
Abstract. Relaxation theories of the glass transition and viscous
flow of glass-forming melts are presented. The focus is on
modern representations of the glass transition equation
qsg � dTg that describes the appearance of a glassy state dur-
ing cooling. Here, q � dT=dt is the temperature change rate
during melt cooling and sg is the relaxation time at the glass
transition temperature Tg. Various methods for calculating the
characteristic temperature band dTg during the liquid±glass
transition are considered. The generalized equation for the
dependence of Tg on the melt cooling rate is derived. Based on

the model of delocalized atoms, a modified kinetic glass transi-
tion criterion is discussed. A generalized viscosity equation for
glass-forming liquids is derived.

Keywords: glass transition, amorphous polymers, inorganic glasses,
metal amorphous melts, glass transition equation, viscosity, glass
transition criterion, relaxation theories

1. Introduction

The nature of the liquid±glass transition remains an urgent
unsolved problem of the physics of condensed matter. On the
one hand, the transition of an amorphous substance from a
liquid state to a glassy solid has a pronounced relaxational,
kinetic character [1±7], and on the other hand, the liquid±
glass transition resembles a second-order phase transition in a
number of fundamental features (see, e.g., [8±12]). This
problem has been discussed beginning from the first half of
the 20th century. After some quieting down, the discussion
was revitilized, especially in the second decade of the 21st
century [13±16].

The International Union of Pure and Applied Chemistry
(UPAC) defines the glass transition as a second-order phase
transition [17]. Molecular models have been proposed that
consider the microscopic mechanisms slowing down the
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structure relaxation at temperatures close to the glass
transition temperature Tg and describe the liquid±liquid and
liquid±glass transitions as phase transitions [18±26]. For
example, Tournier discusses the transition at Tg using a
change in the Gibbs free energy of a supercooled liquid as
the driver of the liquid±glass transition. The classical change
in the Gibbs free energy during crystallization was supple-
mented by a change in the enthalpy. This allowed Tournier to
describe both the liquid±liquid and liquid±glass transitions.
The Tournier model [18±21, 23] and models based on the
percolation theory [22, 24±26] describe the jumps in the heat
capacity and thermal expansion coefficient at Tg quite
successfully. Experiments [29±31] showed that the glass
transition has a thermodynamic nature, although it is
kinetically controllable. The authors of [22, 24, 25, 27, 32±
34] assume that the glass transition can belong to a class of
critical phenomena generally called topological phase transi-
tions. Nevertheless, in numerous theoretical and experimen-
tal studies [1±7, 38±48], the liquid±glass transition is regarded
as a purely relaxational, kinetic process.

Unlike a crystal or liquid, a glassy solid is in the non-
equilibrium state, which proves to be quite stable because its
transition to the equilibrium state is restricted by a potential
barrier. An example is fossil resins such as amber, retaining
the amorphous structure for a few dozen million years. The
density of glasses exposed to external action, in particular,
annealing very slowly but continuously, increases due to the
relaxation of the system volume to equilibrium.

This review is devoted to the discussion of modern aspects
of the relaxation nature of the glass transition and the viscous
flow of glass-forming liquids. New results obtained in the
model of delocalized atoms are presented. The further
development of this model is considered.

2. Bartenev approach

2.1 Empirical glass transition equation
Molecular rearrangements in the glass transition region
become so slow (the structural relaxation time is so long)
that the change in the structure has no time to follow the
change in external parameters (temperature in the case under
discussion). Therefore, it is natural that the glass transition
temperature Tg depends on the cooling rate q � dT=dt of the
glass-forming melt. The smaller the cooling rate, the lower is
the glass transition temperature.

These and other experimental data show that the glass
transition is a relaxation process and obeys kinetic laws. The
evolution of a glass-forming system depends on the rate of
change of external parameters such as temperature and
pressure and the time of system relaxation to the correspond-
ing equilibrium state.

Thus, from the standpoint of the relaxation approach, the
liquid±glass transition process critically depends on the
relation between the structural relaxation time t and the
cooling rate q [5±7, 35±37].

In 1951, based on general considerations, Bartenev [37]
proposed the kinetic glass transition criterion

qtg � C ; �2:1�

where tg is the relaxation time at the glass transition
temperature Tg and C is an empirical parameter with the
dimension of temperature. Hereafter, we let q denote the

absolute value jqj of the temperature change rate during melt
cooling or glass heating.

Relation (2.1), which is sometimes called the basic glass
transition equation [38±40], is successfully used in the
relaxation spectroscopy of polymers and glasses [39, 40] as
the condition for realizing the structural relaxation transi-
tion at T � Tg, similarly to the criterion ot � 1 used in the
case of mechanical relaxation, where o is the circular
frequency at which maximum mechanical losses are
observed. Equation (2.1) is also used to describe other
relaxation processes, for example, the thermally stimulated
electric depolarization of amorphous polymers [39] (qti � Ci,
where ti is the relaxation time of the ith process).

The transition of a liquid to the glassy state under cooling
(and under the action of high pressure) is called the structural
glass transition, while the transition from a viscous New-
tonian liquid to an elastic glassy body under the action of a
periodic mechanical force at a certain frequency n is called the
dynamic (sometimes, mechanical) glass transition [39].
Bartenev equation (2.1) is the condition for realizing the
structural glass transition, similar to the dynamic glass
transition criterion at a temperature Tn [39, 41]

2pntg � 1 : �2:2�

Eliminating the relaxation time tg from (2.1) and (2.2), we can
obtain the frequency n � nequiv equivalent to a given cooling
rate q [39],

nequiv � 1

2pC
q : �2:3�

For C � qtg, this equality transforms into the more con-
venient known relation [41]

nequiv � 1

2ptg
: �2:4�

The structural relaxation time tg at the glass transition
temperature of inorganic glasses is of the order of [38±40, 42]

tg � �1ÿ2� � 102 s : �2:5�

In particular, for sodium±silicate glasses [36] (see also Table 4
in Section 9),

tg � �160ÿ240� s : �2:6�

From (2.4), we then have the equivalent frequency

nequiv � 10ÿ3 Hz

for these glasses.
The last result means that the dynamic glass transition

temperature Tn coincides with the structural glass transition
temperature Tg only at low frequencies of the order of
10ÿ3 Hz: the structural and dynamic glass transitions occur
simultaneously and the structural (topological) and viscous
deformation components are frozen simultaneously [39].

2.2 Dependence of the glass transition temperature
on the melt cooling rate
The dependence of the glass transition temperature on the
melt cooling rate is the most important problem in the glassy
state theory. This problem is also important for practical
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applications, for example, for the development of the optimal
glass-annealing regime.

Substituting the relaxation time tg from the known
expression

t � t0 exp
�

U

RT

�
�2:7�

in the glass transition equation with T � Tg and t � tg,
Bartenev [37] obtained the dependence of the glass transition
temperature on the cooling rate:

1

Tg
� a1 ÿ a2 ln q ; �2:8�

a1 � R

U
ln

�
C

t0

�
; �2:9�

a2 � R

U
; �2:10�

where a1 and a2 are empirical constants, t0 is the vibrational
period of a molecule, U is the activation energy of the glass
transition process,R is the universal gas constant, andC is the
parameter of glass transition equation (2.1). Equation (2.8)
was derived assuming that U is a constant independent of
temperature,

U � const :

In 1954, three years later, based on different initial
assumptions, Ritland [43] proposed the same relation (2.8).
Relation (2.8) is often called the Bartenev±Ritland equa-
tion [1, 2].

The glass transition temperature is measured both in
the heating regime during glass softening and in the glass-
forming melt cooling regime. It has been found that
although the values of Tg obtained in these regimes are
somewhat different, the dependence of the glass transition
temperature on the heating rate is approximately the same

as the dependence of Tg on the cooling rate. Bartenev
verified dependence (2.8) using a thermal expansion curve
in the course the heating of a silicate glass and also a
hardening curve in the course of cooling this glass [37].
Experimental points in both regimes lie on a straight line in
coordinates �1=Tg; lg q�, which agrees with Eqn (2.8). The
linear dependence of 1=Tg on lg q is observed for a variety of
glasses [38, 44±47], including metal glasses [48].

At the same time, some glasses revealed a deviation from
Bartenev±Ritland equation (2.8) at sufficiently high heating
(cooling) rates [45].

The dependence Tg�q� was systematically investigated
in a broad heating rate range from 0.2 to 50 K minÿ1 in [44,
45]. The authors of these papers studied various amor-
phous materials: rosin, ebonite, organic amorphous poly-
mers, and silicate glasses with glass transition temperatures
in the range 208±1025 K (Table 1). The validity of Bartenev
equation (2.8) was confirmed with rare exceptions.

The ratio of parameters a1 and a2 was found to be
practically constant �a2=a1 � 0:03� for various amorphous
materials (see Table 1):

a2
a1
� const � 0:027ÿ0:035 : �2:11�

Table 2 presents the results of our study of oxygen-free
SeÿGa, SeÿBi, InÿSe, and AsÿSbÿSe glasses. Data from
the SciGlass database were used [49]. The dependence of 1=Tg

on ln q proved to be linear (Fig. 1), confirming the applic-
ability of Eqn (2.8) to these systems. Oxygen-free glasses
reveal the same properties as oxide glasses do: a2=a1 �
0:028ÿ0:034. Only InÿSe glass deviates in its properties
from the general picture.

Bartenev and Luk'yanov studied the dependence of the
glass transition temperature of amorphous materials on
the heating rate using the method of thermal linear
expansion [45]. Circular rod samples 4 mm in diameter and
50 mm in length were placed into the middle part of a tubular
electric oven 500 mm in length. The temperature along the
sample was constant to within a degree. The temperature

Table 1. Parameters of Bartenev±Ritland* equation (2.8) and the fraction fg of the fluctuation volume at the glass transition temperature [44, 45].

Glass Tg, K a1 � 103, Kÿ1 a2 � 105, Kÿ1 a2=a1 a1=a2 � 2:9 fg [see Eqn (11.4)]

Rosin
Polystyrene
PMMA**
SKS rubber
SKN-18 rubber
SKN-40 rubber
Ebonite
Boric anhydride

313
345
349
208
218
246
349
534

3.098
2.78
2.75
4.62
4.41
3.90
2.72
1.81

8.3
9.0
8.9
15.0
13.2
12.0
9.6
5.6

0.027
0.032
0.032
0.032
0.030
0.031
0.035
0.031

40
34
34
34
36
35
31
35

0.025
0.029
0.029
0.029
0.028
0.028
0.032
0.028

Silicate glasses***

No. 1
No. 2
No. 3
No. 4
No. 5

714
744
809
885
1025

1.34
1.29
1.19
1.086
0.94

4.28
4.24
3.60
3.33
2.67

0.032
0.033
0.030
0.031
0.028

34
33
36
35
39

0.029
0.030
0.028
0.028
0.026

*Values of a1 and a2 correspond to the case of the decimal logarithm �log q� in Bartenev equation (2.8).
** Polymethyl methacrylate.

***Composition of silicate glasses (mass.%). No. 1: SiO2 ì 55.3, Na2Oì 3.8,K2Oì 9.2, PbOì 30, Al2O3 ì 1.7;
No. 2: SiO2 ì 38.1,Na2Oì 1.3,K2O ì 2.5, PbOì 52, Al2O3 ì 3.4, B2O3 ì 1.8, CaO ì 0.5, MgOì 0.4;
No. 3: SiO2 ì 70.9,Na2Oì 16.1,K2Oì 0.6, CaOì 8.1, MgOì 2.9, other oxides ì 1.4;
No. 4: SiO2 ì 56, Na2Oì 10.1, CaO ì 17, MgOì 4, Al2O3 ì 11, B2O3 ì 2;
No. 5: SiO2 ì 57.6, CaO ì 7.4, MgOì 8,K2Oì 2, Al2O3 ì 25.
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measurement error was 0.5K for polymers and 1K for silicate
glasses. The accuracy of the sample elongation measurement
during its expansion was 1±2 mm. To exclude the influence of
the thermal prehistory, carefully annealed samples were used.
Bartenev and Gorbatkina [44] studied the dependence of the
glass transition temperature of rubbers on the cooling rate.
The sample length was measured with an accuracy of 1.5±
2.0 mm. The cooling rate was varied from 0.3 to 30 K minÿ1.

