Physics— Uspekhi 62 (11) 1096—1124 (2019) © 2019 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

PHYSICS OF OUR DAYS

Nonlinear compression of high-power laser pulses:
compression after compressor approach

E A Khazanov, S Yu Mironov, G Mourou

DOI: https://doi.org/10.3367/UFNe.2019.05.038564

PACS numbers: 42.55.-f, 42.65.Jx, 42.65.Rc

Contents

1. Introduction 1096
1.1 Limitations on the peak power of modern lasers; 1.2 Concept of nonlinear laser-pulse compression; 1.3 History of
nonlinear compression of laser pulses; 1.4 Limitations on the nonlinear compression of pulses higher than 1 TW in
power

2. Theoretical foundations of phase self-modulation and compression 1100
2.1 Basic equation, effects, and parameters of the problem; 2.2 Compression-after-compressor approach (CafCA) in a
one-dimensional quasistationary model; 2.3 Special features for pulses several hundred femtoseconds in duration;
2.4 Special features for pulses shorter than 15 fs

3. Compression nonuniformity over beam cross section 1106
3.1 Large-scale self-focusing; 3.2 Nonuniform pulse shortening; 3.3 Nonlinear wavefront distortions

4. Small-scale self-focusing of ultrahigh-power laser beams 1109
4.1 Theory of small-scale self-focusing; 4.2 Special feature of small-scale self-focusing in ultrahigh-power lasers: a large
critical angle; 4.3 Suppression of small-scale self-focusing by beam self-filtering; 4.4 Suppression of small-scale self-
focusing by nonlinear dispersion; 4.5 Application of traditional small-scale self-focusing suppression methods in
ultrahigh-power lasers

5. Plastic: a new promising nonlinear material 1116
5.1 Idea of using plastics; 5.2 Increasing the critical angle of small-scale self-focusing; 5.3 Two-stage compression;
5.4 Nonlinear element fragmentation

6. Compression after compressor approach (CafCA): status quo and prospects 1118
6.1 Review of experiments with a pulse power of 0.2-250 TW; 6.2 Numerical CafCA simulations for petawatt pulses;
6.3 Future research avenues

7. Conclusions 1121
References 1122

Abstract. The peak power of present-day lasers is limited by the
pulse energy that the diffraction gratings of an optical compres-
sor can withstand. A promising method to overcome this limita-
tion is reviewed: the pulse power is increased by shortening its
duration rather than increasing the pulse energy, the pulse being
shortened after passing a compressor (Compression after Com-
pressor Approach (CafCA)). For this purpose, the pulse spec-
trum is broadened as a result of self-phase modulation, and the
pulse is then compressed by dispersion mirrors. Application of
this idea, known since the 1960s, to lasers whose power is over
1 TW has been restrained until recently by a number of physical
problems. These problems and possible methods to solve them
are discussed in detail. The experimental results obtained over
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the past few years demonstrate the efficiency of the technique
(compression by a factor of 5) in the range up to 250 TW.
CafCA features three undisputed merits: simplicity and low
cost, negligible loss of pulse energy, and applicability to any
high-power laser.

Keywords: ultrahigh power femtosecond lasers, phase self-modula-
tion, nonlinear laser pulse compression, small-scale self-focusing

1. Introduction

1.1 Limitations on the peak power of modern lasers

Since the development of the first laser by Theodore Maiman
in 1960 [1], the pursuit of ultrahigh fields has been one of the
main focuses in laser physics, i.e., the pursuit of record high
intensity of focused electromagnetic radiation, which may be
estimated by the formula

P (O :
ITrocus %?< beam) ) (1)

O

where P = W/t is the peak pulse power, W and t are its
energy and duration, A is the wavelength, @yean, 1s the beam
divergence, and O is the diffraction-limited divergence. It
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Figure 1. (Color online.) At-focus intensity of laser radiation. The
dependence from 1960 to 1998 was borrowed from Ref. [2].

became immediately clear that lasers have no rivals among
microwave radiation sources or among incoherent sources of
light and shorter-wavelength radiation. Microwave sources
rank far below because of significantly longer /4 and r.
Incoherent sources, even for a shorter wavelength than the
laser wavelength (ultraviolet (UV) and X-ray ranges), are at a
disadvantage owing to a greater divergence @peam, Which is
many orders higher than O g.

In just a few years after their advent, lasers revealed their
significant advantages by reaching an intensity of
10" W cm~2. However, the radiation intensity hardly
increased during the next 20 years [2] (Fig. 1). The reason
for this ‘plateau’ lay with the fact that laser amplifiers had
reached their limit related to the optical breakdown threshold
of the medium. To state it in different terms, in an attempt to
scale up the laser radiation, it damaged the amplifier itself.
Therefore, the unresolvable contradiction was that, on the
one hand, a pulse had to gain energy from the medium to be
amplified, i.e., to propagate through the medium, but, on the
other hand, the pulse itself damaged the medium. By way of
analogy to a laser pulse, one may consider a worm which we
want to fatten. For this purpose, we have an unlimited
amount of food stored in a long tube. When crawling along
the tube, the worm (the pulse) eats and increases in mass
(energy). Evidently, nothing limits the growth of the worm’s
mass if the worm grows in length. However, the worm’s

diameter (the pulse power) may only grow up to the tube
diameter. Further worm thickening is impossible inside the
tube, but there is no food outside of the tube.

In 1985, Donna Strickland and Gerard Mourou proposed
a way out [3]. First, a laser pulse is stretched in time (by 4—
5 orders of magnitude) with a corresponding decrease in
power. After that, the pulse is amplified to the limiting power
and then compressed (Fig. 2a). As a result, the compressed
pulse power exceeds the breakdown threshold of laser
amplifiers by several orders of magnitude. Therefore, the
implementation of the idea calls for three devices: (i) a
stretcher, which stretches the pulse and lowers its intensity
without a change in energy; (ii) an amplifier, which increases
the energy and power of the pulse but does not change its
duration; (iii)) a compressor, which shortens the pulse and
increases its power without increasing its energy.

A stretcher is a dispersive device, which delays different
wavelengths by different time intervals. As a result, a short
laser pulse in which all wavelengths are synchronous spreads
in time: ‘red” wavelengths are in advance and the ‘blue’ ones
are behind, or vice versa, depending on the sign of dispersion.
These pulses are referred to as chirped, and the proposed
concept has received the name ‘Chirped Pulse Amplification’
(CPA). We emphasize that chirped (or frequency-modulated)
pulses also occur in other realms of physics: from radar
(where the term itself was borrowed from) to gravity
waves—it was precisely the chirped pulse of gravity waves
that was detected by the LIGO (Laser Interferometer
Gravitational-wave Observatory) collaboration [4], which
was awarded the Nobel Prize in Physics in 2017.

For CPA, it is fundamentally important that the energy of
a pulse does not increase in its compression, i.e., use can be
made of purely reflective optical elements— diffraction
gratings. A negative-dispersion compressor based on diffrac-
tion gratings was invented and implemented back in 1968 by
Edmund Treacy [5], who described the operation of this
compressor in detail in Ref. [6]. Before 1985, the Treacy
compressor was repeatedly used for precisely the compression
of chirped pulses, but not for CPA. Efficient operation with
short, i.e., broadband, pulses requires a stretcher that
introduces positive dispersion, which is the same (in mod-
ulus) as in the Treacy compressor. Although the simple and
convenient fiber stretcher employed in Ref. [3] introduces
positive dispersion, it is a poor match for the Treacy

Figure 2. (Color online.) CPA (a) and CafCA (b) concepts. S— stretcher, A — laser amplifier, C— compressor, NE — nonlinear element, CM — chirped
mirror; I, , I, and I, are the breakdown thresholds of amplifiers, diffraction gratings, and chirped mirrors.
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compressor, since the shapes of the dispersion dependences of
fibers and diffraction gratings are much different. A ‘suitable’
device comprising diffraction gratings and a lens telescope
was proposed in Ref. [7] by Oscar Martinez, who employed it
as a compressor for CPA in a wavelength region of 1.5 pum,
where the dispersion of the fiber stretcher is negative. Five
months later, in the same year of 1987, M Pessot et al.
published a paper [8] in which the Martinez device was
employed precisely as the stretcher in combination with the
Treacy compressor. More recently, to eliminate the disper-
sion introduced by the lenses, the lens telescope in the
Martinez stretcher was replaced by a mirror one, in
accordance with Abe Offner’s patent [9]. For a detailed
review of different operational aspects of stretchers and
compressors, the reader is referred, e.g., to Ref. [10]. At
present, virtually all high-power lasers comprise three
elements: (i) Offner’s diffraction-grating stretcher with a
positive dispersion; (ii) an amplifier; (iii) Treacy’s diffrac-
tion-grating compressor with a negative dispersion.

The invention of CPA resulted in a sharp rise in laser
power, which is clearly demonstrated by Fig. 1: in the late
1980s, the plateau was replaced by quick growth. By the early
2000s, the intensity became as high as 102> W ecm~2 [11, 12].
However, the intensity has hardly risen since then— the
second plateau made its appearance. It is valid to say that
humankind has made the most of the CPA concept. The
reason was that by the early 2000s the power (and the
intensity) had risen so much that it was limited not by the
impossibility of amplifying laser pulses still further but by the
impossibility of compressing them even more strongly.
Diffraction gratings have a finite breakdown threshold,
which limits the output CPA-laser intensity. In the near
future, such gratings will permit making lasers with an
output power of 10 PW and an intensity of 102 W cm™2.
Therefore, the weak link in the stretcher—amplifier—compres-
sor chain is the compressor.

What next? There are three ways to raise the laser power
and intensity. The first is to make a mosaic (tiled) compressor
[13-15]. Each grating of such a compressor consists of several
diffraction gratings, which increases the beam aperture
several-fold. This makes it possible to compress pulses of
higher energy. The second is to make parallel phased CPA
channels, each of which is equipped with its own compressor
[16-19]. These two ways have several significant drawbacks:
the existence of technical and technological problems, the
necessity of increasing the pulse energy several-fold, as well as
the large size and high cost of the laser. In this review, we will
not discuss these two ways and will restrict ourselves to a
discussion of the third way, which is by far simpler and
cheaper: increasing the power by pulse shortening rather
than by increasing the pulse energy.

1.2 Concept of nonlinear laser-pulse compression

The pulse duration at the CPA-laser output (after Treacy’s
compressor) is, as a rule, only slightly longer than the Fourier
limit. So, to significantly shorten the pulse requires broad-
ening its spectrum, i.e., stretching not the pulse length, as in
CPA, but stretching its spectrum. For this purpose, a
nonlinear element is needed to be used (Fig. 2b). The simplest
and most suitable element is a plate with a cubic (Kerr-type)
nonlinearity, whose refractive index n depends on the
intensity I:

n=ny+nl, (2)

where ny is the linear refractive index and n, is the nonlinear
refractive index determined by the cubic nonlinearity tensor
¥ ®). Asis clear from Eqn (2), in this case, the pulse propagates
through a medium in which the refractive index varies in time,
since I = I(7). This gives rise to phase modulation (to be more
precise, to self-modulation) and therefore to spectral pulse
broadening. However, this is only a necessary condition for
pulse shortening; required in addition is the phase synchron-
ism of all frequencies of the spectrum. The pulse becomes
chirped at the output of the nonlinear element. To state it in
different terms, the nonlinear element introduces dispersion
(the frequency dependence of the spectral phase), which must
be compensated by adding the same (in modulus) dispersion
of opposite sign, just as is done by a compressor in CPA. The
magnitude of this dispersion is much smaller than that
introduced by the Treacy compressor, and therefore advan-
tage is taken of chirped mirrors. These mirrors cannot be
employed in CPA instead of diffraction gratings, since they
introduce only a small dispersion, but in return their break-
down threshold is higher than for gratings. Owing to this
circumstance, the pulse power may exceed the breakdown
threshold of the gratings (Fig. 2b).

This way of nonlinear compression of laser pulses has
received the name Thin Film Compression (TFC) [20] or
Compression after Compression Approach (CafCA) [21, 22].
In what follows, we use the latter name. CafCA offers three
indisputable advantages. First, simplicity and cheapness:
required are only a plane-parallel plate and one or several
chirped mirrors, whose fabrication technology has been
adequately developed [23-27] and which are extensively used
in femtosecond lasers. Second, the possibility of application
to practically any high-power laser, no laser alteration being
required. Third, a high efficiency: the energy loss is under 1%,
provided the nonlinear element is mounted at a Brewster
angle.

The key parameter that defines the spectrum broadening
as well as the pulse shortening and the increase in peak power
is nonlinear phase incursion. As is easily seen from Eqn (2),
the incursion is defined by the so-called decay integral, or the
B-integral:

B =kLnyI. (3)

Here, L is the length of the nonlinear element, k = 21t/ 2, and
Ao 1s the central vacuum wavelength of the radiation.

1.3 History of nonlinear compression of laser pulses
The idea of compressing laser pulses by way of phase
modulation with the subsequent compensation of dispersion
was proposed by J Giordmaine et al. [28] in 1968 by analogy
with pulse compression in chirped radars [29, 30]. To realize
phase modulation, the authors of Ref. [28] used an electro-
optical crystal, to which they applied sinusoidal voltage. The
laser pulse passed through the crystal at the instant of zero
phase, i.e., the pulse frequency varied linearly in time. A four-
fold broadening of the helium-neon laser spectrum was
demonstrated. In Ref. [31], a 500-ps-long pulse was not only
chirped with an electrooptical crystal, but was also com-
pressed to 270 ps using a Gires—Tournois interferometer [32].
The key idea — to use cubic nonlinearity for self-phase
modulation (SPM) — was proposed by Robert Fisher et al. in
1969 [33]. In Ref. [33], they provided a theoretical substantia-
tion of the method and showed the promise of using liquid
CS; as the nonlinear medium and the Kerr effect as the
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Figure 3. (Color online.) (a) Energy and (b) peak power of laser pulses in
experiments with nonlinear compression: SPM was performed in a liquid
(red squares [34-36]), in a fiber (shaded ellipse), in HCF (empty ellipse), in
a volume with limited propagation (green triangles [66-71]), and in a
volume with free propagation (blue circles [22, 76-85]). The straight line
corresponds to an intensity of I TW cm™2.

nonlinear effect. That same year, A Laubereau [34] realized
this idea by compressing several-fold a 20-picosecond pulse
with the use of CS,-filled cells 14 cm in total length and a
Treacy compressor. Laubereau’s work [34] was the first
experimental implementation of CafCA (Fig. 3a). More
recently, this experiment was repeated at a significantly
higher energy and with a stronger compression: from 96 ps
to 6.9 psin Ref. [35] and from 45 ps to 2 ps in Ref. [36], where
use was made of a CS,-filled capillary. A significant
disadvantage of liquids is the long relaxation time of the
Kerr nonlinearity (2 ps for CS,), which limits the duration of
compressed pulses to the picosecond range. This is suppo-
sedly why the idea was ‘forgotten’ and was rekindled in the
1980s in connection with the development of femtosecond dye
lasers and fiber technology.

Fiber was first used for SPM in Ref. [37], in which pulses
were compressed from 5.5 ps to 1.5 ps employing a 70-m-long
single-mode fiber and a compressor in the form of a cell with
sodium vapor, which introduced high dispersion owing to the
transition at a frequency close to the laser frequency. In 1982,
compression was first realized in the femtosecond range [38].
A 90-fs-long pulse several nJ in energy was focused into a
15-cm-long fiber, after which the Treacy compressor
squeezed it to 30 fs. The 1980s saw a wealth of theoretical
[39-41] and experimental [42-48] studies. In particular,
demonstrated was a two-stage 65-fold pulse compression
[43] and a compression to 6 fs [47], when a prism compressor
was employed in addition to Treacy’s compressor; use was
made of a gradient fiber with a large mode diameter [48]. The
input pulse energy amounted to several pJ and the power
ranged up to the submegawatt level [44, 46]. Investigations in
this area were continued and are now underway, but a further

increase in energy is obviously limited by the very small
diameter of the fiber.

