
Abstract. It is shown that the primary goal of robot±human
collaboration is to ensure dynamic stability under varying en-
vironmental conditions. Compared with the robotic computer
`brain', its human counterpart has a multilevel hierarchical
organization, with information processing occurring at all
levelsÐ from the quantum up to the social. Humans them-
selves set goals and improve the virtual model synthesized by
their brains. The human brain can work by simultaneously using
both classical deterministic logic and dialectical probabilistic
logic.

Keywords: android robot, adaptation, creativity, memory, hierar-
chy of organization, classical and probabilistic logic

1. Introduction

1.1 Ambivalent attitude toward robotics
We are witnesses of exponential progress in robotics
engineering. This article explores the comparison between

the artificial intelligence (AI) of creative android robots 1

(CARs) and human intelligence and how far the similarities
go. Developers of CARs hope that machines of this class will
mark the greatest achievement of humankind in science and
technology. But society adopts a mixed attitude toward this
work.

On the one hand, intelligent robots are expected to be
capable of doing a variety of work much better, faster, and at
a lower cost than humans. This may result in workplace
reduction and even a so change in the social structure of
human society that its stability will break. Moreover, defense
and law enforcement authorities may use CARs to achieve
their specific purposes by force interventions. Ideas of hybrid
systems integrating the human brain and AI are becoming
increasingly popular. For example, Neuralink Corp. is
developing brain±computer interfaces. Such systems are
likely to bring forth a caste of `superpolicemen' and `super-
soldiers'. The main risks associated with the implementation
of these projects are potential faults and failures of hardware
and software, which cannot be ruled out even though modern
software programs and computers usually operate more
reliably than humans, and when duplicating do not make
mistakes. Nevertheless, they are vulnerable to hacker attacks
and other chance interferences or intentional misadjustment.
The high operation speed of CARs does not leave time for an
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1CreativityÐthe ability to produce original and unusual ideas or to make

something new or imaginative (Cambridge English Dictionary). Android

(Greek a
;
n�ZrÐ human + suffix-old meaning `resembling', `like' =

humanlike)Ða humanoid robot or synthetic organism designed to act

like a human.
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operator to manage the consequences of a failure, which may
have a disastrous outcome. The sets of dangers associated
with the development of creative AI are frequently likened to
Pandora's box.

On the other hand, the future is created today. There is
reason to believe that CAR programs will interact with us
without malicious intent, being under strict human control,
and the robot±human collaboration will bring great benefits to
humankind. There is no shortage of predictions about how
artificial intelligence is going to reshape where and how people
work in, say, 2040, to say nothing of 2100. It is impossible to
predict the relationships between people and new generations
of supercomputers implementing AI and CARs, nor can
humans' voracious curiosity be limited and the scientific
advancement it promotes stopped. Attempts to prohibit
research in certain fields made in the past (e.g., artificial
fertilization of a human ovum or gene manipulation) slowed
the development of science but could not arrest it [1]. Robotics
engineering is gaining momentum in all developed countries
(Fig. 1).

The process is so rapid that this diagram looks obsolete.
China has made considerable progress in this field in the last
3±4 years. The majority of technical universities in Russia are
involved in a national robotics engineering program, together
with five academic research institutes and seven scientific-
production associations. Figure 2 illustrates the expected
growth in the global robotics market as estimated by the
Tractica consulting firm in 2016. It suggests an exponential
growth in sales volume.

1.2 Types of robots and forecasts for their development
In 2017, Internet users could see a dance performed
simultaneously by 1,069 Dobi robots (WL Tech) in the city
of Guangzhou (South China). According to Mashable.com,
the robots' movements were controlled by an integrated
system. This show involved a world record-breaking number
of simultaneously dancing robots (the previous world record
was 1,007 robots). Entertainment robot shows are becoming
common practice, boosted by ambitious developers in a rage
for new records. Dobi robots are capable of more than mere
dancing and singing; they can imitate boxing and kung fu.

Operator-driven robots are nothing more than machines
controlled from a remote desktop. Such control is easy to
perform, even by a child who knows how to play with radio-
controlled toys.

Exoskeletons are special devices connected with moving
parts of the human body to imitate their movements with
enhanced power and improved accuracy. Exoskeletons are
finding increasingly wide application in medicine as disability
aids for peoples with pathologies of spatial movement. They
are also used for remote manipulations of objects in
aggressive media and in activities requiring a high accuracy
of micromovements, e.g., in microsurgery.

The performance of these devices can be controlled by
electric potentials coming to the muscles from the central
nervous system, excluding tremors. The potentials are
transferred from two nerve endings of antagonistic muscles
(flexors and extensors) of hands, legs, and fingers (toes).
In this country, V S Gurfinkel' and A E Kobrinskii and
co-workers created a biocurrent-driven `artificial hand' as
early as the 1960s±1970s [2, 3]. E B Babskii developed a
cardiac pacemaker implanted in the patient's chest cavity
and powered by heartbeats via an atrial potential
enhancer [4, 5].

Today, robots successfully imitate human movements,
recognize individual faces in a crowd, reproduce the voice and
facial expressions of a concrete person, and help to design
programmed dialogues in the form of determinate question
$ determinate answer. Robots can imitate the behavior of a
secretary meeting visitors, a waiter taking orders, an exhibi-
tion guide, an attendant in a hospital or a senior care home, a
lecturer giving pre-programed answers to listeners' questions,
a sales person, etc. [6].

Moreover, virtual reality (VR) headsets and mixed
surrounding reality±VR headsets operating via optical and
acoustic receptors of the wearer in the virtual (artificial)
world, as opposed to the real one, are becoming increasingly
popular. The former is programed by a computer. The
creation of virtual reality is finding application in the design
of simulators for training astronauts, pilots, flight dispatch-
ers, surgeons, and other professionals, as well as in project
engineering and architecture [7].

Nanorobots and microrobots make up a special class of
robotic devices implanted into the human body for the
purpose of medical diagnosis or microsurgery, and for the
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Figure 1. Diagram illustrating activity of 50 robotics companies in ten

countries as of 2015 (after Editors of the site roboticsbusinessreview.com).
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targeted delivery of medications to affected organs (tissues).
Microcapsules (nanoplatforms) are currently available that
contain biologically active matter or the so-called smartdust
exchanging information and merging into clusters for a
multitask operation [8]. Another class of nanosystems is
represented by nanomachines [9], such as the very dangerous
self-reproducing grey goo [10].

The following is just one example from our experience.
Attempts to create micro- and nanomachine technology date
back more than 40 years [11]. By way of illustration, we
realized simple variants of such technologies in the 1980s for
the development of a gas-transporting blood substitute based
on the ability of 30±70-nm particles of a perfluorocarbons
mixture to transfer oxygen from erythrocytes remaining after
the loss of blood into tissues. An erythrocyte of arterial blood
as large as 100 particles of perfluorocarbon emulsion serves as
an oxygen carrier (Sherpa). Perfluorocarbon particles peri-
odically circulate between erythrocytes and tissues in pulsed
hydrodynamic plasma flows. They form linear structures
resembling `strings of pearls' that transfer oxygen from
erythrocytes to the vascular wall following the Fick law,
whence it diffuses into the tissue [12].

As far as creative android robots are concerned, the realm
of their application in the future is aggressive media or
extraordinary and emergency situations, including long-
range space flights. CARs are expected to be superior to
humans not only in terms of workspeed, accuracy of
performing various operations, and power indicators but
also in terms of cognitive potential. Although the ability of
CARs to self-formulate the goal must be restricted to avoid
problems in the robot±human collaboration (see Sections 5.2
and 5.3).

There are many unresolved problems associated with this
class of robots. Their development implies the necessity of
joint physical, technical, and neurophysiological research. All
the processes for which an algorithm can be written are
realizable in AI systems. In this context, the following

questions arise: ``Are there processes that resist mathemati-
cal description and algorithmization? Is there a limit to the
similarities between CARs and humans?''

In addition, there is another interesting scientific problem
concerning our ability to successfully control neurodegenera-
tive diseases. Such control is impossible unless we fully
understand how the human brain functions and how humans
think. Such understanding would provide a basis for the
creation of AI and CARs with human-like intelligence and
the formulation of limits on similarities between robots and
humans.

In medical practice, schizophrenia is interpreted as the
transition of brain work to the chaotic regime. The term
apophenia was coined in 1958 by the German psychiatrist
Klaus Conrade (Greek a

;
pojai�noÐexpose, reveal) to

describe the preoccupation with long-standing psychotic
delusional ideas. Such a condition is associated with the
early stage of schizophrenia. The human brain in search of
solutions necessitated by a difficult situation always acts at
the order±chaos borderline, i.e., has to choose between
classical and probabilistic logic. A disturbance of cognitive
processes in the brain entering the stochastic regime and
trying in vain to get out of this state is accompanied by the
development of abnormal emotional reactions.

The journal Physics±Uspekhi has published many articles
with a neurophysiological slant [13±22]. The present review
differs from them in that it is focused on the logic of
processes proceeding in the human brain and the AI of
creative robots.

Forecasting is known to be a thankless occupation,
because predictions rarely come true as a consequence of
system nonlinearity. Nonetheless, here is one of the variants
(Table 1) proposed in 2016 based on the Multidimensional
Information Varying Adaptive Reality program complex
(MIVAR, Russia), with reference to a variety of expert
judgements and propositions made in various years (see the
site: www.robotrends.ru).

Table 1. Prospects of development of robotics engineering for the period up to 2040.

Year Expected result Reference with the year of prognosis

2018 Robot will pass driving permit test Oleg Varlamov, MIVAR president, 2016

2019 90% of institutions will have a staff member holding the position of chief data
ofécer (CDO)

Cortner, 2016

2020 30 thousand unscrewed civil aerial vehicles will be in use in the USA US Federal Aviation Administration, 2012

2022 Robots will be capable of understanding human behavior and responding to it Expert and analytical report of Rosbusinessconsulting
(RBC), 2014

2024 Commercially available motorcars will be capable of reacting to changes in the
traféc situation and moving autonomously

IHS Automotive, 2014

2025 Application of industrial robots will reduce labor payment expenditures
by 16%

Boston Consulting Group, 2015

2028 First autonomous medical microrobots will be capable of independent
directional movements in a patient's body

``A Roadmap for US Robotics: From Internet to
Robotics'', 2013

2029 AI will be capable of self-learning, understanding jokes, and imitating
emotional expressions

Ray Kurzweil, Google's director of engineering, 2014

2030 Commercial androids will have an outer appearance and capabilities identical
to those of the human

Expert workshop Trends and Prospects of Robotics

Development in Russia, 2014

2032 Robots will exceed intellectual potential inherent in humans Dave Evans, Cisco chief futurist, 2011

2035 In Japan, robots will master 49% of the 600 currently existing professions Nomura Research Institute, 2015

2040 Law-enforcement robots will exist Professor Noel Sharkey, University of Sheféeld, 2012
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1.3 Main differences between robots and humans today
Evidently, existing robots are electromechanical machines,
while living organisms represent aqueous-based physico-
chemical `machines'. The brain and its functions devel-
oped in the course of evolution via block-hierarchical
selection mechanisms [23, 24] in close connection with the
development of the whole organism and environmental
changes on our planet. An important role in this process
was played by the internal environment of the organism,
especially the dialogue between the heart and the brain.
This fact if often disregarded when comparing the robot's
AI and human intelligence. The heart generates very
apparent acoustic and electromagnetic fields, the topogra-
phy of which on the surface of the body is readily
distinguished using modern methods of spatial cardiolo-
gic auscultation (Latin auscultatioÐlistening) and elec-
trocardiography.

Acoustic waves are known to be longitudinal elastic
oscillations of pressure in gases, liquids, and solids. Each

particle in liquids and solids is liable to oscillate around the
equilibrium point (standing waves). However, single fluctua-
tions in nonlinear media can produce a solitary wave
behaving like a particle. In this case, a special type of
waveÐ the solitonÐis likely to appear, passing through
one another and propagating over large distances [25, 26].
Solitons differ from harmonic waves (see Section 2 for
details).