3. Mandelstam±Leontovich theory

In the approach based on nonequilibrium thermodynamics
[50, 51], along with parameters characterizing the state of a
system in classical equilibrium thermodynamics, the non-
equilibrium states are described by introducing additional
internal (structural) order parameters. The analysis of the
liquid±glass transition from these positions is the develop-
ment of concepts formulated by Bragg and Williams [52] in
1934 and Mandelstam and Leontovich [41] in 1937.

To describe the liquid±glass transition or, conversely,
glass softening, at least one additional internal parameter x
is introduced, describing the system transition to nonequili-
brium [41]. If the system state in the equilibrium is completely
determined by two independent variables, the pressure p and
the temperature T, the equilibrium value of the parameter
x � x e has the form

x � x e�p;T � :

But if p and T change, then x reaches a new equilibrium value
not instantly but at some finite rate, and hence x 6� x e. In such
a nonequilibrium process, the parameter x is a new indepen-
dent variable determining the system state. For example, a
change in x can result in a change in the system volume V.
Then the state equation takes the form

V � V�p;T; x� : �3:1�

If the parameter x is expressed in terms of the `internal'
entropy increment corresponding to the irreversible process
of establishing equilibrium,

T dSint � j dx ;

then, for example, the differential of the thermodynamic
Gibbs potential takes the form

dF � S dT� V dpÿ j dx ; j � ÿ dF
dx

����
P;T

:

Furthermore, to make the thermodynamic equations
closed, it is necessary to introduce the relaxation equation
for x, which has the form [41]

dx
dt
� ÿ 1

t
�xÿ x e� ; �3:2�

for small deviations from equilibrium, where t is the system
relaxation time.

Thus, the description of the relaxation process involves
the proper choice of the parameter x characterizing the
nonequilibrium structure of matter in the glass transition
region and the formulation of system relaxation equations.

The best known theories are those in which the internal
parameter x is the fraction n2 of particles in the excited state
(Volkenstein±Ptitsyn [6, 7] and Gotlib±Ptitsyn [53] theories),
a fictitious temperature T � [54], and the free volume fraction
f [55].

A periodic (sinusoidal) mechanical action on an equili-
brium liquid by a sound wave with a circular frequencyowas
considered in [41]. This action produces local overdense and
rarefied regions characterized by the density deviation Dr
from its mean value in the system, and deviations of the
temperature DT and the structural parameter Dx from their
equilibrium values.

The Mandelstam±Leontovich theory [41] has a rigorous
physical basis and is mathematically clearly formulated in
terms of the response of the system properties to an
external action. In addition, systems of equations of
nonequilibrium thermodynamics are derived from this
theory (see review [56]).

Following [35], we consider how, based on the Mandel-
stam±Leontovich theory, a relation can be derived between

Table 2. Parameters of Bartenev±Ritland equation (2.8) and the fraction fg of the fluctuation volume for oxygen-free and oxide glasses [49].

Glass Tg, K a1 � 103, Kÿ1 a2 � 105, Kÿ1 a2=a1 fg [see (11.4)]

Se ëBi
Se ëGa
In ë Se
As ë Sb ë Se
GeO2

P2O5ÿTeO2

SiO2ÿAl2O3ÿB2O3ÿP2O5ÿMgOÿNa2OÿK2O

309
315
316.7
444.8
762
578
1064

3.12
3.09
3.09
2.15
1.23
1.67
0.89

10.45
9.29
5.54
6.74
3.45
4.99
3.20

0.034
0.030
0.018
0.031
0.028
0.030
0.036

0.031
0.027
0.017
0.028
0.026
0.027
0.032

3.20

y � ÿ0:0456x� 3:1271

y � ÿ0:0404x� 3:0953

y � ÿ0:0241x� 3:0915

y � ÿ0:0293x� 2:1545

1
0
3
=T

g
,K
ÿ1

3.14

2.25

2.20

2.15
ÿ4.6 ÿ3.6 ÿ2.6 ÿ1.6 ln�q[K sÿ1]�

SeëBi
SeëGa
InëSe
AsëSbëSe

Figure 1. Dependences of the glass transition temperature on the heating

rate for oxygen-free glasses in coordinates �1=Tg; ln q�. The content of

Se=Be (mol.%): 77.28/22.72; Se/Ga (mol.%): 95.56/4.44p In/Se (mol.%):

7.11/92.89; As/Sb/Se (mol.%): 32.91/7.64/59.45 [49].
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the melt cooling rate q and the structure relaxation time tg at
the temperature Tg [in the form of an expression similar to
Bartenev equation (2.1)].

A relation from the Mandelstam±Leontovich theory
describing the appearance of the solid-like state of a liquid
can be written in the form [41]

P � P1 � DP
1� ot

: �3:3�

Here, P1 is the value of a property P corresponding to the
solid state of the liquid, o is the circular frequency of the
external action (in the general case, the operator q=qt
determining the time dependence of the external action), and
DP is the contribution to the property due to structural
relaxation changes (the relaxation contribution).

Because the solid-like behavior of a liquid, according to
modern concepts, corresponds to the glassy state, this theory
is also applicable to describing this state. The condition of the
liquid±glass transition in this version of the kinetic glass
transition theory [35] is equality (2.2),

otg � 1 : �3:4�

According to relation (3.3), the transition from the equili-
brium liquid to glass occurs not at the point Tg but within
some temperature interval. We assume that temperature
changes by the sinusoidal law

T � DT0 sin �ot� : �3:5�

A part of the sinusoid can be regarded as a linear dependence
of T on t in a wide enough time interval. The temperature
change in this time interval is approximately DT0 [35].

The temperature change rate can be found by differentiat-
ing relation (3.5) with o � const,

dT

dt
� DT0o cos �ot� :

Then, for ot equal to an integer multiple of p (within the
specified range of ot), we have j cos �ot�j � 1. This gives

o � �DT0�ÿ1 dT

dt
� q

DT0
�3:6�

with q � dT=dt. This equality coincides with relation (2.3) for
C � DT0, where C is the empirical parameter of Bartenev
equation (2.1) with the dimension of temperature.

Substituting o from (3.6) in glass transition condition
(3.4), we obtain a relation between the melt cooling rate q and
the structural relaxation time tg at the temperature Tg [35],

jqjtg � DT0 ; �3:7�

which can be regarded as a substantiation of glass transition
equation (2.1). Here, DT0 is a scale factor that allows the
linear temperature change in the interval DT0 to be approxi-
mately considered as a part of a stretched periodic process
with the frequency o. Because the external action with the
frequency o produces no changes in the system outside the
glass transition interval DTg, DT0 is the temperature interval
where the glass transition occurs.

Indeed, at high temperatures, when the relaxation time is
small and periodic variations DT0 do not satisfy condition
(3.6), the liquid is in the metastable state and no local

variations in T are manifested in its properties; because the
state is not frozen, all regions of the system return to
equilibrium: the condition to < 1 holds. The structure
relaxation time t is smaller than the period 1=o of the
mechanical action �t < 1=o� and the liquid has the time 1=o
to return to the equilibrium state. At low temperatures, the
condition to > 1 is satisfied because of a large relaxation
time, and periodic variations DT0 do not return the system to
the metastable liquid state. During the time 1=o of mechan-
ical action, the liquid structure has no time to relax to
equilibrium. In the intermediate temperature interval, when
the system temperature decreases and corresponds to the
condition otg � 1, the system is in the frozen state, which
does not pass into the metastable liquid state upon decreasing
the thermodynamic temperature.

4. Volkenstein±Ptitsyn relaxation theory

Volkenstein and Ptitsyn [6, 7] developed a rigorous physical
theory for studying the behavior of kinetic units that can exist
in two states with different energies separated by an energy
barrier. The energy of excited state 2, populated with a
fraction of particles n2, exceeds the energy of ground state 1
with the fraction of particles n1 by DE � U1 ÿU2, where U1

andU2 are kinetic barriers for the respective 1! 2 and 2! 1
transitions.

The kinetic equation for such a system has a form similar
to Eqn (3.2),

dn2
dT
� ÿ 1

qt
�n2 ÿ n20� ; �4:1�

where n20 is the equilibrium value of n2 and t is the relaxation
time. The solution of Eqn (4.1) and rather time-consuming
mathematical analysis show that the value of n2 is frozen at
some temperature Tg, which means that the glass transition
occurs.

The glass transition temperature Tg satisfies the equation

dt
dT

����
T�Tg

� ÿ 1

jqj : �4:2�

It follows from the theory that the equilibrium balance of
particles changes considerably only in a very narrow
temperature interval. This is manifested in the fact that the
annihilation rate of active particles passes through a max-
imum upon cooling within this interval and decreases with
time to zero.

The criterion for glass transition during cooling is
obtained by solving for the maximum of the function
describing the structure freezing rate,

jqjtg � 1

C�Tg� : �4:3�

Here, �C�Tg��ÿ1 is defined in [35] as the temperature interval
of the liquid±glass transition under cooling.

The Volkenstein±Ptitsyn theory [6, 7] describes the known
experimental properties of the glass transition process: the
dependence of Tg on q and breaks in the curves of the
temperature dependences of the volume and enthalpy at
T � Tg. The theory describes hysteresis phenomena during
the glass transition.

We note that relation (4.3) coincides with glass transition
equations (2.1) and (3.7).
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5. Configuron percolation theory

Structural rearrangements appearing in an amorphous
material during the glass transition result in characteristic
jumps in the derivatives of thermodynamic quantities such as
the thermal expansion coefficient. This is why the glass
transition was considered a second-order phase transition.
In experiments, these jumps (bends) allow finding Tg for
typical heating (cooling) rates. Figure 2 illustrates this with
an example of the temperature dependence of the linear
expansion coefficient of glass. The thermal expansion
coefficient (TEC) strongly increases as the temperature
approaches Tg, reaches a maximum at Tg, and then rapidly
decreases; a sharp peak is thus formed, as is demonstrated in
Fig. 2 by the temperature dependence of the TEC deviation
from its value in the glassy state. In the configuron
percolation theory (CPT), the glass±liquid transition is
regarded as a threshold effect in which percolation occurs
through broken chemical bonds called configurons. The
glass transition temperature is [24, 25, 32±34]

Tg � Hd

Sd � R ln
��1ÿ fc�=fc

� ; �5:1�

where Hd and Sd are the quasi-equilibrium configuron
(broken bonds) formation enthalpy and entropy and fc is
the critical fraction of space occupied by configurons under
percolation (the percolation threshold). Melts like SiO2

have a percolation threshold equal to the universal Sher±
Zallen threshold fc � #c, where #c � 0:15� 0:01, whereas
complex materials are characterized by different thresholds
fc 5#c [32±34]. However, the glass±liquid transition is
kinetically controlled and has a certain temperature range.
This is illustrated in Fig. 3 according to the CPT,
explaining the dependence of Tg on the cooling rate by
the relaxation of configurons (the involvement of a large
volume of matter during bond breaking). A larger radius of
a configuron efficiently reduces the percolation threshold
because the time of relaxation processes in the system

increases as the cooling rate is decreased [32]. Thus, the
percolation threshold is maximal when the temperature
change rate is maximal and decreases as the cooling rate
decreases.