The energy may be significantly increased (from several nJ
to several mJ) if gas-filled hollow core fibers (HCFs) or
capillaries are used instead of single-mode fibers, as pro-
posed in Ref. [56] in 1996. The limitations on the pulse energy
in HCFs are far less stringent owing to an increase in, first,
beam diameter —from several micrometers to several hun-
dred micrometers — and, second, breakdown (or ionization)
threshold. Impressive results were obtained in the same
pioneering work [56]: a 140-fs-long pulse was compressed to
10 fs after passing through a 70-cm-long HCF 140 um in
diameter filled with krypton at a pressure of 2 atm and a
compressor consisting of a pair of prisms. The pulse energy
lowered from 0.66 mJ to 0.22 mJ. At the same time, titanium-
sapphire lasers [57] came into wide use, and several nonlinear
compression experiments were performed using them (see,
e.g., Refs [58-64]). Among these results, mention should be
made of the production of a 3.8-fs-long pulse [58] and the use
of an HCF with a pressure gradient [63], a capillary 0.42 mm
in diameter [59], and a circularly polarized pulse [61]. The
input pulse energy became as high as a few tens of mJ and the
power reached the subterawatt level (see Fig. 3). It is
significant that the energy transmittance of HCFs is usually
less than 50%. However, this is abundantly compensated by
pulse shortening, by approximately 10 times, and by a factor
of 33 in Ref. [33]. At the same time, advancement to
significantly higher energies and powers requires a corre-
sponding increase in HCF diameter, which seems to be
impossible.

An alternative (apart from HCFs) to single-mode fibers is
a bulk solid nonlinear element, in which a laser beam
propagates freely. In this case, the problem of limited beam
aperture is removed in a natural way, but problems related to
the spatial nonuniformity of the beam inevitably arise. First
and foremost, this is the nonuniform incursion of the
nonlinear phase, which is proportional to the intensity (2).
This results in two effects: beam self-focusing and transver-
sely nonuniform spectral broadening and, therefore, nonuni-
form beam compression. In particular, at the beam periphery,
where the intensity is much lower than on the axis, the
compression practically vanishes. In a single-mode fiber
(and to a large extent in an HCF), the nonlinear phase is
added to the entire beam as a whole and all spatial effects are
simply missing. A comprehensive theoretical analysis of the
above spatial effects was performed in Ref. [65], which
showed that they impose significant limitations.

Several ways of solving the spatial nonuniformity pro-
blem were investigated. In 1988, it was suggested that the
beam be stopped down immediately after its passage through
the nonlinear element, thereby keeping only the paraxial
beam domain. The authors of Ref. [66] experimentally
studied the possibility of a trade-off between efficient pulse
shortening (minimal aperture size) and minimal energy loss
(maximum aperture size). The results suggested that quasi-
uniform four-fold pulse compression may be obtained for an
aperture stop transmission of no higher than 25-35%. In
Ref. [67], the aperture stop was placed in the far-field zone
rather than immediately after the nonlinear element. This also
resulted in a 3.5-fold quasi-uniform pulse compression for a
transmittance of only 35%. In Ref. [68], the beam was focused
on the nonlinear element with a cylindrical lens in such a way
so as to realize soliton-like propagation in the direction of the
smaller size: diffraction was completely compensated by self-
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focusing. However, in this experiment, the loss was even
higher. In Ref. [69], efficient compression was realized when
crystalline quartz was placed near or directly in the focal
plane of a lens, but evidently this approach cannot be scaled
up. In Ref. [70], the beam passed through seven nonlinear
plates, which were spaced so that self-focusing in each of them
was compensated by diffraction in the propagation to the
next one. A similar ‘multipass’ idea with spherical mirrors was
realized in Ref. [71]: 38 transits through the nonlinear
medium. In both papers, it was possible to avoid significant
loss and compress the pulse by about a factor of five at
energies of 0.8 mJ and 0.05 mlJ, respectively. However, the
authors of Ref. [71] did not demonstrate the uniformity of
compression and, most important, scaling so complicated a
system up to at least joule levels seems to be hardly realizable.
Therefore, despite endeavors to eliminate the adverse effect of
spatial nonuniformity, attempts have failed to advance even
to a power of 0.1 TW and reach the values mastered with the
help of HCFs (see Fig. 3).

The feasibility of CafCA for lasers of significantly higher
power with a quasi-uniform intensity distribution is discussed
in Refs [72-76]. A several-fold spectral broadening of second-
harmonic pulses for an energy of 4.7 mJ and a beam diameter
of 3 mm was experimentally observed in Ref. [76]. Because of
the absence of chirped mirrors for the second-harmonic
wavelength (460 nm), pulse compression was not realized. A
start was nevertheless made on the experimental investigation
of nonlinear pulse compression in its modern form (see Fig. 3).
A number of experimental results were obtained in recent
years [22, 77-85], where CafCA was successfully realized at a
power of 0.2-250 TW (indicated with circles in Fig. 3). The
proposed and experimentally confirmed method for the
suppression of small-scale self-focusing [86], which permits
the multiplicity of compression to be significantly increased,
became an important motivation for these investigations.
Furthermore, theoretical investigations were performed [20,
79, 87], related to the petawatt and multipetawatt power level,
and it is precisely the 1 TW—10 PW power range that our
review is concerned with. Before setting forth our statement in
detail, we discuss the physical mechanisms which impose
significant limitations on CafCA at a high power.

1.4 Limitations on the nonlinear compression of pulses
higher than 1 TW in power

As indicated above, the SPM of pulses 1 TW and above in
power is possible only in free propagation in a solid. As shown
in Refs [72, 88], stimulated Raman scattering does not limit
the power pulse. There are three problems which impede to a
greater or lesser extent the implementation of CafCA.

The first is the intensity nonuniformity mentioned
above, which is responsible for the self-focusing of a
beam as a whole, i.e., for large-scale self-focusing, phase
aberrations and, most important, for nonuniform beam
compression. A solution to the last-named problem — the
use of a negative lens as the nonlinear element — was
proposed in Ref. [89] and then realized experimentally in
Refs [77, 78], which immediately transferred CafCA from
the millijoule range to the range of several tens and
hundreds of mlJ. The parasitic effects related to the
nonuniform distribution of beam intensity, as well as
methods to suppress them, are minutely considered in
Section 3.

Second, this is small-scale self-focusing (SSSF). Unlike
the large-scale one, which arises from the nonuniformity of

beam intensity, SSSF is present even in a plane wave, since it is
caused by the Bespalov—Talanov instability [90]. The instabil-
ity increment is due to the B-integral (3). For B =2-3, the
beam usually divides into filaments, which results in a
significant impairment of beam quality [91], uncontrollable
spectral broadening [92], and the breakdown of optical
elements. At the same time, multiple pulse compression is
impossible for B < 2—3 (for more details, see below). On the
face of it, the task of significant CafCA-assisted power
enhancement therefore seems to be unrealizable: the same
effect (cubic nonlinearity) is simultaneously useful and
parasitic, this being so for the same parameter value
(B-integral). In view of this, until recently it was believed (see,
e.g., Refs [72, 74, 88, 93]) that CafCA is possible only in the
narrow range 2 < B < 3, which permits expecting no more
than a 2- to 2.5-fold compression (see Section 2). As
demonstrated in Ref. [86], efficient suppression of SSSF for
high-power femtosecond lasers is possible using beam self-
filtering on propagation in free space. This permits a
significant increase in the admissible values of the B-integral
and, accordingly, in the multiplicity of compression. Section 4
is concerned with the features of SSSF in ultrahigh-power
lasers and with methods to suppress it.

The third is a technological problem, which is most
pronounced at a petawatt power level: the very high ratio
between the diameter of a nonlinear element and its thickness.
As the power becomes higher, the beam diameter increases
and the nonlinear element becomes thinner. It is significant
that the nonlinear element should not introduce significant
linear wavefront distortions, which would impair the beam
focusing. The production technology of traditional optical
elements of glass and silica is under development, but a
significant advancement in the solution to this problem was
made possible by the idea in [20, 94] of employing polymer
materials. Their production technology readily provides
polymers with thicknesses of the order of 100 um with a
meter-sized aperture. Both the linear and nonlinear optical
properties of polymer materials are now actively being
studied, and the results are highly promising. In particular, a
pulse 100 TW in power was compressed by a factor of 2.6 [80].
The special features of employing polymer materials for
CafCA are considered in Section 5.

Section 2 is dedicated to the theoretical aspects of SPM
and the determination of the key effects and the parameters
responsible for them. In Sections 3-5, we expound on the
three specified groups of problems and outline ways to solve
them, which have made it possible to master the 1-250 TW
range and have opened the way to petawatt and multipeta-
watt ranges. Section 6 reviews experimental results and
avenues of future investigations.

2. Theoretical foundations
of phase self-modulation and compression

The propagation of a pulse in media with Kerr nonlinearity is
the concern of a wealth of papers. The first of them [33, 95—
102] were published in the 1960s only a few years after the
advent of the first laser. These investigations have continued
since then (see, for instance, Refs [103—110] and references
therein). As mentioned in Section 1.3, the SPM effect under
discussion is at the heart of the techniques of spectral
broadening in fibers [38, 39], gas-filled capillaries [56], and
transparent solid dielectrics [65, 67]. The effects included in
theoretical models depend on the pulse and medium para-
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meters. Of importance are regimes occurring for a minimal
modification of the laser pulse and medium parameters [20,
80], as well as regimes attended by plasma production and the
generation of white light [103, 111, 112]. In Sections 2.1-2.4,
we consider a mathematical model describing the propaga-
tion of high-intensity pulses in a medium with Kerr non-
linearity, the limits of its applicability, and the results
obtained on its basis.

2.1 Basic equation, effects, and parameters of the problem
Under the slowly varying amplitude approximation, the
propagation of laser pulses in a medium with Kerr non-
linearity is described by the generalized nonlinear Schrédin-
ger equation [103, 105, 107, 113]:

04 104 i ky 024 3my®

e A A= -

oz Tnor T MM T Y ar T ange
olAl 04

Here, ¢ is the time, z is the longitudinal coordinate, A(z, z) is
the envelope of electric field strength related to the intensity
by the equation I = cng|A[*/(87), u is the group velocity,

. <a(kn0(w)) )17

ow
ky is the group velocity dispersion,

L 0? (kno(w))
2 = 6602 )

wy = 2me/ Ay is the central frequency, ¢ is the velocity of light
in a vacuum, and y® is the cubic susceptibility tensor related
to the previously introduced nonlinear refractive index n;:
ny [em? kW= (2n/ne)*z® (in CGSE units) [113]. In the
derivation of Eqn (4), it was assumed that the intensity is not
high enough to give rise to plasma production and that the
pulse duration at the input to the nonlinear medium is much
longer than the field cycle.

Equation (4) describes diffraction effects (the term with
the transverse Laplace operator (A,)), dispersive pulse
spreading (the term with the second time derivative), and the
effect of Kerr nonlinearity (the terms with ). Operator A |
is important from the standpoint of small-scale self-focusing
development (see Section 4) and laser beam diffraction. The
group velocity dispersion affects the modification of the pulse
envelope. Its net contribution depends on the initial spectral
phase modulation and on the relation between the signs of the
parameters k; and n; of the medium. For solid transparent
dielectrics, as a rule, k; and n, are positive in the visible and
near-infrared ranges. When the signs are opposite, temporal
self-compression is possible in the propagation through the
medium (see, for instance, Refs [114—118]). In this review, we
will not consider self-compression. Furthermore, Eqn (4)
does not include higher orders of dispersion, which result in
terms with the third, fourth, etc. time derivatives of 4 [119], as
well as the term [103, 119, 120] with the operator which
corrects the slowly varying amplitude approximation and is
responsible for spatio-temporal focusing.

The nonstationarity of cubic nonlinearity is disregarded in
Eqn (4) (the nonlinearity is assumed to be inertialess), since
the response time of the medium is far shorter than the pulse
duration. As applied to high-intensity (of the order of several

TW cm™2) femtosecond laser pulses propagating in transpar-
ent dielectrics, the cubic nonlinearity is due to the manifesta-
tion of the anharmonicity of the electronic response of the
atoms. The characteristic time scale of nonlinearity relaxation
is defined by the electron orbiting period in atoms. For the
first Bohr orbit of hydrogen, the period is equal to 0.11 fs. In
heavier atoms, this time is longer, but it is nevertheless much
shorter than the pulse duration, and so we restrict ourselves to
the inertialess nonlinearity case.

Cubic nonlinearity is therefore represented in Eqn (4) by
the three terms in parentheses. The first one accounts for the
quasistatic response, while the last two describe wave
nonstationarity [113]. One can see from Eqn (4) that the last
term describes nonlinear dispersion— the intensity depen-
dence of the group velocity —i.e., it is possible to introduce
the effective group velocity:

u

1+ 2mI(t)u/c” )

Ueff =
It follows from formula (5) that the higher-intensity part of a
pulse propagates more slowly than the wings in media with
ny > 0, with the consequential self-steepening of the pulse
front resulting in the formation of an envelope shock wave.
This circumstance was first pointed out in Ref. [100] and more
recently in Refs [121, 122]. Furthermore, the wave
nonstationarity may result in the suppression of small-scale
self-focusing (see Section 4.4).

2.2 Compression-after-compressor approach (CafCA)

in a one-dimensional quasistationary model

We consider the in-medium propagation of laser pulses longer
than 10 field cycles, and in this connection we ignore the last
two terms in Eqn (4). The corresponding equation was first
derived in Ref. [102]. It is also assumed that diffraction effects
are weak. Then, Eqn (4) reduces to the equation

da .Da . >
&—156—172+13|a|070, (6)

where Z=1z/L, = (t—z/u)/Tr, Tr is the half-height
duration of a spectrally limited pulse at the input to the
nonlinear medium, a = A(t,z)/Ayp, Aio is the highest
amplitude of the pulse at the input to the nonlinear medium,
B is the B-integral (3), and

ka

D=L—=. 7
= 9

As is clear from Eqn (6), the pulse dynamics are determined
by two effects: dispersion (the second term) and nonlinearity
(the third term). Parameters B and D characterize these two
effects and have a lucid physical meaning: B is the ratio of the
medium length L to the nonlinear length (the path length in
which the nonlinear phase comes up to unity), and D is the
ratio of L to the dispersion length Ly = T?/k,. Note that
Eqn (6) has an analytical solution when dispersion is ignored
(D =0). Moreover, an analytical solution was found for
D =0 in Ref. [107] even with the inclusion of wave
nonstationarity, i.e., when the last two terms of Eqn (4) are
returned to Eqn (6).

2.2.1 Spectrally limited pulse. Let us consider the CafCA
features in the case of a spectrally limited Gaussian pulse at
the input of a nonlinear medium. For this purpose, we will
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Figure 4. (Color online.) Numerically calculated (a) spectral broadening F,, (b) pulse shortening F;, and (c) intensity enhancement F; factors.
Dependences in the lower part of the figure were constructed for D = 0 (red squares), D = 0.02 (blue squares), and D = 0.05 (black squares). Solid lines

represent Eqn (11).

numerically solve Eqn (6) subject to the boundary condition

2
alt,Z = 0) = exp (—21n2 %) . (8)
F
As the pulse propagates through the nonlinear medium, it
becomes chirped and its spectrum broadens. Spectral phase
correction in the output pulse a(¢, Z = 1) permits shortening
its duration and increasing its peak intensity. Experimentally
available, as a rule, is the correction of only the quadratic
spectral phase, which is realized in the reflection from chirped
mirrors. This operation is mathematically expressed as
follows:

a.(t)=F~! [exp <—%>F[a(l,2 = 1)}] . 9)

Here, F and F~! are direct and inverse Fourier transform
operators, Q is the detuning from the central frequency, and
oopt 1s the group velocity dispersion parameter of the chirped
mirrors, which is selected to maximize the peak intensity of
the compressed pulse. Figure 4 shows the dependences of the
factors

AQout
F, = 1
o= (10a)
Tr
F, = , 10b
‘ Tout ( )
1
F = 1[ (10c)

which characterize the spectral broadening, the pulse short-
ening, and the increase in intensity, respectively. Here,
AQiy =4In2/Tr and AQy are the half-height spectral
widths of the input and output pulses, Ti, = Tg and Ty are
their half-height durations, and [, and I, are their peak
intensities. Simulations suggest that factors F, ,; are inde-
pendent of the initial pulse duration T, provided
AQqy < wo/2. When this condition is violated, the data
presented in Fig. 4 cannot be used.