There are still many differences between the robot and the
human in both the mode of adaptation to the ambient
environment and intellectual creation (Table 2).

The data in Table 2 reflect the current situation. All
characteristics of living systems occur separately in nonliving
ones [23]. However, the former, unlike the latter, are capable
of adaptation to environmental changes. The main prerequi-
site for this capability is the dynamic stability of the system
residing nonequilibrium state [27]. The processing of informa-
tion originating from the outside occurs at all hierarchical levels
of the organism.

Table 2. Comparison of the main characteristics of robots and humans.

No. Main characteristics Robot Human Superiority*

General characteristics

1 Principle of organization Electromechanical machine Aqueous-based physicochemical
`machine'

ì

2 Force exertion Practically unlimited Limited R

3 Fatigability None Takes place R

4 Eféciency 60 ë 90% 15 ë 20% R

5 Ability to self-formulate the goal None Takes place H

6 Social facilitation** Possible Takes place H

7 Self-association into groups Achieved in some cases (e.g., drone
swarms)

Takes place H

8 Self-reproduction Possible Takes place H

9 Number of hierarchical levels for processing
environmental information

Still limited and fewer than in
humans

Limited but greater than in existing
robots

H

Comparative characteristics of artiécial robotic and human brains

10 Characteristic time of reaction formation Less than 1 ms � 0:1 s R

11 Principle of operation Discrete Analogëdigital ì

12 Substrate underlying logic elements Solid passive medium Liquid, active medium ì

13 Plasticity Low High H

14 Substrate behavior Stable Pulsed ì

15 Thermal stabilization Distributed, mostly air cooling Local liquid cooling H

16 Interaction with the system's internal envir-
onment

From top to bottom Hierarchical and cyclic with topë
down and bottomëup feedback

H

17 Noise impact Disturbance in operation Noise as a creative factor providing
state-to-state transitions

H

18 Asymmetric responses to environmental
changes

Absent, incapable of creativity Capable of creativity H

19 Operation logic Deterministic (classical) logic Borderline of classical/probabilistic
logics

H

* Notations: Rìrobot, Hìhuman.
**Facilitationì the mode of control based on a consensus search for assembling system's elements, thus enhancing the stability of the system as a
whole. Facilitation process is underlain by a combination of symbiotic and competitive dualism, known in philosophy as ``the unity and struggle of
opposites''.
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2. Creativity problem

2.1 Pyramid of hierarchical levels
in the organization of living systems
At least nine hierarchical levels are distinguishable in living
systems (Fig. 3).

Construction of a mathematical model of a hierarchical
system implying unification of all the levels into a whole
remains to be accomplished. It seems that results of interac-
tions among only nine levels are not difficult to determine,
bearing in mind the small number of all interlevel links given
by the relationship

Q � m�mÿ 1� ; �1�

whereQ is the number of links, andm is the number of levels;
therefore, atm � 9, one hasQ � 72. However, the situation is
much more complicated than that, because the number of
interacting elements at each level is enormously large due to
the fact that they form networks.

Numerous attempts have been made to unite the levels
into a single system. For example, the idea of the `hypercycle'
suggested by Manfred Eigen based on the analysis of
macromolecules dates back to the 1970s [28, 29]. The essence
of this notion is illustrated in Fig. 3b: the reproduction of
elements in a living system is underlain by template-mediated
replication of DNA. This cycle can be labelled by the letter I
with a subscript. There can be many such microcycles: from 1
to n.

Autonomous replication within each cycle results in
template-to-template rewriting: negative to positive, positive
to negative, etc. To ensure mutual regulation of the micro-
cycles, M Eigen proposed that a uniting hypercycle be
introduced to facilitate the complication of structural
organization in a far-from-equilibrium chemical system with
the formation of new microcycles and numerous feedback
loops. Each microcycle within the hypercycle accumulates

coupling factors (Ei enzymes), simultaneously with replica-
tion. These factors can either selectively increase both the rate
of replication and its accuracy or decrease the decay rate of
already synthesized matrices. This means that any ith
microcycle in the hypercycle must always depend on the
coupling factor Eiÿ1 regardless of what it encodes and
rewrites in the replication regime; moreover, it must contain
the coupling factor Ei�1 for a neighbor. MEigen thought that
each ith microcycle serves as a coordinatively controllable
genetic unit, and altogether they function sequentially
through the hypercycle.

In other words, M Eigen described the phenomenology of
the biological phenomenon in question at the macromolecu-
lar level, but circumvented all the difficulties of explaining its
development and functioning by introducing a specific
`guiding principle' in the form of coupling factors Ei that
`can do all things', while becoming increasingly more
complicated. However, he failed to clarify the kinetics and
driving forces of such self-complication. In a word, the
process of hypercycle formation remains unexplained, even
if the idea of cycles can be regarded as productive.

In fact, Eigen's hypercycle is the projection of higher
pyramid levels (Fig. 3a) onto the macromolecular level. Such
a reduction results in the loss of the specific kinetics of the
processes taking place at the remaining hierarchical levels.

Another idea was forwarded byM I Rabinovich et al. [14,
30]. In what follows, it will be clear that this idea is close to
that considered in the present review; specifically, it is an
attempt to create a mathematical model of consciousness
based on the vibration theory in terms of nonlinear equations.
However, the approach proposed by Rabinovich and co-
workers disregards the role of `good luck' in the ensemble of a
large number of degrees of freedom involved in explaining the
spontaneous emergence of order from chaos. In psychology,
`good luck' is often treated as enlightenment (see the parable
of the bright child in Section 5.2). In this regard, chance events
constitute one of the important mechanisms underlying the
formation of inter-neuronal connectivity, while nonlinearity
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acts at a later stage to prevent unlimited growth. Nerve
impulses generated in interactions with the external environ-
ment are apparent as singular peaks above the noise level [31].
Intervals between the impulses can be rather long. The
general name of such a picture in physics is `intermittence'
[32]. The problem of the origin of intermittence is akin to that
of the recovery from determinate chaos to ordered motion in
a dynamical system [33].

There are only two requirements to any proposed model,
viz. internal consistency and predictability of new regimes
confirmed in experiment. Hence, there are a great variety of
models meeting these criteria for the description of complex
systems (see Section 3).

R Penrose wrote in his book [34, p. 14]: ``Inherent in the
formation of our consciousness are elements that cannot be
derived from any set of computational instructions... . It is
impossible to find place for `nonalgorithmic actions' in the
framework of universally accepted physical theories. Therefore,
we must look for a gap in the scientific picture into which such
actions might be inserted. I claim that this `blank spot' lies
somewhere at the borderline between `submicroscopic' world of
quantum physics and macroworld obeying classical mechanics
laws''.

Giving credit to Penrose for these thoughts, it is
opportune to mention certain causes accounting for signifi-
cant differences in information processing and the form of the
energy maintaining it between human and robotic brains.
There is the only form of energy needed to enable robotic
operations: electric energy, whereas the energy of human
brain (and of the whole organism) is included in the energy
transformation cycle on our planet: the Sun! the Earth with
its atmosphere$ flora$ fauna. Humans are a component of
the biospheric food web and cannot exist outside it.

We substantially extended the dimensions of the obser-
vable world with the advent of microscopes, telescopes,
accelerators, fast means of transportation, and external
memory systems (languages, writing, arts, Internet, etc.).
But the number of natural hierarchical levels in the human
body + brain system where information received from the
external world is processed, remained practically unaltered.
Notice that living systems also have a quantum hierarchical
level built up by photosensitive proteins (chlorophyll and
rhodopsins) and ionic, molecular, andmacromolecular levels.
Higher organizational levels of life are represented by
organelles, cells, tissues (networks), organs, the whole
organism and, finally, the social level at which individuals
collaborate, making use of acoustic, olfactory, and body
languages perceived by hearing, olfaction, and sight.

The main cause of diversity of hierarchical levels in living
systems appears to be the great number of different guises of
the surrounding world, from an absolutely determinate one
governed by Newton's laws to the absolutely chaotic
probabilistic Einstein±Smoluchowski (big billiard) world
[35, 36] or a combination of both (chaos or intermittence,
determinateness or stochasticity) [32]. Orientation under
conditions of continuous environmental changes needs a
complementary multilevel organization of information pro-
cessing capable of rapid adaptation to the continuously
modified environment that enhances the stability of living
systems. Each action performed by an organism has its price
H. The price of the action is the function

H � f �E; t� ; �2�
where E is the energy consumed, and t is the time of action.

Under stressful conditions, the energy consumed increases
stepwise, while time of action ti at each stage decreases;
therefore, the frequency Oi of performing all actions taken
together increases during the upward transition from one
level to another. Given that there are N hierarchical levels,
each contributing to energy consumption, the overall energy
expenditure increases and reaches a maximum. Hence, the
expression

Emax �
XN
i�1

HiOi ; �3�

whereO is the frequency of action. This expression describes a
situation under high stress. The total energy consumption in
expression (3) is determined by the ith level with the highest
item, i.e., by low levels operating at high frequencies
(quantum, molecular, and macromolecular levels) (see
Fig. 3a).

Under normal low-stress conditions, e.g., learning, the
total action price reduces to a minimum, and all N levels
operate at half-maximum efficiency as described by the
expression

Hmin �
XN
i�1

Ei

Oi
: �4�

In this case, the greatest contribution to the price of actionH
comes from the levels operating at a low frequency, such as
social (public opinion and encouragement), organism (com-
fort of an individual), and organ (comfort in the internal
environment achieved in interactions among organs).

This means that the stability of a system depends on the
feedback between upward and downward transitions. Then,
acceleration of environmental changes under the effect of
various factors, including human-made ones, must not exceed
the acceleration of the adaptation of living systems to these
changes. Otherwise, a system will have no time to adapt itself
to them, undergo degradation, and die.

2.2 Dialogues at different levels
of hierarchical organization
Human life can be likened to a transient continuous
branching process of given duration that requires the correct
choice of the direction of motion in time and space with an
estimation of the accompanying risks. They increase in
number and seriousness under conditions of uncertainty,
affecting the accuracy of determining the probability of both
positive and negative outcomes. For example, incorrect
assessment of such probability in a predator±prey system is
fraught with danger and can cause the death of one of its
members. The perception of risks by a living organism is
based on the feeling of fear genetically inherent in it in the
form of an instinct giving rise to either an unconscious or a
partly or totally (with the participation of the brain)
conscious choice between the decision to fight or flee, agree
or contradict.

Inherent in a real organism, including the brain, is a
dualism simultaneously clarifying itself in the form of
symbiosis (cooperation) and competition (antagonism)
between its different parts (cells and organs) and the
environment, based on positive and negative feedback. The
notion of `reverse afferentation' (from the genitive case of the
Latin afferentisÐconveying) appears to have been intro-
duced by P K Anokhin in the early 1950s [37]. The synonym
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of this term in cybernetics is retained under the technical name
`feedback'. To recall, this notion in dialectics has been viewed
as the law of the `unity and struggle of opposites' sinceHegel's
time. A result of such a struggle is the `removal of contra-
dictions' [38]. All the systems of a living organism, including
different brain regions, operate via feedbackmechanisms that
form cycles and thereby remove inconsistencies to maintain
competition between themwithin the set bounds. An example
is presented in Fig. 4.

However, such competition, either dispute or dialogue
(the name is a matter of taste), occurs at different organiza-
tional levels of a living system in different languages:
biochemical, electrical, or acoustic. Antagonistic interac-
tions between hormones are especially well explored at the
biochemical molecular level (e.g., between the fear hormones
adrenalin and noradrenalin, sometimes called rabbit's hor-
mone and lion's hormone, respectively, in accordance with
their influence on the organism). The purpose of these
dialogues is to reach an agreement.