Indeed, the dissociation of bonds is always caused by local
rearrangements of the atomic-vibration centers when an
instant bond break leads to the formation of a non-
equilibrium configuron with a small initial volume Vd,
which then gradually evolves into the relaxed volume Vc.
This results in the dependence of the glass transition
temperature on the cooling rate of the form

1

Tg
� Sd

Hd
�
�
ln �1=#c� � ln

ÿ�Vc ÿ Vd�=Vd

��
R

Hd
ÿmR

Hd
ln

q

q0
;

�5:2�

where q0 is a standard cooling rate introduced for obtaining a
dimensionless quantity in the logarithm. The index m < 1 is
the exponent in the Rayleigh±Plesset equation for the bubble
dynamics in liquid (m � 2=3 for B2O3) [32]. Equation (5.2)
coincides with Bartenev±Ritland equation (2.8), demonstrat-
ing their agreement. In the CPT framework, the coefficients
a1 and a2 in the Bartenev±Ritland equation become

a1 � Sd

Hd
� R

Hd

�
ln

1

#c
� ln

Vc ÿ Vd

Vd

�
; �5:3�

a2 � mR

Hd
: �5:4�

A comparison of (2.10) and (5.4) shows that the activation
energy of the glass transition process is determined by the
ratio of the chemical-bond dissociation enthalpy and the
exponent m:

U � Hd

m
: �5:5�

Therefore, the relaxation activation energy is higher thanHd,
because the Raylegh±Plasset exponent is smaller than unity.
We note that a1 and a2 are inversely proportional toHd. Thus,
there is a linear correlation between a1 and a2, which
corresponds to experimental data (see Table 1).
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6. Glass transition equation.
The value of the product qsg of the cooling rate
and the structural relaxation time

Given the coincidence of relations (3.7) and (4.3) obtained in
classical glass transition theories [6, 7, 41], Nemilov [35]
introduced the common notation

DT0 � 1

C�Tg� � dTg

for the right-hand sides of these equalities. Then the relation
between the cooling rate q and the structural relaxation time
tg is described by the general glass transition equation [35]

qtg � dTg ; �6:1�

which determines the appearance of a glassy state at the
temperature Tg under cooling. According to [35], ``the right-
hand side of Eqn (6.1) is a scale factor introducing the
temperature change value corresponding to a certain change
in the relaxation time required for obtaining glass.''

This equation is the most important result following from
theMandelstam±Leontovich [41] and Volkenstein±Ptitsyn [6,
7] relaxation theories. The detailed investigation of this
relation in the future is of interest.

First of all, it is necessary to find methods for calculating
``the temperature range dTg characterizing the liquid±glass
transition interval during cooling'' [35]. We note that dTg is
not the `macroscopic' glass transition interval DTg itself,
which is defined as the temperature region in the vicinity of
Tg where physical properties (volume, enthalpy, heat capa-
city, etc.) drastically change. It can be expected from general
considerations that dTg is within DTg, but their equality
follows from nowhere.

The glass transition temperature Tg is experimentally
found as the coordinate of the intersection point of extra-
polated temperature dependences of the glass and glass-
forming melt properties. However, the problem of accurately
determining the beginning and end (boundaries) of the glass
transition interval DTg remains unsolved (see review [1]).

Because the glass transition temperature depends on the
cooling rate q, some researchers [38±40, 45] proposed the
concept of a standard cooling rate,

q � 3 K minÿ1 � 0:05 K sÿ1 ; �6:2�

used in glass technology. In glass and polymer dilatometry, in
fact, in all countries, cooling rate (6.2) is typically used.
Because of the weak (semi-logarithmic) dependence of Tg on
q, small deviations of q from the standard value do not
strongly affect the value of Tg, with rare exceptions. When q
is changed by a factor of 10, the glass transition temperature
shifts only slightly by DT � 0:03Tg [38, 45]. Therefore, it is
usually assumed that most of the data on Tg are related to the
standard cooling rate. In this review, we use experimental
data obtained for the standard cooling (heating) rate. The
data for other values of q are scarce.

The structural relaxation time values in (2.5) and (2.6) for
inorganic glasses, tg � 100ÿ240 s, correspond to the stan-
dard melt cooling rate [36±40, 42]. Hence, for the standard
cooling rate q � 0:05 K sÿ1 and relaxation time tg �
100ÿ250 s, the product qtg in the left-hand side of glass
transition equation (6.1) for inorganic (in particular, silicate)

glasses is approximately

qtg � 5ÿ12 K : �6:3�
Therefore, for the temperature range dTg in the right-hand
side of glass transition equation (6.1) under standard
conditions, we should expect approximately the same values
dTg � 5ÿ12 K.

7. Estimate of the glass transition
temperature band dTg

7.1 Bartenev calculation method
Because the commonly accepted theoretical expression
describing the peculiar temperature dependence of the
structural relaxation time t�T � in the glass transition region
is absent, Volkenstein and Ptitsyn [6, 7] considered only the
simplest case, assuming that in the first approximation this
dependence is described by a usual exponential: Frenkel
equation (2.7).

By substituting t�T � from Eqn (2.7) in glass transition
condition (4.2) for U � const, Volkenstein and Ptitsyn
obtained the relation [6, 7]

qtg �
RT 2

g

U
; �7:1�

coinciding with glass transition equation (6.1). In this
approximation, the parameter in Eqn (6.1) acquires the
physical sense

dTg � RTg

U
Tg : �7:2�

Bartenev [38, 45] used relation (7.2) to calculate the
parameter C of his Eqn (2.1). We now replace C by dTg

because C � dTg. The ratio RTg=U was determined from the
relaxation time equation (2.7) for T � Tg,

RTg

U
� 1

ln �t0=tg� � const � 0:03 ;

where t0 � 10ÿ12 s and tg � 102 s. Taking (7.2) into account,
we obtain the relation

dTg � 0:03Tg �7:3�
for calculating dTg from the glass transition temperature
data. The estimate for inorganic silicate glasses (Tg � 800 K)
using this expression gives the approximate value

dTg � 20 K ; �7:4�
which considerably exceeds the product qtg � 5ÿ10 K [see
(6.3)].

In our opinion, the overstated value in (7.4) is caused by
the assumption made in the derivation of (7.1) that the glass
transition activation energy is constant �U � const�. It is
known that U drastically increases at temperatures close to
Tg [3±5]. It is easy to see that by repeating the procedure
presented above with the temperature dependence of the
activation energy U�T � taken into account, we can obtain,
instead of (7.1), the glass transition equation in which the
parameter dTg is [15]

dTg �
RT 2

g

Ug

�
1ÿ Tg

Ug

�
dU

dT

�
T�Tg

�ÿ1
: �7:5�
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Here, Ug is the activation energy of the glass transition
process at the glass transition temperature. The derivative
�dU=dT �Tg

is negative because the activation energy increases
�dU > 0� under cooling �dT < 0�. Therefore, the expression
in square brackets in the right-hand side of (7.5) is greater
than unity and hence the estimate using expression (7.2) is
overstated.

7.2 Calculation of dTg

from the Williams±Landel±Ferry equation
Asmentioned above, simple exponential dependence (2.7) for
U � const does not work in the glass transition region.
Therefore, empirical equations were proposed to implicitly
take the temperature dependence of the glass transition
activation energy U�T � into account. Among them, the
Williams±Landel±Ferry (WLF) equation [57, 58],

ln aT � ÿC1
Tÿ Tg

Tÿ Tg � C2
; aT � t�T �

t�Tg� �
Z�T �
Z�Tg� ; �7:6�

for the relaxation time t�T � and viscosity Z�T � became quite
popular. The validity of Eqn (7.6) is confirmed in many
papers for various amorphous materials [5, 57±61].

Substituting t�T � from Eqn (7.6) in glass transition
condition (4.2), we obtain the glass transition equation in
the form [36]

qtg � C2

C1
; �7:7�

whence the expression

dTg � C2

C1
�7:8�

is obtained for calculating dTg from empirical parameters C1

and C2 of the WLF equation.
The estimate using (7.8) for silicate glasses (Table 3),

dTg � 8ÿ12 K; �7:9�

is consistent with the product qtg in (6.3).

7.3 Nemilov calculation method
Taking the logarithm of relaxation time equation (2.7) and
taking the temperature derivative �d ln t=dT � at U � const
and T � Tg, we obtain

ÿ qT
q ln t

����
T�Tg

� RT 2
g

U
: �7:10�

Relations (7.2) and (7.10) give the Volkenstein±Ptitsyn
formula [6, 7] for dTg:

dTg � ÿ qT
q ln t

����
T�Tg

: �7:11�

In [35], Nemilov proposed to replace the equality sign in
this formula by the proportionality sign, because the Volken-
stein±Ptitsyn theory deals with not the relaxation time
spectrum but only the single time t. It is further assumed
that the proportionality coefficient should be universal, and it
is somewhat arbitrarily set equal to ln 10 � 2:3:

dTg � ÿ2:3 qT
q ln t

����
T�Tg

: �7:12�

Table 3. Calculations of the temperature band dTg for silicate glasses and amorphous polymers using various methods*.

Glass (glass composition, mol.%) T12, K T13, K dTg, K
(7.15)

dTg, K
(7.17)

dTg � C2=C1, K
(7.8)

C1 C2, K tg, s

Sodium-silicateNa2OÿSiO2 glasses [49]

15 Na2Oÿ85 SiO2

20 Na2Oÿ80 SiO2

25 Na2Oÿ75 SiO2

30 Na2Oÿ70 SiO2

33 Na2Oÿ67 SiO2

35 Na2Oÿ65 SiO2

819
792
769
749
738
726

790
766
745
727
717
705

29
26
24
22
21
21

13
11
10
10
9
9

12
11
10
9
9
8

36
36
35
35
35
35

430
390
355
322
304
291

239
217
202
184
174
166

Window glass** [40] 846 825 21 9 8 36 305 160

Polyalkali silicate glasses [62]

69:04 SiO2ÿ30:96 Na2O

79:29 SiO2ÿ12:97 Na2Oÿ7:75 Li2O

43:22 SiO2ÿ9:55 Na2Oÿ47:23 CsO

71:59 SiO2ÿ24:4 Na2Oÿ4:01 Li2O

736
700
721
695

718
683
704
681

18
17
17
14

8
7
7
6

7
7
6
6

46
45
31
36

340
315
200
231

147
140
129
128

Amorphous polymers [58]

Polyisobutylene
Polyvinyl acetate
Polyvinyl chloroacetate
Polymethyl methacrylate
Polyurethane
Natural rubber
Methacrylate polymers:
ethyl
n-butyl
n-octyl

ì
ì
ì
ì
ì
ì

ì
ì
ì

202
305
296
276
238
300

335
300
253

6
9
9
8
7
9

10
9
8

ì
ì
ì
ì
ì
ì

ì
ì
ì

2.7
1.3
1.0
1.1
0.9
1.4

1.6
2.5
2.9

38
36
40
42
36
38

40
39
37

104
47
40
45
33
54

65
97
107

54
26
20
22
18
57

32
50
58

* tg � C2=�qC1�, C1 and C2 are parameters of the WilliamsëLandelëFerry equation, q � 0:05 K sÿ1.
** Window glass composition (weight%) [40]: SiO2 ì 72.7, CaO ì 8.6, MgOì 3.4, Al2O3 ì 1.3,Na2Oì 13.6, K2Oì 0.4.
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In passing from the natural logarithm to the decimal one, this
proportionality coefficient is canceled and, with the relation
between the relaxation time t�T � and viscosity Z�T � taken
into account, relation (7.12) is transformed into the following
one [35]:

dTg � ÿ qT
q lg t

����
T�Tg

� ÿ qT
q lg Z

����
T�Tg

: �7:13�

If the temperature interval is assumed to be such that the
viscosity Z�T � changes by an order of magnitude from 1013 to
1012 Pa s, equality (7.13) reduces to a form convenient for
calculations:

dTg � ÿ qT
q lg Z

����
T�Tg

� ÿ DT
D lg Z

� T12 ÿ T13

lg Z12 ÿ lg Z13
; �7:14�

where T12 and T13 are temperatures corresponding to the
viscosity logarithms lg Z12 � 12 and lg Z13 � 13, which finally
gives the Nemilov relation [35]

dTg � T12 ÿ T13 : �7:15�

Formula (7.15) was used to calculate 13 silicate glasses
[35]. For most of them, the value of dTg is close to 20 K. The
average of 13 values is

dTg � T12 ÿ T13 � 20 K ; �7:16�

which coincides with Bartenev's estimate in (7.4) and is
approximately twice the typical value of the product
qtg � 5ÿ10 K and the value of dTg in (7.9) obtained from
the WLF equation. For sodium±silicate glasses, Nemilov's
formula (7.15) gives values dTg � 21ÿ29 K (see Table 3).

