (4) yield explicitly Z-dependences:

SE � Z 1=3s�e� � pn ; �6�

s�e� �
�����
2c
p �Xe

0

��������������������������
jTF�x�

x
� ce

r
dx :

Here, quantities s and e correspond to the s-electron action
and energy forZ � 1, andXe � REZ

1=3=c. In the general case,
smaller values of sn � pnZÿ1=3 correspond to the inner filled
shells and heavier atoms, while larger values relate to the
outer shells being filled and lighter atoms.

Expression (6) assigns en to each sn value and thereby
establishes the functional dependence e�s� in the TF model,
depicted by the curve in Fig. 2 on the semilogarithmic scale.
Notice a wide range of function e�s� variation (over a few
orders of magnitude upon a change in s by several units)
responsible for the logarithmic accuracy of all apparent
coincidences and proximity of values referred to below.

3.2 Atoms of inert gases
The symbols in Fig. 2 denote reduced energies of all
s-electrons in the atoms of five inert gases calculated by
the nonrelativistic LDA model [11] and borrowed from
tables [23] 1.

To obtain the required data, s-state energies En0 were
taken from the tables [23] and the value of sn � pnZÿ1=3 was
assigned to

en � En0

Z 4=3
:

Figure 2 confirms the existence of the approximate common
dependence e�s� formany-electron inert gases close to the one
calculated from the TF model.

Figure 3 shows an analogous dependence for inert gas
atoms in the respective experimental data [18] and the results
obtained by the density functional method, taking account of
scalar relativistic effects (ScRLDA) [23]. The differences
between the energies of s-electrons in Figs 2 and 3 are due to
relativistic effects most pronounced in heavy elements. They
have an especially strong impact on the binding energies of
electrons with nonzero orbital angular momentum (see
Section 6).

The dependence lg je�s�j for experimental data in Fig. 3
can be approximately interpolated using the cubic polyno-
mial

lg
��e�s��� �X3

k�0
aks k ; a0 � 1:92027 ;

�7�
a1 � ÿ1:59497 ; a2 � 0:35069 ; a3 � ÿ0:05253 :

This interpolation obtained from the data for inert gases will
be used below to estimate electron binding energies in atoms
of other elements.

3.3 Atoms of Periodic Table of elements
from neon to uranium
Tables [23] and [18] 2 provide copious material for investiga-
tions into consistent patterns of all atoms from hydrogen to
uranium.

1

0

ÿ1

ÿ2

ÿ3

ÿ4

lg
jej

1 2 3 4 5s

Figure 2.Dependences of reduced energies en � En0=Z
4=3 of s-electrons on

the reduced action sn � pnZÿ1=3 obtained using the TFmodel (curve) and

deduced from calculations for inert gas atoms [23] based on non-

relativistic LDA model [11] (symbols: notations are the same as in Fig. 1).

1 Tables [23] contain information on electron binding energies Enl in the

ground state of atoms and first ions from hydrogen to uranium, calculated

by several versions of density functional method [11] with and without

regard for relativistic effects.
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Figure 3.The same as in Fig. 2 for inert gases in the scalar relativistic model

ScRLDA [11, 23] (unfilled symbols) and based on experimental data [18]

(filled symbols). See Fig. 1 for notations.

2 Reference [18] reports binding energies measured in the natural state of

elements. Therefore, it lacks some upper levels of free elements (unlike

calculated results [23]).
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ScRLDA (scalar relativistic model) data and the observed
binding energies processing results are illustrated in Figs 4
and 5. Two different symbols (! and *) denote elements of
the main and transition groups; bigger symbols ! mark inert
gases. The interpolation cubic polynomial for five inert gases
is represented by the curve in Fig. 4. In addition, the sites
where a shell with the new principal quantum number n
appears are indicated.

Figures 4, 5 demonstrate the possibility to simultaneously
overview voluminous information on electron s-state energies
for the 83 atoms using the function lg je�s�j. Evidently, the
values of lg je�s�j for all atoms are very similar over a rather
wide s range �s � pnZÿ1=3 4 3:3�. This part of the spectrum
in the given coordinates is actually common for all elements
and corresponds to the filled shells of the inert gas atoms
nearest to them in terms of atomic number. This fact explains
the representation of the electron configuration of an element
through the respective inert gas.

Accordingly, lg je�s�j interpolations for inert gases in
this part of the spectrum may provide a reasonable
estimate of s-electron energies for all other elements, as
confirmed by Table 1, which compares experimental data
[18] with the results obtained using formula (5) for eight
different atoms. Cubic interpolation (7) of function
lg je�s�j is used here. The estimates for the inner shells are
within a 10% error.

