
Abstract. We consider the interpretation of quantummechanics
on the basis of the so-called `pilot-wave' concept from the point
of view of its adequacy in the light of both already-realized and
possible and gedanken experiments, including those that involve
photons. It is shown that this concept, despite undoubtedly being
useful, can hardly ensure compliance of quantum-theory predic-
tions with the postulate that particle coordinates and velocities
objectively exist, while splitting the wave function into empty
and nonempty wave packets seems to contradict to the results of
feasible experiments and their interpretations.

Keywords: orthodox interpretation, hidden variables, deter-
minism, quantum superposition, quantum statistics

1. Introduction

DBohm's `pilot-wave' concept does not havemany followers.
Among specialists, however, it is traditionally believed that it
is fundamentally irrefutable, since it relies on the Schr�odinger
equation, and its inferences are therefore in perfect agreement
with experimental data. Furthermore, this interpretation of
quantum mechanics was enthusiastically adopted by such a
giant of `quantum thought' as John Bell [1]:

``But why then hadBorn not toldme of this `pilot wave'? If
only to point out what was wrong with it? Why did von
Neumann not consider it? More extraordinarily, why did
people go on producing `impossibility' proofs, after 1952, and

as recently as 1978? When even Pauli, Rosenfeld, and
Heisenberg could produce no more devastating criticism of
Bohm's version than to brand it as `metaphysical' and
`ideological'? Why is the pilot wave picture ignored in text
books? Should it not be taught, not as the only way, but as an
antidote to the prevailing complacency? To show that
vagueness, subjectivity, and indeterminism are not forced on
us by experimental facts, but by deliberate theoretical
choice?''

So, the interpretation clearly deserves attention, although
certain doubt in its irrefutability still persists. To start with,
we consider the main premises and propositions of this
theory.

2. Schr�odinger equation
and Born's probabilistic interpretation

In 1926, Erwin Schr�odinger, while developing Louis de
Broglie's idea that quantum particles possessed wave proper-
ties [2], formulated the wave equation [3] for describing a
quantum-mechanical system:

i�h
qc
qt
�
�
ÿ �h2

2m
D� V

�
c ; �1�

where c is the wave function, �h is the Planck constant, and
V�x; t� is the potential field acting on the particle of mass m.

``Recognizing that [this] equation has the structure of a
diffusion equation with an imaginary diffusion coefficient,
Schr�odinger relaxed his original requirement concerning the
reality of c and admitted complex-valued functions for what
he called the mechanical field scalar c. ...Schr�odinger
concluded his paper with a discussion on the physical
significance of c. He interpreted cc� as a weight function in
configuration space that accounts for the electrodynamical
fluctuations of the space density of the electric charges. He
declared: The c function has to do no more and no less than

A V Belinsky Lomonosov Moscow State University, Faculty of Physics,

Leninskie gory 1, str. 2, 119991 Moscow, Russian Federation

E-mail: belinsky@inbox.ru

Received 2 July 2018, revised 11 August 2018

Uspekhi Fizicheskikh Nauk 189 (12) 1352 ± 1363 (2019)

DOI: https://doi.org/10.3367/UFNr.2018.11.038479

Translated by E N Ragozin; edited by V L Derbov

METHODOLOGICAL NOTES PACS number: 03.65.Ta

On David Bohm's `pilot-wave' concept

A V Belinsky

DOI: https://doi.org/10.3367/UFNe.2018.11.038479

Physics ±Uspekhi 62 (12) 1268 ± 1278 (2019) #2019 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

Contents

1. Introduction 1268
2. Schr�odinger equation and Born's probabilistic interpretation 1268
3. Bohm's model 1269
4. Formulation of dualism in Bohm's model 1269
5. `Surrealistic' Bohm trajectories 1271
6. Bohm's theory and the measurement problem 1272
7. Criticism of hypothetical wave-function splitting into empty and nonempty wave packets 1273
8. Von Neumann's hidden variables, Bohm's and Bell's objections 1275
9. Are the velocities and trajectories in Bohm's model the characteristics of individual particles? 1276

10. Gr�ossing's model 1276
11. Conclusions 1277

References 1278

https://doi.org/10.3367/UFNe.2018.11.038479


to offer us a survey and mastery over these fluctuations by a
single differential equation. It has repeatedly been pointed
out that the c function itself cannot and may not in general
be interpreted directly in terms of three-dimensional
space...'' [4].

The summer of 1926 saw the advent of the famous
probabilistic interpretation by Max Born, which brought
him the Nobel Prize:

``For Born probability, as far as it was related to the wave
function, was not merely a mathematical fiction but some-
thing endowed with physical reality, for it evolved in time and
propagated in space in accordance with Schr�odinger's
equation. It differed, however, from ordinary physical agents
in one fundamental aspect: it did not transmit energy or
momentum. Since in classical physics, whether Newtonian
mechanics or Maxwellian electrodynamics, only an entity
that transfers energy or momentum (or both) is regarded as
physically `real,' the ontological status of c had to be
considered as something intermediate... . Laws of nature, as
Born and Heisenberg contended from now on, determined
not the occurrence of an event, but the probability of the
occurrence... .

Having interpreted c as a probability wave in the sense
just explained but realizing thatc can be expanded in terms of
a complete orthonormal set of eigenfunctions... , Born had to
ask himself what meaning to ascribe to the cn [coefficients of
this expansion]? ... [It] suggested to Born that the integral� jc�q�j2 dq has to be regarded as the number of particles and
jcnj2 as the statistical frequency of the occurrence of the state
characterized by the index n. To justify this assumption Born
calculated `the expectation value of the energy and obtained
[for it] the [correct] energy eigenvalue''' [4].

3. Bohm's model

In 1952, David Bohm published two papers [5, 6], in which he
proposed a nontrivial approach to further development of
quantum mechanics. From a purely formal point of view, his
proposition involved the passage from a single equation for
the complex wave function to two equations for two real
quantities: the amplitudeR�x; t� and phase S�x; t� of the wave
function. We denote

c � R exp

�
iS

�h

�
: �2�

In the case of one quantum particle, we denote R 2 � r,
and use expression (2) and the Schr�odinger equation to obtain
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where Q � �h 2DR=�2mR� is the so-called quantum potential.
In classical mechanics, function S is interpreted as action,

its time derivative qS=qt as energy, and HS=m as velocity.
Relations (3) and (4) may be treated as the continuity and
energy balance equations, but in Eqn (4), a radically new term
appearsÐ quantum potential Q.