Because Nemilov used Volkenstein±Ptitsyn formula
(7.11) derived for U � const, we could assume that the
overstated values of dTg in (7.16) were explained using the
same reason as in Bartenev's work, namely, the assumption
that the glass transition activation energy was constant in the
derivation of formula (7.11). However, Nemilov used not
expression (7.2) but derivative (7.13), which is independent of
whether the glass transition activation energy changes with
temperature, because the dependence Z�T � [or t�T �] in
derivative (7.13) is a continuous monotonic function in the
interval DT [35].

In this connection, the question arises of what causes the
discrepancy between Nemilov's estimate of dTg and the
product qtg. We consider one of the possible explanations.

7.4 Calculation using the Volkenstein±Ptitsyn formula
without an empirical factor
It is known that the liquid±glass transition process can
often be quite well described by using one averaged
relaxation time equal to the most probable relaxation time
ta corresponding to the maximum of the continuous
relaxation time spectrum of glass transitions in liquids and
polymers [1±7, 39]. In relaxation spectrometry, this discrete
relaxation time ta characterizes the a-relaxation process
(glass transition) [39, 40].

In this connection, it is interesting to calculate dTg directly
from Volkenstein±Ptitsyn formula (7.11) with t equal to the
a-relaxation time. In other words, we propose to repeat the
Nemilov calculation procedure without introducing the
empirical proportionality coefficient 2.3.

It is easy to see that such an approach gives the values

dTg � 1

2:3
�T12 ÿ T13� � 6ÿ13 K �7:17�

for silicate glasses (see Table 3), which are consistent with the
product qtg in (6.3) and with dTg obtained for these glasses
using the WLF equation (7.9) (see Table 3).

This suggests that overstated values (7.16) can be due to
the empirical factor 2.3 introduced into Volkenstein±Ptitsyn
formula (7.13).

The search for correct methods for calculating dTg is in
fact at the initial stage [35, 36]. Further studies of glass
transition equation (6.1) will probably elucidate the real
reasons for discrepancies in the estimates of dTg by various
authors. According to the estimate by Volkenstein and
Ptitsyn [6, 7], the temperature band width dTg is a few
degrees, which is consistent with the classical concept [63]
that the structure of glass-forming melts is frozen in a very
narrow temperature region including Tg. The Volkenstein±
Ptitsyn theory [6, 7] leads to the same conclusion.

Because of the importance of Volkenstein±Ptitsyn for-
mula (7.11), we consider a new approach to explaining it. The
equation obtained by Razumovskaya and Bartenev [64]
without specifying the temperature dependence t�T � has the
form

ln aT � ÿA 2

B

Tÿ Tg

Tÿ Tg�1ÿ A=B� ; aT � Z�T �
Z�Tg� �

t�T �
t�Tg� ;

�7:18�
A � ÿ q ln t

q�T=Tg�
����
T�Tg

; �7:19�

B � 1

2

q2 ln t

q�T=Tg�2
����
T�Tg

: �7:20�

The parameter A is positive because q ln t > 0 for
q�T=Tg� < 0. The substitution of t�T � from (7.18) in the
general glass transition equation (4.2) [6, 7]

dt
dT

����
T�Tg

� ÿ 1

jqj

yields

qtg � Tg

A
;

whence, taking expression (7.19) for the derivative A into
account, we obtain Volkenstein±Ptitsyn formula (7.11)

dTg � Tg

A
� ÿ qT

q ln t

����
T�Tg

: �7:21�

We note the important fact that expression (7.21) in this
derivation is independent of the form of the dependence t�T �.
Thus, relation (7.11) has a more general character than in the
Volkenstein±Ptitsyn interpretation [6, 7].

It is also important that Razumovskaya±Bartenev equa-
tion (7.18) coincides with empirical WLF relation (7.6),
which, as we see, follows from a simple series expansion of
ln t�T � [64]. This explains why the calculations of dTg by
Volkenstein±Ptitsyn formula (7.17) and WLF relation (7.9)
are in good agreement (see Table 3).
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8. Fragility and the glass transition temperature
interval dTg

In the last decades, the concept of fragility has gained
acceptance, which is determined by the temperature depen-
dence of the viscosity at temperatures close to the glass
transition temperature [65]:

m � d ln Z�T �
d�Tg=T �

����
T�Tg

: �8:1�

It is easy to see that substituting the dependence Z�T � from
WLF equation (7.6) in expression (8.1) gives the relation [66]

m � C1

C2
Tg :

Taking into account that dTg � C2=C1, for m � const, we
obtain a linear correlation between dTg and the temperature
Tg for glasses of the same class,

dTg � 1

m
Tg ; �8:2�

which is confirmed in experiments with some glasses [36]. The
value of m is used to classify glasses.

9. Glass transition equation
in the model of delocalized atoms

We consider the model of delocalized atoms [67], in which an
important parameter is the fluctuation volume DVe of the
amorphous system appearing due to thermal displacements
of particles from equilibrium positions,

DVe � NeDve :

Here, Ne is the number of delocalized atoms and Dve is the
elementary fluctuation volume required for delocalization of
an active atom (its displacement from the equilibrium
position). The mobility of delocalized atoms in the glass
transition region is mainly determined by the fraction of the
fluctuation volume

f � DVe

V
:

From the standpoint of this model, the parameters of
WLF equation (7.6) acquire the following physical interpreta-
tion [67]:

C1 � 1

fg
; C2 � fg

bf
; �9:1�

where fg � �DVe=V�T�Tg
is the fraction of the fluctuation

volume frozen at the glass transition temperature and bf is the
thermal expansion coefficient of the fluctuation volume at
T � Tg �bf � �df=dT �T�Tg

�. The product bfTg depends on fg
[67, 68]:

bfTg � fg ln
1

fg
: �9:2�

It follows from expressions (7.8), (9.1), and (9.2) that the
relative temperature interval dTg=Tg is a single-valued
function of the fraction fg of the fluctuation volume frozen

at the glass transition temperature,

dTg

Tg
� fg

ln �1=fg� : �9:3�

Thus, in the framework of the model under study, the
parameter dTg of the glass transition equation is determined
by the temperature Tg and the fraction fg of the fluctuation
volume frozen at T � Tg [36, 69]:

qtg � fg
ln �1=fg� Tg :

We note that the parameter C1 of the WLF equation is in
fact a universal constant, at least for glasses of the same class
(Table 4). This means that the fraction fg � 1=C1 of the
fluctuation volume is constant [see (9.1)] (see Table 4):

fg � DVe

V

����
T�Tg

� 1

C1
� const � 0:024ÿ0:028 : �9:4�

For fg � const, equality (9.3) gives a linear correlation
between dTg and Tg. Indeed, as mentioned above, some
glasses exhibit a linear correlation between the glass transi-
tion temperature Tg and the temperature interval dTg

[determined by expression (7.8)] [36].
If fg and Tg are known, the temperature interval dTg

characterizing the liquid±glass transition can be estimated by
expression (9.3). For sodium±silicate glasses, dTg � 5ÿ6 K,
and for amorphous organic polymers, dTg � 2 K. Glassy
selenium (dTg � 1:8 K) is an inorganic amorphous polymer
with the transverse linear structure ÿSeÿSeÿSeÿ. For low-
molecular organic glasses, dTg � 1 K (see Table 4).

Thus, the values dTg � 5ÿ6 K calculated in the model of
delocalized atoms for sodium±silicate glasses are in good
agreement with the product qtg � 5ÿ10 K for silicate glasses
in Eqn (6.3) and with calculations of dTg using the parameters
of WLF equation (7.9).

For most glassy systems, the value of dTg, according
to (9.3) for fg � 0:025, is about 0.7% of the glass transition
temperature, and the relative temperature interval dTg=Tg is
virtually universal for the amorphous materials studied (see
Table 4):

dTg

Tg
� const � 0:006ÿ0:008 : �9:5�

The fact that the interval dTg is very narrow is explained be
the small fraction fg of the fluctuation volume frozen at the
glass transition temperature, in other words, by the small
scale of the local structural fluctuation near Tg.

Among the methods for calculating dTg presented above,
the estimate using the parameters of the WLF equation with
the help of expression (7.8) is preferable in our opinion.

The calculation of dTg for amorphous organic polymers
and low-molecular organic glasses from the data on C1 and
C2 within the model of delocalized atoms (9.3) gives low
values (see Table 4)

dTg � 1ÿ3 K ;

which are consistent with the product qtg � 1ÿ3 K at the
standard cooling rate. Metal glasses with dTg � 3ÿ5 K
occupy the intermediate position between inorganic and
organic glasses (see Table 4).
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BecauseC1 � const for glasses of the same structural type
(see Table 4), it follows from (7.8) and (9.3) thatC2 andTg are
linearly related. As a result, WLF equation (7.6) can be
written in the modified form

ln
t�T �
t�Tg� � ÿC1

Tÿ Tg

Tÿ C0Tg
;

where the dimensionless quantity

C0 � 1ÿ C2

Tg
;

unlike C2, weakly depends on the glass nature: C0 � const
(see Table 4). Thus, the WLF equation can be written in the
modified form containing two dimensionless virtually `uni-
versal' constants C1 and C0.

As mentioned above, in the Volkenstein±Ptitsyn
relaxation glass transition theory [6, 7], liquid molecules
can be in two energy states, the ground and excited states,
but the physical meaning of particle excitation from the
ground to excited state is not explained. It seems that the
delocalization of an active atom can be considered one of
the possible variants of particle excitation in the Volken-
stein±Ptitsyn theory. Then the number of delocalized
atoms corresponds to the number of excited (active)
particles in this theory. The delocalization of an atom,
for example, in silicate glasses is then represented by a
critical transverse displacement of an oxygen atom in the
SiÿOÿSi bridge [67].

The concentration Ne=N of delocalized (bridge) atoms
responsible for the viscous flow of glass-forming melts at
temperatures above Tg decreases to a very small value of 3±
4% in the glass transition interval, which is equivalent to

`freezing' (see Table 4),

Ne

N

����
T�Tg

� exp

�
ÿ Dee
kBTg

�
� const � 0:03 ;

where kB is the Boltzmann constant and Dee � piDve is the
localization energy of an atom, equal to the atom displace-
ment work performed against the internal pressure pi caused
by interatomic (intermolecular) attraction forces. At the glass
transition temperature, the atom delocalization process (the
transition from the ground to excited state) is frozen. During
glass softening under heating, the atomdelocalization process
is gradually frozen out, and the number of delocalized atoms
increases from small values in the frozen state to their
concentration corresponding to liquid.

In the model of delocalized atoms, in our opinion, an
internal (structural) parameter such as x is the fraction f of
the fluctuation volume, which is mainly determined by the
concentration of delocalized atoms. From this standpoint,
the relative temperature interval dTg=Tg in equality (9.3) is a
single-valued function of the internal parameter fg character-
izing the system structure near the glass transition tempera-
ture.

10. Kinetic glass transition criterion

The glass transition criterion�
1

T

���� dTdt
����t�����

T�Tg

� C3 ; C3 � 1 �10:1�

was formulated in a number of studies [1, 2, 72]. As pointed
out in [35], according to (10.1), the product qtg for oxide (for
example, silicate) glasses at T � Tg should correspond to

Table 4. Parameters C1 and C2 of the WLF equation and glass transition characteristics of amorphous materials* [36].