3.4 Elements of the main and transition groups
Figure 4 shows deviations from the common dependence for
levels with s > 3:6, where the filling of new shells occurs. In
this part of the spectrum, specific features of transition group
elements are evident. Characteristically, the spectrum exhibits
almost horizontal sections at which lg jej is virtually indepen-
dent of s.

As an example, Figs 6, 7 present, together with results for
inert gases, the dependences for elements of transition iron
and lanthanum groups. Figures 6, 7 relate the horizontal
sections in Fig. 4 to the elements of the respective group and

confirm the common dependence in all the atoms. The
dependence is fairly well described by the interpolating
curve built for inert gases and provides a basis for energy
estimation in the filled shells.

The energies of s-electrons in transition group elements
can also be quantitatively estimated in the shells being filled.
Strictly horizontal sections would imply that En0 � gnZ

4=3,
where the constant gn could be determined from the known
value of the respective level in another element of the same
group. The analysis showed, however, that this rule is not
strictly followed, even if it helps to determine the range of
maximum fluctuations of s-electron binding energies in a
n-shell being filled from the relation

Emax
n0 � Emin

n0

�
Zmax

Zmin

�4=3
; �8�

where Zmin and Zmax are the minimal and maximum atomic
numbers of the elements in a given transition group. Once two
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Figure 4. Dependence lg je�s�j for all elements from neon �Z � 10� to
uranium �Z � 92�. Graphical interpretation of the binding energies

calculated by ScRLDA model [23]: ! is the main group elements (large !

symbols mark inert gases),* is the transition group elements. The curve is

the interpolating cubic polynomial for inert gases.
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Experiment
Z � 10 ë 92

Figure 5. Dependence lg je�s�j for all elements from neon �Z � 10� to
uranium �Z � 92�. Graphical interpretation of experimental binding

energies [18]: ! is the main group elements (large ! symbols mark inert

gases), * is the transition group elements.

Table 1. s-electron binding energies jEn0j (in electron-volts) for certain
atoms. Analytical estimate (5) with function (7) and experimental data
from the tables of Ref. [18].

90Th 75Re 60Nd 50Sn

n (5), (7) [18] (5), (7) [18] (5), (7) [18] (5), (7) [18]

1

2

3

4

5

6

99,529

18,779

4778

1277

279

39

10,9651

20,472

5182

1330

290

41.4

69,362

12,267

2935

704

125

71,676

12,527

2932

625.4

83

44,275

7216

1583

321

41

43,569

7126

1575

319.2

37.5

30,503

4639

936

160

29,200

4465

884.7

137.1

40Zr 30Zn 20Ca 15P

1

2

3

4

19,193

2671

476

62

17,998

2532

430.3

50.6

10,435

1284

186

15

9659

1196.2

139.8

ì

4317

434

41

4038.5

438.4

44.3

2268

192

2145.5

189
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shells are being filled, as in the lanthanum group including
rare-earth elements, relation (8) describes the range of energy
variations in a shell with greater n �n � 5�.

4. Binding energies of s-electrons
in free many-electron positive ions

The analysis is based on the TF model (1), (2), as before. In
the case of ions, the potential (therefore, all other ion
characteristics) in this model acquires dependence on the
degree of ion ionization a as a parameter; a determines the
range of s variation as well.

The same formula (6) with the function jTF�x; a� yields
dependences of the reduced energy je�s; a�j on the reduced
action s, shown in Fig. 8 for several degrees of ion ionization a.

Figures 8 and 9 make it possible to compare the
dependences obtained in the TF model with the results

of analysis of electron binding energies in ions from
tables [24]. These tables include data for all ions of
elements from hydrogen to cerium �Z � 58� calculated
by the multiconfiguration Dirac±Fock (MCDF) model
[9]. Multiple-of-ten atomic numbers are used for conve-
nience in calculations of the degree of ionization for
selected ions.