In the case of N particles, it is possible to introduce the
wave function

c � R �x1; x2; . . . ; xN; t� exp
�
iS �x1; x2; . . . ; xN; t�

�h

�
�5�

and define the 3N-dimensional trajectory in the configuration
space, which describes the behavior of each particle in the
system. The ith particle velocity is

vi � HiS �x1; x2; . . . ; xN; t�
m

: �6�
As in the case of one particle, the quantum potential is

defined with the use of quantity R:

U�x1; x2; . . . ; xN� � ÿ �h 2

2mR

XN
k�1

DkR �x1; x2; . . . ; xN� ; �7�

r �x1; x2; . . . ; xN; t� � R2 being equal to the density of
representing points �x1; x2; . . . ; xN� in our 3N-dimensional
ensemble.

We emphasize again that the presence of the quantum
potential distinguishes the quantum description from the
classical one, in which there is no analogue to this term. In
the general case, the quantumpotential underlies the so-called
entanglement between particles, i.e., the fact that individual
trajectories, which have physical meaning in Bohm's inter-
pretation, are not independent of each other and are not
described by separate independent wave functions. It is highly
significant that the quantum potential in the configuration
space varies, as is commonly assumed, instantaneously as the
wave function changes, and this mechanism is responsible for
nonlocal correlations, which are highly characteristic of
quantum mechanics. A human is prone to perceive such
instantaneous changes rather as supraluminal information
exchange [7].

The quantum potential nonlocality thesis is usually not
emphasized anywhere. Expressed are only indirect consid-
erations, which rely on the fact that, owing to the quantum
potential, the coordinates of one particle of a quantum
system turn out to be dependent on the coordinates of all
other particles of the system. In particular, therefore, not
only does the wave function control the particle motion, but
also the particle exerts back action on the wave function of
the system [8]. However, from this it does not logically
follow that the nonlocal correlations are transmitted
instantaneously and not, say, at the speed of light in a
vacuum. It seems, however, that the violation of Bell's
inequalities recorded between very distant observers [9]
proves both.

On the other hand, the nonlocality of quantum correla-
tions (irrespective of Bohm's model) is presently a commonly
accepted fact (see, for instance, Refs [10±13]), which never-
theless seems to be paradoxical. In 2017, in Refs [14, 15] an
attempt was made to explain this paradox by an effect of the
relativity theory that is very close to the well-known twin
paradox.

4. Formulation of dualism in Bohm's model

We dwell on two possible notions of the wave±particle
dualism. Two approaches are possible [16]:
� ``A wave OR a particle'': Heisenberg, Pauli, Dirac, and

many others believed that, depending on the experimental
situation, one or the other approach should be chosen to
describe the behavior of a quantum system. Electrons are
associated with probability amplitudes. The corpuscular
nature of the electron manifests itself when we measure its
coordinate. According to Bohr, an object cannot be simulta-
neously both a wave and a particle (this is referred to as the
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orthodox interpretation of quantum mechanics and the
principle of complementarity).1

� ``A wave AND a particle'': de Broglie, and Bohm after
him, believed that the notions of wave and particle merge at
atomic scale lengths, where the `pilot wave' guides the
electron trajectory. Two objects, not one of them, simulta-
neously exist.

The difference between these two approaches may be
easily seen by the example of the interpretation of the
double-slit experiment, in which a low-intensity electron
beam (so that the electrons are injected one at a time) is
directed to an opaque surface with two slits. The discrete
traces of electron hits are recorded on a detecting screen
located an the other side of the surface. Even if it is assumed
that the traces on the screen correspond to particles, they
group into interference fringes characteristic of waves. There-
fore, both wave (interference) and corpuscular (the points on
the screen) behaviors are demonstrated.

According to the `wave and particle' de Broglier±Bohm
approach, the wave function (whose modulus gives the
probability density that an electron is at some coordinate
irrespective of the measurement process) passes through both
slits. At the same time, a well-defined trajectory is associated
with the electron. But this trajectory passes through only one
of the slits. The final particle position on the detecting screen
and the slit that the particle passes through are defined by the
initial state of the particle. The initial state is not controlled by
the experimenter, which gives rise to the effect of randomness
of the detected image. The wave function controls the particle
in such a way that it rarefies the particle traces in the
destructive interference domain and concentrates them in
the constructive interference domain, giving rise to inter-
ference fringes on the detecting screen. In this connection,
Bell wrote [1]: ``This idea seems to me so natural and simple,
to resolve the wave-particle dilemma in such a clear and
ordinary way, that it is a great mystery to me that it was so
generally ignored.''

The Young double-slit experiment has long been a crucial
experiment for interpreting the wave±particle dualism. This
simple effect exhibits the two properties of a quantum
phenomenon: the wave nature at the microscopic level
related to the phenomenon of wave function interference
and the corpuscular nature at the microscopic level related to

the traces of collisions on the screen. Double-slit interference
experiments have been carried out with massive objects like
electrons, neutrons, cold neutrons, atoms, and recently also
with coherent ensembles of ultracold atoms and with
mesoscopic single quantum objects.

Correct numerical simulations of the double-slit experi-
ment based on Bohm's interpretation were first carried out
successfully in Ref. [18] and more recently in Ref. [19]. The
quantum potential was calculated for the ordinary double-slit
configuration, which comprised the electron source S1, two
slits, A andB, and the screen S2. In the coordinate systemwith
the origin at point 0, which is shown in Fig. 1a, the slit centers
have coordinates (0, y) and (0, ÿy).

The slits are sufficiently long (infinite) along the z-axis
(normal to the plane of the drawing), so that there is no
diffraction along the z-axis. That is why only the wave
function along the y-axis was considered in the simulation;
the x variable was treated classically as x � vt. The electrons
emitted by the electron gun were represented by the same
initial wave function

c 0�y� � �2ps20�ÿ1=4 exp
�
ÿ y2

4s20

�
�8�

with a standard deviation s � 3 mm.Themethod of continual
integrals along Feynman trajectories permitted calculating
the time-dependent wave function. Thewave function in front
of the slits is expressed as

c�y; t� � ÿ2ps 20 �t��ÿ1=4 exp �ÿ �yÿ vt�24s0s0�t�
�
; �9�
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Behind the slits, the wave function is the sum of the wave
functions of slits A and B:

c �y; t� � cA�y; t� � cB�y; t� ; �11�
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Figure 1. Configuration (a) and results (b) of the double-slit interference experiment [18, 19].