Amorphous material Tg, K C1 C2, K dTg � C2

C1
, K fg

dTg

Tg
� 103 tg, s C0

Ne

N

����
T�Tg

, %

Sodiumësilicate Na2OÿSiO2 glasses [49]

Na2O, mol.%
15
20
25
30
33
35

782
759
739
721
712
705

36
36
35
35
35
35

430
390
355
322
304
291

12
11
10
9
9
8

0.028
0.028
0.028
0.028
0.028
0.028

7.8
7.8
7.8
7.8
7.8
7.8

240
220
200
180
180
160

0.5
0.5
0.5
0.5
0.6
0.6

3.5
3.4
3.5
3.5
3.5
3.5

Metal glasses (amorphous alloys) [70, 71]

Pd40Ni40P20

Pt60Ni15P25

Pd77:5Cu6Si16:5
Fe80P13C7

602
500
653
736

39
37
38
38

93
95

100
120

2.4
2.6
2.6
3.2

0.026
0.027
0.026
0.026

7.1
7.5
7.1
7.1

48
52
52
64

0.8
0.8
0.8
0.8

3.6
3.6
3.7
3.6

Amorphous organic polymers [58] and selenium [5]

Polyvinyl acetate
Natural rubber
Ethyl methacrylate
Selenium

305
300
335
303

36
38
40
32

47
54
65
58

1.3
1.4
1.6
1.8

0.028
0.026
0.025
0.031

7.8
7.1
6.8
8.9

61
57
50
44

0.8
0.8
0.8
0.8

3.5
3.6
3.6
3.6

Low-molecular organic glasses [61]

Propanol
Propylene alcohol
Glycerin

98
160
185

41
44
42

25
40
53

0.6
0.9
1.3

0.024
0.023
0.024

6.4
6.1
6.4

12
18
26

0.7
0.7
0.7

3.6
3.7
3.9

* fg � 1=C1, tg � C2=C1q.
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Tg � 800 K,

qtg � 800 K ; �10:2�

which contradicts classical relaxation glass transition theories
[6, 7, 41, 63] and typical values qtg � 5ÿ10 K [see (6.3)].

Taking the results of the study performed in Sections 6±9
into account, we consider one of the variants of refining the
glass transition criterion (10.1). Dividing both sides of glass
transition equation (6.1) by the glass transition temperature
Tg, we obtain the relation

qtg
Tg
� Cg ; �10:3�

in which Cg is in fact a universal constant [see Eqns (9.3) and
(9.5)],

Cg � dTg

Tg
� fg

ln �1=fg� � const � 0:007 : �10:4�

Relation (10.3) can be considered a new variant of the kinetic
glass transition criterion, written in the generalized form�

1

T

���� dTdt
����t�����

T�Tg

� Cg ; Cg � 7� 10ÿ3 : �10:5�

Glass transition condition (10.5) does not contradict
classical relaxation theories [7, 63] and the values of qtg. For
oxide glasses (Tg � 700ÿ800 K), this condition gives the
value

qtg � CgTg � 5ÿ6 K ;

in agreement with typical values of qtg.

11. Estimate of the fluctuation volume fraction fg

As mentioned above, the basic features of the glass transition
process are qualitatively the same for all amorphous materi-
als, irrespective of their nature: amorphous organic polymers,
inorganic glasses, metal amorphous melts, aqueous solutions,
chalcogenides, etc. The dependence of the glass transition
temperature Tg on the cooling rate q of glass-forming
solutions is then described by the same Bartenev±Ritland
equation (2.8), in which the ratio of empirical parameters
a2=a1 is virtually constant for various amorphous materials,
including organic amorphous polymers and silicate glasses
(see Tables 1 and 2).

We note that the values of a2=a1 and fg in equalities (2.11)
and (9.4) coincide. We see below that this is not accidental.
Taking expression (2.10) into account, we represent the
Bartenev±Ritland relation (2.8) in the form

U

RTg
� a1

a2
ÿ ln q : �11:1�

A comparison of the expression for viscosity [67]

Zg � Z0 exp
�
1

fg

�
�11:2�

with the known Frenkel equation [73]

Zg � Z0 exp
�

U

RTg

�

written for T � Tg shows the connection between the
activation energy of the viscous flow and the fluctuation
volume fraction fg:

U

RTg
� 1

fg
:

As a rule, the glass transition activation and viscous flow
energies coincide. Relation (11.1) then takes the form

1

fg
� a1

a2
ÿ ln q : �11:3�

Thus, the fluctuation volume fraction fg frozen at the glass
transition temperature is dependent on the melt cooling rate,
which is quite natural. For the specified cooling rate
q � const, the value of fg is constant.

Substituting the standard value of q from equality (6.2)
and a1 and a2 from Table 1 in (11.3), we see that the
fluctuation volume fraction fg calculated from the tempera-
ture dependence of the glass transition on the cooling rate (see
Table 1)

fg �
�
a1
a2
� 2:9

�ÿ1
� const � 0:025ÿ0:030 �11:4�

is consistent with the values of fg derived from the viscosity in
the glass transition region (9.4) (see Table 4). The values of fg
in equalities (9.4) and (11.4) are related to the standard
cooling rate. We can see that the constant C1 � 1=fg of the
WLF equation is closely related to the ratio a2=a1 of the
Bartenev equation parameters. As a rule, the ratio a1=a2 � 40
in equality (11.3) greatly exceeds ln q (for q � 0:05 K sÿ1):
a1=a2 4 lg q; therefore, C1 and a1=a2 almost coincide.

At the same time, the question arises: Why does the
dependence of the glass transition temperature on cooling
rate (2.8), which was derived by ignoring the temperature
dependence U � U�T � of the glass transition activation
energy, prove to be quite correct?

To elucidate this question, we consider the derivation of
Bartenev±Ritland equation (2.8) taking the temperature
dependence U�T � of the activation energy into account.

12. Generalized Bartenev±Ritland equation

In the model of delocalized atoms [67, 68], the fraction fg of
the fluctuation volume frozen at the glass transition tempera-
ture is described by the expression

fg � Dve
v

exp

�
ÿ Dee
RTg

�
; �12:1�

where v � V=N is the atomic volume, Dve is the elementary
volume required for atom delocalization, and Dee is the atom
delocalization energy.

Substituting fg from relation (12.1) in viscosity equation
(11.2), we obtain the expression

Zg � Z0 exp
�
v

Dve
exp

�
Dee
RTg

��
;

which coincides with the empirical viscosity equations
proposed independently by Bredbury [74], Shishkin [75], and
Waterton [76].
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Taking the known relation between the relaxation time
t�T � and viscosity Z�T � into account, we can write the
temperature dependence t�T � similarly:

tg � t0 exp
�
exp

�
Dee
RTg

��
: �12:2�

Here, we assume that the atom delocalization volume is close
to the atomic volume �v=Dve � 1� [77].

Substituting the relaxation time tg from (12.2) in glass
transition equation (2.1) and making some transformations,
we obtain the generalized Bartenev±Ritland equation

1

Tg
� a1 � b1 ln

�
1ÿ ln q

b2

�
; �12:3�

where b1 � R=Dee, b2 � ln �C=t0�, and a1 � b1 ln b2. We note
that the first and second terms in the right-hand side of (12.3)
contain logarithms of dimensional quantities, ln q and
ln �C=t0�, where q and C=t0 have the same dimension
[K sÿ1]. This dimension (or another common dimension)
should be used in all calculations.

Setting t0 � 10ÿ12 s and C � 10 K [36] for the standard
cooling rate, we can estimate b2 � ln �C=t0� � 30. For
relatively small cooling rates, ln q5 b2, the logarithm in the
right-hand side of (12.3) can be expanded in a series, with only
the first term kept:

ln

�
1ÿ ln q

b2

�
� ÿ ln q

b2
:

Then equality (12.3) transforms into Bartenev±Ritland
equation (2.8):

1

Tg
� a1 ÿ b1

b2
ln q ;

where a2 � b1=b2. Therefore, Bartenev±Ritland equation
(2.8) is valid at not very large rates. Indeed, as the cooling
rate is increased, a deviation from dependence (2.8) is
observed for a number of glasses, for example, lead±silicate
ones [45]. We note that the parameterC in the glass transition
equation weakly depends on the cooling rate q via Tg�q�.
However, Tg depends on q logarithmically and, in addition,C
enters the logarithm. Therefore, the parameter C can be
considered virtually constant, which is confirmed by the
validity of the Bartenev±Ritland equation at moderate cool-
ing rates.

To verify relation (12.3), we constructed plots in the
coordinates �1=Tg; ln �1ÿ �ln q=30��� for various amor-
phous materials [78]. Experimental data [38, 45, 49] in
these coordinates lie on straight lines, in particular, for
lead±silicate glasses exhibiting a deviation from Bartenev
equation (2.8).

Thus, the obtained generalized equation (12.3) is consis-
tent with experimental data in a broader cooling rate range
than Bartenev±Ritland equation (2.8).

13. Temperature dependence of the viscosity
of glass-forming melts

13.1 Empirical viscosity equations
for glass-forming liquids
It is known that unlike simple acetone-type liquids, the
temperature dependence Z�T � of the viscosity of glass-

forming melts is not described by the usual Arrhenius
exponential formula. Because of the absence of any explicit
generally accepted theoretical dependence Z�T � for glass-
forming melts, numerous attempts have been made to find
which of the known empirical relations provides the best
description of the temperature dependence of the viscosity.

In [79], the Waterton [76], Vogel±Fulcher±Tamman [80±
82], and Avramov±Milchev [83] equations containing three
fitting parameters were compared and the Waterton formula
(`double exponential') was chosen:

Z � A exp

�
B1

T
exp

�
D1

T

��
: �13:1�

A similar equation

Z � A exp

�
B2 exp

�
D2

T

��
: �13:2�

was proposed in [74] and [75]. A number of viscosity
equations were analyzed in [84], and a `double exponential'
like (13.1) was also preferred. Because the exponential in
square brackets in Waterton relation (13.1) depends on the
temperature much more strongly than on the preexponential
factor B1=T, the latter can be considered virtually constant.
Therefore, Waterton (13.1) and Bredbury±Shishkin (13.2)
formulas in fact coincide.

Five most popular empirical viscosity equations, includ-
ing (13.1) and (13.2), were compared in [85], with the
conclusion that among them the Jenckel equation [86] most
accurately describes experimental data in a broad tempera-
ture range if it is slightly modified and represented in the
generalized form [85]

Z � A exp

�
B

T
� C

T
exp

�
D

T

��
: �13:3�

At low temperatures in the glass transition region, the first
term B=T in the square brackets can be disregarded due to its
smallness compared to the exponential. Then (13.3) trans-
forms into Waterton relation (13.1). In turn, the `double
exponential' like (13.1) and (13.2) allows algebraically
deriving the known Williams±Landel±Ferry equation (7.6)
[57, 58], which is equivalent to the Vogel±Fulcher±Tamman
relation (see [5, pp. 90, 91]).

Thus, Jenckel equation (13.3) represents one of the
generalized variants of basic empirical relations for the
viscosity of glass-forming melts, and therefore a study of its
nature is of interest.

According to Jenckel [65], the temperature dependence of
the viscosity of glass-forming liquids is related to the
dissociation and association of molecules. It was assumed
that the degree of association of particles in these systems
changes with changing the temperature, which is accompa-
nied by the dissociation and restoration of interatomic and
intermolecular bonds in the environment of a given kinetic
unit. Based on these concepts, Jenckel obtained the viscosity
equation presented here in its original form [86]:

Z � A exp

(
Q

RT

�
1� a exp

�
Q

RT

��)
; �13:4�

where the expression in square brackets characterizes changes
in the association degree of molecules under cooling and
heating.
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We see that the Jenckel theory involves only one energy
quantity Q related to the decay energy of molecular
associates. The value of Q for glucose or spirit liquids is
close to the hydrogen bond energy.

Unlike the original, the generalized variant of Jenckel
equation (13.3) proposed in [85] contains two energy
quantities: B and D. The physical meaning of activation
parameters RB and RD was not discussed in [85]. The author
only showed that the generalized Jenckel equation better
agrees with experimental data.

Possible variants of the substantiation of this equation [5,
87±89] outside the Jenckel approach [86] have been consid-
ered. A new derivation of the Jenckel equation was proposed
in [77], showing that formula (13.3) contains, in fact, not four
but three fitting parameters: A, B, and D.

Finally, we note that the confuguron percolation theory
gives a universal equation for the temperature dependence of
the shear viscosity coefficient, which is applicable to both
glasses and melts [11, 24, 25, 90±96]:

Z�T � � A1T

�
1� A2 exp

�
Hm

RT

���
1� C exp

�
Hd

RT

��
; �13:5�

where A1, A2, and C are constants, Hd is the configuron
formation enthalpy, and Hm is its motion enthalpy. A
comparison with other viscosity models and numerical
calculations using the fitting method confirmed the
validity of Eqn (13.5) for various glass-forming systems
(both simple and complex organic and inorganic composi-
tions) [93, 97]. Figure 4 illustrates this for the viscosity of
glassy and melted boric acid anhydride. The curve is
calculated using Eqn (13.5). Experimental data are shown
by dots [12, 24]. The thermodynamic parameters of
Eqn (13.5) can be determined from experimental data on
the viscosity [24].