In Fig. 9 symbols denote the function lg je�s; 0�j for an
atom, and curves present quadratic interpolations. For
simplicity, quadratic interpolations for ions are presented:

lg
��e�s; a��� �X2

k�0

X2
m�0

ckma
ms k ; �9�

1

0

ÿ1

ÿ2

ÿ3

ÿ4

lg
jej

1 2 3 4 5s

ScRLDA
Fe group �Z � 21ÿ28�
and inert gases

Figure 6. (Color online.) Dependence lg je�s�j for iron group elements

�Z � 21ÿ28� (color symbols). Graphical interpretation of the binding

energies calculated by the scalar relativistic ScRLDA model [23]. Dark !

symbols mark inert gases. The curve is the interpolation over them.
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ÿ4

lg
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1 2 3 4 5s

ScRLDA
La group �Z � 57ÿ70�
and inert gases

Figure 7. (Color online.) The same as in Fig. 6, for lanthanum group

elements �Z � 57ÿ70�.
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TF

0.7
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a � 0.005

0.9

Figure 8. Function lg je�s; a�j �a � z=Z� at different ionization degrees

a � 0.005, 0.1, 0.3, 0.5, 0.7, 0.9 in the TF model.
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MCDF
Z � 10, 20, 30, 40, 50

0.7
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a � 0

0.9

Figure 9. Functions lg je�s; a�j constructed from electron binding energies

En0 [24] in the MCDF model [9] for ions of elements with Z � 10, 20, 30,

40, 50 at different ionization degrees a. Curves are the quadratic

interpolations, and symbols are the values of the function lg je�s; 0�j for
an atom.
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which fairly well describe results of calculations by the
MCDF model. Interpolation coefficients are presented in
Table 2. Figures 8 and 9 demonstrate the analogous behavior
of functions lg je�s; a�j, which reflects clear regularities
despite the quantitative difference.

5. Semiclassical analysis of the dependence
of electron binding energies
on the orbital angular momentum

5.1 Energy levels in the atomic potential
Atomic potentials are central potentials having a Coulomb
singularity around zero. A quasiclassical analysis of binding
energies in states with nonzero orbital angular momentum in
systems with this potential was reported in Refs [3, 25]. The
nonrelativistic energy levels Enl were determined from the
Bohr±Sommerfeld quantization condition (cf. condition (4)
for the s-level):

SE�l� �
�REl

R 0
El

���������������������
p 2
E�r� ÿ

l2

r 2

s
dr � p

�
nÿ lÿ 1

2

�
� p�nÿ l� ;

l > 0 : �10�
Here, pE�r� �

�������������������������
2�EÿU�r��p

, and SE�l� stands for the radial
action of an electron with energy E and orbital angular
momentum l � l� 1=2, the integration domain being
bounded by turning points R 0El, REl.

The Taylor series expansion of the quantization condition
(10) in terms the orbital angular momentum l indicates [25]
that the removal of orbital degeneracy in the first approxima-
tion in l leads to a quadratic orbital angular momentum
dependence of the energy deviation from the s-level: 3

Enl � En0 ÿ
S 00En0
�0�

2TEn0

l2 � . . . ; �11�

confirmed even for l5 1 [3]. Here, TE � qSE=qE is classic
time, S 00En0

�0� is the second derivative of radial action SE�l�
with respect to l at point l � 0, and En0 is found from
formula (4).

Notice nonetheless the approximate character of quad-
ratic formula (11) whose applicability domain is difficult to
evaluate in the theoretical framework. It should also be
emphasized that relations (10), (11) hold for nonrelativistic
energy levels, whereas relativistic effects acquire significance
in heavy atoms and ions. Specifically, spin-orbit interactions
result in the splitting of energy levels with nonzero orbital
angular momenta; in this case, quantum numbers n, l alone
are not enough to calculate binding energies. Scalar relativis-
tic models, e.g., ScRLDA [11] or model [13], ignore the
splitting, and the influence of relativistic effects is taken into

account for `effective' energy levels Enl that continue to be
doubly numbered in n, l.

The nonrelativistic results are first discussed in the next
section.

5.2 Energy levels with l > 0 in the Thomas±Fermi model
Sections 3 and 4 concerned the calculation of s-level energies
En0 in formula (11) in the framework of the TF model from
relations (6) and the separation of function e�s� independent
of the atomic number.

Taking account of expressions

TE � Zÿ1t�e� ; S 00En0
�0� � ÿZÿ1=3d�e� ; �12�

t�e� � c 3=2���
2
p

� Xe

0

dx�������������������������
j�x�=x� ce

p ; �13�

d�e� � 1�����
2c
p

"� Xe

0

�
1�������������������������

j�x�=x� ce
p ÿ 1������������������

1=x� ce
p �

dx

x 2

ÿ 2

�����������������
1

Xe
� ce

s #
�14�

allows the dependence on Z and l in the electron binding
energy (11) to be separated in the explicit form

Enl � Z 4=3en � Z 2=3d�en�l2 ; d�en� � d�en�
2t�en� : �15�

As a result, Eqn (15) contains one more function d�en�
independent of the atomic number Z, besides the previously
considered en function. It proved convenient to use the
respective action sn rather than the s-level energy en as the
argument of this function. Taking into consideration in the
general case the dependence on the degree of ionization a, this
leads to two simple relations for the calculation of electron
binding energies in atoms and ions via two Z-independent
functions:

Enl�Z; a� � Z 4=3e�sn; a� � Z 2=3d�sn; a�l2 ;

sn � pnZÿ1=3 ; a � z

Z
:

�16�

Function d�s� for atoms in the TFmodel is plotted in Fig. 10.
Similar to function e�s�, d�s� values vary in a broad range (a
few orders of magnitude) upon a change in s by several units.