1 An in-depth theoretical analysis of the complementarity relationship

leads to the inequalityV 2 �D 2 4 1, which limits from above themaximal

values of the simultaneously determined parameters: the interference

fringe visibility V and the path distinguishability D [17]. Evidently, the

cases V � 1, D � 0 and V � 0, D � 1 are the limiting ones.
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The probability amplitudes cA�y; t� and cB�y; t� were
found by integration over all coordinates of the slits. The
wave function was calculated using the method of continual
integrals over trajectories, which served to obtain the
quantum potential from expression (4) (Figs 2 and 3).

The trajectories were calculated by integrating in time the
equation HS � mv, which relates the S-function to the
particle velocities in the usual way. Initially, the trajectories
emanate from each slit in such a way that they are compatible
with a single Gaussian slit. The sequential knees of the
trajectories coincide with troughs in the quantum potential.
The troughs appear because, when a particle falls into a
trough domain, it experiences a significant action in the y
direction, which rapidly accelerates the particle from trough
to trough in the domain where the `force' becomes weak
again. As a consequence, the majority of trajectories are
located along the plateau to produce a bright interference
pattern, while the troughs coincide with dark fringes.

Interestingly, according to Fig. 3, the Bohm trajectories
cannot intersect, since the velocity field is single-valued with
respect to the x-axis; otherwise, what determinacy can be
spoken of at all (for more details, see Section 2.2 of Ref. [45]
entitled exactly so: ``The noncrossing rule'')? It appears then,
however, that the particles transmitted through the upper slit
would never find themselves below the y � 0 plane, and vice
versa. However, it is perfectly clear that these trajectories are

quite possible due to diffraction by the slit. This is a serious
problem, since it casts doubt on D Bohm's entire logic. This
problem is discussed in Refs [8, 20, 45].

5. `Surrealistic' Bohm trajectories

An interesting situation arises when a binary detector is
placed near each slit to indicate whether a particle has passed
through a given slit or not [20]. These detectors impart
information of the path taken (`which way') and permit
distinguishing trajectories of two types: those passing
through one slit and those passing through the other. In this
case, naturally, the interference pattern on the screen is lost
(Fig. 4).

In the presence of these binary detectors, the upper-slit
contribution now correlates with the `which-way' informa-
tion recorded by the upper detector, and the same applies to
the lower slit and the lower detector.

But what slit did a particle pass through? Let us assume
that the upper detector said `yes' and the lower one said `no'.
Then, the probability of finding the particle trace on the lower
half of the screen does not vanish completely, though none of
the possible trajectories may intersect due to the single-
valuedness of the velocity field [45]. Consequently, this case
is possible when the particle passes through the upper
detector and, hence, through the upper slit and then finds
itself on the lower part of the screen, so that the corresponding
Bohm trajectory passes through the lower slit. To state it in
different terms, in the presence of binary detectors the Bohm
particle trajectories may be characterized by contradictory
behavior: they may originate in one slit, while the detector
readings suggest that the particle passed through the other
one. In brief, the Bohm trajectories are now `surrealistic', not
realistic.

In accordance with this theoretical model, an experimen-
tal study was performed by Mahler et al. [8], who also
performed a theoretical analysis of the situation. The
experiment was performed with two path-entangled photons
using the `weak' measurement technique (see, for instance,
Ref. [21]). They showed that the trajectory of the first particle
(its position and velocity) are indeed related to the behavior of
the second, distant, particle, i.e. nonlocally. This, of course, is
not new, but it gives confidence in the nonlocality of quantum
correlations and the Bohm potential Q in expression (4).

But can Bohm's interpretation be tested by experiments
on photons? The point is that Bohm's concept was initially
formulated for massive particles. However, if it remained

Figure 2. Quantum potential for two Gaussian slits relative to S2 [18].

Figure 3. Ensemble of trajectories passing through two Gaussian slits [18].

z � 0

plane

Yes/no

No/yes

cA

cB
Collimated
incident wave

One-bit
detector

Figure 4. Double-slit interferometer with binary (`yes/no') detectors: a

collimated plane wave is incident on the detecting screen through the slits.

The interference on the screen vanishes due to information about particle

paths. But can the trajectories intersect?
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such, it could not be regarded as the universal interpretation
of quantum mechanics. And so its generalization for photons
was a natural development of this concept. Section 3 of
Ref. [45] reads:

``Bohmian mechanics was formerly formulated to
describe massive particles, resulting very appealing to
explain event-to-event experiments like those carried by
Merli et al. [52], Tonomura et al. [53], or Shimizu et al. [54].
Now, there are also event-to-event experiments with light,
such as those performed by Dimitrova and Weis [55], which
claim for a treatment on equal footing. As shown by Prosser
[56], this is actually possible by directly consideringMaxwell's
equations (which put electromagnetism at the same level of
Schr�odinger's wave mechanics [57]).''

Therefore, experiments with photons are also representa-
tive relative to the Bohmian concept.

It is very simple to determine which slit the particle passed
through: in the case of photons, mutually orthogonal
polarizers can be placed in front of the slits, so that a passage
through the upper slit will correspond, for instance, to state
jHi and through the lower slit to state jVi. If observations are
made of electrons, these may be the two opposite spins. In any
case, the states are mutually orthogonal, so that hHjVi � 0.

The trajectories of a single photon (particle 1) are
measured and post-selected by detecting the second photon
entangled with the first one (particle 2). To this end, one of the
entangled photons is directed to the trajectory-parameters
measuring setup and the second photon is used as the source
of control action, permitting or blocking the arrival of the
first photon at the measuring setup.