To begin with, reaching the agreement at each level
guarantees the stability of the organism as a whole. Second,
it leads to compression of information, which facilitates, if
successful, remembering it for future use. Moreover, it
saves storage capacity for constructing a virtual model of
the outer environment in the brain. As a result, information
in living organisms is transferred between levels and
undergoes transformation, for instance, owing to links
formed between upper and lower levels it passes from the
brain to the spinal cord and assumes the function of motor
skills to free the upper levels from routine work [39]. This
additionally allows saving energy and reducing entropy
within a relatively short span of time. Information transfer
from one level to another can influence the behavior of
individuals in social systems. For example, a human adapts
to the behavior of a crowd [40], and an animal to the
behavior of a herd or a flock [41±43].

2.3 Dialogue between the heart and the brain
This situation at the organ level is exemplified by a dialogue
between the heart and the brain. The beating heart `talks' with
the brain in an acoustic language by emitting infrasounds
with a frequency from 0.75 to 2.5 Hz (on average, � 1 Hz)
into the intracerebral fluid and cerebrospinal fluid that
contains hormones and energy sources (sugars and oxidizing
agents). Movements of the liquid result in intermixing. The
sound propagation distance depends on absorption by
irregularities of the medium, refraction (bending of sound
rays in an inhomogeneous medium), and scattering. In
addition, refraction is manifested the stronger, the greater
the sound speed gradient. The sound propagation distance
increases as the acoustic vibration frequency drops, and
soliton-like movements are likely to develop [25, 26]. Sound
waves reflected from irregularities can merge, thereby
extending the rear-front of an acoustic pulse and prolonging
its action.

Hormone distribution in different brain regions is
responsible for the `emotional coloring' of perception of the
environment. The brain answers the heart in the language of
electric signals propagating along axons and dendrites that, in
turn, alter local density of the fluid by almost 70%. Changes
in density are due to a surge in potassium ions in response to
neuron excitation. The mass of potassium ions being higher
than that of sodium ions, local density of the medium around
the axons increases. Simultaneously, the reflection of sound
waves becomes more pronounced, and their velocity in the
denser medium increases.

Furthermore, the brain controls heart rate by sending
signals to the sinoatrial node via a feedback loop (1 in Fig. 5a).
The heart, in turn, influences brain work via pathway 2
(Fig. 5b).

The speed of sound in water is around 1300±1500 m sÿ1.
An excitation pulse propagates in axons at a much lower
speed (around 25 m sÿ1).

Even at rest, roughly 15% of the total blood volume
passes through the brain, which consumes up to 20±25% of
the oxygen brought in with inhaled air [44]. Blood is supplied
to the brain through the internal carotid arteries and two
vertebral arteries. The posterior and anterior vertebral
arteries form a circular blood vessel (Fig. 5c). Venous
outflow occurs mainly through two jugular veins.

The role of the heart in its dialogue with the brain is
seemingly insignificant, being reduced to delivering nutrients
and disposing the useless or harmful metabolites. However, it
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is not so. The heart, in cooperation with the brain's glial
network, redistributes blood flows both at the macrolevel and
inside each portion of the neural network. Such redistribution
promotes adaptation of the organism to environmental
changes and influences in stressful situations the rate of
decision-making through the adequate supply of proper
hormones by the brain.

The outer environment exerts influence on the human
body and internal organs via atmospheric pressure and
gravitational pressure. The brain changes the heart rate to
make up for these effects. The atmospheric pressure field
varies within 6%, regardless of human body posture. In
contrast, gravitational pressure with respect to the blood
pressure vector is directed largely along the body axis and
depends on the posture (Fig. 6).

The processes in the brain fluid can be described in terms
of different variants of the laws of conservation [44±46]. The
cerebrospinal fluid (frequently termed liquor) contains a great
variety of compounds and ions. Its average density is close to
the density of water: 1.005±1.007 g mlÿ1, the difference being
only 0.5±0.7%. It can thus be regarded as an ideal incom-
pressible liquid, and we can use Poiseuille's law to determine
its viscosity m. In the upright position of the human body, one

finds

m1 �
pr4c�p1 ÿ p2�

8Q1l
; �5�

where rc is the capillary diameter, p1 is the cardiac pressure, p2
is the gravitational pressure, Q1 is the fluid flow rate in the
vertical position, and l is the length of capillaries.

Vector summation of pressures in the horizontal human
position gives the coefficient of viscosity

m2 �
pr4c�p 2

1 � p 2
2 �1=2

8Q2l
: �6�

A change in the posture leads to the relationship

m1
m2
� Q2�p1 ÿ p2�

Q1

����������������
p 2
1 � p 2

2

q : �7�

If viscosity remains unaltered, for linear laws at a local
portion, one has

m1
m2
� 1 : �8�

It follows from formulas (5) and (6) that

Q1�p 2
1 � p 2

2 �1=2 � Q2�p1 ÿ p2� ; �9�

which means that the flow rate of a fluid with constant
viscosity grows in inverse proportion to pressure upon a
change in human posture. There are two variants of
regulation in the case of a postural change. One is the
influence of the brain on the heart mediated through the
feedback loop resulting in a decrease (increase) in heart rate p.
The other is blood flow mass control by vascular constriction
or dilation effected by the system composed of the heart !
blood vessels! glial cells! and neurons.

The fluid flow velocity and therefore the brain pulsation
rate differ in different parts of the system. Flow line density is
consistent with the velocity in a given part. The stationary or
steady-state flow corresponds to the continuity equation
describing the passage of a given fluid volume through any
distinguished cross section for equal time intervals. LetS1 and
S2 be two cross section areas, and u1 and u2 the respective

j � 90�
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Figure 6. Postural change alters the relative position of the heart and

cerebral blood system (a, b) with respect to the gravitational pressure
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velocity vectors of fluid particles in the uniformly moving
flow. Then, the continuity equation has the form u1S1 � u2S2.
It holds for all flows, i.e., uS � const. However, one more
dynamic variant of fluid behavior is conceivable when `banks'
pulsate with frequency o1, and fluid volume with o2. Then,
the new invariant relation will take on the form

u1o1 � u2o2 or a1 � a2 ; �10�

where a1 and a2 are acceleration vectors of the two flows. The
total liquor volume in a healthy adult human ranges from 140
to 270 ml, accounting for roughly 20% of the brain's weight.
Let us consider in more detail the fluid motility dynamics at
density rl in a semisphere.

Suppose that the semisphere is partly (e.g., 20%) filled
with the fluid. Then, the fluid height h � f �R� is restored at
any position of the semisphere in space for the characteristic
time of the transient process due to fluid translocation. Brain
structures either slow down or speed up the translocation
depending on the relative direction of acceleration vectors.
The mass of the fluid thus transferred is proportional to the
volume Vs of the semisphere it fills:

Vs � 1

6
ph�h 2 � 3r 21 � � ph 2

�
Rÿ 1

3
h

�
; �11�

and to the fluid density rl, where h is the height of the fluid in
the semisphere, r1 is the radius of the segment surface, andR is
the radius of the sphere. Taking into account expression (11)
yields the fluid mass

m � rlVs � prlh
2

�
Rÿ 1

3
h

�
: �12�

Angular momentum L is expressed as

L � r� p : �13�

Here, r is the radius vector originating in the center of gravity
of the brain mass, and p is the vector of the impulse of force.
Differentiation of expression (13) yields

dL

dt
� dr

dt
� p� r� dp

dt
� u� p� r� Fres ; �14�

where u is the velocity vector, and Fres is the resulting force
vector. In a vertical position, the product of u� p is zero,
because vectors u and p are parallel to each other. Similarly,
the term r� Fres vanishes as well, since central forces created
by the heart are parallel to vector r. Hence, we put

dL

dt
� 0 ; or L � const : �15�

A change in the posture does not alter the first gravitational
term �u� p� on the right-hand side of Eqn (14) that equals
zero. The second term is the vector sum of gravitational and
cardiac forces. The resultantmoment of forceTres is expressed
as follows:

Tres � dL

dt
: �16�

This means that the resultant moment of force is equal to the
rate of change of the angular momentum. If all brain
structures are assumed to be closed, Lres � const as a direct
consequence of Newton's laws. It allows the equation of

blood flow acceleration for the two extreme postures (vertical
and horizontal) to be written out in three variants. Let us
denote blood flow acceleration in the vertical and horizontal
positions by a" and a! respectively. Then, the corresponding
resultant forces in the two respective positions are
�Fheart ÿ Fgrav�" and �F 2

heart � F 2
grav�1=2! . There are three cases

in the dependence on the acceleration ratio:

�1� a! > a" for
Fheart ÿ Fgrav��������������������������
F 2
heart � F 2

grav

q > 1 ;

�2� a! � a" at
Fheart ÿ Fgrav��������������������������
F 2
heart � F 2

grav

q � 1 ; �17�

�3� a! < a" for
Fheart ÿ Fgrav��������������������������
F 2
heart � F 2

grav

q < 1 :

Five conclusions follow from the consideration of these three
cases:

(1) Case 1, when Fheart > Fgrav is a normal state.
(2) Case 2, when Fheart 4Fgrav corresponds to a sig-

nificant relative decrease in gravity (weightlessness). This
condition is dangerous, since it can result in a stroke. To
return to the normal state, the brain has to reduce the
heart rate or increase the amount of fluid, while the
�Fheart ÿ Fgrav�=�F 2

heart � F 2
grav�1=2 ratio tends toward unity,

because

lim

�
1ÿ Fgrav

Fheart

�
! 1 as Fheart !1 :

(3) Case 3, when Fheart < Fgrav corresponds to a patholo-
gical condition, e.g., cardiac failure, which makes the affected
subject unable tomaintain an upright position due to cerebral
venous outflow leading to the loss of consciousness.

(4) Finally, the special case is hypergravity, Fheart 5Fgrav,
when

lim

�
Fheart

Fgrav
ÿ 1

�
! ÿ1 :

This dangerous condition can also cause the loss of con-
sciousness. It accounts for the fact that astronauts being
prepared for a space mission consider training in a rotating
chair or centrifuge to be a most trying experience.

The main conclusion is formulated as follows: body fluids
are always in motion and can travel with acceleration under the
influence of regulatory systems, including the brain. This
mechanism makes up the basis for one of the variants of
environmental adaptation. In this case, the adaptation is a way
to maintain functioning of the organism when the position of the
body in a three-dimensional space changes in the presence of
gravity.Robots do not have such an adaptive mechanism, nor
do they need it. It can be created based on other technical
principles, whenever needed in certain exotic cases.

2.4 Simple model for reaching consensus
Our brain is not only a `referee' clearing up controversial
situations arising from the competitive relationships between
human internal organs using feedback but also an interface
that correlates genetically determined instincts underlying
bodily needs and their satisfaction under varying environ-
mental conditions (Fig. 7a).
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Our receptors frequently perceive the outer environment
as a random sequence of events (e.g., determinate chaos) [47].
The brain tries to cope with such situations by taking
advantage of competition among different receptor species.
Let us consider the correlated actions of receptors in the
framework of the simplest computer-assisted conceptual
machine model that we used to study the dynamics of the
random behavior of a complex system composed ofN sensors
interacting in accordance with periodically changing specified
rules under external control conditions [48, 49]. The process
of interest is schematically presented in Fig. 7b. The system
operates in the form of periodic chaos$ order transitions.