Table 1. Coefficients g and &k in Eqn (11).

F(l) FT E
Correction of | Absolute
only quadratic phase
phase correction
g 0.91 0.59 0.49 0.54
0.88 [233] 0.5[83]

h 1.5 1.26 1.2 0.75
Range of B values 6.3-28.5(0-50 1.6—13.5 0-20
whereby Eqns (11)
yield an error under
7% for D =0
Range of B values 6.3-17.5 [0-12 1.6-13.5 0-13.5
whereby Eqns (11)
yield an error under
7% for D < 0.05

As is seen in Fig. 4, the behavior of F, .; is nicely
described by a linear dependence on the B-integral in a wide
value range of parameters B and D:

F,=1+g,B(1—h,VD), (11a)
F.=1+gB(1-hVD), (11b)
F=1+gB(1-mhVD). (11c)

Coefficients g and £, as well as the usable range of
Eqns (11), are given in Table 1. The values of F are highest
in the absence of dispersion (D = 0), i.e., dispersion lowers
the efficiency of CafCA. Asis clear from Eqns (11), the role
of dispersion may be interpreted as the lowering of the
effective B-integral value by a factor (1 —AD'/?). Notice
that the intensity enhancement factor F; is less affected by
dispersion than the other ones. For instance, for B = 20,
the magnitude of Fi(D = 0.05) is lower than F(D = 0) by
only a factor of 1.2, while the corresponding factor for F,
and F; is equal to 1.7.
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Figure 5. (Color online.) Dependence of chirped mirror dispersion o, which is normalized to T2, on Band D. The curves are plotted for D = 0 (the red

line), D = 0.02 (blue), and D = 0.05 (black).

Figure 5 shows the B-dependence of parameter op
normalized to T} for different D values. As is seen from
Fig. 5b, correcting the quadratic spectral phase component
for higher values of the B-integral necessitates a lower (in
modulus) chirped mirror dispersion 0. A stronger medium
dispersion D requires a stronger dispersion of the chirped
mirrors. When the chirped mirror dispersion o is not exactly
equal to aope, Fi is smaller, though insignificantly so. For
instance, for B = 3, the value of F;j is lowered by less than 10%
when o changes from —230 fs? to —100 fs? [83]. Furthermore,
one can see from Fig. 5b that o, changes only slightly under
B-integral fluctuations. Therefore, errors in the fabrication of
the mirrors and the instability of laser parameters have a
moderate effect on the CafCA efficiency.

If we do not restrict ourselves to the correction of only the
quadratic spectral phase component and realize an absolute
correction, i.e., make constant the phase of the output pulse,
F; will be greater. However, the difference is slight—about
10% (compare the coefficients in the last two columns in
Table 1). Numerical simulations for B = 48 has shown [87]
that even for this extremely high B value the difference in F;
amounts to only 20%.

2.2.2 Chirped pulse. Let the laser pulse possess a linear
frequency modulation (which corresponds to a parabolic
spectral phase) at the input boundary of a nonlinear element:

. Q? 1
-1 : 2
a(t,Z=0)=F [const exp <—21n2m51 —1 3 o )]

(12)

The duration Tj, of this pulse is determined by the chirp
magnitude o;, and the duration Tk of the spectrally limited
pulse of spectral width AQ;,:

4o, In 2 2
Try/1 — .
F + ( Tﬁ

Using this notation, the negative (positive) sign of parameter
oin corresponds to the negative (positive) linear frequency
modulation. Long-wavelength spectral components propa-
gate at the leading pulse edge for a positive frequency
modulation and the short-wavelength components for a
negative one. For a fixed pulse energy, the introduction of

T =
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Figure 6. (Color online.) Dependences of Fy, F;, F;, B, and Ti,/TF on
parameter o,.

phase modulation (irrespective of its sign) entails a lowering
of the peak intensity and the B-integral by a factor T,/ TF.
The sign of o, affects the behavior of F,,, F;, and F;. We
consider this issue in greater detail. For a more correct
comparison, we assume that the introduction of frequency
modulation into the initial pulse does not change the
magnitude of the B-integral, e.g., due to a change in pulse
energy. Figure 6 shows the dependences of parameters F,, F;,
F, and Ti,/Tr on parameter o, calculated for D = 0.02
(ko > 0,n; > 0) and B =5. Equation (6) was solved with
boundary condition (12). As is clear from Fig. 6, the positive
chirp in the input pulse has only a slight effect on the spectral
broadening coefficient F,,, while the negative one, on the
contrary, strongly decreases it. The asymmetry in the
behavior of dependences F; (o) and Fi(e,) is much weaker.
Figure 7 shows the two-dimensional distribution of F; as a
function of the B-integral and parameter o, (7] F)72 for
D = 0.02. When the initial pulse is chirped, an increase in
B-integral entails, as before, an increase in the peak intensity
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Figure 7. (Color online.) Coefficient F; as a function of the B-integral and
parameter o,/ T,% for D = 0.02.

after compression. The greatest increase is observed for pulses
with a small (&, = 0.14T2) positive frequency modulation.
However, in this case, the maximum values of factors F,,, F;,
and Fj are only slightly higher than those for o, = 0 (see Figs 6
and 7). That is why for the experimental implementation of
CafCA it is expedient to employ spectrally limited pulses, or
nearly such. At the same time, even in the presence of a
significant chirp |, | = 0.472, whereby the pulse duration is
1.5 times longer than the Fourier limit, CafCA affords more
than a six-fold increase in intensity for B = 20 (see Fig. 7).

2.2.3 Effect of third- and fourth-order spectral phase. As shown
in Section 2.2.2, there is good reason to nullify the quadratic
spectral phase to make the CafCA operation efficient. This is
fairly simple to do by stretcher or compressor alignment. In
this section, we assume that o;, = 0 and consider the effect of
the third- and fourth-order frequency terms in the spectral
phase of the input pulse exerted on F,, F;, and F;. For a
boundary condition for Eqn (6), we take

a(t,Z =0)
Q? i 1
AQZ: 6

m

=F! {const exp (—2ln2 ﬁQ3—1—yQ >]

(13)

First of all, we note that high values of § or y result in a
qualitatively different spectral broadening: narrow peaks
appear in the spectrum, while the broadening becomes
smaller, which was shown theoretically and borne out
experimentally in Ref. [83]. These spectral features are clearly
demonstrated in Fig. 8. The spectra shown in Fig. 8 depend
only slightly on the magnitude of medium dispersion for
0 < D < 0.05. The picture varies insignificantly for this D
range.

Introducing aberrations in the spectral phase lowers the
peak intensity. We consider the ranges of /T3 and y/T¢
parameter variation, such that the introduction of only one of
the terms under consideration results in a 20% lowering of the
peak intensity. To make the comparison more correct (such as
was done in Section 2.2.2), we assume that the introduction
of phase modulation does not change the magnitude of the
B-integral, e.g., due to an increase in pulse energy.

Figure 9 shows the two-dimensional diagrams of
spectral broadening F,, pulse shortening F;, and peak
intensity enhancement F; factors for D =0.02 and B=15
(ka > 0,ny > 0). These factors are highest in the absence of
the cubic term, i.e., for f =0, these distributions being
symmetrical with respect to the sign of . At the same time,
the greatest spectral broadening, duration shortening, and
peak intensity enhancement occur for y > 0. The fourth-order
frequency aberrations of the spectral phase affect F,,, F;, and
F; in a similar way as the effect of the parabolic spectral phase
(see Section 2.2.2). It is significant that the magnitude of
optimal chirped mirror dispersion o varies only slightly,
even though it depends on ff and y: the total variation range is
less than 18% from the average value oqp = —0.08 Tﬁ.

We note that spectral broadening F,, varies significantly in
the range of f# and y values under consideration (Fig. 9a). In
this case, the duration and peak intensity of the compressed
pulse differ by less than 22% from their optimal values
(Figs 9b,¢). Factors F,, F;, and F; show a close-to-linear
dependence (11) on the B-integral (see also Ref. [80]).
Therefore, pulses with the third- and fourth-order frequency
terms in the spectral phase may be compressed using CafCA
almost as efficiently as spectrally limited pulses.

2.3 Special features for pulses

several hundred femtoseconds in duration

Of special interest is the use of CafCA at the output of
petawatt neodymium glass lasers. The most striking exam-
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Figure 8. (Color online.) Pulse spectra after passage through a nonlinear medium with B =5, D = 0.02 calculated depending on the phase aberrations

(a) B/ T3 and (b) y/T# at the input to the nonlinear medium.
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ples are the Texas Petawatt Laser [123], the French complex
PETawatt Aquitaine Laser system (PETAL) [124, 125], and
the German Petawatt High-Energy Laser for heavy Ion
eXperiment (PHELIX) [126]. The output pulses of these
systems are almost spectrally limited and have a rather long
duration —several hundred femtoseconds—and a high
energy level —several hundred or thousand joules. In this
case, the peak intensity at the output of the compressor lies in
the range of 1-10 TW cm 2 [21], as with the output beams of
petawatt lasers using parametric amplifiers [127-129] and/or
amplification in a Ti:sapphire. The mathematical model of
CafCA suggests that the efficiency of additional time
compression depends little on the duration and energy of the
pulses and that, generally, the previously drawn conclusions
still stand. Some differences do, nevertheless, exist.

First of all, an increase in the initial pulse duration by an
order of magnitude also increases by an order of magnitude
the maximum possible factor F; of compression in time, since
the shortest duration of a compressed pulse is limited, as
before, by the optical field cycle. From this standpoint, the
use of CafCA for long pulses is more attractive than for short
ones. As shown in Section 5.3, there is good reason to employ
two-stage (or even multistage) compression to attain very
high compression factors F;. Another advantage of long
pulses is the extremely weak influence of the linear dispersion
of the medium, since parameter D is inversely proportional to
the square of Tk (7), and the smallness of D is among the
necessary conditions for efficient CafCA application.

At the same time, there are unfavorable aspects as well.
Phase correctors with a high group velocity dispersion o, are
required, since parameter o is also proportional to the
square of Tf (see Fig. 5). With the use of dispersive mirrors,
this fact may turn out to be critical, since attaining high oop
values necessitates using many dielectric layers, which
complicates the fabrication of mirrors and lowers their
surface radiation resistance. Furthermore, in the develop-
ment of self-focusing (see Section 4), for a long pulse the
breakdown probability becomes higher due to a free-electron
avalanche, since the time for its formation becomes longer.

To date, CafCA has been tested with long pulses at only
the millijoule level [71]. Numerical simulations [79] have
borne out the promise of using CafCA for PETAL (see
Section 6.2).

2.4 Special features for pulses shorter than 15 fs

The additional compression of initially very short pulses (15 fs
in duration and shorter) is of major interest from the
viewpoint of producing high-power pulses of extremely
short duration —about one optical field cycle. There is no
fundamental difference from the compression of longer
pulses, but there are some special features related to the

propagation of ultrashort pulses in a nonlinear medium. Let
us discuss them.

First, the terms responsible for the wave nonstationarity
should be taken into account in Eqn (4). Recall that these
terms are related to the time dependence of nonlinear
polarization. Their inclusion entails a distortion of the pulse
shape due to the intensity dependence of the group velocity
and an asymmetric spectral broadening [20, 113].

Second, the role of dispersion rises in importance (D is
proportional to k»/T# (7)), and therefore media with a low
group velocity dispersion k, are required. To decrease the
nonlinear element thickness L for a given value of the
B-integral requires media with high n, and/or high intensities
I. The increase in intensity is limited by an optical breakdown
and plasma production. Therefore, the ratio ny/k, is the
figure of merit of a nonlinear medium from the standpoint
of applying CafCA to ultrashort pulses. The higher-order
dispersion terms omitted in Eqn (4) may turn out to be
significant for very short pulses [119].

Third, for short pulses, it is necessary to distinguish the
cases of oblique and oblique incidence on a nonlinear
element. In the case of normal incidence, in a medium with
frequency dispersion due to a difference between the group
and phase velocities, the amplitude and phase fronts do not
coincide and, as a consequence, a transverse group delay
appears, and the refracted pulse becomes spatially nonuni-
form. For very short pulses, the time delay may be compar-
able to their duration [113]. To state it in different terms, the
refracted pulse acquires a tilt of the amplitude front and its
related angular chirp, which should be included in the initial
condition at the media interface. To elucidate how this affects
the compression results described above is the subject of
future investigations.

Fourth, the requirements imposed on the parameters of
dispersive mirrors change significantly. On the one hand,
broader-band mirrors are required, which complicates their
fabrication, and on the other hand, their dispersion oop,
which is proportional to the square of T, becomes signifi-
cantly lower, which, conversely, facilitates their fabrication.

A new approach is promising for short pulses, which has
recently gained wide acceptance. It abandons the approxima-
tion of slowly varying amplitudes, i.e., abandons Eqn (4). In
the framework of this approach, the field dynamics are
described in the so-called reflectionless approximation, with-
out a scale-based division into a slow envelope and a high-
frequency carrier. (For more details, the reader is referred to
Refs [109, 110, 120, 130-133] and references therein.)

There are no experimental data on applying CafCA to
pulses shorter than 30 fs, and this is a subject for future
research. An example of numerical simulation [79] is given in
Section 6.2.
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3. Compression nonuniformity
over beam cross section

As stated in the Introduction, in free laser beam propagation
through a nonlinear element, there inevitably arise problems
related to the spatial nonuniformity of the beam. We restrict
ourselves to a consideration of an axially symmetric case:
I = I(r). Typical for lasers of moderate power (1-10 TW) is
the Gaussian intensity distribution, while the beams of
ultrahigh-power lasers (0.1-10 PW) are closer to flat-top
ones. It is therefore evident that the indicated parasitic effects
become less significant with an increase in power. For a
qualitative description, the initial laser pulse is conveniently
defined in the form of a super-Gaussian function of radius w
and order m:

I.Zm
a(t=0,z=0,r) =exp (—2—2> ,
wem

r2m
Iin(r) = ICXp (_ wz,n) .

Parameter m describes the degree of beam nonuniformity:
for m = 1, formula (14) describes a Gaussian beam and for
m = oo a flat-top one. The spatial beam nonuniformity has
the effect that, according to Eqns (3) and (14), the nonlinear
phase incursion—the B-integral—is also a function of r.
This leads to three parasitic effects: self-focusing of the beam
as a whole (i.e., large-scale self-focusing), nonlinear phase
aberrations, and, most importantly, nonlinear spectral
broadening and the consequential nonuniform pulse com-
pression. We note that in a single-mode fiber the nonlinear
phase is added to the entire mode, i.e., to the entire beam, and
all these effects are absent. We consider these three parasitic
effects and the methods for their suppression.

(14)

3.1 Large-scale self-focusing

Large-scale self-focusing (LSSF) — the focusing of a beam as
a whole —occurs when the beam power exceeds the critical
self-focusing power P... The physical meaning of P is very
simple: this is the power at which diffraction beam spreading
is compensated by its self-focusing. For a Gaussian beam,
P, = 0.174/12/(n2n0) [134]. However, the condition P > P,
(and even P > P..) by no means implies that the LSSF and
beam collapse will occur: for the collapse of the beam as a
whole to occur, the path of beam propagation in the nonlinear
medium must be long. Its length L ss¢ was numerically found
in Ref. [134]:

0.37
V (VPP —0825)" — 0.03

Typical P, values in a solid are equal to several MW, i.e.,
are many orders of magnitude lower than the power of an
ultrahigh-power laser, and Ly ssp for P > P, is proportional
to (Pcr/P)l/z, which was first pointed out in Ref. [135]. This
gives rise to the wrong belief that LSSF is an extremely
dangerous effect. In reality, it is quite to the contrary: LSSF
is not a problem for ultrahigh-power laser beams. Consider-
ing that P > P, and P = w21, formula (15) is easily brought
to the form

Lissr
kew?

(15)

Lissk

const( i )3
L VL)’

(16)

where const ~ 1.4(Bny) /% is a factor of the order of unity.
Hence, it is clear that Ljssr > L for beams 1 mm in diameter
and over, i.e., that LSSF is ruled out even for a Gaussian
beam. In other words, in the SPM, the diameter and shape of
the beam of an ultrahigh-power laser remain invariable in the
propagation in a nonlinear element. For a more uniform
super-Gaussian beam, the effect is even weaker and may all
the more be ignored.