As a result, the joint use of atomic number similarity in the
TFmodel and approximation of the quadratic dependence of
energy levels on the orbital angular momentum leads to
atomic number and orbital angular momentum scaling of
electron binding energies:

Enl ÿ En0 � Z 2=3l2 : �17�

In what follows, we seek confirmation of this observation by
more reliable theoretical and experimental data for atoms and
ions.

6. Binding energies of electrons with nonzero
orbital angular momenta in atoms

To verify the found patterns documented in experimental
spectra and obtained in more sophisticated quantum-
mechanical models, it is necessary to determine en and dnl
quantities from the available electron binding energies fEnlg
of different elements. A method for the construction of the

Table 2. Coefécients ckm in formula (9).

ckm

m \ k 0 1 2

0

1

2

1.5372

0.6420

ÿ0:5089

ÿ0:9557
ÿ1:0414
0.8363

0.0204

0.3944

ÿ0:2225

3 The next term must contain the fourth power of l and the fourth

derivative of radial action over l at point l � 0.
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dependence e�s� based on s-level energiesEn0 was described in
Section 3.2.

Assuming that relation (16) is valid, dnl can be calculated
from the available fEnlg values as a reduced deviation from
the respective s-level:

dnl � Enl ÿ En0

Z 2=3l2
; �18�

that is assigned the quantity sn � pn=Z 1=3. It is not apparent
immediately that pairs dnlÿsn for different atoms and
different l and n can produce a smooth monotonic depen-
dence and thereby confirm scaling (17).

6.1 Nonrelativistic calculations in atoms
Figure 10 presents function d�s� deduced from the TFmodel
(curve) together with the results of applying equation (18) to
the binding energies [23] calculated by the nonrelativistic
density functional model LDA [11] for five inert gases
(symbols). The figure shows the unique smooth dependence
analogous to but not coincident with the TF curve.

Results of processing (18) calculations [23] by the LDA
model for all atoms fromneon to uraniumpresented in Fig. 11
demonstrate the apparent coincidence with the function for
inert gases in the range of s4 3:6. This means that scaling
(17) in the spectral region is valid (within logarithmic
accuracy), and the interpolation functions lg je�s�j, lg d�s�
constructed for inert gases can be used in this region to
estimate nonrelativistic energy levels in the filled shells of an
arbitrary atom.

For middle atoms with atomic numbers 104Z4 40,
relativistic effects are insignificant; similar results are
obtained using the scalar relativistic model ScRLDA
(Fig. 12).

Table 3 presents interpolation coefficients for functions
lg je�s�j and lg d�s� calculated from the results obtained for
inert gases in the ScRLDA model [23].

Table 4 compares experimental binding energies [18] for
certain atoms and estimates using formula (16) with coeffi-
cients from Table 3. It follows that the filled shells are
described with an error of less than 10%.

6.2 Influence of relativistic effects
An entirely different picture is observed for heavy atoms.
Figure 13 demonstrates the dependence of lg dnl on s for all
elements from neon to uranium obtained from ScRLDA

0

ÿ1

ÿ2

lg
d

2 3 4 s

LDA
Z � 10 ë 92

Figure 11. Function lg d�s� calculated from Enl levels in nonrelativistic

LDA model [23] for atoms of all elements from neon to uranium: ! is the

main group elements (large symbols ! mark inert gases), and * is the

transition group elements.

Table 3. Polynomial coefécients ak and bk of cubic interpolation of
functions lg je�s�j �P3

k�0 aks
k and lg d�s� �P3

k�0 bks
k, respectively,

based on the electron binding energies in inert gases calculated by the
ScRLDA model [23].

k ak �NeÿRn� bk �NeÿKr�
0

1

2

3

1.89978

ÿ1:55642
0.32334

ÿ0:04885

3.16641

ÿ3:63096
1.17265

ÿ0:14540

0

ÿ1

ÿ2

lg
d

2 3 4 s

TF

LDA

Figure 10. Function lg d�s� calculated by the TF model (curve) and

deduced from calculations [23] by nonrelativistic LDA model [11] for

inert gas atoms (symbols: notations are the same as in Fig. 1).