Let us describe a dialogue model with two possible results
in the limit: a double-pole variant (futile dialogue) and a
single-pole dialogue resulting in reaching the consensus. Let
us further assume that there areK vessels, each with ni sensors
interacting among themselves (Fig. 7b). The total number of
sensors is

N �
XK
i�1

ni : �18�

Suppose for simplicity that N � const, i.e., consider the
system within a small time interval, when replication can be
disregarded. Each sensor has its own number and properties.
The initial properties of the sensors are plotted on the x-axis
in Fig. 7b. Their numbers are intermixed in a vessel marked
Chaos. Two numbers are randomly taken from the Chaos
vessel on a periodic basis with frequency O, which symbolizes
the encounter and interaction of two sensors previously
located on the x-axis in their host vessels, either different or
the same. Interaction rules for each pair of sensors can change
to the opposite depending on the control system, i.e., the
position of an external pendulum oscillating with frequencyo
and setting the interaction rhythm in the capacity of a
biological clock:

O > o ; �19�
where O is the frequency of encounters between sensors.
When the pendulum is on the right, the opinion (property)
of the sensor from the right vessel is assigned to both
encountering sensors. Conversely, if the pendulum swings

left, the opinion of the sensor from the left vessel is assigned to
the two sensors. The properties of both sensors initially
located in the same vessel remain unaltered when they
encounter each other. After each encounter, the sensors are
returned into the Chaos vessel, where they merge. As a result,
the sensors involved in pairwise interactions as described
above tend to change the summarized opinion distribution
curve in time and thereby give the answer to the question:
``How does the virtual model synthesized by different brain
regions change in dynamics when altering sensor opinion
distribution upon a rise in the number of encounters?''

In fact, the model being considered demonstrates the
dialogue of two disputing groups having different opinions
about external and internal situations. Figure 8 represents
time-related changes in views as a transition from initial to
final distribution during an interval determined by the
number of interactions.

It is difficult to analytically describe this probabilistic
process, because the number of encounters between sensors
having identical opinions is uncertain. Evidently, shaping
opinion is a convergent process complicated by uncertainty in
transient process duration, i.e., the time interval needed to
reach a stable or quasistable (vibrational) state.

The process may stop in two cases: first, the time of the
encounter is exhausted before a full consensus is reached;
second, the consensus is reached within the specified time, i.e.,
all differences of opinion are resolved. In the latter case, all the
sensors are gathered in one vessel.

The pendulum oscillation period (i.e., a change in
circumstances in the external or internal environment
analyzed by the brain) is of importance. The oscillative
control of a slow-swinging pendulum does not have an
appreciable effect on the process. The system has enough
time to enter the stable state within one (two or three at the
most) oscillation periods, retaining the opinion of the
ensemble whose advantages corresponded to the pendulum
position in the respective cycle.

Of special interest are cases in which roughly equal time
(much shorter than needed to reach a full consensus) is
provided to realize each rule. Under such conditions, the
system enters a lasting oscillatory regime without an obvious
final result.
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The analysis of the model revealed a sharp rise in the
duration of competition between two newly formed identical
clusters, giving rise to opposite opinions. The distribution
amplitude changes with the pendulum oscillation frequency.
The pendulum swinging to the left increases the amplitude of
opinions of the left ensemble with its corresponding decrease
in the right one. The situation reverses for rightward
deflection of the pendulum.

The dynamics of the transient process can also be
illustrated by variations in root-mean-square deviation s�t�
of the opinion distribution over the ensemble of all sensors in
time (Fig. 9).

It was revealed that the model has a number of interesting
peculiar features. There is a quite apparent dependence of
opinion synchronization time on the symmetry of the initial
state and the scatter of gradations in the starting distribution
(i.e., genetics). In the absence of asymmetry and local
gradation scatter of the distribution, the probability of
forming two identical clusters and a process with a long-
lasting transient regime increases.

The `survival' of gradations also depends on their local
surrounding. It accounts for the frequent appearance of
gradation in distribution initially differing from its max-
imum value in the starting distribution, because sensors can
move into gradation with the initially smaller amplitude,
when the rules change. Metaphorically speaking, any circum-
stance can moderate the ambitions of the initially leading group
of sensors and disprove them. Random movements of the
sensors from one gradation to another follows from the
casual description of the encounter process (the Chaos block
in Fig. 7b).

Time-dependent changes in radial density in the ring
disposition on the scatter plots in polar coordinates suggest
a nonuniform convergence to final results of synchronization
in the transient regime (Fig. 9b, d).

The time a system needs to reach synchronization under
the influence of an external periodic impact (pendular
control) increases by several orders of magnitude (e.g., it
changes from 105 to 109 in arbitrary units, when the total
number of sensorsN � 10;000). A periodic change in the rules
causes a transition of the system into the forced oscillation
regime.

Two variants of self-organization produced different
results. One is the two-pole oscillatory situation (Fig. 8a),
and the other the single-pole statically stable situation
(Fig. 8b).

This model describes competition characteristic of paired
interactions. At each hierarchical level of a living organism,
such interactions are distributed in space and time over the
entire body volume, including the brain. Consensus is reached
in certain parts of the body and the brain, whereas
desynchronization increases in others. Transitions spread
like waves from one part to another and return. Such a
migration of excitations can be observed in the brain using
magnetic resonance imaging (MRI).

2.5 Examples of paradoxes of sensor interactions
One of the problems solved by the human brain is the
comparison of information coming through different chan-
nels from sensory organs. The brain ignores some data but
strengthens the utilization of others. Paradoxes embarrass it,
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as exemplified by the perception of holograms. In the mid-
1970s, we learnt to create 3D holographic images from a set of
electron micrographs (Fig. 10) [50±52]. At that time, many
people were unaware of the properties of holograms.

A human (or monkey) seeing a holographic image for the
first time finds that a hand easily passes through it. The
incorporeity of a three-dimensional object may arouse
admiration, horror, curiosity, or aggression in the observer
[50].

One type of reaction to a hologram was reported in New
York newspapers in November 1972 when traffic on Fifth
Avenue was jammed for an hour by a crowd gathered near a
shop window to see a female hand stretched out of the half-

darkness and displaying a diamond necklace. The myster-
ious holographic image was formed by a powerful laser
based on a hologram generated by McDonnel Douglas
Electronics Company. The image looked so much like a
real object that someone broke the window glass with an
umbrella, stating that the whole thing was the devil's work.
Our studies showed that the discrepancy between perception
through visual and tactile channels disappears as soon as the
observer understands (due to correction of the virtual model
of environment in the brain) that the hologram is a specific
kind of images [51].

Here is another example. Images of all visible objects are
known to be projected and rotated 180� by the eye's lens onto
the retina. Therefore, a newborn baby needs a rather long
time to gain the necessary experience through trial-and-error
procedure as he/she tries to take hold of toys suspended over
the cradle. The agreement between visual receptors perceiving
information and tactile sensations is reached after the brain
forms a program for turning the image of an object through
180�.

There are scores of examples of temporal discrepancies
arising from the perception of environmental objects with
subsequent restoration of agreement between different types
of receptors. Suffice it to mention that even three-hour jet lag
leads in many people to sleep disturbance and performance
impairment. Astronauts have to adapt themselves to the new
forms of motion in a gravity-free space during the first days
after arrival at an orbital station. Experiments on long-term
adaptation to wearing inverting spectacles have shown that
more than 10 days are needed for normal spatial orientation
to be restored. Traveling along a meridian from one region to
another within the same time zone also requires adaptation to
newmicroflora, microfauna, water quality, and other factors.
The period of adaptation is significantly different in various
human populations; in individuals, it depends on the age.
Sometimes, adaptation is accompanied by diseases, such as
desynchronosis, allergy, diarrhea, and seasickness. All these
adaptive events are mediated through the phase of temporary
chaotic activity of the brain with subsequent restoration of
harmony among the sensors.

2.6 Virtual model synthesized by our brain
The relationship between the brain's virtual model and
human behavior, as well as the important role of this model,
is confirmed by numerous facts. For example, a priori beliefs
may facilitate the formation of an image of fear in a child's
mind. If a child remaining alone in a dark room anticipates
danger, it evokes the feeling of fear interpreted by the brain as
if coming from the eyes, ears, and other sensors, even though
none of them send respective signals. The brain creates an
image of the fear having size, strength, shape, and other
attributes. Most kids are afraid of the dark for the lack of life
experience (hence, the Russian proverbial expression ``Fear
has big eyes'').

On the one hand, the boundedness of an outer environ-
mental situation model is of little consequence, because the
model in questionÐ like any other modelÐ is a simplified
version of reality. It fails to take account of many aspects of
the outside world but adequately reflects the gistÐ that is, an
urgency to avoid catastrophic situations.

On the other hand, like many living creatures, humans
develop in the course of ontogenesis the evolutionarily
determined quality of curiosity opposite to fear. In physics,
`the struggle of opposites' has been understood since Plato'
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Figure 10. Three-dimensional holographic image of a neuron of the great

pond snail (Limnaea stagnalis) emerging in the smoggy air as a result of the

scattering of light passing through a holographic plate: (a) Schematic of

the device for producing composite holographic images based on the

photographs taken from different perspectives: 1Ðlaser, 2Ðshutter,

3Ðbeam splitter, 4, 5Ðmirrors, 6, 7Ðlenses, 8Ðangle shots, 9Ð

movable slot, and 10Ðhologram. (b) Equally high lines in the object (mm)

measured with the aid of a light spot inserted into the reconstructed image.

(c) Photograph of the hologram of the reconstructed image.
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time in the sense of dispute surrounding the antipodes (ancient
Greek a

;
nti�pouB 2 Ðprefix meaning opposite + �o

;
nomaÐ

name). In linguistics, antipodes are termed antonyms, i.e.,
words with opposite lexical meanings.

Competition and consensus between fear and curiosity
give rise to a system for processing environmental informa-
tion that enhances the adaptive potential of both individual
organisms and the species as a whole. There is a close
relationship for our brain between perception and actions.
Our body serves us to perceive the outer world. We interact
with it by the agency of our body and thereby correct brain
function. Virtual models of the brain frequently tend to fail.
Some faults can be useful, but others are dangerous, for two
reasons.

On the one hand, they help us to understand the
surrounding world. The faults allow dubious interpretations
of any situation, e.g., when two different objects in the outer
environment evoke similar sensations. Such problems are
usually solved taking advantage of the fact that one of the
possible interpretations is much more probable than the
other.

On the other hand, the brain may err when a seemingly
improbable interpretation proves correct. Such a situation
gives rise tomany optical illusions. A carrot irradiated by blue
light is perceived by the brain as orange-colored, although all
objective measurements of the reflected light wavelengths fall
within the blue (l � 0:43ÿ0:48 mm) rather than orange
(l � 0:60ÿ0:66 mm) range. The cause of such paradoxical
perception lies in the virtual carrot model in the brain arising
from our previous experience of seeing the carrot under
different illumination.

To sum up, our perception depends on a priori beliefs and
past memories. The original perception of fear compensated by
curiosity continuously improves our virtual model of the
surrounding world. Neither vision, hearing, touching, nor
other receptors are given preference in the correction of the
model, because they all may serve as sources of information.

These abilities are lacking in the computer systems of AI
of robots having no body sensors. Robots devoid of a body
equipped with receptors cannot learn on their own to
forecast, nor can they correct the model by their actions.3

Yet, there is more to it than that.

2.7 Sensors may also be wrong.
Evolution of false image prevention
The retina of our eyes performs primary processing of light
signals from environmental objects; it is frequently treated as
a `peripheral brain fragment'. Richard Feynman described
the human eye structure as follows [53]: ``... the light-sensitive
cells are located in the retina at depth, so that the light has to go
through several layers of other cells before it gets to the
receptors. Retina looks as if it is turned inside out! So some of
the eye's structure features are wonderful, and some are
apparently stupid''.

Describing an octopus' eye in the same lecture, he argued
that: ``In the octopus it turned out, amazingly, that the retina is

also a piece of the brain that has come out in the same way in its
embryonic development as is true for vertebrates, but the
interesting thing which is different is that the cells which are
sensitive to light are not located behind the layers of other cells,
as in our eye, but directly on the inner surface of an eyeball, and
the cells which do the calculation are in back of them. So we see,
at least, that there is no good reason for its being inside out. The
other time Nature tried it, she got it straightened out!''