The reading of a which-way information detector (Which-
WayMeasurement, WWM) can be taken, at the discretion of
the experimentalist, at the moment when particle 1 is in the
near region (Fig. 5a) or middle region (Fig. 5b). In this case,
the reading for particle 2 is not taken until particle 1 arrives at
the requisite region. The corresponding slits for the initial
Bohmian trajectories are indicated in Fig. 5, and the height
shows the WWM result (position x2 of the second, `control',
particle, i.e., which slit it passed through). If aWWM reading
is taken when particle 1 is in the near region, the Bohmian
trajectories perfectly correlate with the value of this result.
However if a WWM reading is taken when particle 1 is in the
middle region, the Bohm trajectories correlate with the
WWM result only at the edges of the diagram. Near the
symmetry axis of the instrument, both WWM results are
equally probable, irrespective of the slit in which the Bohmian
trajectory originates. The authors of Ref. [8] attribute this to
the fact that the state of particles transforms into the
superposition of jHi and jVi as they recede from the screen
with the slits, which is certainly true, and this results in

ambiguity in determining which slit a particle went through.
However, if the polarization state changed in the propagation
of photons, their interference would be observed due to the
gradual `erasure' of the `which-way' information, which is
equivalent to the `quantum eraser' effect (see, for example,
Ref. [22]). This, of course, may not occur, since there are no
physical reasons for this change. The superposition emerges
only due to the overlap of scattering indicatrices of the slits,
and the result of polarization measurements corresponds
unambiguously to one slit or the other.

So, attempts to circumvent in this way the difficulty of
interpreting `surrealistic trajectories' do not meet with
success.

6. Bohm's theory and the measurement problem

As early as Ref. [23], von Neumann drew special attention to
the fundamental difference between the `intrinsic' evolution
of a quantum system (described by the time-reversible
Schr�odinger equation) and the `reductional' evolution. The
latter is usually irreversible and occurs in the measurement of
the particle state. The measurement procedure results in the
collapse of the quantum state, when the superposition of
possible states is instantaneously, as is commonly believed,
replaced, in the case of orthogonal measurements, with one
and only one of the states of the superposition, in which the
system was prior to the measurement. Von Neumann termed
this measurement `projective,' because the initial vector of
state in the Hilbertian space instantaneously transforms
(`reduces', or `collapses') into one of its basis components in
this space. This signifies that the initial (prior-to-measure-
ment) wave function is replaced with one of the eigenstates of
a specific projection operator P̂. Unlike the deterministic
wave-function evolution law defined by the Schr�odinger
equation, the collapse is not deterministic, since the final
wave function is randomly selected among the eigenstates of
operator P̂. This description is reminiscent of some `trick'
[24], but most important, it arbitrarily `isolates' the measured
quantum system from the rest of the world.

Bohm came up with an entirely different approach to the
measurement problem. In his theory, the measurement
procedure is interpreted like any other interaction of
particles, so that the above difficulties of orthodox interpreta-
tion simply vanish. In particular, the need to introduce
projection operators vanishes. Here, the entire quantum
system is described by the trajectory plus the wave function,
and not only by the wave function. The wave function and the
trajectory are both associated with the system as a whole, i.e.,
with the measured quantum system plus the measuring
device. For this compound system, in the course of measure-

a b

WWM

WWMz1 � ct

x1

z1 � ct

x1

Figure 5. (Color online.) Bohmian trajectories in a double-slit experiment. The separation of the trajectories in the vertical direction shows which slit a

particle comes from. In the histogram of Fig. 5b, ambiguity of trajectories appears, which is an indication that either the trajectories nevertheless intersect

or the correspondence of the jHi and jVi states to their slits is not strict. (Borrowed from Ref. [8].)
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ment in the common Schr�odinger equation, a term appears in
the Hamiltonian, which describes the interaction, so that the
Schr�odinger equation remains valid during the measurement
as well as after interaction termination. It is this term that
introduces coupling between the states of the system and the
measuring device, thereby making it possible to effect the
measurement. At the same time, in the measurement, changes
occur in the states of the system being measured and the
measuring device: their degrees of freedom, which were
mutually independent prior to the measurement, turn out to
be correlated (entangled) after the measurement. As pointed
out by Bohm, in the measurement it is important that the
system±device coupling be sufficiently strong and the inter-
action itself continue for a certain minimal time interval, but
not so long as to give rise to distortions (in his book [25],
Bohm provides, as a comparative analogue, too short or too
long an exposure in photography).

A good example of measurement is provided by the
double-slit experiment with a continuous spectrum of
possible trajectories. According to Bohm's notions, a parti-
cle, unlike one in the orthodox interpretation of the quantum
theory, owing to the effect of a nonlocal hidden parameter
(the phase of the wave function), selects a specific trajec-
toryÐone of the possible trajectories in accord with the
Schr�odinger equation. In the course of experiment, the total
wave function, which corresponds to the superposition of
possible states, splits into wave packets equal to such
trajectories in number, the difference between the packet
centers increasing, so that they cease to overlap in space. As
a result, the Bohmian trajectory corresponds to one of the
packets, while all remaining packets turn out to be `empty'
(Fig. 6) (see also Ref. [6]).

The wave function splitting verymuch resembles Everett's
many-worlds interpretation of quantum mechanics [26], with
the difference being that, according to Everett, a particle
belongs to all wave packets, but they are in different `worlds'
(see, for instance, Refs [27±29]), while according to Bohm, all
packets except one are empty.

From the modern viewpoint, the measurement procedure
and the evolution of state vectors are termed decoherence.
Both the system M under measurement and the measuring
device (or the environment) e participate in this [30].

Before the measurement, the system M is characterized
by the density matrix that corresponds to this state. The
elements of the main diagonal of the matrix give the
probabilities of obtaining each of the possible (basis)
measurement results, while the elements that are outside of
the main diagonal correspond to correlations (phase rela-

tionships) between the basis states. The environment e is
described in a similar way.

In the interaction of system M with the environment e
(i.e., in the measurement), entanglement of the degrees of
freedom of M and e occurs. Their overall density matrix,
which could be resolved (factorized) into two factors
corresponding separately to M and e prior to the measure-
ment, loses this property: a correlation arises between the
degrees of freedom of M and e which did not exist prior to
the measurement. In particular, if M and e were initially in
pure states, at this stage each part of the compound system
(M and e) may only be described by the density matrix rather
than by a separate state vector (Fig. 6).