3.2 Nonuniform pulse shortening

The most important problem of CafCA for spatially nonuni-
form beams is the fact that the spectral broadening due to
SPM and, as a consequence, the duration and intensity of the
compressed pulse are different at different points of the cross
section. To state it in other words, at the beam periphery, the
spectral broadening and the increase in intensity are signifi-
cantly smaller than on the beam axis, where the B-integral
attains its maximal value B(r = 0). As a result, the increase in
pulse power is smaller than for a flat-top beam, which is
described by Eqns (11). In many papers [35, 65-68, 74], this
problem is indicated as the main limitation for the SPM in free
beam propagation in a nonlinear medium.

In Section 3.2.1, we consider the issue of how the CafCA
efficiency depends on the beam shape, namely on parameter
m. Section 3.2.3 is concerned with the method of solving this
problem, which involves the use of a negative lens as a
nonlinear medium.

3.2.1 Dependence of compression on the beam shape. Using
expression (11c) to increase intensity Fj, it is possible to obtain
the power enhancement factor F, = Poy/Pin by integrating
F; over the cross section of a super-Gaussian beam (14):

X Fiexp (=r2 /w2 dr

F, ==
P fox exp (—r2m /w2m)rdr

=1+gB(1—hvVD)2!/m
(17)

Comparing expressions (17) and (11c) shows that the beam
nonuniformity is equivalent to the lowering of the B-integral
by 2!/ times. For a flat-top beam (m = o), F, = F;, while
for a Gaussian beam (m = 1), F, = 0.5F;, i.e., for B > 1, the
increase in Gaussian beam power may nevertheless be
significant. For a super-Gaussian beam with a high m, the
increase in power for CafCA is practically the same as the
increase in intensity. For instance, for m = 4, F, = 0.92F. A
similar result is obtained by averaging expressions (11b,c)
over the cross section: F,, and F; will decrease by a factor
2 l/m.

We note that the above reasoning for F}, and F; disregards
the fact that Eqns (11b, ¢) were obtained with the inclusion of
optimal mirror dispersion (« = o,p) for each value of the
B-integral. In reality, the value of & cannot change from point
to point of the cross section. Strictly speaking, integration
should be performed not of Eqns (11) but of the correspond-
ing coefficients obtained for one value of «. It is evident that
factors Fj, and F; will be lower in this case. At the same time,
the dependence of o, on the B-integral is smooth, especially
so in the most interesting range B > 1 (see Fig. 5), and so this
error is insignificant.

3.2.2 Uniform compression with a negative lens. As is clear
from expression (17), for a Gaussian beam, F}, = Fj/2,i.e., the
resultant beam power is one half that for a flat-top beam. This
‘half” was first obtained numerically in Ref. [35]. To make up
for this ‘half’, it was proposed in [89, 136] to employ for SPM
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Figure 10. Schematic representation of quasi-uniform B-integral accumu-
lation by Gaussian beams.

a nonlinear element in the form of a negative lens instead
of plane-parallel plate. Figure 10 serves to illustrate this
idea. The lens parameters are selected to minimize for
every ray the deviation of the product 7L of intensity and
nonlinear-medium length from the constant value. This
minimizes the variations in the B-integral (3). An off-axis
parabolic mirror collimates the laser beam. As a result, the
beam retains a plane wave front and a Gaussian intensity
profile and accumulates the B-integral, which is quasi-
uniform over the beam cross section. The proposed scheme
received the name ‘nonlinear telescope’. The laser radia-
tion is next delivered to dispersive mirrors. (For more
details, see Ref. [89].)

The scheme described above was first tested in experi-
ments on the Advanced Laser Light Source (ALLS) in
Canada [77]. The pulses had a quasi-Gaussian spatial
intensity distribution, a central wavelength of 800 nm, an
intensity full width at half maximum (FWHM) duration of
40-45 fs, a beam diameter of 7.4 mm at a level e 2, and an
energy of up to 28 mJ. A defocusing lens made of TF12 glass
of on-axis thickness 0.2 mm was employed for spectrum
broadening. The respective focal lengths of the lens and the
parabolic mirror were equal to —20.7 mm and 50 mm. The
spectral broadening was practically the same for different
domains of the transverse quasi-Gaussian intensity distribu-
tion. It was possible to demonstrate duration shortening from

45 fs to 20 fs for the central beam region and to 29 fs at 7 mm
from the center.

In Ref. [78], the energy and diameter of the laser beam
were significantly increased: 170 mJ and 38 mm at a level of
1/€2, respectively. The peak intensity of 33-fs-long pulses was
equal to 836 GW cm~2. For a nonlinear element, use was
made of a plano-concave lens of TF12 glass with an on-axis
thickness of 0.3 mm. After passing through a nonlinear
telescope, the laser beam measured 52 mm at a level 1/€2.
To suppress small-scale self-focusing, use was made of beam
self-filtering in the free-space propagation (see Section 4.3).
The pulse shapes and durations at different points of the beam
are presented in Fig. 11. As is evident from Fig. 11a, there is
an insignificant postpulse for all measured transverse posi-
tions, which is due to the residual uncompensated higher-
order phase. One can see from Fig. 11b that the duration of a
compressed pulse ranges between 16 and 18 fs in a domain
broader than 17.5 mm. The pulse duration in Fig. 11b is
asymmetric about the beam center, because the distribution
used in the experiments was different from the Gaussian one.
Therefore, a laterally quasi-uniform two-fold duration short-
ening was demonstrated with the use of a nonlinear telescope
and a system of chirped mirrors.

3.3 Nonlinear wavefront distortions

In the propagation through a nonlinear element, a laser beam
acquires nonlinear phase distortions (aberrations) defined by
the phase ¥, which is proportional to the intensity. In view of
expressions (3) and (14), we obtain

P(r) = Bexp <f "V22> . (18)

Here, Bis the on-axis B-integral value. Near the beam axis, ¥
is proportional to r2, and the aberrations are therefore
conveniently divided into two parts: parabolic and nonpara-
bolic. The former are characterized by the focal length fof a
‘nonlinear lens’ (for ny > 0, the lens is positive, i.e., > 0),
and they can be easily compensated by an ordinary negative
lens of focal length —f. In this case, in the beam there persists
the phase

kr?

I,Zm
Y eomp(r) = Bexp (— W) + 7 (19)

In practice, the negative lens may be omitted: it would
suffice to take into account that the ‘nonlinear lens’ shortens
the distance of the beam waist from the focusing parabola. In
this case, the focal spot diameter and the intensity of focused
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Figure 11. Experimental data of Ref. [78]: (a) pulse shapes at different points of the cross section; (b) dependence of pulse duration on the transverse

coordinate (circles); the dotted line stands for the initial pulse duration.
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radiation remain invariable. Nonparabolic aberrations, by
contrast, are extremely hard to compensate, and they entail a
decrease in the at-focus intensity.

Nonlinear beam aberrations were qualitatively analyzed
in Ref. [137]. To quantify the strength of aberrations, use is
most often made of the M? parameter [138] and the Strehl
number [139]. Parameter M2 shows by how many times the
beam divergence exceeds that of a Gaussian beam with a
plane front. Parameter M? is convenient to calculate using
formulas from Ref. [140] obtained by the moments method
[141]. We will use the quantity u:

- (5

(20)
which, in view of formula (1), is approximately equal to the
lowering of focal intensity Ifoys in comparison with the
nonaberrated beam intensity. The strength of aberrations is
more informative to characterize by the Strehl number S,
which, by definition, is equal to the lowering of the focal
intensity Irocys On the beam axis:

Il'ocus(” =0,¥= 'Pcomp)
Ifocus(r =0,¥= 0) ’

S= (21)

i.e., the focal intensity enhancement factor Fios is defined as

Frocus = SF, . (22)
Parameter M? and, hence, p remain invariable when a
parabolic phase is introduced into the beam, i.e., they do not
depend on whether the parabolic aberrations are compen-
sated or not, while the Strehl number S, by contrast, does
depend on it. When calculating the Strehl number by formula
(21), we assume that the parabolic part of the aberrations is
compensated. For small aberrations (¥ comp < 1), Perevezent-
sev et al. [142] obtained formulas for calculating f, u, and S:

kw? 2I(2/m)I(1/m) 3-t/m_g=1/m
f r3/mr(1/m)—I2/m)[(2/m) 21/m (3)
p=1- B (g _guml (;/2';)(1; ;in/)m)> ’ (24)

S=1— 32{571/m _ 971//71

_ [F(Q/m)(z—l/m . 4_1/,,1)]2 }
r3/m)I(1/m) — T (2/m)(2/m)[’

(25)

where I'(x) is the gamma function. Therefore, f, u, and S
depend on two parameters: the B-integral, which charac-
terizes the measure of nonlinearity, and parameter m, which
characterizes the beam nonuniformity. The right-hand side of
Eqn (23) is close to unity by the order of magnitude (for a
Gaussian beam, it is equal to 0.22B). So, the focal length of
the ‘nonlinear lens’ is of the order of the Rayleigh length
kw2/2, i.e., for beams of diameter 2w > 20 mm we obtain
f> 300 m. However, this does not mean that the nonlinear
aberrations may be disregarded.

One can see from expression (23) that f also tends to
infinity for m = oo: a flat-top beam also acquires a planar
nonlinear phase, i.e., it is free from any aberrations. At the
same time, parameter u (24) tends to 1 — 482 /9 rather than to
unity, i.e., ‘indicates’ that there are aberrations and the

Strehl number S

B-integral

Figure 12. (Color online.) Dependence of the Strehl number S on the
B-integral for different values of m.

nonlinear phase increases parameter M 2. The reason for this
nonphysical conclusion is that parameter M? for super-
Gaussian beams with a high m is significantly different from
unity even for a plane wavefront (¥ =0). Furthermore,
parameter M2 tends to infinity for a flat-top beam and its
use is basically incorrect [140, 143]. Strehl number S, like
parameter M2, signifies that the strongest aberrations appear
in a Gaussian beam (m = 1). Unlike g, Strehl number S, as is
evident from expression (25), tends to unity when m = co. But
the convergence is very slow, and even for m =20 it is
appreciably different from unity, especially so for large B
(Fig. 12). At the same time, the dependence S(m) is
nonmonotonic: for B <5, there is an optimal value
Mmept = 3, which minimizes aberrations. Moreover, even for
m = 2, the S values are only slightly smaller than S(m = 3).
Proceeding from expression (24), it is readily shown that u
also peaks for m = 2—3. This nonmonotonic dependence of
aberrations on m is explained as follows. With increasing m,
on the one hand, the phase distortions displace towards the
beam periphery and, on the other hand, the fraction of
parabolic distortions becomes smaller and the fraction of
nonparabolic ones becomes significantly larger, because the
total nonlinear phase difference between the axis and the
beam boundary is equal to B, irrespective of the m value.
Therefore, there is no need to aim for large m values. It is quite
sufficient to have m = 2—3, and for B < 6 the Strehl number
S > 0.8, i.e., aberrations will result in the lowering of focal
intensity by no more than 20%.

For a Gaussian beam and a super-Gaussian one with
m = 5—38, the lowering of focal intensity is quite significant,
especially so for large B. In cases where this is unacceptable, it
is necessary to employ an adaptive mirror, which may be
placed either in front of or behind CafCA. The amplitude of
phase distortions is equal to B, i.e., even for B = 12.6, the
distortions amount to only two wavelengths, which is quite
amenable to amendment by modern adaptive mirrors [144,
145]. We also note that adaptive mirrors are employed in
many modern lasers, and in this case it is only required to
modify their control software.
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4. Small-scale self-focusing
of ultrahigh-power laser beams

As shown in Section 3, the larger the temporal pulse
compression factor, the stronger the manifestation of the
parasitic effects caused by the nonuniformity of a laser
beam. This connection may be severed without ‘throwing
the baby out with the bathwater’ using the methods of
linear optics. Small-scale self-focusing (SSSF) is responsi-
ble for the growth of the amplitude of harmonic perturba-
tions of a plane wave in a medium with a cubic
nonlinearity. The simplest model of instability growth
was first presented by Bespalov and Talanov [90]. Due to
SSSF manifestation, the beam splits into a multitude of
filaments, which significantly impair its quality and
eventually result in the breakdown of optical elements.
Unlike nonlinear phase aberrations (see Section 3.3), the
acquired distortions are impossible to decrease by external
devices like adaptive mirrors, and therefore the only
possibility of fighting them is to bar its development.

The instability increment is determined by the B-integral
(3) and, as a rule, a beam splits into filaments for B > 2—3.
One and the same parameter —the B-integral —is simulta-
neously useful and parasitic. On the face of it [72, 74, 88, 93],
for this reason the implementation of CafCA is possible only
in a narrow range, B < 3, which permits figuring on only a 2—
2.5-fold increase in power, even theoretically (see Section 2).
In Section 4.1, we summarize the results of the linear SSSF
theory, which was developed in the 1960s—1980s as applied to
neodymium glass nanosecond lasers. In comparison with
SSSF in these lasers, SSSF in ultrahigh-power femtosecond
lasers shows significant differences (see Section 4.2), making it
possible to apply a new method to suppress it — self-filtering
of the beam (see Section 4.3). Other SSSF suppression
techniques and the prospects of using them for CafCA are
discussed in Sections 4.4 and 4.5.

We emphasize that all these methods permit suppressing
SSSF in any pass-through optical elements placed in high-
power femtosecond beams, for instance, in frequency dou-
blers, 1/4 and /2 plates, beam splitters, and screens used for
the protection of optical devices from the plasma ejected from
the target.

4.1 Theory of small-scale self-focusing

SSSF is the spatial instability of a plane wave propagating in a
medium with a cubic nonlinearity—a growth of the ampli-
tude of spatial harmonic perturbations. The SSSF theory
foundations were laid by Bespalov and Talanov in Ref. [90],
and the instability is termed modulation or Bespalov—
Talanov instability. The theory was further developed in a
number of papers [146—157]. An alternative interpretation of
the instability reliant on the concept of stimulated four-wave
interaction was developed in Refs [158, 159].

The first experimental confirmation of the theory [90] was
obtained by Yu Chilingaryan [160], who investigated SSSF in
liquids. The measurements were in quantitative agreement
with predictions [90] and confirmed the qualitative difference
between SSSF and large-scale self-focusing. More recently
[161-164], experimental data were obtained which also bore
out the theory. Theoretical and experimental SSSF research is
still underway [93, 165-172].

Below, we briefly describe the results of the SSSF theory,
which are critically important for understanding the SSSF in
ultrahigh-power femtosecond lasers. The instability of a

plane wave is described in the framework of the dispersion-
free stationary approximation, under which Eqn (4) reduces
to

Oa 1L

. 2 _
37 2kALa+1B|a| a=0.

(26)

Added to the solution of Eqn (26) in the form of a plane wave
a(Z) = exp (—1BZ) is perturbation (noise) in the form
ai(Z) exp (ip;,(Z)) cos (k1 x), which is a pair of plane waves
with a low amplitude (a¢; < 1) and an arbitrary transverse
wavevector k, (kg =2mnyg/Ay) propagating at an angle
0 = t+k, /ko to the z-axis. From this point on, the lowercase
letter 0 denotes angles inside the nonlinear medium, and the
capital letter ® the angles outside of it. An arbitrary
perturbation may be represented in the form of a super-
position of such waves. As shown in Ref. [90], the perturba-
tions may be unstable for

0 < Kk < ke = 2VB, (27)
where « is the dimensionless transverse wavenumber,
L
=kiy/—. 28
K 1 ko ( )
The instability increment attains its maximum for
KCY
Kmax = —= = V2B. 29
w =75 % (29)

We note that kn,x is defined only by the B-integral. The
perturbations with k = Kk, are the most dangerous from the
standpoint of SSSF development. Accordingly, the most
dangerous angle 6, is defined by the formula

0 2ny 1
gmax = % = I/l—j (30)
and is independent of the length of the nonlinear medium. In
Refs [154, 155], the complex perturbation amplitude is
represented in the form of a real vector

bcos ¢,

= 1 ,
sin @y,

and an expression is derived for the transmission matrix U,

which permits finding the output perturbation amplitude
gout = Ugip:

(1)

2

K
cosh (Bx) - sinh (Bx)
U= 2Bx 2 (32)
- Fsinh (Bx) cosh (Bx)
Here,
k2 Kk?
o4t a0, (33)

where ¢ = (k/ke)?. When condition (27) is violated, x
becomes an imaginary quantity, but transmission matrix
(32) remains real, and it may be used for arbitrary k. From
matrices (31) and (32), it is easy to obtain the noise power gain
coefficient K = |£0ut/£in|2 and the noise phase ¢, at the
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Table 2. Noise gain.