However, Feynman's assertion is wrong. Octopuses are a
phylogenetically older group than vertebrates. It is not that
Nature had to correct its error when it created octopus eyes.
Usually, Nature does not err; the species becomes extinct
when it does. Deeply sunken human eyes are a remarkable
adaptive trait. For sharp sight and reliable recognition, visual
receptor cells (rods and cones) must be embedded in a
medium having a practically constant or slow-changing
temperature. Otherwise, rapid fluctuations of environmental
temperature creating thermal gradients (e.g., caused by the
wind) would change the rate of biochemical reactions
involved in conversion of light quanta into electrical signals
in the retina [54]. It would produce false visual illusions
(phantoms) nonexistent in reality. The brain counteracting
such a situation begins to behave chaotically in search of the
answer to the questions `What is this? Reality or illusion?' To
obviate this problem, natural selection put the retina of
terrestrial warm-blooded animals deep in the eyeball, where
the temperature remains practically constant. Octopuses live
in water with slowly changing temperature that has no
appreciable effect on visual perception.

3. Adaptation of robots and humans
to the environment

3.1 20th century: from cybernetics to synergetics
Over 70 years ago, the Nobel laureate in Physiology or
Medicine 1973 Konrad Lorenz wrote that in the animal
world training practically always leads to adaptation, i.e.,
consensus with the environment. In 1941, he published an
article entitled ``Kants Lehre vom Apriorischen im Lichte
gegenwartige Biologie'' [55]. Lorenz argued in his indirect
dispute with Immanuel Kant that ``a priori forms of thinking
and intuition have to be understood as any other organic
adaptation'', i.e., as achieving a compromise that increases
stability of the organism.

Rapid development of the sphere of application, high
workspeed, and miniaturization of computers 30 years ago
provoked the temptation to create human-like AI [56±62].
Sixteen years later, Herbert A Simon, another Nobel Prize
winner in Economic Sciences 1978, stated in his bookModels
of Man [63] that within the following 10 years computers
would be able to beat world chess champions 4 and write
poetry and music. This prediction has come true. More than
that, in 2016, a computer won a professional player of the
game of Go (an ancient Chinese game offering a greater
variety of combinations than chess).5

4 The most inspiring success was the victory of the Deep Blue computer

(IBM) over then World Chess Champion Garry Kasparov on May 11,

1997 by a score of 2 to 1 with three draws in a series of 6 games.
5 In a series of five Go games between the Alpha Go computer program

and the Korean professional player Lee Sedol (March 9±15, 2016), the

computer won by a score of 4 to 1. The Alpha Go software was supported

by 1,920 processors and used 280 graphics processor units operating in the

distributed network. The games were televised live on YouTube.

2 The term `antipode' appeared for the first time in Plato's dialogue

Timaeus written c. 360 BC.
3 Humans with an injured frontal lobe of the brain cortex frequently

experience a similar difficulty. They lose the ability to correct the virtual

model of the outer environment and, therefore, the purpose of their

actions. Such people are unable to implement any plan or comply with

instructions; they are always distracted by everything that comes into their

view.
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Nevertheless, Simon allowed for some limitations. The
lack of time needed to solve a problem necessitates considera-
tion of only the most essential of the infinitely many possible
approaches. Humans, unlike robots, try to elaborate a
strategy (probably far from the optimal one) for a limited
time, thus ensuring instantaneous success in a given situation
[63, 64]. The key words here are `limited time' and `success'. A
time deficit arises from the necessity to neutralize the
influence of interfering and not infrequently life-threatening
environmental factors. This thought was postulated by
M M Bongard of the Institute of Biophysics (presently
Institute of Theoretical and Experimental Biophysics, Rus-
sian Academy of Sciences) in the 1960s [60, 65].

In the 1950s, the Russian biophysicist M L Tsetlin
initiated consideration of social matters from the standpoint
of game theory. These studies had been preceded by those of
J von Neumann [66], who analyzed situations in which the
players were a priori not fully informed about the game
algorithm. M L Tsetlin showed that robots using even a
linear tactics could be taught how to cope with the task of
adaptation to the game rules provided that the random
behavior of the external environment changed only slowly.
This suggested the crucial role of the factor of time in the
formation of basic adaptive capacities. Based on this finding,
Tsetlin turned to considering social games involving a large
number of participants. The results of these studies were
collected and summarized in a volume of his works [62],
unfortunately published in 1969 after the author's death.

In 1990, the Australian roboticist Rodney Brooks pub-
lished the article ``Elephants do not play chess'' [67], calling
on developers of robots to create AI systems based on the
results of neurophysiological studies. The author emphasized
that the human brain is first and foremost a tool for
adaptation to the environment. Positive emotions tend to
stop panic attacks and promote problem-solving even under
conditions of an information shortage by allowing one to go
beyond the limits of the possible (catchphrase: Nothing
ventured, nothing gained) [37].

Today, many researchers in the field of robotics (e.g.,
MosheVardi ofRiceUniversity, Houston,USA) [68] contend
that there are no bounds whatever for CARs to become
cleverer, quicker-witted, and more skilled than humans.
However, this dream is difficult to turn into reality. I was
once fascinated by the way the Hopfield neural network [69]
operates, because it seemed to be capable of self-correcting
balance problems [70]. Later on, I understood that the
procedure of searching for equilibrium is determinate,
because this ability was envisaged in the software and the
algorithm was assigned by a programming specialist.
Although the time needed for recovering equilibrium
depends on a variety of external and internal factors (as
exemplified by the model considered in Section 2.4), the
procedure in the simplest case is nothing more than the
search for the local minimum of energy (a `potential well')
on an n-dimensional cube.

All further modifications of this algorithm, e.g., the
Hamming neural network for binary vector classification or
different types of perceptrons [71±73], also lead to systems
with a rigorously determinate algorithm developed by the
programming staff. The `thought process' in modern learn-
ing robots is only the next step in the development of
deterministic Turing machines integrated into parallel-
sequential networks [59]. Humans are free to choose any
goal. The goal for a robot is formulated by the human,

which means that robots lack inventive ability unless it is
imparted by the developer.

The term creativity can be interpreted as the search for a
spontaneous asymmetric response to an obstacle hampering
the choice of the way to a set or an input goal, taking into
consideration possible risks, failures, and pieces of luck.

3.2 SynergeticsÐ theories of cooperative dynamic
interactions between dissipative systems
In the 1990s, we used a population of colony-forming bacteria
as a model of collective behavior. We intended, in the
framework of then ongoing discussions, to ascend a set of
stairs leading to the formation of consciousness, from the
simplest to highly organized forms of life. Colony formation
by bacteria was chosen as the starting stage of the self-
organization process [74, 75]. The work was not completed
for a lack of comprehensive knowledge about transition from
the simplest to the most advanced organisms.

In the 1980s, synergetics [76] and the thermodynamics of
dissipative structures developed by I R Prigogine and his
school [77] replaced the cybernetics of the 1950s±1960s. The
advent of synergetics, like that of cybernetics a few decades
before, gave hope that new ideas would provide a basis for a
general theory and give an answer to the question `How do
humans think?', bearing in mind that the human brain
functions like a determinate Laplace system periodically
passing from deterministic to chaotic behavior and back.
The concept of mental process chaotization has a long history.
In the late 1950s, Niels Bohr [78, pp. 27, 28] noted: ``The main
traits of living organisms depend on the processes of atomic
scale where we encounter important limitations on the applica-
tion of classical physics concepts... . It follows from classical
physics determinacy that any perturbation in a system consist-
ing of a huge number of parts inevitably leads to chaos. In
quantum physics, such description reflects the result of
interaction between stable atomic systems; therefore, it is
based on the outcome of competition between different
individual processes. These processes determine in a simple
way the state of new systems through atomic particles they
contain as they would determine the initial state of the
system...''.

In 1971, David Ruelle and Floris Takens published an
article under the title ``On the nature of turbulence'' [79],
based on modeling nonlinear dynamics. They criticized the
Landau±Hopf scenario [80, 81] and provided evidence that
dynamics may become turbulent after 3 or 4 bifurcations,
and the system, in particular, may acquire a continuous
spectrum characteristic of a random process. The authors
attributed this fact to the emergence of a `strange' attractor
in the phase space due to trajectory instability. It was
shown in experiments that many open nonlinear far-from-
equilibrium systems experience self-organization [82]
accompanied normally by originating either spatially
nonuniform stationary (i.e., slowly changing with time)
formations called dissipative structures by Prigogine [83]
or periodic and quasiperiodic spatial±temporal waves
referred to as autowaves [84, 85].

The International Union for Pure andApplied Biophysics
(IUPAB) was set up in 1961. The agenda of IUPAB
congresses required structurization of the totality of sub-
mitted reports. Therefore, it was decided to distinguish three
disciplines, viz. molecular biophysics, cellular biophysics, and
biophysics of complex systems. This classificationwas adopted
and is still in use in biophysical journals, including the
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Russian journal Biofizika (Biophysics), even if it is far from
ideal, since it is difficult to find simple systems in biology. After
all, what is complexity and what is the difference between
simple and complex systems?

Over 30 years ago, a workshop on synergetics was held in
Bavaria to discuss various aspects of complex systems,
including the brain. However, there is thus far neither a
universal theory of complexity assessment nor a universal
approach to the evaluation of stability of biological systems
because of their enormous diversity [27]. Their main property
is defined by the formula `changing anything changes every-
thing'. The human brain hosts numerous chain reactions, and
a change in one activity triggers another [86]. Such a behavior
is characteristic of dynamical systems containing an essential
chaotic component [87].

G G Malinetskii and A B Potapov [88] attributed
`complexity' to the duality of information processing. On
the one hand, it can be understood as complexity of a device,
i.e., a system with a large number of elements and/or
nontrivial links between them. On the other hand, it can be
interpreted as the complexity of external manifestations of the
system, irrespective of its internal structure, i.e., complexity
apparent as a nontrivial behavior. The formation of dissipa-
tive structures and autowave processes is based on self-
organization involving the presence of variable parameters
of two kinds. Most of them correspond to `soft rapidly
rearranging regimes', while the remaining ones are regarded
as belonging to `hard modes'. After a rather long lapse of
time, the former adjust themselves to fit the latter, i.e., the two
systems of parameters merge into one. To be described, the
resulting integrated system must attract new variable para-
meters not necessarily co-incident with the previous ones
characterizing the behavior of two separate systems. In
other words, a system that underwent self-organization
needs to be described anew (see Section 2.4 for the simplest
example). This property of self-organizing systems is called
emergent, i.e., coming into being suddenly. In synergetics, this
term is used to describe a system acquiring specific properties
not inherent in its constituent components, taken either
separately or collectively; these properties arise by virtue of
backbone (system-forming) links between individual ele-
ments.

Today, the era of dissipative structures and autowave
processes in synergetics is being succeeded by the era of self-
organized criticality, drawing ideas from neurophysiology,
biophysics, psychology, theoretical history (Big History), and
other sciences analyzing the influence of the past on the
present and the future [24].

Yu A Danilov noted in book [89] that the advent of the
science of nonlinear interactions compromised Newton's
concept of trajectory as a geometric line, i.e., `a length
without width'. Physically, the description of the behavior of
a dynamical system in the language of trajectories would
require an instrument with a resolving power high enough to
`see' a separate geometric line. Certainly, any real instrument
has a finite resolving power, and the user can see a bunch of
concurrent individual (sometimes entangled) trajectories
instead of an individual line. The human eye is unable to
distinguish between trajectories within the bunch; therefore,
one can speak only of a certain probabilistic distribution. It is
impossible to move from probability distribution to indivi-
dual trajectories in the framework of Prigogine's and
Stengers' terminology [90]: they are simply invisible to an
external observer. Irreducible probabilistic distributions

radically altered the description of dynamical systems and
even the understanding of physical laws. The key words here
are `probabilistic distribution' and the `special role of the
observer'.