The completion phase reduces to the decoherence process,
which is characterized by the breaking of phase relations
between separate states: the elements of the density matrix
that are outside the main diagonal (correlation coefficients)
damp down, while the elements of the main diagonal (the
probabilities of basis states) do not change significantly. As a
result, the system under measurement transforms into a
statistical mixture of possible measurement results, which
may formally correspond to the von Neumann projection
operator if the density matrix is a projector.

7. Criticism of hypothetical wave-function
splitting into empty and nonempty wave packets

If we follow Bohm's hypothesis of wave-function splitting
into empty and nonempty wave packets, in the interference
schemes with particle separation into two channels the
particle itself must be present only in one channel; other-
wise, it will have no trajectory at all. Notice that the Bohmian
interpretation differs from the Feynman path formalism in
quantum mechanics [31], according to which the transition
probability between two points in phase space is calculated
with the use of all possible paths connecting these two points.
On the other hand, if we regard R Feynman's method as a
purely mathematical way of treatment and do not endow it
with interpretational meaning, this difference does not seem
to be highly significant.

However, Bohmian mechanics asserts that each quantum
particle follows its trajectory in a deterministic way. In this
case, the notions of classical mechanics largely persist. Here,
apart from verification of `surrealistic' trajectories, we have a
lucky chance to experimentally verify Bohm's hypothesis for
photons, at least in the form of a gedanken experiment, by
selecting an appropriate experimental configuration and
using a usual quantum-mechanical calculation. Indeed, it is

Bohmian
position

Empty wavesxS
xS xS

xAfga fgb fgc

c
cga gb gc

ga
gagb gc

Wave function
collapse

a b
a ab

ba

Figure 6. (Color online.) Diagrams that serve to explain the difference between the Bohmian interpretation and the orthodox one. (a) Bohmian

explanation of measurement in space �xS; xA� (system±device): of the nonoverlapping wave function, only the ga part, where the trajectory is present, is

required for computing the evolution of the Bohmian system. (b) Orthodox explanation of measurement in space �xS� (system): the (system's) wave

function collapses into the ga part in the measurement. (Borrowed from Ref. [16].)
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possible to advance a rigorous proof that a photon simulta-
neously is in both arms of aMach±Zender interferometer [32,
33], i.e., to prove that all wave packets are nonempty and
there is no predetermination that the particle is in one of
them.

Let us place in the interferometer arms two identical cubic
nonlinear media as phase delays, in which phase self-
modulation (PSM) occurs, i.e., a variation in refractive
index under the action of light. The role of such media may
be played, for instance, by quartz fibers (Fig. 7). In the
passage through this fiber, a photon must acquire an
additional phase shift, which will inevitably show up in the
interference result. However, for the nonlinear phase shift to
occur, the photon itself and not simply its empty wave packet
must be in the fiber, since the latter is void of energy needed to
initiate the nonlinear PSM effect. According to Bohm, the
entire particle energy is confined in precisely the particle, and
the quantum state vector merely directs it to one side or the
other.

Let us assume that the phase shifts in the arms are equal in
the absence of radiation. Then, on delivering a single photon
to the interferometer, we face the following alternative: either
the photon passes through only one arm and the phase
difference changes due to the nonlinear phase shift in this
arm, or the photon passes through both arms and the phase
shifts will be equal in both arms, so that the phase difference
will remain invariable. In the latter case, the photon will
appear at only one interferometer output.

The input monochromatic mode in the Fock state j1i will
be described by the photon annihilation operator â1 and the
vacuummode j0i at the second input by operator â0. After the
first 50% beamsplitter, we consider two modes described by
operators â2 and â3 in the Heisenberg representation:

â2 � â1 � â0���
2
p ; â3 � â1 ÿ â0���

2
p : �14�

Next, we take into account the action of Kerr nonlinear-
ity. The stable transverse intensity distribution in the quartz
fibers may be treated as the radiation mode and the four-
photon process itself may be described by the single-mode
Hamiltonian (see, for instance, Ref. [34] and references
therein):

Ĥ � �h

2
w �3�â �â �ââ ; �15�

where w �3� is the cubic nonlinearity coefficient normalized to
the number of photons. The nonlinear response is assumed to
be instantaneous.

The corresponding operator of the quantum state evolu-
tion in the Schr�odinger representation is expressed as

Û � Î exp

�
ÿ i

�w
2
â �â �ââ

�
� Î exp

�
ÿ i

�w
2
n̂�n̂ÿ 1�

�
; �16�

where �w � w �3�t, the evolution time t is related to the fiber
length l � vt, v is the velocity of mode propagation in the
fiber, and n̂�t� is the photon number operator.

In the Heisenberg representation, the mode field photon
annihilation operator obeys the equation i�h dâ=dt � �â; Ĥ �;
hence, â�t� � exp

ÿÿ i�wâ ��0�â �0��â �0� and, in our case,

â 02 � exp �ÿi�wâ �2 â2� â2 ; â 03 � exp �ÿi�wâ �3 â3� â3 : �17�

Accordingly, we obtain two output interferometer modes:

â 00 �
â 02 ÿ â 03���

2
p ; â 01 �

â 02 � â 03���
2
p : �18�

We find the average photon numbers at the interferometer
outputs:

hn̂0i � hâ 0�0 â 00i � 0 ; hn̂1i � hâ 0�1 â 01i � 1 : �19�

So, we observe interference with the zero phase difference,
and a photon therefore is in both interferometer arms
simultaneously.

Everything would be nice were it not for one regrettable
circumstance. According to expression (16), a single photon
in the Fock state j1i does not acquire a nonlinear phase shift,
since for n � 1, as with any averaging over j1i, Û � Î. This
comes as no surprise, because PSM is a kind of frequency- and
direction-degenerate nonlinear four-photon process, when
two pump photons transform into precisely the same two
photons, though with a phase shift. That is why a single
photon may not carry out the PSM process.