0

ÿ1

ÿ2

lg d

2 3 4 s

ScRLDA
Z � 10 ë 40

Figure 12. Function lg d�s� in scalar relativistic model ScRLDA [23] for

elements with atomic numbersZ � 10ÿ40. Curve is the interpolation (see

Table 3) over inert gases neon, argon, and krypton, denoted by large

symbols !.
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`effective' levels. Separate filled �n; l � shells exhibit smooth
lg dnl�s� dependences, but they fail to form, even approxi-
mately, a common functional dependence, as in the non-
relativistic LDA model (see Fig. 11) or in the same ScRLDA
model for middle atoms (see Fig. 12).

Nevertheless, it turns out that lg dnl�s� dependences can
also be represented through interpolation of relevant values
for each filled shell in inert gases, even with regard for level
splitting due to spin-orbit interaction. Such an example for
experimental energies E2p1=2 and E2p3=2 is shown in Fig. 14
presenting results for more eight atoms from calcium to
thorium, besides those for inert gases. Thus, smooth
dependences are confirmed for split levels too, and the
complete picture of lg dnl�s� is extended, in comparison with
Fig. 13, by one more ramification of each branch analogous
to that depicted in Fig. 14.

7. Binding energies of electrons with nonzero
orbital angular momenta in ions

7.1 Ions of elements with atomic numbers Z < 58
In this section, the same dependences are discussed for ions,
with one more parameter (degree of ionization a) being
included in the consideration.

Figure 15, presenting function lg d�s; a� for different
degrees of ionization in the TF model, demonstrates its
relatively weak dependence on the degree of ionization,
especially for the inner filled shells �s < 3�. In other words,
parameter a in the TFmodel, having a strong influence on the
range of s variation (that naturally narrows with growing the

2 3 4 s

ScRLDA
Z � 10 ë 92

0

ÿ1

ÿ2

lg dnl n; l � 2, 1

3, 1
3, 2

4, 1
4, 2
4, 3

5, 1
5, 2

n � 6

Figure 13. Function lg dnl�s� in the scalar relativistic model ScRLDA [23]

for atoms of all elements from neon to uranium. Small symbols ! and *

mark the elements of main and transition groups, respectively. Large

symbols denote inert gases: neonÐ&, argonÐ~, kryptonÐ!, xenonÐ

}, and radonÐ*. NumbersÐ n; l values.

2 3s

0

ÿ1

lg d21

2p1=2

2p3=2

Figure 14. Function lg d21�s� for inert gases (!) and elements with atomic

numbers Z � 20, 30, 40, 50, 60, 70, 80, 90 (~). Filled symbols mark the

2p1=2 states; unfilled symbols are the 2p3=2 states. Curves are the

interpolating cubic polynomials for inert gases. Processing of experi-

mental data [18].

2 3 4 s

0

ÿ0:5

ÿ1.0

ÿ1.5

ÿ2.0

lg d
TF

Figure 15. Function d�s; a� from the TF model for different degrees of

ionization: a � 0:005Ð&, 0.1Ð~, 0.3Ð!, 0.5Ð}, 0.7Ð&, and

0.9Ð*.

Table 4. Experimental electron binding energies in certain atoms [18]
compared with estimates using formula (16) with coefécients from Table 3
(in atomic units).

Cl �Z � 17� K �Z � 19� Cu �Z � 29�
n l ÿenl [18] ÿenl (16) ÿenl [18] ÿenl (16) ÿenl [18] ÿenl (16)
1

2

2

3

3

0

0

1

0

1

104

9.92

7.39

108

9.02

6.80

133

13.91

10.90

138

12.40

9.83

330

40.3

34.6

4.5

2.8

350

39.9

34.6

5.1

3.5

Zn �Z � 30� Br �Z � 35� Zr �Z � 40�
1

2

2

3

3

3

4

4

0

0

1

0

1

2

0

1

355

44

38

5.14

3.31

0.37

376

43.7

38

5.76

4.10

1.13

527

70.6

62.6

10.8

8.02

3.47

1.01

0.52

523

65.4

58

9.77

7.57

3.65

0.96

0.50

661

93.1

83.2

15.8

12.4

6.62

1.86

1.02

694

92.2

82.8

15.1

12.4

7.43

1.82

1.08
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degree of ionization), only weakly affects the behavior of
function lg d�s; a� within this range.

