
Abstract. It is shown in this letter related to the paper by
M V Rybin and M F Limonov [Physics±Uspekhi 62 (8)
(2019)] that in dielectric sub-wavelength resonators of equal
volume but different shape no eigen-modes exist that would be
qualitatively different from those in dielectric spheres. In parti-
cular, there are no `supercavity modes' in dielectric cylinders
whose Q-factor would exceed that of similar modes in dielectric
spheres of the same volume.
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Pluralitas non est ponenda

sine necessitate.

Gulielmus Occamus

The existence of high-Q resonance modes in dielectric
resonators is long known [1±4], and these modes have many
practical applications [5±7]. At the same time, a remarkable
phenomenon was recently discovered in opticsÐ the exis-
tence of bound states in the continuum (BIC) [8, 9], which is
characterized by the complete absence of radiative losses in
nontrivial two-dimensional photonic structures and by the
exponential decay of fields with distance from them.

In this connection, the authors of paper [10] published in
Physics ±Uspekhi and also of papers [11, 12] reported the
existence of earlier unknown high-Q modes in finite-volume
subwavelength dielectric cylindrical resonators. They called
these modes `supercavity modes' and related them to BIC. It
is unlikely that the choice of a cylindrical resonator for
searching for high-Q modes can be called fortunate, because
the presence of edges in the general case leads to the
additional scattering of fields and a decrease in the Q-factor.
It will be shown below that no `supercavity modes' were
discovered in [10±12], but only cylindrical geometries closest
to a sphere were found in which mode Q-factors approach
(from below) the Q-factor of modes in a sphere.

Note, first of all, that when discussing the eigenstates or
eigenmodes of an electromagnetic field in finite volume
dielectric resonators I have in mind solutions of Maxwell's

equations in the absence of sources. These solutions should
exponentially decay at infinity and should be characterized by
eigenvalues. It is also quite important that the eigenvalues of
the modes are analytic functions of the resonator shape, and
this does not allow one to talk about the appearance of new
modes upon changing the shape of a subwavelength resona-
tor.

In the case of a circular cylinder, the eigenvalues are the
complex frequency, the azimuthal quantum number, and
parity along the cylinder axis, while the eigenmodes should
be characterized by the distribution of electromagnetic fields
exponentially decaying at infinity. It is important to bear in
mind that the field modes or states are the intrinsic
characteristics of the resonator, and therefore they should
not depend on the conditions of resonator excitation by
external fields. The particular characteristics of new `super-
cavity modes' exponentially decaying at infinity in the format
fon � o 0n � io 00n ; mn; pn; En�r�g are not presented in [10±12],
which no longer allows one to talk about their existence.

The authors of [10, 11] attempt to prove the existence of
earlier unknown `supercavity modes' indirectly by studying
the scattering cross section s�o� for plane waves with a
certain polarization incident on a dielectric cylinder using
the approximation of s�o� by the Fano profile with five
parameters. Leaving aside question about the accuracy of
measuring these five parameters from numerical experiments,
the authors [10, 11] reach a conclusion about the existence of
`supercavity' darkmodes based on a decrease in the scattering
cross section to zero (q � 0) with changing problem geometry
(the cylinder height). The conclusion about the relation of
`supercavity modes' to BIC is made based on the presence of a
symmetric line (q � 1) in the spectrum and the decrease in
the parameter g0 related by the authors to the Q factor of
`supercavity modes'. However, in this case, such an approach
is incorrect, because the decrease in the cross section is caused
by the fact that this mode is simply not excited in this
configuration. This in no way suggests the disappearance of
this mode or the appearance of new modes. Only under
specially prepared conditions, the absence of scattering can
serve as an evidence of existence of some special effects and
existence of bound states in the continuum in particular [8, 9].
It was rigorously shown in [13, 14] that the existence of BIC in
three-dimensional finite bodies is impossible, and therefore
the use of this concept to analyze modes in a cylinder [10, 11]
has no justification.

In fact, the vanishing of the cross section is related to the
orthogonality of the excited field and modes under study
(TE012 in [10, 11] and TM111 in [12]) for some geometries of a
cylinder at fixed polarization. For other polarizations of the
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exciting field (for example, the azimuthal polarization), the
authors of [10, 11] would find no features upon scattering
from the same cylinder.