Input noise phase ¢, K K(Kk = Kmax) K(k = ko) = K(k = 0)
Arbitrary (34) exp (2B) — [1 + sin (2¢y,)]sinh (2B) | 1+ 4B%cos® ¢y, — 2Bsin (2¢;,)
Pin = 0 (amplitude I’lOiSe) COShZ (Bx) + 4B;<:4 sinh2 (BX) cosh (ZB) I+ 4B°
- 4

¢in = 1/2 (phase noise) cosh? (Bx) + 41:7%3 sinh? (Bx) cosh (2B) 1
;/;in = Pmax (38) exp (ZB) (B + v B2 +1 )2

max
Pin = Pumin (38) exp (—2B) (B—vVBT¥1)’
Kinin
Averaging over ¢;, 1+ % sinh? (Bx) cosh (2B) 1+ 2B?
KZ]V X

output of the medium: with
2 2y 2 2 2 2 1
K = (uj, + us) sin” @y, + (ui; + uj)) cos” ¢y, Kooy = Kay + /K2 — 1, Kuin = Koy — /K2, — 1 ==
max
+ (uniunn + upiun) sin (2¢y,) (34) (38)
Uy + U tan @; 2 inh?

Qo = arctan Y1 7 U2 AN Pin (35) Kay(B, k) =1+ 22 sinh”(Bx), (39)

ur] + upp tan Pin

Therefore, the noise gain coefficient K and the output
noise phase ¢, are defined by three quantities: the
B-integral, transverse noise wavenumber k, and noise phase
@;, at the input of the medium. Note that ¢,, is completely
determined by the noise, while the B-integral, on the contrary,
is independent of the noise and is defined by the nonlinear
medium (n;) and the plane wave intensity /. The dimension-
less noise wavenumber x (28) is defined by the noise (k) as
well as by the nonlinear medium length L, which depends on
the product In, for a given B-integral. This important
circumstance permits controlling SSSF for a given value of
B (see Section 4.3).

An analysis of expression (34) suggests that the noise gain
coefficient K essentially depends on ¢;, and for certain values
of ¢;, may be smaller than unity, even in the instability
domain (27). The noise phase is usually a random quantity
evenly distributed in the interval from 0 to 2z, but prior to
averaging expression (34) over ¢,,, let us make two important
remarks.

First, there are two singled-out values of ¢;,: ¢;, =0,
which corresponds to the amplitude noise, and ¢;, = /2,
which corresponds to the phase noise. In the propagation in a
vacuum to the nonlinear element, the amplitude noise rapidly
transforms to the phase one and vice versa, with the result that
@;, may be treated as a random quantity. Sometimes the
surface of the nonlinear element itself is an important noise
source. In this case, the deviation of the surface from a
perfectly plane surface gives rise to phase noise, while the
existence of dust particles, scratches, etc. gives rise to the
amplitude noise.

Second, for every x there exists a value @, = @
(@i, = ®min)» Whereby the gain coefficient assumes its max-
imal (minimal) value Kmax (Kmin):

- T ! arctan K> 2B
Pmax = 7477 2Bx
where N is an integer,

tan (Bx)) +nN, (36)

T

Pmin = Pmax — E ) (37)

where K,y is the gain coefficient (34) averaged over the evenly
distributed random phase ¢;,. We note that for B> 1 the
average noise gain coefficient K, is equal to precisely half the
maximal one. Considering that x(x =0) = x(k = Kk¢r) =0
and x(x = Kkmax) = 1, it is easy to obtain simple expressions
for the gain for noise propagating at small angles (6 < 0.,)
and at the most dangerous angles (0 = Onax). As one can see
from Table 2, for 0 < 0, the phase noise is not amplified at
all, and the amplitude one, on the contrary, undergoes high
amplification.

In some cases, it is possible to control the noise phase,
which permits suppressing SSSF. However, in most cases, ¢;,
is a random quantity, and in the subsequent analysis we will
use the averaged gain coefficient K, (39). Since K,,(B, k)
significantly depends on wavenumber x (Fig. 13a), through-
out the instability band (27) the noise gain G(B) depends of
the spectral noise power density S,(z = 0, x) at the input of
the nonlinear element:

G(B) = Py(z=1L) _ f()oc SHCECZ = 0,x)Kay(B, k)i dic

Py(z=0) o Su(z=0,K)rdx

, (40)

where P, is the noise power. In practice, it is convenient to
estimate P, using the formulas obtained in Ref. [173], which
relate P, to the deviation of intensity from the average value

Ly
Pn : ]eak Pn :
—1 PeaX — (1 4+ 5¢/=2 41
P) T +5% ). (41

where rms is the root-mean-square deviation normalized to
Loy, Incak 1s the peak intensity, and P is the beam power.
SSSF was traditionally studied in nanosecond laser
beams, whose typical intensity amounted to several
GW cm~2. Putting for an estimate n, = 3 x 1071% cm? W~!
and I = 2.5 GW cm~2, from formula (30) we obtain the most
dangerous angle 0,,x =~ 1 mrad and the corresponding spatial
scale Amax = 4/0max &= 1 mm. Since the main noise sources
(dust particles, scratches, roughness) are significantly smaller

rms = (1+
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Figure 13. (Color online.) (a) Angular spectra S, (43) of the noise at the input of the nonlinear element for » = 5 and of the noise gain K,y (39) for B =4
and 0. /60p = 0.5, 1, 2, 3, and 4. (b) Dependence of integral noise gain G (44) on 6., /0y for B = 3 (thick curves) and B = 5 (thin curves) for b = 2.5 (dashed

curves), b = 5 (dotted curves), and » = 100 (solid curves).

in size, it was commonly assumed in [168, 173, 174] that
the noise has a uniform spectrum for 0 < 0y throughout
the instability band 0< 0 <6, = V20 max. Assuming
S, = const for 0 < 0y and S, = 0 for 0 > ), from expres-
sion (40) we obtain

2 (0p/0cr)?
o(n2) - (%)
ch 90 0

Attempts of analytical integration in expression (42) using
Eqn (39) do not meet with success. However, for 0y = O, it
was possible to obtain an approximate expression
G(B) = cosh (1.83B) [174]. For ultrahigh-power femtose-
cond lasers, the assumption of a uniform noise spectrum is
less founded, which is thoroughly discussed in Section 4.2.

Kay(B, &) dE . (42)

4.2 Special feature of small-scale self-focusing

in ultrahigh-power lasers: a large critical angle

A fundamentally important distinction between SSSF in
ultrahigh-power femtosecond lasers and nanosecond lasers
is significant broadening of the instability range due to an
increase in angle ... This is because the breakdown threshold
of optical elements in the femtosecond range is much higher,
and the laser radiation intensity amounts to several TW cm >
rather than several GW cm~2. The most dangerous angle Oy
is proportional to the square root of the intensity and is
therefore 30 times larger. Putting for an estimate
m=3x10"1 ¢cm? W= and I=25 TW cm~2, from
formula (30) we obtain 0.« =~ 30 mrad and the correspond-
ing spatial scale Amax = 4/0max ~ 30 pm.

For these large angles, the assumption that the noise
spectrum is uniform throughout the instability band,
0 <0< 0 = V20max, is nonphysical. Evidently the spectral
noise power density decreases for large angles. The spectral
shape and the law of decrease are fundamentally different
from those for the amplitude and phase noises.

The cause of amplitude noise lies with optical defects,
which are responsible for zero intensity at some points in the
cross section of the beam: dust particles and scratches. The
amplitude noise spectrum caused by particles is defined by the
noise spectrum of one particle — the Bessel function—and
the distribution of dust particles over their diameter Agyg

[175]. For a small angle, 0 < 1/ A4y, the noise has a uniform
spectrum.

The cause of phase noise is the wavefront distortions
introduced by optical elements. The nonuniformity of the
refractive index is usually a large-scale one and does not make
significant contributions to the noise at high spatial frequen-
cies, while the surface profile of optical elements, by contrast,
contains the entire spectrum. The spectral noise density is
defined by the spectral density of the surface profile, which
may be approximated by a power law at high frequencies[175,
176].

Note that the small-scale noise rapidly transforms to
phase noise from the amplitude one, i.e., ¢;, is a random
quantity for both the amplitude noise and the phase (‘by
origin’) one. However, the modulus of the spectrum
remains invariable during propagation, and so S, is the
superposition of the amplitude and phase noise spectra.
This issue calls for a special investigation. Here, we restrict
ourselves, following Ref. [177], to a consideration of SSSF
for a model spectrum:

So

RO

=0,0) (43)

which is independent of 0 for 6 < 6, and decreases for large 0
according to the power law I/Ob. This spectrum makes
possible a qualitative description of SSSF in ultrahigh-
power femtosecond lasers, as well as of the methods for its
suppression. For b — oo, formula (43) describes a uniform
distribution in the interval 0 < 0 < 0,. We perform integra-
tion in the expression (40), using formulas (39) and (43), to
obtain

b-2 roo
6(B.2) =5 (1) | e e @
O) I \Oex) Jo (00/00)" + &2
where J = [ d&/(1+¢/%). For b <2, the integral in
expression (44) diverges at infinity and the upper limit should
be replaced with a finite value. For 6, — 0, the gain G — 1,
since the noise fraction which falls into the amplification band

tends to zero (Fig. 13a). For » — oo and 0., < 0, expression
(44) passes into expression (42), so that the gain G is described
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well by the approximation

GB)~1+ (%)2511111 (1.84B) . (45)

0

As is clear from formula (45), the quantity G — 1 rises
proportionally to Ofr. This is explained by the fact that the
instability band is proportional to 6. and integration ‘over
the area’ gives a factor 0C2r. For 0. > 0y, the growth of
function G(0) slows down (Fig. 13b). The reason is as
follows: although the instability band broadens, its right
edge enters the angular domain 0 > 60y, where there is no
noise, and, accordingly, this domain does not make a
contribution to the gain (Fig. 13a). On a further increase in
Ocr, the growth of function G (6., ) is replaced with its decrease,
and for 0, = 2'/20, the gain G lowers to a value G(0; = 0p),
since the twofold broadening of the instability band is exactly
compensated by the fact that only half of this band falls in the
domain where there is noise. Finally, for 6., > 6y, only the left
edge of the instability band enters the angular domain 0 < 0y,
and function G tends to 1 4+ 2B*—the gain for low spatial
frequencies (see Table 2). We note that G(0., > 0,) is much
lower than G0 = 6y).

In a more realistic situation, 2.5 < b < 5, for 6., < 0, the
situation is qualitatively the same, which is clearly demon-
strated by Fig. 13b. For 0. > 0y, the law of decrease of
function G(0,,) essentially depends on the law of decrease of
the spectral noise density (43). However, in the limit 0., > 0y,
G tends to 1+ 2B2%. Therefore, for b>2, a significant
increase in 6, in going from nanosecond lasers to femtose-
cond ones (see above) results in a lowering of G and the
consequential increase in the maximum admissible B-integral
values. To state it in different terms, the traditional limitation
B < 2—-3 for nanosecond lasers is relaxed for high-power
femtosecond lasers owing to a significant increase in 6. A
quantitative determination of this relaxation invites detailed
investigations of the angular noise spectrum in a broad
angular range up to 0.1 rad.

For the subsequent discussion, we do well to note that the
main contribution to integral (44) for large values of the
B-integral (B > 5) is made by therange & & 0.5, 1i.¢., 0 = Opyx.
To diminish G, it is therefore necessary to cleanse the beam of
noise in the most dangerous angular domain 60,,,. Since the
characteristic value of 0n.x is quite high—several dozen
mrad —to suppress SSSF, use can be made of beam self-
filtering during the propagation in free space over quite a
short distance, which is the concern of Section 4.3.

4.3 Suppression of small-scale self-focusing

by beam self-filtering

Mironov et al. [86] proposed an original method for beam
cleansing for suppressing SSSF (Fig. 14). When an optical
element is located away from the source noise, the most
‘dangerous’ noise components (with 6 of the order of 0y.x)
escape from the beam aperture. In this case, the free space
itself becomes a spatial filter. The main sources of noise are
the surfaces of mirrors or diffraction gratings. By accom-
modating an optical element at a sufficiently long distance L¢
from the last mirror or grating, it is possible to sideline the
‘dangerous’ noise components from the domain of interac-
tion with the strong wave. This takes place for small viewing
angles 0,:

(46)

8]

NE

Figure 14. (Color online.) Beam self-filtering in propagation in free space:
part of the noise (shown with dashed lines) escapes from the beam aperture
in the propagation away from the source noise (mirror M) to a nonlinear
element (NE).

where d is the beam diameter. Here, as above, interior angles
(inside the nonlinear element) are denoted by lowercase letters
(6y) and exterior angles by capital ones (@y). The spatial
noise present in the beam prior to reflection from the last
mirror is also filtered out, because its distance from the
nonlinear element is even longer and 6, is even smaller. As is
clear from formula (30), the magnitude of 6y, is proportional
to the square root of the radiation intensity and is indepen-
dent of the B-integral. For nanosecond lasers, the character-
istic radiation intensity is of the order of several GW cm 2,
which yields 0.5 of about 1 mrad and makes the self-filtering
in free space hardy possible, because Ly is too large. For
femtosecond lasers, the intensity is ~ 1 TW ecm~2 and angle
Omax 1s significantly larger —several dozen mrad — which
results in reasonable distances L¢ even for large diameters d.
Note that in millijoule-level lasers d is quite small and self-
filtering is realized for very short L, one might say
‘automatically’ (see, e.g., Refs [35, 67, 71, 178]).

The self-filtering of high-intensity radiation was borne
out in Refs [86, 179] with a qualitative experiment, in
which the degree of glass damage under SSSF was
investigated in relation to L;. As demonstrated experimen-
tally in Ref. [86], under frequency doubling in a potassium
dihydrogen phosphate (KDP) crystal for /=5 TW cm™2
and B = 6, the filamentation and breakdown of the crystal
were observed for a viewing angle ®, = 40 mrad and were
completely absent for @, = 10 mrad. In Ref. [179], the
degradation of a 4-mm-thick glass plate was measured
upon irradiation of one spot by 100 pulses. Three kinds of
damage were observed: catastrophic (high brightness of
color centers in the beam area); small turbidity of the plate;
and the absence of any damage. The effect of self-filtering
for small angles 6, is clearly seen in Fig. 15, in which
experimental points are plotted in the (B,6,) parameter
plane.

The results of measurements of the gain factor K(0) of the
spatial noise spectrum are presented in relation to the distance
L¢ from the noise source in Ref. [169]. The measurements were
made by two independent methods: direct [174, 180] and
indirect [180]. The beam passed through a slightly matted thin
(0.2 mm) glass plate, which introduced amplitude noise. The
nonlinear element was a 10-mm-thick glass plate. The beam
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Figure 15. Experimental data from Ref. [179] showing the lowering of plate
transmittance due to turbidity: significant (black circles), slight (grey
circles), and zero (empty circles). The curves show the theoretical levels
of the quantity lg G calculated using expression (49).

energy was equal to 0.5 mJ, the pulse duration to 70 fs,
Omax = 5.2mrad, B=1.4.