The d�s; a� dependence calculated in the more advanced
quantum-mechanical model MCDF [9] was reconstructed
from ionization energy levels Enl in tables [24] using the
same algorithm (18). Results of this treatment are presented
in Fig. 16, confirming the weak dependence of function
d�s; a� on a for many-electron ions in the TF model. Indeed,
all deviations from this general dependence in Fig. 16 are due
to a small number of electrons in the ion �Ne < 10�.

This means that, in this case too, the available data can be
described using the a-independent function d�s�. The curve in
Fig. 16 is the interpolation of this function using the cubic

polynomial

lg d�s; a� � lg d�s� �
X3
k�0

bks k ; �19�

with coefficients bk equaling b0 � 2:1117, b1 � ÿ2:4106,
b2 � 0:7424, and b3 � ÿ0:0956.

The above analysis shows the possibility of employing
the a-independent function d�s� provided the following
conditions are fulfilled:

(1) the atomic number Z5 10,
(2) the number of electrons in an ion Ne 5 10.

2 3 4 s

0

ÿ0.5

ÿ1.0

ÿ1.5

ÿ2.0

lg d

MCDF
Z � 10, 20, 30, 40, 50

5 6

5

7

Figure 16.Function d�s; a� constructed from electron energy levels Enl [24]

in the MCDF model [9] for elements with atomic numbers Z � 10, 20, 30,

40, 50 at different a: a � 0Ð&; other notations are as in Fig. 15. Cipher

under a symbol denotes the number of electrons in an ion. Curve plots the

cubic interpolation over many-electron ions.

1

0

ÿ1

ÿ2

ÿ3

lg
jej

1 2 3 4 5s

U, Pd, V

0.652

0.435

0.217

a � 0

0.870

Figure 17.Function lg je�s; a�j constructed from electron energy levelsEn0

from Ref. [24] (for Z � 23, Z � 46) and Ref. [10] (for Z � 92) at different

degrees of ionization a denoted by different symbols.

s

0

ÿ0.5

ÿ1.0

ÿ1.5

ÿ2.0

lg d

2 3 4

U, Pd, V
l � 1

l � 2

l � 3

Figure 18. Function lg d�s; a� constructed from electron energy levels

Enl; j�lÿ1=2 [24] (forZ � 23,Z � 46) and [10] (forZ � 92) and independent

of the degree of ionization. Identical symbols denote identical values of

orbital angular momentum l: & Ð l � 1, ~ Ð l � 2, and ! Ð l � 3.

Table 5. Electron binding energies (in electron-volts) in certain ions of
different elements from tables [24] calculated in the MCDF model [9] and
analytical estimation using formula (16) with functions (9), and (19).

58Ce
�4

56Ba
�7

55Cs
�12

54Xe�24

nl jEnlj
[24]

jEnlj
(16)

jEnlj
[24]

jEnlj
(16)

jEnlj
[24]

jEnlj
(16)

jEnlj
[24]

jEnlj
(16)

1s

2s

2p

3s

3p

3d

4s

4p

4d

5s

5p

40,499

6614

5782

1501

1247

944

357

275

165

89

65

36,723

6701

6190

1408

1240

940

341

277

164

95

81

37,543

6097

5349

1396

1166

881

361

286

186

113

100

34,581

6192

5708

1362

1202

919

368

309

205

122

110

36,229

5963

5254

1456

1236

959

454

375

289

33,832

6042

5573

1459

1304

1029

476

419

319

35,352

6226

5556

1870

1660

1400

818

33,856

6343

5888

1926

1776

1508

947

42Mo�20 34Se
�14

20Ca
�3

30Zn
�18

1s

2s

2p

3s

3p

3d

20,756

3607

3259

1131

1012

890

20,646

3637

3332

1160

1061

884

13,138

2137

1912

632

552

473

13,281

2125

1906

637

568

446

4087

488

393

89

66

4228

458

362

78

56

10,405

1908

1733

693

10,730

1903

1724

777
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These conditions are compatible with the applicability
domain of the TF model, the use of which `prompted' the
above atomic number and degree of ionization scalings.

Interpolations (9), (19) of functions e�s; a�, d�s� are used
to compare analytical estimates using formula (16) and the
results of exact calculations of electron binding energies [24]
in the MCDFmodel [9] for certain ions of different elements.
The interpolations are constructed based on data [24] for ions
of five elements with Z � 10, 20, 30, 40, 50. The test elements
and ions were selected so as to fully represent different
variants. The results for eight ions are collected in Table 5.
In this case too, the estimates for the filled shells are within
10% error.