The obvious fact that a change in excitation conditions
can reduce the cross section to zero and lead to the `vanishing'
of modes is illustrated by the dependence of the normalized
radiation power G=G0 of a dielectric sphere with radius a on
the orientation of the exciting dipole located at a distance r
from the center. This dependence is described by the exact
analytic expression [15]
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where c is the angle of dipole deviation from the radial
direction, z � kr, and qn, and pn are the Mie coefficients for
the TM and TE modes, respectively [15].

The plot presented in the figure shows that, depending on
the dipole orientation, various line shapes appear, including
the shape corresponding to the decrease in the TE mode
intensity to zero (q � 0) and the symmetric line shape
(q � 1). As a whole, this figure is very similar to Fig. 9a
from [10], Fig. 3a from [11], and Fig. 3a from [12]. However,
this, of course, does not mean that (as the authors of [10±12]
believe) something occurs with modes and they are related to
BIC. In fact, modes do not change at all with changing
excitation, because they are determined only by the poles of
Mie coefficients qn and pn. Similar plots take place upon
excitation of a sphere by axially symmetric beams.

The absence of any new `supercavity modes' is also
demonstrated in Fig. 9 from [12] where the modes have no
features in the region of the predicted appearance of `super-
cavity modes'.

The authors of [11] believe that their most important
discovery is the demonstration of the fact that the Q-factor of
a `quasi-BIC-mode' of a silicon resonator can reach the value
QTE012 � 200, which is unachievable for usual modes in a
sphere. However, this statement is incorrect: for a mode with
a similar spatial structure in a sphere of the same volume (see
the structure called the `supercavity mode' in Fig. 1 in [11]),
QTE301 � 250, which considerably exceeds the Q-factor of
`supermodes'.

The increase in the modeQ-factor by the law e3:2 (claimed
in [11] as a sign of `supercavity modes') is typical and well
known formodes of dielectric resonators, not with the highest
Q-factors, as follows from theoretical papers [2, 4] and is also
seen in Fig. 9 in [12]. The TM modes with m � 0 [3] (see also
blue circles in Fig. 9 in [12]) have the highest Q-factor.
According to the exact Mie theory, the Q-factors of similar
axially symmetric TMmodes in a sphere at high permittivities
can be asymptotically described as Q1 � e5=2=2=X 3

1 ,
Q2 � 18e7=2X 5

2 , Q3 � e9=22025=2=X 7
3 , etc., where Xn is the

root of a spherical Bessel function jn�Xn� � 0. For e � 80, the
Q-factors of these resonances areQ1 � 237,Q2 � 13291, and
Q3 � 490632 for ka � 0:4947, ka � 0:644, and ka � 0:778,
respectively. The Q-factors of these usual TM modes in a
sphere with n � 2, 3 for comparable volumes of dielectric
resonators significantly exceed Q-factors assigned to `super-
cavity modes' in a cylinder (QTM1:1:1 � 103 (see red dots in the
green circle in Fig. 9 in [12])), namely, assigned, because not
even the mode structure found by the authors themselves
contains any `supercavity modes' (see Fig. 9 in [12]) (!), and
therefore the prefix `super' can in no way be justified in this
case.

Thus, no new `supercavity modes' different from those
already known for a sphere have been found in papers [10±
12], and their relation to BIC modes has not been shown.
Papers [10±12] containing statements and incorrect results
concerning `superresonance' quasi-BIC-modes would never
see the light of day if the authors, as is understood,
preliminarily studied the extensive literature on this subject
and followed the known methodological `Occam's razor'
principle, according to which entities should not be multi-
plied without necessity.

For real new modes to appear, a new resonator physics is
required. In particular, fundamentally newmodes (compared
to modes of standard dielectric resonators) appear if the
resonator is made of unusual materials, for example,
metamaterials with a negative refractive index [16] or a chiral
metamaterial [17]; however, this is another story.
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Figure. Radiation power of a dielectric sphere as a function of the size

parameter ka and orientation c of the exciting dipole for z � 80.
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