
Abstract. The quasiclassical Green's function for the Dirac
equation for an arbitrary localized potential is derived system-
atically using the Fock±Schwinger proper time method. The
method essentially consists of exponentially parameterizing
the propagator and disentangling the operator expressions. It
allows calculating both the leading quasiclassical contribution
and the first quasiclassical correction to the Green's function.
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1. Introduction

Quantum electrodynamic (QED) processes in external fields
can be conveniently described in terms of the Furry
representation [1]. Because this representation uses Green's
and wave functions in external fields to take field effects into
consideration, obtaining convenient Green's function repre-
sentations for wave equations in an external field becomes a
major task. Simple representations significantly facilitate
calculating cross sections for various processes in such
fields, both analytically and numerically.

Exact Green's functions for relativistic equations in a
spherically symmetric potential typically contain sums over
angular momenta, which, in contrast to the nonrelativistic
case, do not permit a closed-form expression. The presence of
such sums greatly complicates the calculation of high-energy
cross sections dominated by large (typically lchar � e=m4 1)
angular momenta. The poor convergence of the angular
momentum sums makes it challenging to use exact solu-
tions. This is remarkably exemplified by the photoproduc-
tion of e�eÿ pairs in a Coulomb field, a process whose exact
cross section was obtained as a sum over angular momenta

[2]. Tabulating this expression is computationally challenging
to the extent that only numerical results for photon energy
o4 12:5 MeV have been obtained.

Fortunately, high-energy calculations can be done in the
quasi-classical approximation, thus allowing external field
effects to be introduced exactly. The idea is basically as
follows. For higher-than-mass particle energies, the domi-
nant contribution to the cross section comes from the small
angles y between the momenta of the initial and final
particles, implying large values lchar � 1=y4 1 ��h � c � 1�
of the characteristic angular momenta that dominate the
cross section. The quasiclassical Green's function includes
the contribution from large �l4 1� angular momenta, but
disregards the angular momenta of the order of unity, l � 1.
The quasiclassical approach is remarkable in that it allows
deriving not only the leading term but also the first
quasiclassical correction (in y). Developing the method of
quasiclassical Dirac equation Green's functions for external
atomic fields has led to a breakthrough in the theoretical
description of fundamental QED processes in atomic fields.
The reader is referred to Ref. [3] for a recent review of
quasiclassical results.

The quasiclassical Green's function for the Coulomb field
was first obtained in Refs [4, 5] (by directly summing partial
contributions from large angular momenta) and for a
spherically symmetric screened Coulomb potential in Refs [6,
7]. The Green's function for an arbitrary (not necessarily
spherically symmetric) localized potential was obtained in [8]
using a certain approximation when solving the differential
equations. The first quasiclassical correction to the Coulomb
potential Green's function was obtained in Ref. [9] from the
exact Green's function by summing the partial contributions.
Quasiclassical corrections to the Green's function for an
arbitrary localized potential were obtained heuristically in
Refs [8, 10].

In Ref. [11], the Green's function was evaluated in the
leading quasiclassical approximation for the superposition of
an atomic field and a laser field by applying the Fock±
Schwinger proper time method and subsequently disentan-
gling operators. The operator approach proved to be
convenient and easy to use. In this paper, we discuss its
application to evaluating the quasiclassical Dirac equation
Green's function for an arbitrary atomic potential, including
the first quasiclassical correction.
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2. Green's function derivation

The Dirac equation Green's function G�r; t j r 0; t 0� in a static
external potential V�r� is the solution of the equation

�P̂ ÿm�G�r; t j r 0; t 0� � d�rÿ r 0�d�tÿ t 0� ; �1�

where P̂ � Pmgm, gm are the Dirac gammamatrices, andPm �
�iqt ÿ V�r�; iHH�. The Green's function can be written as

G�r; t j r 0; t 0� �
�
r; t

���� 1

P̂ ÿm� i0

���� r 0; t 0� : �2�

It is shown in [12, 13] that the amplitudes of various QED
processes are conveniently calculated using the Green's
function of the squared Dirac equation D�r; t j r 0; t 0�. This
Green's function is related to the usual Green's function
G�r; t j r 0; t 0� by

G�r; t j r 0; t 0� � �P̂ �m�D�r; t j r 0; t 0� ; �3�
D�r; t j r 0; t 0� � 1

P̂ 2 ÿm 2 � i0
d�rÿ r 0�d�tÿ t 0� :

To use the Fock±Schwinger proper time method, we
represent the propagator in the form

1

P̂ 2 ÿm 2 � i0
� ÿi

�1
0

ds exp
�
is�P̂ 2 ÿm 2 � i0�� : �4�

For convenience, we express the propagator exp �ÿis P̂ 2� as
the product of two factors,

exp �is P̂ 2� � L�s� exp �is P̂ 2
0 � ;

L�s� � exp �is P̂ 2� exp �ÿis P̂ 2
0 � ; �5�

P̂ 2 � ÿp0 ÿ V�r��2 ÿ p 2 � iaHHV�r� � P̂ 2
0 ÿ ~V�r� ;

~V�r� � 2p0V�r� ÿ iaHHV�r� ÿ V 2�r� ; P̂ 2
0 � p 2

0 ÿ p 2 ;

where a� g0c. L�s� is the interaction operator, which
becomes unity for V�r� � 0. We note that, unlike p and p0,
the operator aHH in Eqn (5) acts only on the potential V�r�.