7.2 Heavy elements
Results of the scaling can be of practical interest for the
estimation of electron binding energies in inner shells of heavy
element ions for which published data are absent. They are
needed for experimental studies and the calculation of the

ionization cross sections of many-electron atoms and ions by
electrons and heavy particles with a great contribution from
inner shell electrons. Therefore, the present section was
designed to generalize this method to heavy elements too,
even though it does not allow taking into account relativistic
effects (level splitting due to spin-orbit interactions).

To begin with, interpolations of functions lg je�s; a�j,
lg d�s; a� used in Section 7.1 to calculate tables of middle

Table 6. Coefécients ckm in formula (20).

ckm

m \ k 0 1 2 3

0

1

2

3

1:9347

4:4638�10ÿ2
ÿ5:1722�10ÿ1

1:2590

ÿ1:5763
ÿ1:2033�10ÿ1

1:5664

ÿ3:3788

3:2347�10ÿ1
8:8302�10ÿ2
ÿ1:4676
2:9163

ÿ4:4599�10ÿ2
ÿ6:8499�10ÿ3
4:4901�10ÿ1
ÿ7:7141�10ÿ1

bk 8:7553�10ÿ1 ÿ1:0343 2:3039�10ÿ1 ÿ3:2415�10ÿ2

Table 7. Electron binding energies jEnl jj (in electron-volts) in certain uranium ions from Table 10 calculated based on theMCDFmodel [9] and analytical
estimation by formula (16) with functions (20) (index * stands for j � lÿ 1=2; in the absence of an index, j � l� 1=2).

U�10 U�20 U�30 U�40

nl jEnlj [10] jEnlj (16) jEnlj [10] jEnlj (16) jEnlj [10] jEnlj (16) jEnlj [10] jEnlj (16)
1s