For direct gain measurements, as in Refs [165, 174, 180],
the radiation was focused with a spherical mirror, and
accommodated in its focal plane was a plane mirror with an
opening for rejecting the principal (non-noise) beam. The
opening diameter was large enough to transmit the whole
principal beam, including its wings, and so only the noise
radiation was reflected from the mirror. Recorded in this way
was the angular noise spectrum with the small-angle domain
‘cut out.” The noise gain K(0) was calculated using normal-
ization. In the indirect measurement of K(0), after the
nonlinear element, the beam was delivered to a lens, which
imaged the output plane of the noise source to a CCD camera
(CCD: charge coupled device). In Ref. [180], it was shown

distance Ly between the nonlinear element and the noise
source varied from 12 to 600 mm. Both methods revealed
quantitative agreement between experimental and theoretical
data. They also confirmed that the angular spectrum domain
in which amplification occurs decreases with increasing L
and that self-focusing practically vanishes on a further
increase in Ly. Numerical simulations of the propagation of
a noisy beam in a nonlinear medium [169] performed using
the program ‘Fresnel’ [173] also confirmed the effect of
suppression of self-focusing.

Free space is therefore a spatial frequency filter, whose
transmittance 7¢(k, 6y) depends on the viewing angle 6,. The
efficiency of this filter may be estimated by including it in
expression (40):

Py(z=1L)

G:Pn(z:()):

J57 Tk, 04)Sn(z = 0, ) Kay (B, )i dic
o7 Sa(z=0,K)r dic

(47)
Ginzburg et al. [177] made the following estimate of function
Tt(x, 0,), proceeding from geometrical optics. Let ‘noise’ rays
emanate at an angle 0 to the z-axis from each point (r, ¢) of
the beam cross section in the noise source plane. In the plane
of the nonlinear element, a fraction of these rays will find
themselves in the beam aperture (shown with solid lines in
Fig. 14) and a fraction will be beyond the aperture (shown
with dashed lines in Fig. 14). The fraction #(i, 0y) of rays that
find themselves in the aperture is the transmittance of the
noise emanating from point (r, ¢). Integrating #¢(x, 0,) over
the cross section gives the expression for Ty:

1 2
Tf(ﬁ) = lJ arccos {M} d (48)
0y 7 Jo 2,/y0/0,
If the expression in square brackets is greater than 1(smaller
than —1), the arccosine must be replaced with zero (unity). As
would be expected, Ty depends only on the ratio 6/6,. By
substituting expression (48) into expression (47), it is possible
to generalize expression (44) for the noise gain.

The self-filtering effect is clearly demonstrated in Fig. 16a,
which shows that the noise power for 6. > 6, becomes
significantly lower in the domain of highest gain, i.e., for
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Figure 16. (Color online.) (a) Angular spectra of free-space transmittance 77 (48) for different 0., /0, = 0.5, 1, 2, 3, and 4 (solid curves) and noise gain
factor K,y (39) for B = 3 (dashed curve). (b) Dependence of integral noise gain G (49) on 0. /0, for a uniform noise spectrum in the angular range
0 < 0 < 20, and B = 3 (bold curve), B = 5 (thin curve), and B = 7 (dashed curve).




1114

E A Khazanov, S Yu Mironov, G Mourou

Physics— Uspekhi 62 (11)

noise has a gain factor close to K, (0 = 0) = 1 + 2B2, which
is much lower than K,y (0 = Omax) = cosh (2B) (see Table 2).
Quantitatively, the self-filtering effect depends on the input
noise spectrum, i.e., on parameters » and 0,. When the noise
spectrum S, prior to filtering is uniform in the domain
0<6<0, and S, =0 for 6 > 6, from expressions (47)
and (48), in view of formula (39) we obtain

0()1’ 1 HCI' [
G(B,G—V> - J T; ((TV \/Z> Koo (B, &) dé.

0

(49)

Figure 16b shows the dependence G(0./6y) plotted using
expression (49) for different B. As is clear from the figure, G
shows a significant decrease for 0. > 26,. In particular,
G(B=17,0 =50,) = G(B = 3,04 < 0y). Therefore, a large
value of 0 suppresses SSSF: the spectral noise density
decreases for large angles (see Section 4.2) and beam self-
filtering (if O, > 0y) occurs in the free-space propagation. The
simultaneous action of these two effects is discussed in
Ref. [177].

4.4 Suppression of small-scale self-focusing

by nonlinear dispersion

SSSF development in a medium with inertialess nonlinearity
was investigated in Refs [109, 110] for few-cycle laser pulses,
i.e., with the inclusion of the last terms in Eqn (4) responsible
for nonlinear dispersion— the intensity dependence of the
group velocity (5). It was analytically shown that a uniform
solution remains unstable, but the type of instability
changes—it becomes convective. The result is that SSSF
would be suppressed for pulses shorter than some duration,
which was confirmed numerically. Physically, this is attribu-
table to the fact that intensity perturbations, which have a
lower group velocity, lag behind and shift to the trailing pulse
edge, where the intensity is significantly lower and their
growth slows down. An estimate of the pulse duration,
whereby the growing perturbations stabilize due to their
displacement to the trailing edge of the pulse, yielded a figure
of about 10 laser field cycles.

Therefore, for a pulse duration of 25 fs and shorter, an
additional SSSF suppression mechanism appears, which does
not call for any special effort or devices. So far, the effect of
SSSF suppression due to nonlinear dispersion has not been
experimentally demonstrated.

4.5 Application of traditional small-scale self-focusing
suppression methods in ultrahigh-power lasers

Beginning in the 1970s, SSSF suppression methods were
vigorously developed in connection with the advancement of
neodymium glass lasers, whose output energy is limited, as a
rule, by precisely the SSSF. The direct method of SSSF
suppression consisted in the use of low-n, glasses, for
instance beryllium-fluoride glasses [181]. Use is also made of
circular polarization, for which the effective value of n, is
1.5 times smaller than for the linear one, both in isotropic
media [155, 168, 182, 183] and in ceramics [184]. As shown in
Refs [165, 167], by selecting the orientation of a cubic crystal,
it is also possible to lower the effective value of n,. The
population trapping in the propagation of two waves whose
frequencies differ by the Raman shift also results in a lowering
of ny [185]. These methods are basically unsuited for CafCA,
because a large value of the B-integral is required for efficient
compression, and low values of n; have to be compensated by
a large thickness of the nonlinear element (3).

Unsuitable for CafCA in ultrahigh-power lasers are
diverging beams, whose diameter varies significantly in the
propagation in a nonlinear element [186—188], as well as beam
decoherentization [189—191] and the simultaneous propaga-
tion of several beams in one nonlinear element [192, 193].
SSSF may be completely suppressed by repeaters, which was
shown theoretically [151-153, 155] and experimentally [151].
These studies pertain to nanosecond lasers. The use of
repeaters for CafCA with picosecond lasers was theoretically
considered in Refs [93, 194]. In this case, the main problem is
the shortening of the repeater length, which, according to
Ref. [93], is of the order of 10 cm, even for a nonlinear element
thickness of several centimeters, which is hard to realize in
practice. An even greater shortening in moving to ultrahigh-
power femtosecond lasers is impossible.

The fragmentation of a nonlinear element— breaking it
into several parts without repeaters between them—also
presents difficulties, since the elements become even thinner.
However, this limitation is removed if use is made of thin
polymer films, which is discussed in detail in Section 5.4. In
Sections 4.5.1 and 4.5.2, we will consider methods for SSSF
suppression, which may be applied for CafCA in the future:
the use of spatial filters and media with n, < 0.

4.5.1 Spatial filters. The use of a spatial filter is the most
widespread and efficient method of SSSF suppression in
nanosecond lasers. The spatial filter consists of a pair of
confocal lenses (Keplerian telescope) with an aperture stop
located in the focal plane (see image 2 in Fig. 17). The
intensity distribution at the focus is the spatial (angular)
spectrum of a beam, and high spatial frequencies are there-
fore absorbed by the aperture stop. The largest angle O that
passes through the aperture is defined by its radius ry and the
focal length f of the lens:

rst
S

Therefore, the smaller Oy, the weaker the noise that passes
through the filter. The minimal aperture size is limited for two
reasons. The first is that the plasma generated at the aperture
stop must not have time to screen the beam, i.e., the time of'its
flight to the axis should be longer than the beam duration.
The second one is that the beam must freely pass through the
aperture, since the diffraction of even very ‘distant’” wings by
the aperture will give rise to new spatial noise. In other words,

@sf =

NE NE NE NE

Second CafCA stage

Figure 17. (Color online.) CafCA with various methods of SSSF suppres-
sion: [ — self-filtering in free-space propagation; 2—spatial filters; 3—
nonlinear element fragmentation; 4—nonlinear element fragmentation
with self-filtering.
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the magnitude of @ should be much greater than the
diffraction limit @ gj.

Spatial filters were first employed for SSSF suppression at
the Lawrence Livermore National Laboratory [195-197]. In
these papers, it was shown, in particular, that @ must be 10—
20 times greater than @g4;;. More recently, in Refs [186, 198,
199], the efficiency of SSSF suppression with the use of spatial
filters, which are now used in almost all high-power
nanosecond lasers [200, 201], was experimentally borne out.
A theoretical analysis of the operation of spatial filters may be
found in Refs [173, 202, 203], and the practical aspects of their
use in Refs [204, 205].

The use of spatial filters for CafCA was discussed in
Refs [20, 72, 88]. It was pointed out that N nonlinear elements
separated by spatial filters make it possible to obtain spectral
broadening corresponding to the B-integral equal to NB; and
avoid SSSF, provided the B-integral in each element B < 3.
A detailed numerical investigation of the CafCA for picose-
cond pulses with the number of stages up to N =10 for
B; = 1.4 was performed in Ref. [194]. The simulation data
suggest that the SSSF-induced beam distortions remain
acceptable for N =35, and even for N =10. In Ref. [87],
numerical simulations were made of the propagation of a
120-femtosecond 13-PW power pulse through nine nonlinear
elements with B; = 5.3 separated by eight spatial filters. The
simulations suggested the feasibility of pulse compression to
4-5 fs without significant degradation of beam quality. In the
numerical simulation [20], a 27-fs-long pulse was initially
compressed to 6.4 fs (B = 6.1) and then, after a spatial filter,
compressed to 2.1 fs (B = 4.4).

Theoretical simulations show the promise of using spatial
filters for CafCA, but their practical application is fraught
with several problems. Since it is impossible to employ lenses,
use has to be made of spherical mirrors. To minimize the
inevitably introduced astigmatism, the mirrors should have a
small numerical aperture, making the telescopes quite
cumbersome. The use of off-axis parabolas shows more
promise. Another drawback is that the stop and the output
mirror of the telescope are themselves sources of noise, which
is not filtered out. Herein lies a difference from beam filtering
in propagation in free space (see Section 4.3), where no
mirrors are required. From this viewpoint it would be
instructive to place the nonlinear element between the stop
and the output mirror of the spatial filter. This geometry
offers additional advantages related to the possibility of
varying the beam intensity in the nonlinear element.

It is significant that beam cleansing in the spatial filters of
ultrahigh-power lasers is their important advantage over
nanosecond lasers, in which the ratio @nax/Ogir is not very
large, and therefore the condition @4 < O K Oy 1S NOt
always easy to fulfill. As indicated above, for ultrahigh-
power lasers, the magnitude of @, is considerably larger,
which significantly simplifies the fulfillment of this condition
and makes beam cleansing more efficient. It is possible to
estimate the efficiency of this cleansing by assuming that the
noise spectrum becomes uniform (b = oo) inside the angle
0o = 6 on passing through the filter. Then, as is clear from
Fig. 13b (the curves for » = 100), on the condition that
0. > 100; = 100y, which is always fulfilled, the noise gain
K,w = 1 + 2B?%. The noise power at the output of the non-
linear element is proportional to (1 +2B2)67.

Therefore, the use of spatial filters for CafCA is an
intricate experimental task which may, nevertheless, be
realized in the future.

4.5.2 Media with negative n;. As a rule, in the visible and near-
infrared ranges, n, > 0, which results in self-focusing. There
are, however, exceptions to this rule: media with negative n,,
in which the radiation experiences defocusing (self-defocus-
ing). By way of example, mention can be made of cesium
vapor (for a wavelength of 1060 nm) [206], xenon (for a
wavelength of 248 nm) [207], GaAs (for a wavelength of
1060 nm) [208], AlGaAs (for a wavelength of 850 nm) [209],
and other semiconductors [210, 211]. These media are used
compensate (subtract) the nonlinear phase incursion which
inevitably appears in laser amplifiers. These media are not
quite suited for CafCA: gaseous media necessitate windows,
in which n, > 0, and semiconductors cannot withstand so
high an intensity. Furthermore, in both cases, the band is
much shorter than required for femtosecond pulses. Measure-
ments of the cubic nonlinearity tensor y in a beta-barium
borate (BBO) crystal [212] showed that ... <0 (e is an
extraordinary wave), but this statement calls for verification,
since the measurement uncertainty exceeded |yqcc|- Further-
more, the BBO crystal apertures are small, which limits the
possibility of their use for CafCA.

Recently papers have appeared which state that organic
doping of KDP crystals results in a positive-to-negative n,
sign change. The measurements were made for crystals doped
with formic acid (0.5 mol.% and 1 mol.%) [213] and with
citric acid (1 weight%) [214]. The absolute value |n,| in the
doped crystals turned out to be much smaller than 7, for non-
doped KDP, which hampers its use for CafCA. A similar
result (change of n, sign) was obtained by the same group
[215] for KDOP (potassium dihydrogen orthophosphate)
crystals doped with tartaric acid. In this case, the absolute
value |n;| was approximately the same, and extremely large at
that. It is pertinent to note that the authors of these papers
specify neither the orientations of the KDP and KDOP
crystals nor the radiation polarization with which the
measurements were made. Without these data, the results of
measurements are hard to interpret. At the same time, if
attempts to obtain a doped KDP crystal with a negative n,
meet with success, this would be a panacea for SSSF, since the
KDP crystals presently grown measure 40 cm or more. We
note that the cubic nonlinearity measurements for deuterated
KDP (DKDP) crystals made in Refs [216, 217] showed a
strong dependence of n, on the degree of deuteration, but the
sign of ny was always positive.

Another way to obtain a medium with a negative n; is to
use the effect of cascade second harmonic generation
discovered in Ref. [218]: when deviating from the phase
matching direction in the course of frequency doubling, an
addition to the refractive index appears, which depends
linearly on the intensity, i.e., an effective cubic nonlinearity
and an addition to the nonlinear refractive index n;** appear
(see, e.g., Refs [219-222]). The sign of n5** is determined by
the sign of detuning of the wavevectors of the interacting
waves of the first and second harmonics, which permits
obtaining n5**¢ < 0. Physically, n§** is explained by the fact
that an energy transfer occurs from the first harmonic to the
second and vice versa in the case of deviation from the phase
matching direction. The energy efficiency of this transfer is
low for large detuning — practically all energy remains in the
first harmonic— but an additional shift appears in the phase
of the first harmonic wave, since the phase velocities of the
first and second harmonic waves are different. The effect is
absent (n§*¢=0) for exact matching, since the phase
velocities of the harmonics are equal, as well as away from
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the matching, since there is no energy transfer to the second
harmonic. The sign of the effective nonlinear refractive index
depends on the balance between the contributions of Kerr
nonlinearity and cascade generation: n§ = ny + n§a.

One of the crystals in which n§ < 0is BBO. BBO crystals
are employed to compensate a nonlinear phase shift [223—
225], as well as to compress pulses without SSSF-related
limitations. In Ref. [226], a 190-fs-long pulse was sequentially
compressed in three BBO crystal stages to 97, 50, and 30 fs,
respectively, and in Ref. [227] from 120 to 30 fs in one stage. In
Ref. [228], a pulse with 1y = 1.3 um was compressed in
duration to several field cycles directly in a lithium niobate
crystal. However, all these experiments were restricted to a
low pulse energy and power. Scaling is limited primarily by
the absence of wide-aperture crystals with a negative ng".
According to numerical simulation data [79], self-compres-
sion is possible in KDP crystals and, consequently, 5" may
be negative, but we are unaware of its experimental confirma-
tion to date. Among other disadvantages, mention should be
made of the impairment of beam quality due to the walk-off
of the extraordinary wave, the need to precisely align the

crystal, and the wavelength dependence of n5*.