The operator L�s� can be found using the differential
equation

d

ds
L�s� � L�s� exp �is P̂ 2

0 �
�ÿi ~V�r�� exp �ÿis P̂ 2

0 �
� ÿiL�s� ~V�rÿ 2sp� : �6�

Here, the following relation has been used:

exp �ÿi b p 2� g�r� � g�rÿ 2 b p� exp �ÿi b p 2� : �7�

The solution of Eqn (6) can be represented in the form of a
chronologically ordered exponential,

L�s� � P exp

�
ÿis

�1
0

~Vx dx

�
; �8�

where for any operator A, Ax � A�rÿ 2sx p�.
Because ~Vx and ~Vy do not commute for x 6� y, transform-

ing the chronologically ordered exponential into an ordinary
exponential gives rise to an infinite series of commutators,

L�s� � exp

�
ÿis

�1
0

~Vx dx� s2

2

�1
0

dx

�x
0

dy � ~Vx; ~Vy� � . . .

�
:

Each additional commutator is suppressed by a factor
m=e. This can be explained qualitatively as follows. Each
additional commutator is proportional to Planck's constant
�h, which arises from the commutation relation between the
momentum and the corresponding coordinate. Because the
exponential should contain a dimensionless quantity, a
nondimensionalizing factor 1=��hl � arises, where l is the
dimensionless angular momentum of the electron. For
ultrarelativistic particles with energy e, the moment of
momentum is typically lchar � e=m, giving 1=l � m=e.

To calculate the first quasiclassical correction, it suffices
to consider only one commutator,

L�s� � exp

�
ÿis

�1
0

~Vx dx� s 2

2

�1
0

dx

�x
0

dy � ~Vx; ~Vy�
�
;

� ~Vx; ~Vy� � 2 is�xÿ y�HH ~Vx HH ~Vy ÿ 2i �HHVx � HHVy�R ;
�9�

where R � ÿg 5a, g 5 � ig0g 1g 2g 3.
The dominant contribution to the cross section for high

energy processes comes from the following range of the
arguments of the Green's function:

echar � �tÿ t 0�m 2 4m ; z; z 0 � echar
m 2

;

r; r 0 � 1

m
; tÿ z; t 0 ÿ z 0 � 1

echar
;

where echar can be interpreted as a characteristic particle
energy, the axis z is in the direction of rÿ r 0, and q and q 0

are the coordinates of the vectors r and r 0 that are
perpendicular to the z axis.

At this point, it is convenient to pass from the variables t
and z to the light-cone variables f � tÿ z and T � �t� z�=2.
Then

p0 � iqt � ÿpf ÿ pT
2
; pz � ÿiqz � ÿpf � pT

2
; �10�

pf � ÿiqf ; pT � ÿiqT ; p? � ÿiqq ; P̂ 2
0 � 2pfpT ÿ p 2

? :

Because

T � z�O

�
1

echar

�
� z

�
1�O

�
m 2

e 2char

��
;

T 0 � z 0 �O

�
1

echar

�
� z 0

�
1�O

�
m 2

e 2char

��
;

we can change the variables as z! T (in the potential V)
and HH! HHq � ezqT. The dependence on f and f 0 is
entirely contained in d�fÿ f 0�. Using the integral
representation of Dirac's d function, the Green's function
D�f; T; q jf 0; T 0; q 0� can be rewritten as

D�f; T; q jf 0; T 0; q 0�

�
�
de
2p

exp
�ÿie�fÿ f 0��D�T; q jT 0; q 0; e� ; �11�

where the function

D�T; q jT 0; q 0; e�

� ÿ i

2p

�1
0

ds L�s� exp �ÿis�2epT � p 2
? �m 2��

� d�qÿ q 0� d�Tÿ T 0� �12�
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is related to the fixed-energy Green's function by

D�r j r 0; e� �
�
d�tÿ t 0� exp �ie�tÿ t 0��D�r; t j r 0; t 0�

�
�
d�tÿ t 0� exp �ie�tÿ t 0�� � de 0

2p
exp

�ÿie 0�fÿ f 0��
�D�T; q jT 0; q 0; e 0� � exp

�
ie�zÿ z 0��D�T; q jT 0; q 0; e� :

�13�
Here, we have used the fact that D�r; t j r 0; t 0� depends on t
and t 0 only though tÿ t 0, because V�r� is independent of t.
Because practical applications require knowing the Green's
function D�rjr 0; e�, we first calculate the function
D�T; q jT 0; q 0; e� and then use relation (13).