13.2 Derivation of the viscosity equation
Using the concept of a two-stage elementary viscosity event of
glasses and their melts [98±100], we assume that the prob-
abilityW of a transition of a kinetic unit from one equilibrium
position to another is determined by the probabilityW1 of the
local structural change in the given kinetic unit and by the
probabilityW2 that this unit has the energyDF1 sufficient for
hopping over to a new position (to a structurally changed

microregion),

W �W1W2 :

In this case, the local configurational change in the structure
of the kinetic unit precedes its transition and is considered a
necessary condition for realizing that transition (similarly to
the case of the transition of an atom to a neighboring position
requiring a preliminary production of a hole into which the
atom can jump [98, 99]).

According to [100], a necessary condition for the switch-
ing of a valence bondÐ the basic molecular mechanism of the
viscous flow of inorganic glasses and their meltsÐ is the
preliminary local low-activation deformation of the struc-
tural network of atomic bonds. This can be assumed to be one
of the variants of the local configurational change in the
structure of the kinetic unit responsible for viscosity.

The molecular mobility at elevated temperatures is
determined by the probability of the kinetic-unit transition
to one of the `ready-loosened microregions,' which typically
exist at high temperatures �W1 � 1�:

W2 � exp

�
ÿDF1

kT

�
: �13:6�

As the temperature is lowered, the melt structure in the
glass transition region thickens and the molecular mobility
becomes strongly dependent on the probabilityW1 of a local
change in the structure. We discuss this concept using the
model of delocalized atoms [67, 101].

The delocalization of a bound atom, i.e., its displacement
from the equilibrium position in amorphous materials, is
accompanied by a regrouping of neighboring particles and, in
fact, reflects a local configurational structural change. Taking
this into account, we consider W1 to be the delocalization
probability of an atom, written in the form [67]

W1 � exp

�
ÿDve

vf

�
; �13:7�

where Dve is the elementary fluctuation volume required for
atom delocalization and vf � DVe=N is the average fluctua-
tion volume per kinetic unit. The fluctuation volume DVe of
an amorphous material appears due to the delocalization of
atomsÐ their thermal displacements from the equilibrium
position (Ne is the number of delocalized atoms):
DVe � NeDve (see Section 9).

Using the quasi-lattice model [102], we find the explicit
form of the temperature dependence vf�T � of the fluctuation
volume. We assume that under delocalization of a bound
atom due to local deformation of the lattice (the network of
bonds), the corresponding lattice point is displaced from its
initial position. We call such a displaced defect an excited
lattice point. The number of excited lattice points is equal to
the number Ne of delocalized atoms. The total number of
lattice points, both unexcitedN and excitedNe, isN�Ne. We
can then write the free energy of the system related to lattice
defects in the form

DF � NeDee ÿ kBT ln
�N�Ne�!
N!Ne!

;

where the expression under the logarithm gives the number of
ways of arranging delocalized atoms among possible lattice
points, and Dee is the atom delocalization energy.
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Figure 4. Temperature dependence of the melt viscosity of boric

anhydride B2O3. Dots are experimental data; the curve is calculated

from (13.5).
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We can show that the number of delocalized atoms
corresponding to the minimum of DF is

Ne

N
�
�
exp

�
Dee
kBT

�
ÿ 1

�ÿ1
: �13:8�

The fraction of the fluctuation volume

f � DVe

V
� Dve

v

Ne

N
;

taking (13.8) into account, is given by �v � V=N�

f � Dve
v

�
exp

�
Dee
kBT

�
ÿ 1

�ÿ1
: �13:9�

Substituting this dependence f �T � in the exponent in the
right-hand side of (13.7),

Dve
vf
� Dve=v

vf=v
� Dve

v

1

f
;

we obtain the expression for the probability W1�T � of the
local change in the structure in the form of a `double
exponential'

W1 � exp

�
ÿ
�
exp

�
Dee
kBT

�
ÿ 1

��
: �13:10�

Now, using relations (13.6) and (13.10) and the known
relation between the viscosity Z and the quantity W in
accordance with the Stokes±Einstein theory (see, e.g., [5])

Z � 1

W
� 1

W1W2
;

we finally obtain the viscosity equation

Z � Z0 exp

(
DF1
kBT

�
�
exp

�
Dee
kBT

�
ÿ 1

�)
; �13:11�

which coincides, in fact, with empirical Jenckel equation
(13.3). Here, Z0 is the proportionality coefficient (the
viscosity Z as T!1). We can probably assume from [7]
that Z0 coincides with the preexponential factor in the known
Eyring equation: Z0 � h=vZ, where vZ is the particle volume
and h is Planck's constant.

13.3 Comparison with experiments
Equation (13.11) contains three parameters: Z0, DF1, and
Dee. The preexponential factor Z0 corresponding to the
viscosity at high temperatures is found by extrapolation
(using Lagrange polynomials [103]) of the viscosity curve
lg Zÿ1=T to the temperature T!1 [104]. If the value Z0 is
known, then we can calculate the viscosity Z by fitting the two
remaining parameters DF1 and Dee in Eqn (13.11).

Experimental data on the temperature dependence Z�T �
of the viscosity of glass-forming melts required for making
comparisons with calculation results were taken from the
SciGlass database [49]. Two-component silicate, germinate,
and borate glasses were studied. The experimental data in
Fig. 5 in coordinates �lg Z; 1=T � are shown by symbols and
calculations using Eqn (13.11) are shown by curves. We can
see that theoretical curves agree well with experimental

points. Table 5 presents the values of Z0, DF1, and Dee for
which calculations agree with experimental data.

Thus, viscosity equation (13.11) derived from the refined
model [88, 89] is in good agreement with experimental data
for glass-forming melts [77].

14. Mechanism of the viscous flow
and liquid±glass transition

14.1 Role of atomic delocalization
in the fluidity and glass transition processes
The viscosity of glasses is a fundamentally important
property characteristic of a glassy state. It is the increased
viscosity that slows the crystallization process, facilitating the
melt±glass transition.

The atomic mechanism of the viscous flow in inorganic
glasses is described in [105] and [56, 106±108]. A mechanism
based on the activated switching of bridge bonds, i.e., on the
exchange of positions of bridge bonds, was first proposed
in [107].

In [106], the viscous flow model for a silicate glass was
developed, considering the possibility of the dissociation of
the SiÿO bond and switching of SiÿO bonds to unsaturated
bonds of silicon and oxygen (Fig. 6). If bridge oxygen ion 2
approaches unsaturated silicon ion 1 due to transverse
thermal vibrations, the 2±3 valence bond can be switched to
the 2±1 bond with a change of partners, resulting in the
formation of a new configuration of the glass network. The
authors of [106] assume that the viscous flow is mainly
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Figure 5. Temperature dependences of the viscosity of (a) sodium±silicate

and (b) sodium±germanate glasses. Experimental data are shown by

different symbols; the curves are calculated from (13.11).
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determined by the switching of bonds to the unsaturated
bonds of silicon rather than oxygen, as was assumed in [108]
and [109].

Figure 7 presents a diagramof the switching of the valence
bridge bond to an unsaturated silicon ion [110]. One of the
authors of this review proposed a procedure of the motion of
a bridge oxygen atom in the SiÿOÿSi bridge during the
viscous flow of silicate glasses consisting of two stages [111].
The first stage involves the delocalization (displacement) of
the oxygen atom, resulting in the local low-activation

stretching of the silicon±oxygen network (the A! B transi-
tion). The second stage involves the ascension of the bridge
oxygen atom to the top of a potential barrier, which
corresponds to the switching of the valence bridge bond (the
B! C transition), i.e., a hop of the bridge atom. In this case,
the AÿB stage is considered a necessary condition for the
realization of the subsequent BÿC stage. In the viscous flow
model presented above, the AÿB and BÿC transition
probabilities are described by respective relations (13.7) and
(13.6) forW1 andW2.

Table 5. Characteristics of the viscous flow of R2OÿSiO2 (R � Li, Na, K), PbOÿSiO2, Na2OÿGeO2, and Na2OÿB2O3 inorganic glasses* [49].

R2O, PbO,
mol.%

ÿ lg �Z0�P�� Dee,
kJ molÿ1

DF1,
kJ molÿ1

Tg, K DFZ�Tg�,
kJ molÿ1

fg Dee, kJ molÿ1

(14.8)

Li2O Li2OÿSiO2

10
14
25
30
33,3

2.55
2.57
2.41
2.25
2.23

20
20
19
19
19

127
120
91
78
71

814
788
738
721
708

245
237
219
212
208

0.028
0.028
0.028
0.028
0.028

24
23
22
21
21

Na2O Na2OÿSiO2

15
20
25
30
33

2.53
2.35
2.36
2.36
2.26

19
19
19
19
19

118
101
94
87
78

783
759
739
721
712

235
225
219
214
209

0.028
0.028
0.028
0.028
0.028

23
23
22
21
21

K2O K2OÿSiO2

13
15
20
25

2.33
2.31
2.14
2.22

19
19
19
19

121
117
100
90

795
793
759
739

235
232
222
217

0.028
0.028
0.025
0.025

24
24
23
23

PbO PbOÿSiO2

25
30
45
50

3.15
2.95
3.34
3.33

21
21
20
19

100
79
57
42

785
761
696
674

245
234
218
212

0.027
0.027
0.027
0.027

24
23
21
20

Na2O Na2OÿGeO2

15
20
25
30

3.81
3.21
3.10
3.12

22
22
21
21

79
58
49
40

801
773
749
727

259
241
232
225

0.026
0.027
0.027
0.027

24
23
22
22

Na2O Na2OÿB2O3

10
15
20
25
30

3.45
3.93
3.41
3.77
4.45

18
20
21
22
23

47
44
26
19
3

618
680
727
735
748

194
221
229
237
250

0.026
0.026
0.026
0.026
0.025

19
21
22
22
23

* DF1 is the high-temperature limit of the viscous êow free activation energy; DFZ�Tg� is the êuidity free activation energy at Tg.
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Figure 6. Bond switching in the viscous flow theory [106].
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Figure 7. Valence bridge bond switching in a silicate glass [110].
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A comparison of viscosity equation (13.11) with the
known Eyring equation (see [56]),

Z � Z0 exp
�
DFZ�T �
RT

�
; �14:1�

shows that the free activation energy DFZ�T � of the viscous
flow is a sum of two terms,

DFZ � DF1 � DFs�T � ; �14:2�

where DF1 can be called the hopping potential of a kinetic
unit (a bridge atom) and

DFs�T � � RT

�
exp

�
Dee
RT

�
ÿ 1

�
�14:3�

is the temperature-dependent potential of the local config-
urational change in the structure. The quantity DF1 is the
high-temperature limit of the fluidity activation free energy
because for RT4Dee, the second term in the right-hand side
of (13.11) vanishes and viscosity equation (13.11) reduces to
the usual exponential dependence with a constant free energy
activation

Z � Z0 exp
�
DF1
RT

�
: �14:4�

At low temperatures in the glass transition region, the
delocalization energy Dee of an atom becomes comparable to
the thermal vibrational energy of the lattice �� 3kBT �, and
the number of delocalized atoms responsible for fluidity
considerably decreases (as exp �ÿDee=�kBT ��). Therefore,
the activation hop of a bridge atom (valence bond switch-
ing) requires a preliminary local deformation of the structural
network (bridge atom delocalization, the A! B transition;
see Fig. 7): the potential of the local configurational change in
the structure DFs�T � drastically increases. This explains the
exponential increase in the fluidity activation free energy in
the glass transition region.