5. Plastic: a new promising nonlinear material

As mentioned in the Introduction, a substantial limitation for
CafCA at petawatt powers is the necessity of making a
nonlinear element with a high aspect ratio d/L, since a high
intensity requires a small thickness L and a high energy calls
for a large diameter d. It is significant that the nonlinear
element should not introduce significant wavefront distor-
tions, which would impair the beam focusing on a target. The
fabrication technology of traditional optical elements of glass
and silica is developing evolutionally and is advancing to
progressively higher aspect ratios. For instance, in Ref. [22]
use was made of glass plates of thickness L =1 mm and
diameter d = 20 cm, which possessed a high optical quality.
However, thinning to several hundred micrometers is an
extremely intricate technological problem. An alternative
was proposed in Ref. [22]: to use a thin ‘plastic’ film. The
advantages of this approach are discussed in Sections 5.1-5.4.

5.1 Idea of using plastics

The word ‘plastic’ is hereinafter used for brevity and implies
any amorphous thermoplastic polymer, for instance, poly-
vinylchloride (PVC), cellulose acetate, polyester, polyethy-
lene terephthalate, or another one. The plastic must be
transparent at the laser wavelength and strong, and have the
same thickness throughout its aperture, ideally to within a
fraction of the wavelength. Even the first testing in [94] of the
plastic as a nonlinear element revealed that the phase
distortion of the beam transmitted through 700-pm-thick
polyethylene terephthalate used in everyday life amounted
to half the wavelength for an aperture 20 cm in width. A
higher-quality and thinner plastic introduces knowingly
smaller distortions. Furthermore, measurements were made
of radiation depolarization, which was equal to 0.02%, i.e.,
was negligible. Absorption was also negligible. Therefore, the
linear optical properties of the plastic fully satisfy the
requirements imposed by CafCA.

Plastics offer a number of advantages over glass and fused
silica. The transverse 1-m dimension is standard, which is
known to suffice not only for present-day lasers but also in the
foreseeable future. The plastic production technology easily

provides thicknesses of 100 um or even less. Such thin films
are made in rolls, permitting the use of a roller feed
mechanism [81], which will feed the film in case it degrades.
Considering the low cost of plastics, this may be done after
each shot. With the use of thin films, it is convenient to specify
the total thickness L by varying the number of layers. In
Ref. [81], for instance, use was made of six layers of a 100-pm-
thick film. Owing to the absence of limitations in transverse
size, the plastic is accommodated at a Brewster angle, which
practically rules out losses, even for a large number of layers.

Another advantage of plastics is the wide variety of
materials, which gives hope for a diversity of properties,
primarily of the nonlinear refractive index n, and group
velocity dispersion k,. Measurement data are hardly avail-
able for these parameters — this is the subject of investigation
in the near future. In Sections 5.2-5.4, we discuss specific
aspects in which the above advantages of plastics may be used
for CafCA.

5.2 Increasing the critical angle

of small-scale self-focusing

As mentioned in Section 4.2, a critically important feature of
SSSF in ultrahigh-power femtosecond lasers is the significant
increase in the critical angle 6., of SSSF. As shown in Section
4.2 (see also Fig. 13), the increase in 6., makes it possible to
suppress the development of SSSF owing to the fact that the
main noise does not fall into the highest gain domain as well
as due to self-filtering of the laser beam (see Section 4.3 and
Fig. 16). In other words, it is expedient to increase 0.
According to formula (30), this may be done using media
with a large n;. In polyethylene terephthalate, n, is approxi-
mately two times greater than in fused silica [94]. Measure-
ments of n, for other plastics have not been carried out, but,
considering the diversity of polymer materials that can be
used as nonlinear elements, one would expect the appearance
of plastics with even higher n,.

Accommodating a nonlinear element at the Brewster
angle also results in an increase in the critical angle, though
not of the interior angle 6. but of the exterior @ one, as
follows. In the case of normal incidence of a plane wave,
evidently, ©. = nyf... However, when the incidence angle is
equal to the Brewster angle, gy = arctann, and it is easily
shown from Snell’s law that

Oy = n()zecr ) (50)
i.e., the exterior-to-interior angle ratio is 7y times greater than
in the case of normal incidence. Important for SSSF
suppression is not the increase in the absolute value of 0.,
but the increase in its ratio to the characteristic angle of
spectral noise density 6y and to the viewing angle 6, (see
Figs 13 and 16). Since angles ®y and O, in a vacuum are
independent of the angle of incidence on the nonlinear
element, from formula (50) it follows that placing the
nonlinear element at the Brewster angle will increase O /@
and O, /0O, by ny times in comparison with the corresponding
figures at normal incidence. The interior angle ratios 0. /6
and 0 /0, will evidently increase by the same factor, since
relation (50) for the exterior-interior angle ratio is valid for
any indices: @y = ni0y, ©, = n30,. Of course, a nonlinear
element of glass or silica mounted at the Brewster angle will
also increase O by ny times, but a significant aperture
widening is very problematic for these elements, while for
plasticitis not. Note that media with a large n; usually possess
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gain G on By in the case of division of a nonlinear element into N similar fragments, in each of which the B-integral is equal to By /N.

a large np, and it is expedient to increase both refractive
.. . . . . 12 3/2
indices for increasing @, @, being proportional to n,’“n,
(see Eqns (30) and (50)).

One of limitations on increasing the pulse intensity in the
SPM in glass or silica is that a given value of the B-integral in
accordance with formula (3) signifies the use of very thin
elements. Plastic largely removes this limitation, which may
be used for increasing the value of 6, which is proportional
to the square root of the intensity (30). This is especially
significant for a two-stage compression.

5.3 Two-stage compression
The use of plastics opens the way to two- and multistage
compression. By two-stage compression (two-stage CafCA)
are meant two successive compressions: a nonlinear element,
dispersive mirror(s), and another nonlinear element and more
dispersive mirror(s) (see Fig. 17). This approach has been
repeatedly used at the microjoule level [43, 69, 226]. However,
in ultrahigh-power lasers it is necessary to employ very thin
nonlinear elements, especially so in the second compression
stage. We assume the same value of the B-integral in the two
nonlinear elements, the second one being several-fold thinner
than the first (by F; times, where F; is the intensity
enhancement factor of the first stage). For ultrahigh-power
lasers, this leads to a thickness of about 100 pm, which is
possible only with the use of plastic. This is precisely why only
the fragmentation of the nonlinear element, which increases
the net B-integral, and a single compression were considered
for glass or silica [87]. The idea of the two-stage compression
of ultrahigh-power pulses was proposed by the authors of
Ref. [20], who also proposed the use of plastics. The first,
highly promising results were recently obtained [85].
Two-stage compression possesses a considerable advan-
tage over nonlinear element fragmentation, with the result
that the total B-integral By depends linearly on the number of
stages M, while the net intensity enhancement factor Fiy
obeys a power law:

Bs = MBy, Fy=(1+049B)". (51)
Here, for simplicity, we ignored dispersion and assumed
equal B-integral values B; for all stages and therefore the

same intensity enhancement factors F; defined by formula

(11c) for D = 0. All parasitic effects (SSSF, phase aberra-
tions, lateral nonuniformity of compression) are defined by
the total B-integral, By, irrespective of the number of
compression stages. Figure 18a depicts dependence Fiz(Bsx)
plotted using formulas (51) for one, two, and three compres-
sion stages. From the figure it is seen that for By < 4, one-
stage compression ranks only slightly below the multi-stage
one. However, for larger By, the increase in the number of
stages to two and, all the more so, to three makes it possible to
obtain significantly higher values of Fis, i.e., a significantly
higher pulse intensity. The second of expressions (51) and
Fig. 18a are approximate, since they ignore dispersion and the
fact that the pulse will not be Fourier-limited at the input of
the second and subsequent nonlinear elements. To exactly
include these two effects requires a more rigorous theory,
described in Section 2. However, the corrections related to
these effects are small (see Figs 4 and 9), and the accuracy of
expressions (51) is quite sufficient for estimating Fis.

A two-stage compression has three other advantages over
the single-stage one, which permit fighting against SSSF more
efficiently. The first is related to the fact that the pulse
intensity in the second nonlinear element is much higher
than in the first one. First, this increases the critical angle 0.,
and suppresses SSSF and, second, it has the effect that the
values of 0., in the two nonlinear elements are different. Since
the magnitude of 6, is proportional to the square root of In,
(30), this difference may be further increased by using a plastic
with a higher n, as the second nonlinear element. The noise
enhancement factors will then have maxima at significantly
different 0, which will lower the total noise enhancement
factor. The second advantage is the possibility of beam
cleansing (self-filtering or a spatial filter) between the stages.
And, finally, the third advantage is that the pulse duration in
the second nonlinear element is much shorter than in the first
one. If this duration turns out to be no longer than 10 laser
field cycles, SSSF in the second nonlinear element will be
suppressed thanks to nonlinear dispersion (see Section 4.4).

5.4 Nonlinear element fragmentation

Fragmentation of a nonlinear element is the replacement of
one element with N elements with the same total thickness
without repeaters or spatial filters between them (see image 3
in Fig. 17). This is essentially different from multistage
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compression, since dispersive mirrors are used only once.
Unlike SSSF suppression by self-filtering and spatial filters, in
this case, the SSSF suppression is implemented via phase
effects rather than via the suppression of well-amplified
spatial frequencies. The free propagation of light by a
distance Ly reduces to noise phase incursion relative to a
plane wave:

(52)

By varying length Lg, it is possible to vary the noise phase at
the input of the second nonlinear element, which will be the
sum of the phase ¢, (35) at the output of the first element
and phase ¢, (52). The noise gain (38) depends strongly on the
input phase, and the gain may be smaller than unity. In
optical systems comprising a periodic sequence of linear and
nonlinear media, it is possible to suppress SSSF for many
angles @, but not for all of them [152, 154, 186]. The use of
nonequidistant geometry, whereby the thicknesses of non-
linear elements and the distances between them are different,
is more efficient, which was observed experimentally in [229,
230] and explained theoretically in [229, 231]. Investigated in
all these papers was the SSSF of nanosecond pulses. Future
investigations will provide an answer to the question of how
efficient the transfer of this idea to the realm of ultrahigh-
power lasers is.

As indicated above, an important feature of CafCA for
ultrahigh-power pulses is the large angles of maximum noise
gain 0,,x — several tens of milliradians. This permits using an
amplitude effect apart from the phase one described in the
forgoing. For such O, values, the free-space noise phase
incursion ¢, ranges up to 2z at a distance L of about 1 mm.
Therefore, for a l-cm (or greater) spacing between the
nonlinear elements, ¢, is a rapidly varying function of 6 and,
consequently, in the calculation of integral gain (in the
integration over 0) the noise phase at the input of the second
nonlinear element may be thought of as being random. Then,
the phase effect described in the previous paragraph vanishes,
but the amplitude effect persists: the net gain of N nonlinear
elements is equal to the product of the gains in each of them.
For N identical elements, the gain is equal to the gain of one
element K,y (B;) taken to the power N. Proceeding from
formula (39), it is readily shown that K¥(B)) < Ky (NB)),
i.e., nonlinear element fragmentation results in a significant
lowering of the noise gain with retention of the total B-
integral value By = NBj;. One can see from the formulas given
in Table 2 that the fragmentation will lower the gain for
0 = Omax by about a factor of 21,

According to Fig. 18b, which depicts the dependence of
gain G on By calculated by formula (40) for 6y = 0.,
fragmentation permits a significant increase in By and,
hence, in the pulse compression factor with retention of the
same G value. For G = 1000, e.g., dividing the nonlinear
element into N = 4 parts permits increasing By by unity, into
N = 8 parts by two, and into N = 12 parts by three.

Itis possible to achieve an even stronger SSSF suppression
by using nonlinear elements with significantly different values
of n, in combination with intensity control in the elements (in
this case, use should be made of a converging or diverging
beam). Then, the peaks of noise gain K,y » in two (or more)
nonlinear elements are found at significantly different 0,
which lowers the overall gain K,y Kayo.

Lastly, accommodating nonlinear elements with different
n, values immediately adjacent to each other (without an air

gap) permits using both phase and amplitude effects. In this
case, the transfer matrix U is the product of matrices (32).
Modern technologies permit the fabrication of samples
consisting of two films with different physical properties
pressed to each other without a gap. A detailed consideration
of the efficiency of SSSF suppression in a sequence of
nonlinear elements with different n, values is the subject of a
separate investigation.

The optical configurations in which SSSF suppression is
realized by nonlinear element fragmentation are much more
compact than those utilizing the self-filtering of a laser beam.
At the same time, these two methods may be combined, for
instance, as shown in Fig. 17 (image 4). In this case,
compactness is lost, but the noise suppression efficiency
becomes higher. Fragmenting the nonlinear element, like
two-stage compression, requires the use of very thin sam-
ples, which is easier to realize with plastic, especially so when
N > 1. Therefore, polymers make it possible to improve the
CafCA efficiency for a variety of reasons.

6. Compression after compressor approach
(CafCA): status quo and prospects

The experimental data which demonstrate the energy para-
meters of input laser pulses in relation to the beam diameter,
as well as the growth of pulse energy in the period of 1968—
2018, are summarized in Fig. 3. As seen from the figure,
several recent years have seen a remarkable CafCA advance-
ment [22, 76-85] to the domain of high power (up to 250 TW)
and energy (up to 15 J) owing to the use of a volume solid
nonlinear element, in which the laser beam propagates freely.
These data are marked with dots in Fig. 3. Below, we discuss
the CafCA efficiency attained in these studies, the prospects
of advancing to the multiterawatt range, and possible avenues
of future investigations.

6.1 Review of experiments

with a pulse power of 0.2-250 TW

From the practical viewpoint, one of the most important
CafCA characteristics is the intensity enhancement factor F;
(10c). Direct measurements of the pulse intensity prior to and
after compression are practically completely lacking, and so
we will analyze the pulse compression factor F; (10b), which
has been measured in all studies. Theoretically, F; is always
smaller than Fj, but the difference is not large (compare
Figs 4b and 4c). For a zero dispersion (D = 0, red points)
the difference amounts to about 15%, while for a strong
dispersion (D = 0.05, black points) the coefficients barely
differ. To compare the magnitudes of F; and F,, it is
convenient to use formulas (11b,c) with the inclusion of
Table 1. Therefore, parameter F, is easily measured and
adequately reflects not only the pulse shortening but also the
increase in pulse intensity.