We proceed by applying the operator
exp

�ÿis�2epT � p 2
?�
�
in Eqn (12) to the d function,

exp
�ÿis�2epT � p 2

?�
�
d�Tÿ T 0� d�qÿ q 0�

� ÿ i

4ps
d�Tÿ T 0 ÿ 2es� exp

�
i
�qÿ q 0�2

4s

�
: �14�

Here, we have used the relations

exp �ÿitpT� f �T � � f �Tÿ t� exp �ÿitpT� ; �15�

exp �ÿib p 2
?� g�q� �

�
dq

ip
exp �iq 2� gÿq� 2

���
b

p
q
�
; �16�

which are valid for b > 0 and for any functions f �T � and
g�q�, where q is a two-dimensional vector perpendicular to the
z axis. The second, less trivial, relation can be proved using
the Fourier transform of the function g�q�,

exp�ÿib p 2
?� g�q� � exp �ÿib p 2

?�
�
dq exp �iqq� ~g�q�

�
�
dq exp �ÿibq 2 � iqq� ~g�q�

�
�

d%%%

�2p�2 g�%%%�
�
dq exp

�ÿibq 2 � iq�qÿ %%%��
� ÿ i

b

�
d%%%

4p
g�%%%� exp

�
i�%%%ÿ q�2

4b

�
: �17�

Passing from the variable %%% to q � �%%%ÿ q�=�2 ���
b
p �, we obtain

identity (16).
For compactness in what follows, instead of L�s�, we

consider the operator

L0�s� � exp

�
ÿ2ise

� 1

0

Vx dx

�
; �18�

which corresponds to the leading quasiclassical approxima-
tion for the Green's function of the Klein±Fock±Gordon
equation. All of the algebra involved is also valid forL�s�, but
leads to more cumbersome intermediate results.

Substituting L0�s� as given in Eqn (18) and Eqn (14) in
Eqn (12), we obtain the Green's function for theKlein±Fock±
Gordon equation

D0�T; q jT 0; q 0; e�

� ÿ
�1
0

ds

4ps
d�Tÿ T 0 ÿ 2es� exp

�
i
�qÿ q 0�2

4s
ÿ ism 2

�
� exp

�
ÿ2ise

�1
0

V
ÿ
qÿ x�qÿ q 0�ÿ2sxp?;Tÿ x�TÿT 0��dx�:

�19�

Next, we use Eqn (7) to obtain�1
0

V
�
qÿ x�qÿ q 0� ÿ 2sxp?; Tÿ x�Tÿ T 0�

�
dx

�
�1
0

exp

�
ÿ isxp 2

?
1ÿ x

�
V
�
qÿ x�qÿ q 0�; Tÿ x�Tÿ T 0�

�
� exp

�
isxp 2

?
1ÿ x

�
dx : �20�

The arguments of the Green's functionD0�T; q jT 0; q 0; e�
for an ultrarelativistic energy e typically have the values
jT j; jT 0j � �e=m 2�4 jrj; jr 0j � 1=m. Because the operator
p? in Eqn (20) acts only on the atomic potential, it is only
near the origin that the operator exp

��isxp 2
?=�1ÿ x��

contributes significantly. If T and T 0 have the same sign,
then the particle does not fly near the center of the potential
and the operators exp

��isxp 2
?=�1ÿ x�� can be replaced by

unity, which corresponds to the eikonal approximation. For
T > 0 and T 0 < 0, the above arguments allow replacing x by
x0 � T=�Tÿ T 0� in the operator exp

��isxp 2
?=�1ÿ x��.

Then, D0�T; q jT 0; q 0; e� becomes

D0�T; q jT 0; q 0; e� � ÿ
�1
0

ds

4ps
d�Tÿ T 0 ÿ 2es�

� exp

�
i
�qÿ q 0�2

4s
ÿ ism 2

�
exp

�
ÿis x0

1ÿ x0
p 2
?
�

� exp

�
ÿ2ise

�1
0

V
�
qÿ x�qÿ q 0�; Tÿ x�Tÿ T 0�

�
dx

�
: �21�

Using relation (16), we obtain the following expressions
for D0�T; q jT 0; q 0; e�:

D0�T; q jT 0; q 0; e� � i

�1
0

ds

4p2s
d�Tÿ T 0 ÿ 2es�

� exp

�
i
�qÿ q 0�2

4s
ÿ ism 2

� �
dq exp

�
iq 2 ÿ 2ise

�1
0

Vx dx
�
;