Prigogine and Stengers wrote in book [90]: ``Traditionally,
there were two formulations of physical laws: one in terms of
trajectories or wave functions, the other in terms of statistical
ensembles. But such statistical formulation was not irreducible.
It was fairly well applicable to individual trajectories or wave
functions. In other words, statistical approach excluded the
appearance of new dynamic properties. As a result, irreversible
approach to equilibrium was traditionally associated with
approximateness, `coarseness' of description, and the appear-
ance of the arrow of time with incompleteness of our knowledge.
The proposed irreducible formulation breaks radically with the
past. Irreversibility and probability become objective proper-
ties. They reflect the fact that the observable physical world
cannot be reduced to individual trajectories and separate wave
functions...''.

It follows from the foregoing that it is impossible to fully
understand brain function based on an analysis at one or two
hierarchical levels, e.g., a neural network or a sandwich-like
set of networks. In such a case, the only informatively
meaningful event is the exchange of electric impulses during
movements of K�, Na�, Clÿ, and Ca2� ions between
individual nerve cells that trigger a cascade of further
processes via synapses. The questions concerning the human
brain that remain open are: ``How is it organized to be able to
simultaneously perform determinate and chaotic functions?''
and ``How can physical macrosystems exist based on
duality?''

Any human is always something more than an observer of
his/her behavior can directly perceive. Human intelligence
viewed as a whole does not obey the law of identity:
fAobsg 6� fArealg, where fAobsg is the observed set of intelli-
gence characteristics, and fArealg is the real set of its proper-
ties. Intrinsic in each human are hidden parameters that
manifest themselves upon a change in the surrounding
conditions, but otherwise remain a priori unapparent; hence,
the inequality

fArealg > fAobsg �20�

is satisfied.
In other words, human intelligence and its behavior are

basically multivariant. A human does not fully open
themselves up to an external observer.

Until quite recently, robots had been considered to be
merely machines, i.e., something well-defined, but the
behavior of certain modern self-learning robots resembles
human behavior. It is sometimes difficult to deduce from a
computer processing self-learning AI information the indica-
tors it utilized in solving a given problem.

Moreover, both the robot and the human are open
systems for the inflow of energy and environmental informa-
tion. In the human, the openness means the inability to fully
understand the rules that govern their brainwork, conscious-
ness, and behavior. These rules vary continuously under the
influence of both the outer and inner environments. Suppose
that a person is perfectly aware of the algorithm @ of their
own behavior comprehensively describing the functioning of
their psyche and brain fArealg. Such a person would be able to
accurately predict risks associated with decision-making and
act as appropriate to avoid their unforeseen consequences.
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Suppose further that this knowledge enables them to
conclude that the action P in situation X will be fraught with
troublesome consequences. It will then be possible to avoid
them by consciously refraining from action P and acting
otherwise.

However, a decision is always taken when the behavior
of a competitor in the outer environment is uncertain. For
this reason, risk assessment is always probabilistic. In other
words, humans as a deterministic system must perform
action P and must not do it as a self-aware probabilistic
system. The uncertainty leads to an oscillatory process;
hence, Hamlet's eternal question to be or not to be? To act
or not to act?

4. 21st century: new interpretation of old ideas

4.1 Time of expensive projects
The studies by Henry Markram [91±107] allowed him to put
forward in 2009 the idea of a supercomputer-based mathe-
matical brainmodel [108]. The idea seemed simple: the author
believed that a software program simulating the entire
network of 86 billion neurons and 100 trillion synapses
corresponding to human brain architectonics would ensure
a transition from quantity to quality, i.e., a novel system
reproducing all cognitive properties of the human brain.
Markram's idea provided to be the basis for the 10-year
(2013±2023) Human Brain Project worth a total of
$1.63 billion.

The expediency of the project was questioned within a
year after its proposal [109]. More than 800 neurophysiol-
ogists wrote letters criticizing the project. Its opponents'
arguments reduced to the fact that the work of the human
brain in comparison with that of computer±based AI remains
poorly understood. A commission was set up that summar-
ized arguments against Markram's project in a 53-page
report. The critique was extended to include inter alia the
decision-making policy and practice of Brussels concerning
expensive research projects approved without their scientifi-
cally sound analysis.

In the context of Markram's project criticism, a $30-mln
megaproject (Human Connectome Project) initiated in the
USA in 2009 [110] should be mentioned. Here, the term
`connectome' implies a connection with an Internet access
server. Connectome is a dynamic graph (map) of the links
between self-organizing subsystems of the brain that arise,
develop, and decay under the effect of long-range forces and
fields as exemplified by axonal guidance and pathfinding, i.e.,
the directional growth of axonal and dendritic networks. In
the developing nervous system (during ontogenesis), axons
extend over long distances to reach all cells and organs and
thereby form architectonics of neural connections as an
integral system of the body. In this regard, the body and the
brain make up a whole. The study of forces and interactions
influencing the pathfinding is of importance for understand-
ing the mechanisms that underlie mind and body unification,
as well as faults in their self-organization resulting in
pathological changes.

It was believed that the mechanisms behind the formation
of neural links are responsible for the main aspects of human
individuality, such as personality, intelligence, and creativity.
Therefore, modeling the human connectome could become an
important step toward understanding all the variety ofmental
processes provided that an adequate programming language

is created [111]. In Russia, an adherent of this idea is
K VAnokhin who uses the term cognitome (brain's hypernet-
work) [112].

In August 2017, Chinese researchers announced the
opening of the Suzhou Institute for Brainsmatics, affiliated
with the Huazhong University of Science and Technology
(HUST), which will be focused on brain mapping. Four
hundred fifty mln yuan (67 mln US dollars) were allocated
from the state budget to the new research center for a period
of 5 years to support brain mapping studies. Their main
objective is to improve existing brain mapping technologies
by applying electron microscopy of thin nano-scale tissue
layers for further investigations.

The Allen Human Brain Reference Atlas created at the
Allen Institute for Brain Science, USA, has recently become
available online. Its printed version published by a group of
40 authors occupied the whole of the Journal of Comparative
Neurology volume issued on 15 September 2016 [113].

However, my personal experience [114, 115] gives evi-
dence that investigations into brain anatomy are of little value
for understanding the mechanisms of creativity, unless they
are supported by simultaneous studies of brain function
dynamics. Each person's brain is a unique and individualized
organ that keeps track of the life experience of its host. The
probability of complete coincidence, even in identical twin
siblings, is close to zero. Moreover, any idea requires
experimental verification. To study the dynamics of chan-
ging links, one needs a method to observe the formation of
both the structure and the function of the same brain. The
processes in neural networks and their interstitial space
proceed in millisecond time ranges and on nanometer spatial
scales. Unfortunately, the resolving power of methods
currently available is far from such temporal±spatial resolu-
tion. The temporal resolution of positron emission tomogra-
phy (PET) is too low (� 10 s) [116]. Electroencephalography
(EEG) has a temporal resolution up to 2 ms [117] but low
spatial resolution. The implantation of microelectrodes
increases spatial resolution, but this invasive method cannot
be used in routine human studies and is applied only in
exceptional circumstances for therapeutic purposes. More-
over, all invasive techniques pose an uncertainty problem,
because introducing a foreign body into the brain causes
adverse reactions. MRI can be used to record changes in
oxygen consumption and therefore in metabolic rate. The
spatial and temporal resolutions of MRI are around 1 mm
and 2 s, respectively [118].

High hopes are placed on advances in neurophotonics,
e.g., for the spatial±temporal analysis of the function of
neural networks with the aid of flexible fiber-optic devices to
simultaneously excite and register inherent or induced
fluorescence of neurons. The temporal resolution of this
method is formally unlimited, while its spatial resolution
depends on the wavelength of radiation being used [119].
This method is actually a miniaturized variant of dynamic
nano-endoscopy applied to brain research. However, neuro-
photonic techniques are invasive methods, like the implanta-
tion of microelectrodes, sharing the disadvantages and
uncertainties of that approach.

A book by the Sheroziyas (father and son) [120] also
presents a plan for the construction of an anthropomorphous
robot. The estimated cost of the 10-year project amounts to
$10 billion. The authors take into consideration feedback
between the brain and the body. According to them [120], the
mean number of degrees of freedom in a moving human body
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is on the order of 300, although I for one doubt this estimate.
The human organism can be regarded as a condensate of
unicellular organisms formed during evolution in a single
body volume [27]. This giant colony is governed at all levels by
a universal genetic code. Such a dynamical system must have
roughly as many degrees of freedom as the number of cells in
the body of an adult human, i.e., � 1013 [27].

4.2 Classical and probabilistic logics
Let us try to describe the mind and consciousness in a
different language, i.e., proceeding from the logic of the
functioning of brain networks to their architectonics,
rather than vice versa. There is nothing new in this
approach to the analysis of dynamic processes: it was
used by many researchers even before the 20th century
and continues to be applied in the 21st century. Suffice it to
recall the lecture delivered by V G Red'ko at the IV All-
Russian Scientific and Practical Conference `Neuroinfor-
matics-2002' [121]. It will be shown below that this
approach yields a nontrivial result.

Classical logic, unlike probabilistic logic, uses well-
defined rules. The former provided a basis for the mathema-
tical apparatus of classical physics. It includes all aspects of
logic represented in symbolic form. An important contribu-
tion to symbolic formalization of the logical thinking
processes was made by O de Morgan [122], G Boole [123],
F LGPeano [124], G Frege [125], A PoincareÂ [126], DGilbert
[127], B Russel [128], and other scientists.

However, the potential of classical logic for obtaining
objective knowledge has its restrictions. Classical logic
unambiguously identifies environmental objects with their
symbols (the law of identity) [129]. An algorithm should be
designed in a consistent way following a linear cause! effect
chain. The logical law of contradiction forbids self-contra-
diction in reasoning and analyzing situations. For example,
contradictory statements cannot both be true in the same
sense at the same time. Moreover, the law of excluded middle
prohibits answering questions indeterminately: neither a yes
nor no. Finally, a thought is called true only when it ensues
from another thought on which it is based (the law of
sufficient reason). In other words, thinking must be a
consistent process.

Humans feel comfortable in the framework of this
coherent system of logical thinking, because classical logic is
closed, internally consistent, and unambiguous. However, it
follows from practical experience that a closed system of
assertions contains statements that are impossible to categor-
ize as either true or false. The most striking examples are
paradoxes, e.g., Zeno's aporias (ancient Greek aporiaÐ
difficulty, perplexity) [130], that cannot be explained in
terms of classical deterministic logic.

The boundedness of classical logic is also due to the fact
that it reflects a single class of environmental situations
corresponding to `order' as opposed to `chaos' [131]. It is
difficult to explain, in the framework of classical logic, the
spontaneous formation of a goal by a human or to predict
the trajectory of development of nonlinear processes, such
as freaks of weather, earthquakes, changes in economic,
biological, and social systems, or manifestations of creativ-
ity. Attempts to build the future out of the past in nonlinear
systems or formulate political doctrines based on formal
logical considerations not infrequently lead to dogmatism
and, as a result, to the collapse of closed worldview
concepts.

It has been widely thought since the time of Parmenides 6

that ``only cognizable beingness rather than sensory impres-
sions is a real-world entity'' [132]. Parmenides' hypothesis can
be interpreted in a modern light based on the following
postulate: laws (models) of nature must not be more complex
than the data they explain. Otherwise, the notion of informa-
tion compression is invalid, since any unprocessed set of data
can exist by itself as a `law'. If memory were not limited, it
seemingly would be possible to remember all situations
without distinction and treat them as particular natural
laws. However, real laws of nature formulated by science are
interpreted based on a different principleÐ the principle of
simplicity, memory saving, and experimental verification [133].

At the end of the 20th century, Gregory J Chaitin showed
in book [134] that this line of reasoning leads to contra-
dictions. The overwhelming majority of the lines of symbols,
e.g., sequences of random numbers in irrational fractions,
describing environmental phenomena appear to be incom-
pressible in principle. If so, they cannot be reduced to simpler,
shorter, sequences. Such a situation takes place whenever an
observed chain of events exhibits no internal patterns
allowing it to be compressed. Then, there is no choice but to
accept the entire sequence as the law of nature. We accept this
situation without assigning any reason merely because we
have no other choice.