The kinetic unit hopping and hence the viscous flow are
impossible without the delocalization of a bridge atom (the
`trigger mechanism'). Therefore, the freezing of the active
atom delocalization process at low temperatures leads to the
suppression of the viscous flow and the transition of the melt
to the glassy state. This moment comes when the lattice
vibrational energy �ikBT=2 � 3kBT � per atom becomes
equal to or lower than the atom delocalization energy:

3kBT4Dee : �14:5�

We estimate the number of degrees of freedom of an atom in a
solid roughly as i � 6 (similarly to the case of an ionic cubic
crystal).

As expected, the energy Dee determined independently
from the empirical parameter D of Jenckel equation (13.3),

Dee � RD ; �14:6�
depends linearly on the temperature Tg (Fig. 8). Equality
(14.6) is obtained by comparing (13.11) with empirical
Jenckel equation (11.3).

The atom delocalization energy calculated for no. 15
silicate glass (D � 2500 K) [64],

Dee � RD � 21 kJ molÿ1 ; �14:7�

is in good agreement with Dee calculated within the model of
localized atoms [67] for some silicate glasses (see Table 5 and
Fig. 8):

Dee � RTg ln
1

fg
� 20ÿ24 kJ molÿ1 : �14:8�

Formula (14.8) also demonstrates a linear correlation
between Dee and Tg, because fg � const � 0:024ÿ0:028 (see
Tables 1 and 4). According to equalities (14.5) and (14.8), the
value of ln �1=fg�must be close to 3 �i=2 � 3�. Indeed, for the
average value fg � 0:025ÿ0:030 (see Tables 1 and 4), we have

ln
1

fg
� const � 3:5 :

The value of Dee calculated from (14.8) remains constant in a
broad temperature range in the glass transition region [122].

Thus, the local configurational change in the structure
described in the model of delocalized atoms is a necessary
condition for the realization of an elementary event of the
viscous flow and is responsible for the peculiar temperature
dependence of the viscosity of glasses and their melts. The
second terms in viscosity (13.11) and fluidity activation free
energy (14.2) related to the configurational change (atom
delocalization) reflect the main difference between glass-
forming melts and simple melted metal liquids. These terms
vanish at high temperatures �kBT4Dee�, and the equations
become the usual relations for simple liquids.

14.2 Valence±configurational theory of a viscous flow
In [56, 110], Nemilov proposed the valence±configurational
theory of the fluidity of glasses and their melts, which gives
the viscosity equation

Z � Nh

VZ
exp

�
DE 0

Z � DEZk�T �
NkBT

�
; �14:9�
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Figure 8. Linear correlation between the atom delocalization energy Dee
and temperature Tg in sodium-silicate Na2OÿSiO2 glasses. Na2O content

(mol.%): 15 (1), 20 (2), 25 (3), 30 (4). Dee � RD, where D is the empirical

parameter of Jenckel equation (13.3).
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where DE 0
Z is the switching potential of the bridge valence

bond, DEZk�T � is the potential of the configurational change
in the structure, and VZ is the molar or atomic volume of
particles overcoming the potential barrier, equal to the
viscous flow activation free energy DEZ�T �,

DEZ � DE 0
Z � DEZk�T � : �14:10�

The value of DEZk�T � is determined from the experimental
temperature dependence of the configurational component of
the molar heat capacity Cp conf [56].

In [56, 110], this theory was called valence±configura-
tional because it deals with the valence structure of an
amorphous material and its configurational changes during
activation. Nemilov [56, 110] was the first to propose the
decisive role of the configurational structural change in the
temperature dependence of the viscous flow of glass-forming
melts and glasses.

Viscosity equation (14.9) is based on a modification of
Eyring equation (14.1), namely, on splitting the free activa-
tion energy DEZ�T � into two components, DE 0

Z and DEZk�T �.

15. Conclusions

The liquid±glass transition is a distinct relaxation process
obeying kinetic laws. As the liquid±glass transition region is
approached, molecular rearrangements in glass-forming
melts become so slow that a change in the structure has no
time to follow the decrease in temperature. From the
standpoint of the relaxation approach, a decisive role in the
glass transition process is played by the relation between the
structural relaxation time t and the melt cooling rate
q � dT=dt. The relation between these quantities is
expressed by the glass transition equation qtg� dTg, where
tg is the relaxation time at T � Tg and dTg is the temperature
band characterizing the liquid±glass transition interval under
cooling.

The temperature interval dTg calculated from parameters
of the WLF equation and in the model of delocalized atoms
for inorganic oxide glasses is in agreement with the product
qtg � 5ÿ10 K, i.e., with the left-hand side of the glass
transition equation. This also concerns organic glasses,
where dTg has low values � 1ÿ3 K, consistent with the
product qtg for these systems.

In this review, as in the work of other authors, we used
experimental data corresponding to the standardmelt cooling
rate q � 0:05 K sÿ1. This is explained by the fact that the
experimental data available were typically obtained for the
standard cooling rate, and most of the measurements of the
glass transition temperature correspond to the standard
cooling rate.

We have discussed the glass transition equation in the
framework of the model of delocalized atoms and the
relaxation glass transition theory. Bartenev±Ritland equa-
tion (2.8) was derived taking the temperature dependence of
the glass transition activation energy into account. We have
shown that this equation is valid for relatively low cooling
rates. The fraction fg of the fluctuation volume calculated
from the experimental dependence of the glass transition
temperature on the cooling rate coincides with fg calculated
from the viscosity in the glass transition region.

We proposed a new variant of the glass transition
criterion. The frequency equivalent to the standard melt
cooling rate was calculated. Only at low mechanical action

frequencies about 10ÿ3 Hz does the dynamic glass transition
temperature Tn of inorganic glasses coincide with the
structural glass transition temperature Tg, when structural
and dynamic glass transitions occur simultaneously (the
topological (structural) and viscous deformation compo-
nents are frozen simultaneously).

We developed a concept according to which the viscous
flow of glass-forming liquids is determined by excited
delocalized atoms with the concentration decreasing to a
very small value (about 3%) under cooling, which is
equivalent to freezing. At the glass transition temperature,
the atom delocalization process (atom transitions from the
ground to excited state) is frozen.

In this review, wemainly considered the relaxation aspects
of the liquid±glass transition and only briefly described the
configuron percolation theory [24, 25, 32±34] and applica-
tions of nonequilibrium thermodynamics to the glass transi-
tion [41, 50±52, 56]. We now briefly discuss some other
approaches that are of interest in our opinion.

We first mention the model of limiting configurational
entropy (the `limiting plateau' hypothesis). Based on the
Adam±Gibbs theory [9], it is assumed that some intermediate
metastable state exists in which the system can only be in a few
configurations and cannot undergo a transition from that
state to a lower state within the observation time. The limiting
achievable value of the configurational entropy is then
introduced. Based on such concepts, some authors proposed
a glass transition model using the hypothesis about the
existence of limiting configurational entropy for a system
relaxing at temperatures below Tg [113±117].

One of the popular theories developed during the last
decade to describe the dynamics of supercooled liquids and
glass transition is the mode-coupling theory (MCT) [118±
121]. In particular, the MCT explains the known empirical
Colraush formula (fractional exponential) describing the
temperature dependence of the relaxation time in the glass
transition region.

Also of interest is the mosaic hypothesis or the theory of
random first-order transitions, which are understood as the
freezing of a liquid and its transformation into a mosaic
structure consisting of a set of `quasicrystals' in various
amorphous states. As in the classical nucleation theory, the
difference under the rearrangement caused by the interphase
surface in the system is taken into account, in contrast to the
Adams±Gibbs theory [122±124]. This approach, being a
conglomerate of various theories, offers certain advantages
and provides some interesting analytic predictions. These
studies are discussed in detail in review [1].

In conclusion, we reiterate that the problem of the liquid±
glass transition (glass softening) has not been solved defini-
tively so far. The development of a rigorous theory of the
supercooled liquid and glass transition process based on
statistical physics faces considerable difficulties, which have
not been overcome to date.

Acknowledgements
This study was supported by the Ministry of Education and
Science of the Russian Federation (grant no. 3.5406.2017/
8.9).

References

1. Tropin T V, Schmelzer JW P, Aksenov V L Phys. Usp. 59 42 (2016);

Usp. Fiz. Nauk 186 47 (2016)

128 D S Sanditov, M I Ojovan Physics ±Uspekhi 62 (2)



2. Schmelzer J W P et al. Glasses and the Glass Transition (Weinheim:

Wiley±VCH, 2011)

3. Rostiashvili V G, Irzhak V I, Rozenberg B A Steklovanie Polimerov

(Polymer±Glass Transition) (Leningrad: Khimiya, 1987)

4. Mazurin O V Steklovanie (Glass Transition) (Leningrad: Nauka,

1986)

5. Sanditov D S, Bartenev G M Fizicheskie Svoistva Neuporyadochen-

nykh Struktur. Molekulyarno-Kineticheskie i Termodinamicheskie

Protsessy v Neorganicheskikh Steklakh i Polimerakh (Physical

Properties of Disordered Structures. Molecular-Kinetic and Ther-

modynamic Processes in Inorganic Glasses and Polymers) (Novo-

sibirsk: Nauka, 1982)

6. Volkenstein M V, Ptitsyn O B Zh. Tekh. Fiz. 26 2204 (1956)

7. Volkenstein M V, Ptitsyn O B Dokl. Akad. Nauk SSSR 103 795

(1955)

8. Gibbs J H, DiMarzio E A J. Chem. Phys. 28 373 (1958)

9. Adam G, Gibbs J H J. Chem. Phys. 43 139 (1965)

10. Angel C A J. Am. Ceram. Soc. 51 117 (1968)

11. Ojovan M I Entropy 10 334 (2008)

12. Ojovan M I Int. J. Appl. Glass Sci. 5 22 (2014)

13. Isayev A I (Ed.) Encyclopedia of Polymer Blends Vol. 3 Structure

(Weinheim: Wiley-VCH, 2016)

14. Klinger M I Glassy Disordered Systems. Glass Formation and

Universal Anomalous Low-Energy Properties (New Jersey: World

Scientific, 2013)

15. Angell C A, Ansari Y, Zhao Z Faraday Discuss. 154 9 (2012)

16. Angell C AMRS Bull. 33 544 (2008)

17. IUPAC. Compendium of Chemical Terminology. 66, 583 (Cam-

bridge: Royal Society of Chemistry, 1997)

18. Tournier R F Chem. Phys. Lett. 641 9 (2015)

19. Tournier R F Physica B 454 253 (2014)

20. Tournier R F Intermetallics 30 104 (2012)

21. Tournier R FMaterials 4 869 (2011)

22. Wool R P J. Polym. Sci. B 46 2765 (2008)

23. Tournier R F Physica B 392 79 (2007)

24. Ozhovan M I JETP 103 819 (2006); Zh. Eksp. Teor. Fiz. 130 944
(2006)

25. OjovanM I JETPLett. 79 632 (2004);Pis'maZh. Eksp. Teor. Fiz. 79
769 (2004)

26. Angell C A, Rao K J J. Chem. Phys. 57 470 (1972)

27. Stanzione J F (III), Strawhecker KE,Wool R P J. Non-Cryst. Solids

357 311 (2011)

28. Oreshkin A I et al. Acta Mater. 61 5216 (2013)

29. Louzguine-Luzgin D V et al. J. Mater. Sci. 50 1783 (2014)

30. Louzguine-Luzgin D V et al. J. Non-Cryst. Solids 419 12 (2015)

31. Albert S et al. Science 352 1308 (2016)

32. Continentino M A Physica B 505 A1 (2017)

33. Ma D, Stoica A D, Wang X-L Nature Mater. 8 30 (2009)

34. Ojovan M I J. Non-Cryst. Solids 434 71 (2016)

35. Nemilov S V Glass Phys. Chem. 39 609 (2013); Fiz. Khim. Stekla 39
857 (2013)

36. Sanditov D S JETP 123 429 (2016); Zh. Eksp. Teor. Fiz. 150 501
(2016)

37. Bartenev GM Dokl. Akad. Nauk SSSR 76 227 (1951)

38. Bartenev GM Stroenie i Mekhanicheskie Svoistva Neorganicheskikh

Stekol (Structure and Mechanical Properties of Inorganic Glasses)

(Moscow: Stroiizdat, 1966)