What can be done? Let us deliver the superposition jci �
�1= ���

2
p ��j12i � j21i� rather than jci � �1= ���

2
p ��j01i � j10i� to

the two interferometer arms. These three-photon fields may
be prepared as follows. First, by using a three-stage atomic
transition to the ground state, whereby two of three emitted
photons are degenerate, i.e., belong to one mode. Second, by
using the nonlinear frequency down-conversion in a medium
with a cubic nonlinearity w �3� [35] or due to a cascade process
similar to that described in Refs [36, 37]. In this version, at the
first stage, two photons are produced in the course of
nondegenerate parametric scattering in a piezocrystal, for
instance, 3o! 2o� o, and at the second stage one of the
photons splits in a degenerate parametric process, i.e., with
the production of a subharmonic: 2o! o� o. The thus-
formed modes a and b are next delivered to theMach±Zender
interferometer arms with nonlinear fibers. The state vector at
their input has the form

jci0 �
1���
2
p ÿj1iaj2ib � j2iaj1ib� : �20�

Upon the action of evolution operator Û (16), we have

jci � 1���
2
p �j1iaj2ib exp �ÿi�wb� � j2iaj1ib exp �ÿi�wa�� : �21�

At the interferometer output, according to expressions (18),
the detection probability is proportional to the average

Mirror

Mirror Mirror
Beamsplitter 1

Beamsplitter 2

Sensor 2

Sensor 1

|1i

Figure 7.Mach±Zender interferometer with identical nonlinear fibers in its

arms.
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number of photons:

hn̂0i � hâ 0�0 â 00i �
1

2

�
1� cos ��wa ÿ �wb�

�
;

hn̂1i � hâ 0�1 â 01i �
1

2

�
1ÿ cos ��wa ÿ �wb�

�
:

�22�

When solving this problem in the Heisenberg representation,
we obtain the same result.

So, for the same fibers, �wa � �wb, we have photocounts of
only one detector, which signifies that interference does take
place and both superposition states are simultaneously
present in both interferometer arms. Consequently, there is
neither state vector splitting nor empty wave packets, as in the
case of single-photon states.

When we are dealing with aMach±Zender interferometer,
we can feed it with the Fock state j3i, and the field in its arms
will be described by the state vector

jci0 �
1

2
���
2
p ÿj0iaj3ib � ���

3
p
j1iaj2ib �

���
3
p
j2iaj1ib � j3iaj0ib

�
;

�23�

and the detector operation probabilities will be unequal: 1/4
and 3/4. This also proves the presence of interference and the
simultaneous presence of all components of quantum super-
position in the interferometer arms.

There is one more, albeit indirect, proof of this fact, which
relies on the incontestable presence of quantum superposition
rather than on specific values of measured quantum observa-
bles. At the same time, the existence of quantum superposition
is precisely in contradiction with the existence of one definite
trajectory of a quantum particle or particles. The proof
mentioned involves an experiment, so far a gedanken experi-
ment, inwhich there is no specific phase difference between two
entangled photons, but there is a complete superposition of all
possible values of this phase difference [38].

In this connection, it is pertinent to note that the
interference effect considered above, broadly speaking, may
be attributed to the hypothetical ``nonlocal effect of the empty
arm.'' However, as shown in Ref. [38], nonlocal classical
realism (in the sense of the existence of definite pre-
measurement values of physical quantities) can be refuted.
As applied to the interference effect considered above, this
signifies that a particle may not be in one of the interferometer
arms prior to its recording, since the particle residence in it
would be its a priori determined spatial location. Therefore,
the ``nonlocal effect of the empty arm'' in the context of
nonlocal classical realism, which is inherent in the Bohmian
concept, is unacceptable.

8. Von Neumann's hidden variables,
Bohm's and Bell's objections

Bohm interpreted his resultant relations in the sense that they
basically implied a denial of quantum indeterminism. Were
the value of phase S known, we would be able, as Bohm
believed, to determine the `individual' particle velocities vi
and find the `individual' particle trajectories in the subsequent
integration over time for given initial values. This brings up at
least two fundamental questions.
� What is to be done with von Neumann's well-known

theorem about hidden variables, which limits the determinism
of the behavior of individual quantum particles?

� Is it generally correct in this case to speak about
`individual' particle characteristics?

However, is it possible to reconcile the principles of
quantum mechanics with the deterministic description of
quantum objects rather than a probabilistic one? Cited in
the famous work of John von Neumann is the result obtained
earlier by Robertson [39], which later received the name von
Neumann's theorem on ``no hidden variables.'' According to
this theorem, the quantum theory, as follows from its basic
principles, can give only a probabilistic description of
quantum objects and not a deterministic one. Because more
recently this theorem was repeatedly subjected to criticism
and `re-interpretations' (see, for instance, Ref. [40] and
references therein), we set forth its exact formulation.

Let us assume that two noncommuting self-adjoint
Hermitian operators, Â and B̂, with ÂB̂ÿ B̂Â � iĈ, corre-
spond to two quantum observables A and B. Then, it is
possible to rigorously prove the Heisenberg uncertainty
relation:�������������������������

�DA�2�DB�2
q

5
1

2
j �C j ; �24�

where DA and DB are the root-mean-square, fundamentally
unremovable deviations of the individual results of measure-
ments of A and B from their average values. In other words,
since describing quantum phenomena calls for noncommut-
ing operators, the theory that uses them may not be
deterministic.

Bohm himself would not call into question the mathema-
tical correctness of the formal apparatus of the quantum
theory. However, he insisted that this description corre-
sponded to an interim level of representing reality and not to
the final one. Bohm's logic involved the following statement:
yes, the statistical interpretation of quantum mechanics,
which allows the use of noncommuting operators, is inher-
ently consistent and is borne out by experiments. `Hidden'
(deterministic) variables are indeed not necessary for such a
theory. But does this mean that a deeper level of description,
also inherently consistent and allowing experimental con-
firmation, is impossible? By way of possible illustration,
Bohm provided a comparison of phenomenological thermo-
dynamics (in which figure macroscopic parametersÐpres-
sures, temperatures, etc.) with statistical physics, in which the
macroscopic parameters are not postulated but appear as the
result of action of an ensemble of microscopic degrees of
freedom of individual atoms and molecules. It is common
knowledge that the proponents of these conceptions waged a
stubborn ideological struggle, and it was precisely the
microscopic approach which was victorious.