It was noted above that the brain can design, all on its
own, virtual models (lines of programs) of any degree of
complexity. Their comparison with reality makes it possible
to reveal local (special) patterns existing in the outer
environment. A dynamic comparison is realized by compar-
ing a synthesized sequence with that conditioned by the
environment, which exposes local patterns separated by
large intervals in time and space in the case of fragment
coincidence, e.g., words and phrases in the text. In 1989, we
realized such an idea in the form of an algorithm. Spectral
analysis in the Fourier space made possible the search for
repetitions separated by large intervals, e.g., in nucleotide
sequences of DNA [135].

Finding repetitions allowed us to compress information,
with occasional incompressible parts of a sequence being
regarded as `trash'. However, it was impossible to explain
why the `trash portions' did not contain information. A
change in the starting fragments changed the `trash' composi-
tion. The sole explanation for such a situation is that the
compression was performed in the framework of classical
deterministic logic, does not contradict it, and permits
concrete practical problems to be solved: here a trash serves
as a noise. The actions of robots are governed by algorithms
based on the laws of classical logic assigned by a programmer.
Brain work consists of overcoming contradictions between
antipodes, i.e., between the present and the past, environ-
mental events perceived by sensory organs and memories of
them conserved in previous experience.

Dialectical logic is often described as arising from
competition in disputes (the saying: truth springs from
argument). B B Kadomtsev, with whom I several times
discussed the emergence of the probabilistic world of informa-
tion technologies, insisted on its relation to quantum
mechanics [136, 137]. He summarized his views in the book
entitled Dynamics and Information [138].

6 The Greek philosopher Parmenides of Elea (late 6th±mid-5th century

BC) tried to distinguish between the truth and opinions about it. Zeno, the

author of famous paradoxes (aporias), was his disciple and successor.
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In the early 20th century, David Hilbert called on
mathematicians to define the finite totality of principles
allowing, based on the consistent application of the rules of
classical mathematical logic, us to find harmony in mathe-
matics. By 1922, Hilbert elaborated a plan to make mathe-
matics closed by means of its complete formalization based
on the proof of the absence of inner contradictions. To
implement this program, Hilbert developed, in a continua-
tion of Frege's work [125], a logical theory of proofs allowing
the principle of consistency of mathematics to be reduced to
the proof of consistency of, say, arithmetic. Hilbert used for
this purpose only universally accepted means of classical,
rather than probabilistic, logic. G Chaitin arrived at the
conclusion [134, 139] that Hilbert's program proved infeasi-
ble, even if it gave a powerful impetus to the development of
logic.

In his time, Kurt Friedrich GoÈ del was also interested in a
similar problem. He showed in 1931 that formalization of
mathematical theories encounters the inconsistency problem.
`Improvable theorems' appear at the boundaries of any closed
sets [140]. GoÈ del argued that any theory is incomplete and
therefore contradictory. The incompleteness implies the
presence of statements that can be neither proved nor
disproved from axioms of a given theory. Inconsistency leads
to the appearance of paradoxes, i.e., the possibility of proving
any assertion by considering true as false and vice versa.

The history of science gives evidence that everything new
is actually well-forgotten old. In 1686, i.e., 250 years before
GoÈ del, GottfriedWilhelm von Leibniz raised in hisDiscourse
on Metaphysics [141] the question of how to distinguish facts
described by a certain law from those indescribable by any
law. Leibniz re-formulated the thought of Parmenides and
came up with a simple postulate: a theory has to be simpler
than the data it explains. Otherwise, it is of no value.What does
the word `simpler' mean here? In modern language, it means
that information must be compressed and written downmore
briefly than the original data. But such a compression should
be performed following a rule that allows expanding
compressed information, if appropriate (see Section 5).

The human brain compresses information. The number of
gradations at hierarchical levels for the formation of
behavioral algorithms in living systems remains to be
determined but appears to be very high, i.e., comparable to
the number of organelles or cells �1013ÿ1017�.

Thus, the surrounding world and the human as its integral
component are organized hierarchically in accordance with
the laws of both classical binary logic and mixed ternary logic
supplemented by probabilistic logic. As a result, the brain
functions in the ternary system: `yes±no±uncertainty with a
different degree of probability'. A brain living in its own
virtual world divorced from reality is the brain of a madman.
Models it synthesizes may sometimes be close to reality, but
this looks as the exception rather than the rule.

4.3 The brain living in the probabilistic world
Let us call a brain living in the probabilistic world a Bayesian
brain. The simplest formula taking account of conditional
probability (the Bayes formula) was known a long time ago
[142, 143]. Consideration of conditional probability p�AjX�
expands our knowledge about event A upon obtaining new
data about event X:

p�AjX� � p�XjA�p�A�
p�X� : �21�

Probability p�A� is the belief-based probability of a
certain event A, i.e., fiducial (Latin fidesÐbelief, confi-
dence) probability. Probability p�X� is the probability of the
appearance of new information that can change our a priori
belief in the realizability of event A. Conditional probability
p�AjX� makes it possible to estimate to what extent our
conviction in the probability p�A� of event A was justified.
In the case of absolute confidence in its reality, the probability
p�A� � 1. In the case of absolute confidence that event A will
never occur, p�A� tends to 0.Most situations are intermediate
between 0 and 1. The nearness to 0 or 1 changes as new data
become available with probability p�X�.

The popularity of the Bayes formula seems to be ascribed
to the possibility of correctly calculating the probability of
attaining a goal after obtaining new information. It forms the
basis for the concept of the so-called ideal Bayesian observer,
an imaginary person always using the available data in the
best of all possible ways [144]. This imaginary creature,
however, resembles another one known in thermodynamics
as Maxwell's demon [9]. To recall, the Bayesian observer and
Maxwell's demon are connected via the cost of action (the
function of energy and time; see expression (2)). They cannot
measure at no charge and accurately the magnitude and
direction of a probability change upon receiving new
information. But the ideal Bayesian observer, unlike Max-
well's demon, `feeds' not only on energy but also on time spent
on repetition (saying: repetition is the mother of learning).

When using conditional probabilities p�XjA�, the follow-
ing circumstances should be taken into consideration in the
Bayes formula for three reasons.

First, a large number of trials are needed to reliably
deduce the probability of a certain event A. Only in this case
does probability p�A� allow an objective estimate of the
possibility of the occurrence of this event.

Second, one must be sure that probabilities of events A
and X are interdependent. If neither p�AjX� nor p�XjA�
changes the probability of event p�A�, then A and X are
independent.

Third, in the general case, p�AjX� 6� p�XjA�. A chain of
conditional probabilities can be asymmetric. In the case of
event A, event X occurs with probability p�AjX�; the opposite
assertion that in the case of event X event A occurs with the
same probability may be wrong. The process of human
thinking tends to ignore general information about the
frequency of events and focus on special information about the
event interesting for it alone; therefore, it misrepresents the real
situation described by probabilities. For example, the preva-
lence of cancer in the general human population being rather
low, the confidence that an individual person does not have
cancer is close to unity, i.e., p�A� � 1. If a person has a
growing tumor (event X), the probability of a positive result
in the cancer test is p�A� � 1ÿ p�AjX�, the cause being the
rarity of malignant tumors compared with the large number
of benign ones. The probability of this event is about 15%,
i.e., p�AjX�4 15%. The confidence that a person does not
have cancer also changes but insignificantly, i.e., probability
p�A� � 85%. Finally, in the case of a positive result of a
cancer diagnostic test using a modern method with an
accuracy of 90%, probability p�A� for such person is close
to 90% (saying: while there's life, there's hope).

For an external observer, e.g., a physician, p�A�, the
probability of diagnosing cancer in a single patient among
many others seen during routine prophylactic examinations
(X) is very low, p�XjA�4 1%. In other words, matching two
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conditional probabilities is fraught with errors caused by base
rate neglect in setting up the problem of the initial frequency
of a given event. The base rate notion being of great
importance, and here is one more example to clarify it in
more detail.

A topical example is the new technology to automatically
detect terrorists (base rate fallacy on https://ru.wikipedia).
Suppose a million-plus city happened to become a sanctuary
to 100 terrorists per 999,900 law-abiding citizens. The police
installed an alert system with cameras to automatically
identify criminals' faces in public areas based on the relevant
database. The software is likely to make errors of two kinds:
to overlook a sought-after individual (terrorist) with a
probability of 1%, and to mistake a peaceful citizen for a
terrorist they resemble (false alarm) with the same 1%
probability. When a camera sees a terrorist, the probability
of mistaking him for an ordinary citizen is 1%, meaning that
the correct signal informing police about the appearance of a
terrorist will be sent in 99% of cases and will be absent in 1%
of them. When the camera sees an ordinary citizen who looks
like a terrorist, it produces a false alarm signal in 1% of the
cases.

What is the probability that a person who causes the
camera to send an alarm signal is a terrorist?

Setting aside the above-mentioned three conditions, it can
be assumed that the probability equals 99%. Although this
assumption seems correct, it is actually wrong: the true
probability is around 1%. The discrepancy is due to the
confusion of two values of different natures. The frequency of
the absence of signals per 100 terrorists is unrelated to the
number of signals for every 100 peaceful citizens. The error is
easy to understand by considering a limiting case in which the
face-recognition system operates in a city free from terrorists.
Wrong signals are sent once for each 100 citizens, i.e., all of
them are false. If, however, nobody is aware of it, the police
have to arrive in response to each false signal, i.e., in 100% of
the cases. Imagine now that all 106 residents of the former city
walk past the camera. It will send signals about � 99 of the
100 terrorists, and 9,999 of the 999,900 ordinary citizens,
because they constitute the majority. On the whole, the alarm
signals will be produced when roughly 10,098 people pass by
the camera, of whom only � 99 are terrorists. Therefore, the
conclusion that the person who caused the camera to send a
false signal is a terrorist is correct in 99 cases out of 10,098,
i.e., in less than 1% of the cases, which is much lower than the
initially assumed value of 99%.

Rare events frequently lead to wrong conclusions when
analyzed using the Bayes formula. Jeremy Wolfe and co-
workers from Boston undertook an experimental analysis of
security services scanning passengers' luggage in an airport in
search of knives, explosives, and other items prohibited for air
transportation on board aircraft. The results of the search
were in agreement with the Bayes formula, when the sought-
after objects occurred frequently. The security agents missed
only 7% of such objects. The result proved disappointing
when such objects were rarely found. More than 50% of the
banned objects were missed in only 1% of the examined
luggage (see book [144]).

The Bayes formula becomes operable only after repeti-
tions and data collection, i.e., following correction of the
virtual environment model in the brain or a computer
taking advantage of past experience gained in interactions
with the real world. Otherwise, we find ourselves in the
trap of false correlations [145]. In the past, the irresistible

desire of the human to fulfil the lifelong ambition of
finding order in the outer environment, even where it is
intrinsically absent, was a source of superstitions [146]; at
present, it gives rise to hypotheses whose authors mistake
the wish for the reality [147].

The perception of the real world in the brain begins from
an a priori belief that is actually a virtual model of the world in
which objects and links between them occupy `a certain'
position in space and time. The model is determined by
genetic factors and past experience. The brain utilizes this
model to predict what signals must enter our eyes, ears, and
other sensor systems. The brain, however, may be wrong. A
comparison of these predictions with real signals reveals
errors that prompt the brain how to improve its own
environmental model. The cycle repeats again and again
until the errors become negligible. The number of such cycles
is usually small (in fact, only two of them are needed in the
limit). It usually takes the brain a minimum of 100 ms to
perform them (the limiting time of a simple motor reaction).
Our body serves to perceive and cognize the world. Perception is
a cycle in which predictions are continuously checked by
testing against actions. This ability was absent in early AI and
CAR systems.

To recall, the brain acquires a new image of the external
world after updating and can repeat the procedure based on a
new prediction of the character of events perceived by sensory
organs. Each repetition of the cycle reducesmistakes. As soon
as they become small enough, the brain can orient itself in the
outer environment. It is easy to determine how quickly
probability p�AjX� increases with repetition of corrections.