39. Bartenev G M, Barteneva A G Relaksatsionnye Svoistva Polimerov

(Relaxation Properties of Polymers) (Moscow: Khimiya, 1992)

40. Bartenev G M, Sanditov D S Relaksatsionnye Protsessy v Steklo-

obraznykh Sistemakh (Relaxation Processes in Glassy Systems)

(Novosibirsk: Nauka, 1986)

41. Mandelstam L I, Leontovich M A Zh. Eksp. Teor. Fiz. 7 438 (1937)

42. Mazurin O V J. Non-Cryst. Solids 25 129 (1977)

43. Ritland H N J. Am. Ceram. Soc. 37 370 (1954)

44. Bartenev GM, Gorbatkina Yu A Vysokomol. Soed. 29 769 (1959)

45. Bartenev GM, Luk'yanov I A Zh. Fiz. Khim. 29 1486 (1955)

46. Moynihan C T et al. J. Am. Ceram. Soc. 59 12 (1976)

47. Sanditov D S, Mashanov A A, Darmaev M V Phys. Solid State 59

348 (2017); Fiz. Tverd. Tela 59 338 (2017)
48. Kotova L N, Norman G E, Pisarev V V J. Non-Cryst. Solids 429 98

(2015)

49. SciGlass Ð Glass Property Information System (accessed on

27.01.2019), http://www.akosgmbh.de/sciglass/sciglass.htm

50. de Donder Th, Van Rysselberghe P Thermodynamic Theory of

Affinity (Stanford, Calif.: Stanford Univ. Press, 1936)

51. Prigogine I, Defay R Treatise on Thermodynamics, Based on the

Methods of Gibbs and De Donder (London: Longmans, 1954)

52. Bragg W L, Williams E J Proc. R. Soc. Lond. A 145 699 (1934)

53. Gotlib Yu Ya, Ptitsyn O B Fiz. Tverd. Tela 3 33 (1961)

54. Tool A Q J. Am. Ceram. Soc. 29 240 (1946)

55. Cohen M H, Turnbull D J. Chem. Phys. 31 1164 (1959)

56. Nemilov S V Thermodynamic and Kinetic Aspects of the Vitreous

State (Boca Raton: CRC Press, 1995)

57. Williams M L, Landel R F, Ferry J D J. Am. Chem. Soc. 77 3701

(1955)

58. Ferry J D Viscoelastic Properties of Polymers (New York: Wiley,

1970)

59. Bestul B A Glastechn. Ber. K 32 59 (1959)

60. Sanditov D S, Dorzhiev D B, Baldanov Zh PZh. Fiz. Khim. 47 2990

(1973)

61. Durov V A, Shakhparonov M I Zh. Fiz. Khim. 53 2456 (1979)

62. Stolyar S V, Besedina S A Fiz. Khim. Stekla 18 (3) 88 (1992)

63. Simon F Z. Anorg. Allg. Chem. 203 219 (1931)

64. Razumovskaya I V, Bartenev G M, in Stekloobraznoe Sostoyanie.

Tr. V Vsesoyuz. Soveshch. (Glassy State. Proc. of V All-Union

Conf.) (Leningrad: Nauka, 1971)

65. Angell C A J. Phys. Chem. Solids 49 836 (1988)

66. Sanditov D S et al. Glass Phys. Chem. 34 389 (2008); Fiz. Khim.

Stekla 34 512 (2008)
67. Sanditov D S et al. JETP 115 112 (2012); Zh. Eksp. Teor. Fiz. 142

123 (2013)
68. Sanditov D S, Sangadiev S Sh, Sanditov B D Glass Phys. Chem. 39

382 (2013); Fiz. Khim. Stekla 39 553 (2013)
69. Sanditov D S, Darmaev M V, Sanditov B D Phys. Solid State 57

1666 (2015); Fiz. Tverd. Tela 57 1629 (2015)
70. Sanditov D S, Darmaev M V, Sanditov B D Tech. Phys. 62 53

(2017); Zh. Tekh. Fiz. 87 (1) 44 (2017)
71. Suzuki K, Fujimori H, Hashimoto K Amorfnye Metally (Amor-

phous Metals) (Moscow: Metallurgiya, 1987)

72. Schmelzer J W P J. Chem. Phys. 136 074512 (2012)

73. Frenkel Ya I Vvedenie v Teoriyu Metallov (Introduction to the

Theory of Metals) (Leningrad±Moscow: OGIZ, 1948)

74. Bredbury D, Mark M, Kleinschmidt R V Trans. Am. Soc. Mech.

Eng. 73 667 (1951)

75. Shishkin N I Zh. Tekh. Fiz. 26 1461 (1956)

76. Waterton S C J. Soc. Glass Technol. 16 244 (1932)

77. Sanditov D S, Munkueva S B Glass Phys. Chem. 42 135 (2016); Fiz.

Khim. Stekla 42 191 (2016)
78. Sanditov D S, Mashanov A A, Darmaev M V Phys. Solid State 59

348 (2017); Fiz. Tverd. Tela 59 338 (2017)
79. UÃ auro J C et al. Proc. Natl. Acad. Sci. USA 106 19780 (2009)

80. Vogel H Z. Phys. 22 648 (1921)

81. Fulcher G S J. Am. Ceram. Soc. 8 789 (1925)

82. Tammann G Der Glaszustand (Leipzig: L. Voss); Translated into
Russian: Stekloobraznoe Sostoyanie (Glassy State) (Moscow:

ONTI, 1935)

83. Avramov I, Milchev A J. Non-Cryst. Solids 104 253 (1988)

84. Pospelov B A Zh. Fiz. Khim. 29 70 (1955)

85. Meerlender G Rheol. Acta 6 359 (1967)

86. Jenckel E Z. Phys. Chem. 184 309 (1939)

87. Sanditov D S JETP 110 675 (2010); Zh. Eksp. Teor. Fiz. 137 767
(2010)

88. Sanditov D S Dokl. Phys. Chem. 451 187 (2013); Dokl. Ross. Akad.

Nauk 451 650 (2013)
89. Sanditov D S J. Non-Cryst. Solids 400 12 (2014)

90. Ojovan M I, Lee W E J. Appl. Phys. 95 3803 (2004)

91. Ojovan M I, Lee W E Phys. Chem. Glass. 46 7 (2005)

92. Ojovan M I, Lee W E J. Phys. Condens. Matter 18 11507 (2006)

93. Ojovan M I, Travis K P, Hand R J J. Phys. Condens. Matter 19

415107 (2007)

94. Ojovan M I, Lee W E J. Non-Cryst. Solids 356 2534 (2010)

95. Ojovan M I Phys. Chem. Glass. 53 143 (2012)

96. Ojovan M I J. Non-Cryst. Solids 382 79 (2013)

February 2019 Relaxation aspects of the liquidëglass transition 129



97. Volf M B Mathematical Approach to Glass (Amsterdam: Elsevier,

1982)

98. Frenkel Ya I, in Soveshchanie po Vyazkosti Zhidkostei i Kolloidnykh

Rastvorov (Meeting on the Viscosity of Liquids and Colloidal

Solutions) Vol. 2 (Exec. Ed. E A Chudakov) (Moscow±Leningrad:

Izd. AN SSSR, 1944) p. 24

99. Macedo P B, Litovitz T A J. Chem. Phys. 42 245 (1965)

100. Muller R L, in Stekloobraznoe Sostoyanie (Glassy State) Vol. 2 Tr.

Tret'ego Vsesoyuz. Soveshchaniya, Leningrad, 16±20 Noyabrya 1959

(Proc. of 3rd All-Union Conf., Leningrad, 16±20 November, 1959)

(Moscow±Leningrad: Izd. AN SSSR, 1959)

101. Sanditov D S, Badmaev S S Glass Phys. Chem. 41 460 (2015); Fiz.

Kim. Stekla 41 621 (2015)
102. Frenkel J Kinetic Theory of Liquid (Oxford: The Clarendon Press,

1946); Translated from Russian: Kineticheskaya Teoriya Zhidkostei

(MoscowëLeningrad: Nauka, 1975)
103. Whittaker E T, Robinson G The Calculus of Observations

(London: Blackie and Son, 1928); Translated into Russian: Mate-
maticheskaya Obrabotka Resul'tatov Nablyudenii (Leningrad±Mos-

cow: GTTI, 1935)

104. Sanditov D S, Mashanov A A Glass Phys. Chem. 36 41 (2010); Fiz.

Khim. Stekla 36 55 (2010)
105. Douglas R W Nature 158 415 (1946)

106. Smyth HT, Finlayson J R, RemdeH F, inTrav. IV Congress Intern.

du verre Paris, 1956

107. Muller R L Zh. Prikl. Khim. 28 1077 (1955)

108. Filipovich V N Fiz. Khim. Stekla 1 256 (1975)

109. Sanditov D S Fiz. Khim. Stekla 2 515 (1976)
110. Nemilov S V Fiz. Khim. Stekla 4 662 (1978)

111. Sanditov D S Delokalizatsiya Atomov i Vyazkoe Techenie Stekloob-

razuyushchikh Rasplavov (Delocalization of Atoms and Viscous

Flow of Glass-Forming Melts) (Saarbr�ucken: Lambert Acad.
Publ., 2016)

112. Sanditov D S, Darmaev M V,Mashanov A A Glass Phys. Chem. 42

445 (2016); Fiz. Khim. Stekla 42 609 (2016)
113. Brunacci A et al.Macromolecules 29 7976 (1996)

114. G�omez Ribelles J L et al. Polymer 38 963 (1997)

115. Mano J F et al. Polymer 46 8258 (2005)

116. Koh Y P, Grassia L, Simon S L Thermochim. Acta 603 135 (2015)

117. Boucher V M et al. Macromolecules 44 8333 (2011)

118. Leutheusser E Phys. Rev. A 29 2765 (1984)

119. Bengtzelius U, Gotze W, Sjolander A J. Phys. C 17 5915 (2000)

120. G�otze W, in Liquids, Freezing and the Glass Transaction (Eds

J P Hansen, D Levesque, J Zinn-Justin) (Amsterdam: North-

Holland, 1990); Translated into Russian: Fazovye Perekhody

Zhidkost'±Steklo (Moscow: Nauka, 1992)

121. EdigerMD,Angell CA, Nagel S R J. Phys. Chem. 100 13200 (1996)

122. Kirkpatrick T R, Thirumalai D, Wolynes P G Phys. Rev. A 40 1045

(1989)

123. Lubchenko V, Wolynes P G Annu. Rev. Phys. Chem. 58 235 (2007)

124. Wisitsorasak A, Wolynes P G J. Phys. Chem. B 118 7835 (2014)

130 D S Sanditov, M I Ojovan Physics ±Uspekhi 62 (2)


	1. Introduction
	2. Bartenev approach
	2.1 Empirical glass transition equation
	2.2 Dependence of the glass transition temperature on the melt cooling rate

	3. Mandelstam--Leontovich theory
	4. Volkenstein--Ptitsyn relaxation theory
	5. Configuron percolation theory
	6. Glass transition equation. The value of the product q\tau_{g} of the cooling rate and the...
	7. Estimate of the glass transition temperature band \delta{T}_{g}
	7.1 Bartenev calculation method
	7.2 Calculation of \delta T_{g} from the Williams--Landel--Ferry equation
	7.3 Nemilov calculation method
	7.4. Calculation using the Volkenstein--Ptitsyn formula without an empirical factor

	8. Fragility and the glass transition temperature interval \delta T_{g}
	9. Glass transition equation in the model of delocalized atoms
	10. Kinetic glass transition criterion
	11. Estimate of the fluctuation volume fraction f_{g}
	12. Generalized Bartenev--Ritland equation
	13. Temperature dependence of the viscosity of glass-forming melts
	13.1 Empirical viscosity equations for glass-forming liquids
	13.2 Derivation of the viscosity equation
	13.3 Comparison with experiments

	14. Mechanism of the viscous flow and liquid--glass transition
	14.1 Role of atomic delocalization in the fluidity and glass transition processes
	14.2 Valence---configurational theory of a viscous flow

	15. Conclusions
	 References