2s

2p*

2p

3s

3p*

3p

3d*

3d

4s

4p*

4p

4d*

4d

4f*

4f

5s

5p*

5p

5d*

5d

5f

6s

6p*

1:166� 105

2:208� 104

2:127� 104

1:744� 104

5:768� 103

5:400� 103

4:508� 103

3:928� 103

3:748� 103

1:622� 103

1:456� 103

1:220� 103

9:532� 102

9:094� 102

5:576� 102

5:463� 102

4:839� 102

4:167� 102

3:595� 102

2:561� 102

2:469� 102

ì

1:799� 102

1:576� 102

1:079� 105

2:014� 104

1:936� 104

5:233� 103

4:901� 103

4:310� 103

1:563� 103

1:412� 103

1:144� 103

7:417� 102

4:434� 102

3:808� 102

2:695� 102

1:025� 102

9:866� 101

7:824� 101

1:169� 105

2:237� 104

2:156� 104

1:773� 104

6:052� 103

5:685� 103

4:791� 103

4:214� 103

4:032� 103

1:898� 103

1:732� 103

1:494� 103

1:229� 103

1:182� 103

8:331� 102

8:206� 102

7:352� 102

6:696� 102

5:978� 102

4:981� 102

1:082� 105

2:040� 104

1:962� 104

5:573� 103

5:241� 103

4:650� 103

1:894� 103

1:744� 103

1:475� 103

1:073� 103

6:876� 102

6:250� 102

5:137� 102

1:173� 105

2:280� 104

2:199� 104

1:816� 104

6:459� 103

6:093� 103

5:198� 103

4:623� 103

4:442� 103

2:285� 103

2:117� 103

1:877� 103

1:611� 103

1:566� 103

1:218� 103

1:206� 103

1:053� 103

1:088� 105

2:078� 104

2:000� 104

6:058� 103

5:726� 103

5:135� 103

2:389� 103

2:238� 103

1:970� 103

1:568� 103

1:130� 103

1:180� 105

2:352� 104

2:271� 104

1:888� 104

7:176� 103

6:815� 103

5:907� 103

5:348� 103

5:151� 103

2:908� 103

2:748� 103

2:476� 103

2:226� 103

2:154� 103

1:849� 103

1:098� 105

2:135� 104

2:057� 104

6:708� 103

6:376� 103

5:785� 103

3:016� 103

2:865� 103

2:597� 103

2:194� 103

U�50 U�60 U�70 U�80

1s

2s

2p*

2p

3s

3p*

3p

3d*

3d

4s

4p*

4p

4d*

4d

1:190� 105

2:444� 104

2:363� 104

1:980� 104

8:060� 103

7:700� 103

6:785� 103

6:229� 103

6:038� 103

3:634� 103

3:476� 103

3:170� 103

2:928� 103

2:867� 103

1:114� 105

2:217� 104

2:139� 104

7:553� 103

7:220� 103

6:630� 103

3:665� 103

3:514� 103

3:246� 103

1:200� 105

2:550� 104

2:470� 104

2:085� 104

9:000� 103

8:652� 103

7:712� 103

7:181� 103

6:989� 103

4:370� 103

4:222� 103

1:137� 105

2:332� 104

2:254� 104

8:632� 103

8:299� 103

7:708� 103

4:124� 103

3:973� 103

1:219� 105

2:724� 104

2:649� 104

2:258� 104

1:038� 104

1:009� 104

9:051� 103

8:661� 103

1:169� 105

2:490� 104

2:412� 104

9:994� 103

9:661� 103

9:071� 103

1:245� 105

2:952� 104

2:880� 104

2:486� 104

1:201� 104

1:212� 105

2:704� 104

2:627� 104

1:170� 104
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elements give but an inadequate description of binding energies
in uranium ions, as confirmed by comparison with the results
of calculations in the Dirac±Fock model [10]. To extend the
applicability region for our approach to a broader range of
atomic numbers, we built up new interpolations for these
functions with the use of data on orbital binding energies in
atoms and ions of three elements with Z � 23, 46, 92.

Figures 17 and 18 present the results of processing these
data. To construct function lg d�s; a�, the energy of the level
with j � lÿ 1=2 was chosen from two split energy levels Enlj

with l > 0. In Fig. 17, the data for different elements are
arranged into groups with identical degrees of ionization
denoted by different symbols. Figure 18 illustrates indepen-
dence of function lg dl�s; a� from the degree of ionization.
Most data can be interpolated by a single curve, shown in
Fig. 18. However, for heavy uranium, an uncommon
dependence on orbital angular momentum l emerges. All
appreciable deviations from the general curve correspond to
the energies in uranium ions with l � 2, 3. At the same time,
much larger deviations occur if the energies Enlj with
j � l� 1=2 are involved. Obviously, this limits the accuracy
of our estimates of orbital energies with l > 1 in heavy
elements, as confirmed by the comparison for uranium (see
Table 7).

The common dependences in Figs 17 and 18 are inter-
polated using cubic polynomials:

lg
��e�s; a��� �X3

k�0

X3
m�0

ckma
ms k ; lg d�s� �

X3
k�0

bks k ; �20�

with coefficients ckm and bk from Table 6. Table 7 collates the
orbital energies from Ref. [10] and results of our analytical
estimations using formula (16) with functions e�s; a�; d�s; a�
in accordance with formulas (20). Evidently, only an estimate
of 4d and 4f levels for the inner filled shells results in poorer
accuracy. In the other cases, the estimated error does not
exceed 10%.

Calculations show that the extended interpolation (20) for
middle-atomic-number elements is slightly worse than the one
more oriented to such elements with functions (9), (19).
Interpolation (20) overestimates the energy values but also
results in an error below 10% for the filled shell levels.

8. Conclusions

We examined properties of the intraatomic potential and
orbital binding energies in many-electron atoms and ions
based on the analysis of a large body of available empirical
data and calculations in the framework of quantum-mechan-
ical models. The general view of the relationship between
these characteristics and the atomic number of an element
and the degree of ionization of its ion confirms the
dependences on them deduced from the TF model, albeit
with different functional coefficients. Simple interpolations of
these functions-coefficients make it possible to construct an
approximate radius dependence of intraatomic potential in
the central part of an atom and analytically estimate electron
binding energies in the inner filled shells of a many-electron
atom or ion using a small number of tabulated constants.

Certainly, the scaling revealed in experimental data and
quantum-mechanical calculations is an approximate one. The
general patterns visible in the figures are represented on the
semilogarithmic scale, which precludes a spectroscopic
accuracy of estimation. It is shown that results for the inner

filled shells are within 10% and 10±30% of the exact
evaluation for middle and heavy elements, respectively.
These estimates are not very accurate but can be used as an
initial approximation in precise computations and also for the
rough calculation of the ionization cross sections of many-
electron atoms and ions by electrons and heavy particles,
when failing more precise data.

Moreover, separating functions e�s; a�, d�s� allows
compactly presenting copious information on all binding
energies in any number of many-electron elements, revealing
peculiarities of shell filling in the main and transition groups,
and evaluating the role of relativistic effects. These possibi-
lities may be used for educational purposes. A recent
publication [26] shows that the application of Z-scaling for
the analysis of X-ray terms makes it possible to describe
experimental data with an error of less than 1% and monitor
measurement reliability.
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