It is also possible to make another analogy, which is
closer, it seems, to Bohm's point. Consider a linear electric
circuit with stationary harmonic currents and voltages. Here,
we can distinguish two levels of analysis. At the `fine' level
one can operate on instantaneous values of currents and
voltages (and measure them), and this is precisely what
Bohm means. At the `coarse' level, we have to speak only
about the `effective' root-mean-square (rms) values of the
currents and voltages, which are quadratically averaged over
the harmonic current cycle in every branch, as well as about
phase angles between them. Then, we have a pragmatic,
absolutely noncontradictory and complete theory of sta-
tionary harmonic processes, which, however, may in princi-
ple be deepened to the `fine' level. Furthermore, this theory
also makes use of complex quantities, which leads to several
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amazing analogies, including commutation relations, to
quantum mechanics [41].

John Bell also raised objections to the universal validity of
von Neumann's theorem. In the chapter ``On the impossible
pilot wave'' of his book [1], Bell outlined constructive
criticism of the premises of this theorem and referred to the
model proposed by Bohm, which went beyond the framework
of these premises and, in particular, introduced the phase
parameter, which clearly exemplified vonNeumann's `hidden
parameter.' ``But in 1952 I saw the impossible done,'' is how
J Bell expressed his ineffable surprise concerning the publica-
tion of D Bohm's paper. In his book [1], Bell expresses his
astonishment at the silence of his teachers regarding the `pilot
wave' theory of de Broglie±Bohm. That is why Bell addressed
the analysis of the situation from another side. Considering
the thought experiment related to the well-known Einstein±
Podolsky±Rosen (EPR) paradox, which deals with the
separation of entangled quantum particles, Bell tried to
ascertain whether the results of quantum theory and the
corresponding experiments may be described with the aid of
deterministic hidden variables [42]. It turned out that this is
impossible in principle, unless it is assumed that nonlocal
(supraluminal) correlations may exist between receding EPR
particles (and/or between the detectors of these particles). As
formally proved by Bell in the 1960s [42] and more recently
verified experimentally by Aspect et al. in the 1980s, quantum
mechanics (and Bohm's theory explicitly via quantum
potential) is characterized by precisely nonlocal correlations
in the entanglement [43, 44].

9. Are the velocities and trajectories in Bohm's
model the characteristics of individual particles?

Are the velocities and trajectory points found by Bohm the
instantaneous characteristics of precisely the individual
particles? Bohm himself was convinced of this and did not
even endeavor to pose the problem in a different way, because
herein lay the sense of his interpretation. However, there are
arguments in favor of a different viewpoint.

First, the Schr�odinger equation itself, which was the
starting point for Bohm, operates on a statistic ensemble,
which has one distribution or another. Hence, it seems, it
follows that any description obtained from the Schr�odinger
equation will also be statistical in nature.

Second, proceeding from the analogy with a `quantum
liquid' obeying the same Bohm equations, it was shown in [45]
that ``quantum fluxes cannot cross in configuration space... .
Therefore, two or more Bohmian trajectories cannot cross
through such a point at the same time... .'' At the same time, it
was theoretically and experimentally shown, as noted above,
that individual quantum particles can `jump' from one
Bohmian trajectory to another with a nonzero probability,
thus generating so-called `surrealistic' trajectories [20]. There-
fore, the `group' Bohmian trajectories and `individual' tracks
of particle motion are not the same thing, which was
demonstrated by the example of `surrealistic' trajectories.

Indeed, as recognized by Madelung in 1926, from the
time-dependent Schr�odinger equation there follows an equa-
tion of the form of the hydrodynamic continuity equation, in
which the density and velocity potential of a moving fluid
appear. Elaborating on these ideas, Madelung showed that
each eigen function (the solution of the wave equation),
although depending on time, could be interpreted as a certain
type of stationary flow. Since the hydrodynamic model also

described other important features of the Schr�odinger theory,
Madelung assumed that it was possible to consider the
quantum theory of atoms from this viewpoint. If the Bohm
equations are interpreted as hydrodynamic equations, the
trajectories obtained from these equations should not
necessarily be regarded as the trajectories of real particles
but rather as streamlines associated with a quantum liquid
(we note that the Schr�odinger equation typically describes in
fact a degree of freedom rather than a `true' particle).

This immediately brings up the question: what is a
Bohmian trajectory? Is it the real path followed by a quantum
particle or does it merely represent a quantum degree of
freedom?

Consider a classical continuous medium consisting of
many different particles (atoms, ions, molecules, etc.). All
degrees of freedom are described by a system of differential
equations, the number of equations coinciding with the
number of degrees of freedom. Let our concern be not a
microscopic but merely a macroscopic description of a
medium by Euler or Navier±Stokes type equations, which
phenomenologically describe the continuum evolution but
pay no attention to the microscopic dynamics of its constitu-
ents. This underlies hydrodynamics. In this case, in the
experimental study of medium behavior, it is common
practice to follow the motion of certain particles, namely
marker particles. These permit visualizing the flow dynamics
in the motion along the streamlines, which coincide with
energy transfer lines. For instance, when we want to observe
the evolution of airflow, we may follow the propagation of
cigarette smoke. To trace the flow of water, advantage can be
taken of another liquid like ink or small floating particles like
pollen or charcoal grit. On the cosmological scale, this
hydrodynamic approach may also be employed with the use
of stars and galaxies or their clusters as marker particles. Real
separate quantum particles behave like corpuscles, although
their distribution displays wave properties according to the
Schr�odinger equation or its Bohmian equivalents. It is
therefore evident that the ensemble properties should be
described collectively, i.e., with a distribution density func-
tion, whose role is played by the probability density in
quantum mechanics or, at a more elementary level, by the
wave function. This corresponds to the statistical Born
interpretation for quantum mechanics [46].

10. Gr�ossing's model

Recall the quotation from Ref. [4] given in Section 2:
``Recognizing that this equation has the structure of a
diffusion equation with an imaginary diffusion coefficient,
Schr�odinger relaxed his original requirement concerning the
reality of c and admitted complex-valued functions for what
he called the mechanical field scalar c... .'' Encountered here
are two key words: `diffusion' and `complex-valuedness.'
These two notions were addressed by the Austrian theorist
Gerhard Gr�ossing in his several papers an the construction of
so-called emergent quantum mechanics. Gr�ossing uses this
term in reference to the quantum mechanics emerging at the
subquantum level from inherently classical notions.