The experimental data in Refs [22, 77-85] are summarized
in Table 3. The values of F; as functions of the B-integral are
shown with blue dots in Fig. 19. The straight lines were
plotted for the theoretical dependences (11b) for D = 0 and
D = 0.05. In many studies, for a nonlinear medium use was
made of a plastic with unknown dispersion coefficient, and so
there is no way of determining D. Nevertheless, it is highly
likely that in all studies D < 0.05, i.e., that the experimental
points in the plot should lie between the two straight lines.
However, almost all points are lower. One of the reasons is the
difference between the dispersion introduced by dispersive
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Table 3. Experimental results from Refs [22, 77-85].
Input beam Nonlinear element B-inte- Pulse duration
gral References Year
P,TW | W,mJ |d, mm|I, TW cm~2 |y, nm Material L, mm Tin, fs | Toutr £8 | Fo="Tin/Tout
0.6 28 5.2 0.94 800 TF12 0.2 4.4 46 20 2.3 Mironov [77] 2014
(negative lens)
5.2 170 38 0.84 800 TF12 0.3 5.9 33 16 2.1 Lassonde [78] | 2016
(negative lens)
0.3 20 20 0.19 910 Polyethylene 3 2.2 66 32 2.1 Ginzburg [83] | 2016
terephthalate Mironov [79] 2017
4.3 200 11 1.4 810 | Cellulose acetate 0.5 33 46 29 1.6 Mironov [79] 2017
96 5500 100 1.5 920 Polyethylene 0.5 3.1 57 22 2.6 Mironov [80] 2017
terephthalate
5.4 296 19 1.9 810 Silica 0.5 2.2 55 31 1.8 .
Farinella [82] 2019
50 2400 99 0.65 810 Silica 0.5 0.8 48 42 1.1
3.2 158 18 1.25 800 Zeonor 0.6 3.5 50 23 2.2 )
Masruri [81] 2019
1.5 75 18 0.59 800 Zeonor 0.6 1.7 50 33 1.5
190 12,000 160 1.1 920 Glass 3 6 63 21 3 Ginzburg [22] | 2019
250 16,000 160 1.3 910 Glass 3 7 65 15.5 4.1
Ginzburg [84, 85]| 2019
250 17,000 160 1.0* 910 | Glass (two stages) [ 3+1.3 | 5.5%* 72 14.5 5
* Values for the first stage.
results in an insignificant lowering of CafCA efficiency: the
5 | m increase in power is only slightly lower than that in intensity,
N F, < F; (compare formulas (17) and (11c)). This issue has not
B o been studied in experiments. At the same time, as applied to a
§ 4r laser beam with a Gaussian spatial intensity distribution, for
= which this effect is significant (F, = 0.5F}), its transverse
% 3 ° nonuniformity was successfully compensated with a negative
£ , lens [77, 78] (see Section 3.2.2).
£ ° ) Another parasitic effect for CafCA is the nonlinear phase
5 2 o distortion introduced into a laser beam by cubic nonlinearity,
z f which impairs the beam quality and lowers the focal intensity
| | | | | (see Section 3.3). Detailed experimental studies of this
0 1 2 3 4 5 6 7 problem are also the subject of future investigations. We
B-integral mention only Ref. [82], where an 11.4% lowering of the Strehl

Figure 19. (Color online.) Pulse compression factor F; versus the
B-integral. Blue dots show the experimental values obtained in Refs [22,
77-84] (see also Table 3), the red square corresponds to the two-stage
CafCA of Ref. [85] (the B value corresponds to the B-integral of only the
first stage), and diamonds stand for the numerical simulation data of
Refs [20, 79, 87]. Straight lines were plotted for theoretical dependences
(11) for zero dispersion D = 0 (upper straight line) and for D = 0.05 (lower
straight line).

mirrors and the optimal value o,p. Also possible are errors in
the evaluation of the B-integral, especially so for experiments
with the use of plastics. When plotting Fig. 19 for these data,
we assumed the value of n, to be two times greater than for
silica and indicated an error of 50% for the B-integral. The
measurements of n, for different plastics is the subject of
future investigations. In any case, a more than twofold pulse
shortening was obtained in the majority of papers. A record
fourfold shortening was obtained in Ref. [84] and for a record
high input pulse power of 250 TW. In a first for high-power
lasers, in Ref. [85] two CafCA stages were implemented and a
fivefold duration shortening was demonstrated.

As stated in Section 3.2, for super-Gaussian transverse
intensity distributions, transverse beam nonuniformity

number was measured for B = 0.8; however, a quantitative
comparison with formula (25) and with Fig. 12 is impossible,
since the data about near-field beam shape were not reported
in Ref. [82].

Figure 20 shows the experimental data in Refs [22, 77-85]
in the plane (Ti,, Tou) — the half-height durations of input
and compressed pulses. As is clear from the figure, mastered
to date is the range of several tens of femtoseconds for the
duration of input pulses. We mention Ref. [78], in which a
record short input pulse was obtained, and Ref. [85], in which
it was possible to obtain (for a two-stage compression) the
shortest pulse at the CafCA output. At the same time, so far
there are no examples of successful experimental use of
CafCA as applied to high-power (over 0.1 TW) laser pulses
with a duration shorter than 30 fs or longer than 100 fs. The
theoretical aspects for the specified parameters are discussed
in Sections 2.3, 2.4, and 4.4. Here, we restrict ourselves to a
brief outline of numerical simulation data.

6.2 Numerical CafCA simulations for petawatt pulses

Not many studies were devoted to numerical CafCA simula-
tions for ultrahigh-power pulses [20, 79, 87]. The results are
shown with diamonds in Figs 19 and 20. Investigated in
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Figure 20. (Color online.) Experimental data from Refs [22, 77-84] (blue
dots). Red square corresponds to the two-stage CafCA in Ref. [85] (see
also Table 3) and diamonds stand for the numerical simulation data in
Refs [20, 79, 87]. Straight lines show dependences 7oy = Ti, and
Touwt = Tin/3 for clarity.

Ref. [20] was the two-stage compression of a single-petawatt
27-femtosecond-long pulse to 6.4 fs and then to 2.1 fs. In this
case, simulations were made of Eqn (4) with all the terms with
the exception of the Laplacian term, i.c., all temporal effects
were included, but the self-focusing was not. It is significant
that delivered to the input of the second CafCA stage was not
a spectrally limited pulse, but the simulation result from the
output of the first stage with compensation of only the
quadratic component of the spectral phase. At the first stage
B = 6.1, which implies suppression of SSSF, e.g., by self-
filtering (see Section 4.3). At the second stage (B = 4.4), the
SSSF was suppressed due to nonlinear dispersion, with
account taken of the input pulse duration of 6.4 fs [109, 110]
(see Section 4.4). We emphasize that the beam intensity at the
input of the second stage was extremely high
(I=43 TW cm™?). In practice, in order to avoid optical
breakdown, it is necessary to increase the beam diameter and
the nonlinear element thickness L with retention of the
requisite B-integral value. Increasing the diameter will lower
the intensity and, as a consequence, will rule out the break-
down probability. Increasing the thickness will strengthen the
influence of linear dispersion on the pulse parameters at the
output of the nonlinear element. For the CafCA efficiency to
remain high, it is necessary to monitor the fulfillment of
condition D < 1 for a given value of the B-integral.

The most detailed CafCA simulation was performed in
Ref. [87], where account was taken not only of all the effects
described by Eqn (4), but also of ionization nonlinearity and
the loss and dispersion introduced by the laser field-ionized
plasma. Radiation of a 120-fs-long Gaussian pulse with a
power of 13 PW and a beam diameter of 40 cm with a super-
Gaussian intensity distribution (m = 8,7 = 11 TW cm~2) was
delivered to the input of a nonlinear medium (fused quartz).
To model SSSF, intensity modulation with an rms deviation
of 0.1185 was introduced into the input beam. This modula-
tion is equivalent to the amplitude noise (noise phase ¢;, =0
for all spatial frequencies), although random ¢, values
correspond to the majority of experimental situations.
According to formula (41), for an rms deviation of 0.0185,
the noise power fraction amounts to 8.5 x 107>, which is
greater than the value of 1.8 x 107> given in Ref. [175] for the

power fraction scattered by high-precision optics into an
angular spectrum band of 0.01-0.1 rad.

The results of simulations [87] suggest that the maximum
admissible value of the B-integral is 5.3. In this case, the pulse
compresses to 25 fs for a complete compensation of disper-
sion. In the compensation of only the quadratic spectral phase
component, the duration will be somewhat longer (the
simulation data indicated with different symbols in Figs 19
and 20 correspond to a duration of 28 fs). Another simulation
result of Ref. [87] shown in the inset of Fig. 20 displays the
simulation of CafCA in nine such quartz plates (By = 48)
separated by eight spatial filters, which seems hardly realiz-
able in practice. As shown in Section 5.3, the use of two-stage
compression shows greater promise. We note that the
simulations even for these extreme B-integral values showed
very good beam focusing.

Investigated in Ref. [79] was the CafCA for a very long
(500 fs) pulse using the example of a PETAL laser [124, 125]
(transverse beam size: 40 cm; central wavelength: 1053 nm;
energy: 1 kJ) under the assumption of transversely uniform
intensity with B = 6.5 for a quartz plate of thickness L = 3
mm. The results of simulations confirmed a negligible effect
of dispersion and showed that correcting the quadratic phase
component of the output radiation permitted shortening the
pulse duration to 108 fs and increasing the peak intensity from
1.5 TW cm™2 to 6 TW cm™2. In this case, aop = —10* fs2,
which agrees with Fig. 5b. Such a large value of parameter
oopt calls for an improvement in dispersive mirror fabrication
technology and/or for a large number of these mirrors. We
note that increasing B results in a lowering (in modulus) of
oopt (see Fig. 5). Thus, e.g., increasing B from 6.5 to 20
decreases op by a factor of three.

6.3 Future research avenues

From the practical standpoint, the main task facing experi-
menters now is applying CafCA at the output of petawatt and
multipetawatt lasers, especially with short (less than 30 fs) and
long (longer than 100 fs) pulses. This will open the way to the
development of next-generation pulses—several tens and
hundreds of PW in power—as well as to the production of
multipetawatt laser pulses with a duration of the order of one
field cycle. The theoretical and experimental investigations
described in our review suggest that there are no fundamental
limitations on this route, although the problems are many.
We list several lines of research that are topical for successful
advancement along this route.

(1) Experimental measurements of precisely the focal-
plane intensity enhancement factor Fpoe,s rather than the
pulse compression factor F,. These factors are different,
because part of the pulse energy is away from the principal
peak, with the result that the intensity after CafCA increases
with a lower efficiency (F; < F;), and because the B-integral is
nonuniformly distributed over the beam cross section, with
the result that the power increases with a lower efficiency
(F, < F). Lastly, Frocus < F, due to nonlinear wavefront
aberrations, which may be compensated using adaptive
optics, if need be. These effects are theoretically discussed in
detail in Sections 2.2, 3.3, and 3.2.1, where it is shown what
can be achieved owing to an insignificant difference between
Frocus and F,. However, to date, experimental confirmations
have not been obtained.

(2) SSSF suppression for large B-integral values for
increasing the pulse compression factor F; with one CafCA
stage. Despite the substantial progress in this area, which
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permitted the values B=7 and F; =4 to be reached in
experiments, further advancement is possible. Seeming most
important are: (i) theoretical and experimental investigations
of the spatial noise spectrum (see Section 4.2) in real
ultrahigh-power laser beams, as well as optimization of the
self-filtering of these beams (see Section 4.3) reliant on the
resultant data and work to increase the critical angle (see
Section 5.2); (ii) experimental realization of SSSF suppression
due to nonlinear dispersion (see Section 4.4), the use of spatial
filters (see Section 4.5.1), and the use of media with negative
n, (see Section 4.5.2); (iii) theoretical and experimental
investigations of the capabilities of the fragmentation of a
nonlinear element (particularly a plastic one) for SSSF
suppression (see Section 5.4).

(3) Experimental realization of a 10-fold (and greater)
pulse compression, which is supposedly possible with a two-
stage CafCA. Demonstrated recently was the two-stage
compression of 250-TW pulses [85], and the results turned
out to be promising, but a comprehensive experimental
investigation is still to be done. The most attractive goals are
the production of pulses with durations of the order of one
optical field cycle and the compression of kilojoule-level
pulses to a duration of the order of 10 fs.

(4) Measurement of the nonlinear refractive index ny,
group velocity dispersion k,, and other optical properties of
polymer materials (plastics). At present, these data barely
exist in the literature. A wide variety of plastics gives hope for
a diversity of their properties. This, in turn, will permit the
optimal use of plastics to increase the compression multi-
plicity (see Section 5).

(5) Pulse compression for a simultaneous second harmo-
nic generation. The phase self-modulation of pulses required
for CafCA occurs automatically in any medium, including
crystals generating a second harmonic. Owing to this
circumstance, the second harmonic pulse may be compressed
with dispersive mirrors. The idea was introduced in Ref. [73],
the broadening of the second harmonic spectrum due to phase
self-modulation was measured in Ref. [76], and the compres-
sion of second harmonic pulses was demonstrated in
Ref. [232], though for pulses only 50 GW in power. The
execution of similar experiments at a level of several hundred
TW is limited by the difficulty of making nonlinear crystals,
but these limitations may be overcome. This will permit
increasing the focal intensity not only due to pulse compres-
sion, as with ordinary CafCA, but also due to wavelength
shortening. Furthermore, the time contrast ratio of pulses will
greatly increase, which is important for many applications.

7. Conclusions

The peak power of modern lasers is limited by the breakdown
threshold of the diffraction gratings of optical compressors.
Pulse compression after a compressor (CafCA) is one of the
most promising ways of overcoming this barrier, because the
power of a pulse increases due to its shortening rather than
due to its energy increase. The pulse spectrum broadens due
to phase self-modulation in the medium with a Kerr
nonlinearity, and then the pulse is compressed on reflection
from dispersive mirrors. CafCA possesses indubitable merits:
simplicity and cheapness, negligible energy loss, and the
possibility of using it in any high-power laser. The main
conclusions may be formulated as follows.

(1) In the one-dimensional quasistationary approxima-
tion, pulse shortening is determined by nonlinearity and

dispersion, which are quantitatively characterized by the
B-integral (3) and parameter D (7). In ultrahigh-power lasers,
use is made, as a rule, of very thin nonlinear elements
(D < 0.05), and dispersion plays a minor role. In this case,
the pulse intensity increase to a value B =13 is nicely
described by the formula Iy /i, = 1 4 0.49B. The role of
dispersion comes down to an insignificant lowering of the
effective value of B (11). When the input pulse is not spectrally
limited, the Iou:/fin ratio does not change significantly (see
Fig. 9). When dispersive mirrors not only introduce a
quadratic spectral phase but also provide a Fourier-limited
pulse at the CafCA output, I, increases by about 10%.

(2) The spatial beam nonuniformity (especially for large
B) results in a lowering of focal intensity due to nonlinear
wavefront distortions and the lowering of the compression
factor at the beam periphery. The cross section-averaged
compression factor for a super-Gaussian beam of order
m =4 is lower by no more than 8% than the compression
factor for a flat-top beam. For close-to-Gaussian beams, it is
necessary to employ a nonlinear element in the form of a
negative lens (see Section 3.2.2) and correct the phase
aberrations with an adaptive mirror.

(3) The main limitation on the use of CafCA in high-
power lasers is small-scale self-focusing. A fundamentally
important special feature of SSSF in ultrahigh-power
femtosecond lasers in comparison with that in nanosecond
lasers is a significant increase in SSSF critical angle 0., (30) —
up to several tens of milliradians. This results in relaxation of
the heretofore inviolable limitation B < 2—3, whereby the
power may be increased by only 2-2.5 times. Furthermore,
large O, values permit using beam self-filtering in the free-
space propagation for SSSF suppression: the most ‘danger-
ous’ noise components (with 0 of the order of 0,,x) escape
from the beam aperture (see Section 4.3). For few-cycle laser
pulses (i.e., for pulses 25 fs or less in duration), an additional
mechanism of SSSF suppression appears: nonlinear disper-
sion— the intensity dependence of the group velocity (see
Section 4.4). Therefore, SSSF suppression by these and other
methods makes it possible to significantly increase the
admissible B-integral values and, accordingly, increase the
multiplicity of compression. To date, the efficiency of CafCA
has been experimentally demonstrated for B = 7 (see Fig. 19).

(4) The use of polymer materials (plastics) as nonlinear
elements substantially extends the capabilities of CafCA.
Plastics offer a number of advantages: a practically unlimited
aperture, a thickness of 100 um and even less, manufactur-
ability, low cost, and a wide variety of materials, which gives
hope for a diversity of properties, as well as the possibility of
SSSF suppression due to nonlinear element fragmentation
(replacement of one element by several elements with the
same total B-integral) and due to increasing the critical angle
0Oc:. In particular, a 2.6-fold compression of a 100-TW-power
pulse was obtained with the use of a plastic.

(5) Animportant advantage of CafCA is the possibility of
two-stage (or even multistage) compression (see Fig. 17),
since the total power enhancement factor depends on the
number of stages according to a power law (51), while the
total B-integral By, which determines all parasitic effects,
depends linearly on the number of stages. For By > 5, the
increase in the number of stages to two and, even more so, to
three makes it possible to obtain a significantly higher power
of the compressed pulse. Furthermore, it is easier to suppress
SSSF with a two-stage compression (see Section 5.3). Recent
experiments have demonstrated a five-fold pulse compres-
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sion in the two-stage CafCA, but the potentialities are
much wider.

(6) The experimental results of using CafCA are presented
in Figs 19 and 20 (see also Fig. 3 and Table 3). A range of
input pulse parameters from several TW in power up to 15J in
energy and from 30 to 80 fs in duration has been mastered to
date. A fourfold pulse compression has been demonstrated
with one stage and a fivefold one with two stages. Within the
next few years, one would expect the wide use of CafCA,
including the two-stage one, in petawatt and multipetawatt
lasers, in particular with 15-25-fs-long pulses, as well as in
kilojoule lasers with a pulse duration of several hundred
femtoseconds. Furthermore, a higher pulse compression
multiplicity (by several dozen times) will be achieved and
direct measurements will be made of a multiple increase in the
focal-plane intensity.
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