Vx � V
�
qÿ x�qÿ q 0� � 2

�����������������������
x0�1ÿ x0�s

p
q ; Tÿ x�Tÿ T 0�

�
:

�22�

We note that momentum operators are already absent from
this expression. Integrating over s, we obtain the leading
quasiclassical approximation for the Klein±Fock±Gordon
equation Green's function D0�T; q jT 0; q 0; e�,

D0�T; q jT 0; q 0; e� � iy�s0�
4p2jTÿ T 0j exp

�
i
�qÿ q 0�2

4s0
ÿ im 2s0

�
�
�
dq exp

�
iq 2 ÿ 2is0e

�1
0

Vx dx

�
; �23�

where s0 � �Tÿ T 0�=�2e�.
It is thus seen that the term proportional to q in the atomic

potential arises because the operators q and p? do not
commute. Therefore, integration over the two-dimensional
vector q can be interpreted as taking the quantum fluctuations
near the rectilinear quasiclassical trajectory of an unltrarela-
tivistic electron into account. We recall that the term
proportional to q in the atomic potential should be omitted
for x0 < 0 and x0 > 1; in this case, the quasiclassical Green's
function changes to an eikonal one.

Similar arguments can be used to find the Green's
function for the squared Dirac equation with the first
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quasiclassical correction, giving

D�T; q jT 0; q 0; e� � d0�T; q jT 0; q 0; e�
� ad1�T; q jT 0; q 0; e� � R d2�T; q jT 0; q 0; e� ;

d0�T; q jT 0; q 0; e� � D0�T; q jT 0; q 0; e�

�
�
1� i4e 2s 3

�1
0

dx

�x
0

dy �xÿ y�HH?Vx HH?Vy

�
;

d1�T; q jT 0; q 0; e� � ÿ i

2e
HHd0�T; q jT 0; q 0; e�

ÿ s

2e
D0�T; q jT 0; q 0; e�

�1
0

dxHHV 2
x ; �24�

d2�T; q jT 0; q 0; e� � ÿis 2D0�T; q jT 0; q 0; e�

�
�1
0

dx

�x
0

dy �HHVx � HHVy� ;

HH � HHq � HHq 0 � ez�qT � qT 0 � ;

Vx � V
ÿ
qÿ x�qÿ q 0� � 2

�����������������������
x0�1ÿ x0�s

p
q ; Tÿ x�Tÿ T 0�� ;

where Vy is obtained from Vx by replacing x! y, and the
function D0�T; qjT 0; q 0; e� is defined in Eqn (23). We note
that, unlike Eqn (9), the first quasiclassical correction to d0
does not contain longitudinal gradients, because the term
qTVxqTVy cancels the termV 2

x in ~Vx after integration by parts
[see Eqn (5)].

For practical calculations, it is convenient to change to
space±time coordinates, leading to the following form of the
Green's function for the squared Dirac equation:

d0�r2; r1je� � i exp �ikr�
4p2r

�
�
dQ

�
1� ir3

2k

�1
0

dx

�x
0

dy �xÿ y�HH?V�Rx�HH?V�Ry�
�
T ;

d1�r2; r1je� � ÿ i

2e
HHd0�r2; r1je� ÿ i exp �ikr�

16p2e 2

�
�
dQ

�1
0

dxHHV 2�Rx� T ;
�25�

d2�r2; r1je� � ÿ r exp �ikr�
16p2e 2

�
�
dQ

�1
0

dx

�x
0

dy
�
HHV�Rx� � HHV�Ry�

� T ;
T � exp

�
iQ 2 ÿ ir

�1
0

dxV�Rx�
�
; r � r2 ÿ r1 ;

HH � q
qr1
� q
qr2

; Rx � r1 � xr�Q

����������
2r1r2
kr

r
; k �

�����������������
e 2 ÿm 2
p

:

This result is the same as the one obtained inRef. [10]. The
accuracy of the quasiclassical Green's function (25) is as
follows: the functions d0�r2; r1je� and d1�r2; r1je� are found
including the first correction in m=e and r1; 2=r1; 2, and the
function d2�r2; r1je� is obtained in the first-order approxima-
tion, because this term is suppressed in itself. This accuracy is
sufficient for evaluating the cross section of various QED
processes with the first correction in m=ei and yi included,
where ei is the particle energy and yi are the angles between the
momenta of the initial and final particles.

3. Conclusion

The Fock±Schwinger proper time method has been used here
to derive the quasiclassical Green's function for the Dirac
equation in an arbitrary atomic potential with the inclusion of
the first quasiclassical correction. Rather simple and user-
friendly, the method also allows obtaining the high-energy
Green's function for other external field configurations.
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