In Ref. [47] Gr�ossing proposes the following model to
describe the propagation of a quantumparticle in themedium
of `zero-point vacuum oscillations.' The energy of this
quantum particle is assumed to comprise two constituents.
This first is the ordinary (constant) energy of a quantum
oscillator (proportional to the oscillation frequency), and the
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second one is an additional kinetic constituent caused by the
fluctuating (harmonically varied) momentum of the particle,
which is continuously acquired and lost due to energy
exchange with the vacuum. As a result, the particle motion
acquires a Brownian character. Putting the kinetic energy of
the `vacuum thermostat' per degree of freedom equal to
kBT=2 and the average kinetic energy of the particle-
oscillator to �ho=2 and equating them, then introducing the
probability for the particle and expressing it in the ordinary
way in terms of the real amplitude and phase of the wave
function, Gr�ossing obtains the macroscopic diffusion equa-
tion exactly coincident with the Bohm equations, where the
said specific quantum potential arises automatically. This
potential does not have a significant effect for a single free
particle; however, in the case of several particles for diffusion
fields, there immediately follows a new understanding of the
basic properties of the quantum potential.

In this case, an important role is played by the particle's
eigenfrequency, which (one should think) is at resonance with
the vacuum oscillation frequency throughout the volume.2

This is precisely the reason why diffusion waves emerge,
whose properties are radically different from those of
ordinary (`traveling') waves. In particular, attention should
be paid to the nonlocal properties of diffusion waves. Since
their `propagation velocity' is unlimited, the original equation
results in neither traveling waves and wavefronts nor the
phase velocity. It is as if the entire domain were breathing in
phase with the oscillating source. In the world of diffusion
waves, there are only spatially correlated phase lags defined
by the diffusion length.

Therefore, instead of the conventional analysis of the
behavior of a single quantum particle (a photon or an
electron) itself, we face the necessity of considering its
`diffusive' propagation in a medium made up of zero-point
vacuum oscillations. As amatter of fact, this thought is not as
unexpected as it might seem. The decoherence theory makes
active use of the notion of the interaction of a quantum
particle with a medium, when this medium `measures' the
particle and entangles with it. D I Blokhintsev, for instance,
believed that the properties of quantummechanics stem from
the fact that there is no way of isolating a particle from
surrounding world. Bodies radiate and absorb electromag-
netic waves at any temperature above absolute zero. From the
standpoint of quantum mechanics, this signifies that their
position is continuously `measured,' which entails the
collapse of wave functions. ``From this viewpoint, there are
no isolated `free' particles in itself,'' wrote Blokhintsev.
``Possibly the nature of this impossibility of isolating a
particle, which manifests itself in the apparatus of quantum
mechanics, underlies the relationship between particles and
the medium'' [49].

Modern physics has focused closely on theoretical
decoherence models and their experimental verification at
the quantitative level. In particular, ``A tractable model of the
environment is afforded by a collection of harmonic oscilla-
tors ... or, equivalently, by a quantum field.... If a particle is
present, excitations of the field will scatter off the particle.
The resulting `ripples' will constitute a record of its position,

shape, orientation, and so on, and most important, its
instantaneous location and hence its trajectory. A boat
traveling on a quiet lake or a stone that fell into water will
leave such an imprint on the water surface. Our eyesight relies
on the perturbation left by the objects on the preexisting state
of the electromagnetic field'' [50].

In this case, it is significant that a purely classical
description of quantum objects in the presence of the vacuum
mode continuum leads to incorrect results. For instance,
endeavors to numerically simulate atomic hydrogen in the
framework of the Rutherford planetary model in the field of
white vacuum noise do not yield stationary Bohr orbits [51].

11. Conclusions

To summarize, first of all, we note that Bohmdid not formally
enhance the quantum mechanical apparatus itself. He
`merely' came up with the idea to replace the Schr�odinger
equation for one complex-valued wave function with the
equivalent system of two equations for two real functionsÐ
the amplitude and phase of the wave function.

On the other hand, this representation of the mathema-
tical apparatus made it possible to view quantum mechanics
from a different aspect.
� Prior to Bohm, as far as we can judge, the `absolute'

phase of the wave function was treated as a formal parameter
void of physical significance. In the new representation, the
Schr�odinger equation was replaced by the continuity equa-
tion (for the probability density) and the Hamilton±Jacobi
equation known from classical physics, which permits fixing
the phase of the wave function for an individual trajectory (or
group of trajectories). In the quantum analogue of the
Hamilton±Jacobi equation, a new term appeared that is
nonexistent in classical physicsÐquantum potentialÐ
which explicitly gave rise to the nonlocal correlations of
quantum particles.
� Bohm interpreted separate trajectories fixed by specific

values of phase of the wave function as the tracks ofmotion of
individual quantum particles. However, theoretical argu-
ments and experimental facts suggest that more likely we are
dealing with classes of trajectories averaged over a given
phase value, while the notion of an individual particle
trajectory is highly controversial, the more so as `surrealism'
is also invoked here. Bohm's theory supposedly deals not with
individual particles and their trajectories but with mass/
energy transfer lines.
� Bohm adduced several arguments refuting the universal

validity of von Neumann's theorem on hidden variables. His
introduced `absolute' phase of the wave function is a good
example of a hidden (nonlocal) parameter.
� Bohm expressed his firm belief that, while quantum

mechanics is a complete and noncontradictory theory, other
physical theories are also possible, also complete and
noncontradictory, which operate at a more subtle level of
notions about space, time, and physical interactions.

So, Bohm's hypothesis undoubtedly possesses a number
of attractive and useful components. However, it may hardly
serve to substantiate the determinism of quantum processes
and reconcile the predictions of quantum theory with the
postulate of objectively existing particle coordinates and
velocities. Furthermore, a wave function splitting into
empty and nonempty packets is believed to be at variance
with the results of feasible experiments, at least photon
experiments, and their interpretations.

2 Compare this with the constancy of the oscillation frequency (i.e., energy

feeding) for the entire liquid volume in the experimental tray in the

macroscopic experiments of Couder et al. [48] with `walking droplets,'

which have become widely known due to a close analogy between them

and basic quantummotion effects. In particular, the waves occurring there

are also diffusive in character.
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