Let us turn back to the above example of cancer
diagnostics. If a patient once again undergoes the cancer
diagnostic test, the uncertainty may be radically reduced. If
the result of the second test is again positive, the
probability of cancer p2�A�, in accordance with the Bayes
theorem, will be the same as in the first test, i.e., 0.5. In
other words, the reliability of the diagnostics remained
unaltered �p�XjA� � 0:99�. The probability of positive and
negative results of the test is equal, i.e., p2�X� � 0:5.
Substituting these values into expression (21) yields

p�AjX� � 0:99� 0:5

0:5
� 0:99 : �22�

It means that the probability of cancer in a given patient is
99% instead of the former 50%. This example shows that
repetition quickly unravels the tangle of false and true
situations and makes the answer more precise.

As far as repetitions are concerned, the special role of a
teacher should be emphasized. The `teacher' reduces the
proportion of errors [61]. Certainly, communication with
the environment is not the sole way to gain experience. AI
programs seem to be free from this disadvantage, because the
programming personnel (the teacher) insert their own
experience into them. However, a robot tends to act like a
bull in a china shop, if the algorithm of the program is
designed to obtain advantages in a given situation in the
absence of rules for avoiding losses. Since the robot is
unfamiliar with such notions as ethics, humanism, and
morality, it is likely to physically destroy everything that
hinders it from achieving the set goal, meaning that the
programming specialist must envisage in the mechanism of
`teaching' not only the shortest path to the goal but also the
cost that should not be exceeded on the way to it. As soon as
the boundary is reached, the GoÈ del theorem comes into
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action, which results in situations in which the true and false
(opposite) goals are intermixed and indistinguishable; in
other words, the stability of the problem formulated by the
programmer is compromised.

The program rapidly and accurately performs that and
only that which is put into it and not what the operator might
have expected to obtain after it is accomplished. Norbert
Wiener arrived at the same conclusion in the mid-20th
century, which he outlined in the complementary chapters of
his book [148]. Uncertainty is fraught with `surprises' likely to
be brought by AI to the developer of the program.

5. Conclusions

5.1 Mathematical compression of information
A hypothesis of the existence of superalgorithms yet to be
found has been proposed that extends the metaphor of
development of logic and mathematics based on the follow-
ing postulate: coding allows information content to be
compressed. For example, one should not necessarily remem-
ber an entire infinite sequence of natural numbers, arithmetic
or geometric progressions, Fibonacci numbers, and many
other convergent series. Suffice it to remember the formula
for calculating any Nth number of the series needed to
construct such sequences of any length. This means that
they contain little information.

However, there can be certain infinite series of seemingly
nonrepeating sequences of numbers with local peculiarities.
Let us consider the calculation of the sequence of the number
p � 3:14159 . . . .

There are many algorithms for its consecutive calculation,
viz. the stochastic Monte Carlo method, Poisson integral,
FrancË ois Vi�ete formula, etc. As far back as the 16th century,
F Vi�ete derived a formula for finding the infinite sequence of
digits of this series [149]:
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This expression implies that the calculation of p is a recurrent
procedure. Evidently, the time of calculation in this way
increases with increasing the number N of a given item of
the series.

In 1997, David Bailey, Peter Borwein, and Simon Plouffe
arrived at a different, more elegant, and less time-consuming
formula for calculating aNth digit in the p sequence based on
the idea of local convergence of the pieces of certain series
[150]. This formula allows calculating any Nth digit of the
number p without computation of the immediately preceding
and following members of the series:

p �
X1
0

16ÿk
�

4

8k� 1
ÿ 2

8k� 4
ÿ 1

8k� 5
ÿ 1

8k� 6

�
: �24�

To calculate the Nth digit of the number p using this
formula, both its parts should be multiplied by 16N in order
to convert the factor in front of the parentheses on the right-
hand side of formula (24) into 16Nÿk. Then, the sum of
several adjacent members of the series is calculated. There is
no need to calculate many of these members, since the
formula suggests that 16Nÿk rapidly diminishes as k
increases, so that subsequent digits have no strong influence

on the value of the Nth digit in the series being sought. The
BBP formula was derived using the PSLQ algorithm.7 The
history of mathematics records many other tools for
information compression. Suffice it to mention Stirling's
(or Moivre±Stirling) formula for computing the factorial
and gamma function [151].

All this provides a basis for the hypothesis of a
hierarchical level above a set of number series, i.e., a variety
of algorithms for a series information compression. It can be
assumed that another mathematical world exists above these
algorithms. Its name, e.g., a set of superalgorithms or meta-
algorithms, is immaterial. The superalgorithms of this level
make possible the analysis of information about algorithms.
In such hierarchical variants, mathematics is not a closed
system: it is boundless, which opens up prospects for the
creative pursuit of information compression modalities by
moving from one hierarchical level to another. The higher the
level, the smaller time needed to solve problems at the lower
levels. Continuous extension of boundaries removes the
limitations formulated by GoÈ del.

Two conclusions of importance for biophysics follow
from this metaphor.

First, when ascending stepwise the hierarchy scale, a way
out must be found from the previous level to the next one leading
into a different information space. In addition, the ascension
from one level to another must be successive, i.e., not a single
level can be missed.

Second, the algorithm must be insensitive to the initial
conditions [27], because the past (starting conditions) com-
bined with boundary conditions (i.e., the present) defines the
future.

Nevertheless, different kinds of phase transitions violate
the laws of evolution, because they originate from jump-like
transformations. The jumps can be beneficial at low levels as
sources of enlightenment, creative activity, and advancement,
but they are deleterious at the upper levels, leading to the
downfall of the system or part of it; in the biosphere, they
result in the replacement of one species by another. An
advantage of the virtual world of our brain lies in the fact
that it can reduce the probability of jumps (saying: measure
twice, cut once).

5.2 Overrunning usual space into a new information space
The human brain solving intelligence problems tries to find a
nontrivial approach, as exemplified by the parable of the smart
kid. A father wanted his child to play in some way to be free to
do his ownwork.He tore a page showing aworldmap out of a
magazine, cut it into pieces, and said: ``I shall take you to the
zoo if you assemble the map''. He was sure it would take the
child at least an hour and a half, during which time he
intended to complete his work. However, the son spent only
ten minutes to cope with the task. ``How did you manage it?
Are you so good at geography?'' asked the surprised father.
``Daddy, you did not see the drawing of a man on the other
side. I assembled the drawing and here is the map. Let's go to
the zoo!'' (borrowed from manual [152]).

7 The PSLQ algorithm of analysis in the language of discrete questions is

one of the variants of the search for the nonintegral relationships between

the set of items of the sum of real numbers xi with coefficients ai. This sum

is set to zero. The computation program either finds the integer xi/ai ratio

or shows its absence (see PSLQ algorithm on the Wolfram MathWorld

website built by Eric W Weisstein).
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The child solved the difficult problem by moving into the
information space familiar to him from prior experience. In
other words, he compressed information and thereby saved
time needed to solve the new problem.

The approach to determining p described in Section 5.1
shows that the time needed to compress algorithmic informa-
tion depends on the level of the programing language chosen
to address the problem. For example, algorithm operating
time Dt necessary to calculate any Nth digit of p is
proportional to the serial number of the sought N digit,
whereas program memory is proportional to lnN [150].
Because

N4 lnN ; �25�
here is a simple but important conclusion: memory and
experience (knowledge of the past) save much time to solve
new problems.

The possibility of compressing information for construct-
ing new models of environmental behavior depends on the
possibility of integrating series or matrices having different
properties. A review of the theory of matrix models from the
standpoint of its relation to integrable hierarchies can be
found in Ref. [153]. The mathematical foundation for the
notion of complete integrability of dynamical systems, e.g.,
for the purposes of quantum mechanics, was laid by
L D Faddeev [154].

However, divergent series pose algorithmic problems of
information compression for a finite time interval. In themid-
20th century, A N Kolmogorov proposed using a program
length measured in bits or computation algorithm l (which is
the same thing) that transforms a given sequence fYjg into
fXig. Such a transition allows the information compression
problem to be addressed in the general form [155, 156]. For a
low-complexity problem (making compression possible), l is
significantly smaller than the length of fXig. In the opposite
case, the process is algorithmically incompressible. For such
sequences, the l � N algorithm of the fXig ! fYjg transition
reduces to remembering consecutive symbols of the entire
fYjg sequence.

The question is: are there absolutely random incompres-
sible processes in nature, or are they mere mathematical
abstractions? Possibly, the level of algorithmic hierarchy of
humankind is not sufficiently high to answer this question.
This problem interested Albert Einstein in the early 20th
century (hence his well-known saying in the debate with Niels
Bohr: `God does not play dice with the universe' [157]). Bohr
gracefully waived the discussion by proposing the principle of
complementarity [158].

5.3 Limits to similarities between robots and humans
It is impossible to answer the question: Where's the limit of
similarity between the robot and the human?. The search for
the answer is the realm of science-fiction writers and futurists
rather than physicists and biophysicists. It is impossible to
separate facts from fables in terra incognita. Predictions of the
future encounter intrinsic uncertainties. Nonetheless, we shall
try to formulate conditions for the appearance of a universal
creative robot. It was noted in a preceding section that
creativity is the ability to set a goal and take creative
decisions to achieve it. Modern robots cannot set goals by
themselves. The goal is formulated by the developer who
includes it in the AI program.

Purpose-oriented human behavior appears to have devel-
oped as a result of natural selection of the adaptive

mechanisms designed to ensure survival of the species in the
ever-varying environment on our planet. It is believed that
hominids appeared 4.5 mln years ago and evolved over the
following 2.8mln years. A crucial event was the appearance of
Homo habilis in Africa (the Lower Paleolithic). This was
followed by a qualitative transition in human evolution and
the beginning of social life. People gradually spread over the
globe. The evolution of Homo sapiens side by side with other
hominid species took approximately 3.5 mln years [159±161]
(Fig. 11).

What changes in the brain made us different from our
ancestors? Anthropological findings give evidence that the
brain of Australopithecus had a volume of 459 cm3 on the
average, comparable to that of certain chimpanzees. It
increased to 930 cm3 in Homo erectus (1.6 mln years ago)
and reached 1330 cm3 inHomo sapiens (200,000 years ago). It
is not only and not so much the increased brain volume and
changes in the brain structure or peculiar features of its
frontal cortex (Broadmann areas 10) that participate in the
construction of the virtual environment model (as demon-
strated by EEG studies) based on genetically determined
instincts and improve themselves, taking advantage of
information coming from receptors (even though the frontal
cortex ofHomo sapiens is more than twice as large as in other
primates). In all probability, the key factor is the 50%
increase in the distance between neurons, which provided
additional space for the growth of dendritic spines believed to
be involved inmemory formation andwhich contribute to the
improvement in the virtual model of outer environment.
Taken together, these changes laid the foundation for the
appearance and development of the social communication
language. This substantially promoted the formation of the
virtual environment model and opened up prospects for the
use of informal logic and creative activity by comparing and
integrating information received by the brain cortex not only
from sensor systems but also from the joint actions of
different groups of people exchanging information and
experiences [164, 165].

Brain development resulted in a survival strategy based on
such individualized human qualities as fear of death, pain
avoidance, the ability to evaluate potential reproductive
hazards, offspring protection, food procurement, and the
search for comfortable living conditions for oneself and
one's relatives. This strategy was supplemented by coopera-
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Figure 11. Stages of human evolution (t is the time elapsed, N is the

population number) that ended with the origin of modern humans as a

result of mutations in hominids that facilitated adaptation to the varying

environment. Circle diameter corresponds to the population size; circle

position is the lifetime of the respective species. Homo sapiens appeared

some 200,000 years ago. It possessed the best adaptive abilities and formed

the species that occupied virtually all regions of the planet. Now, the

world's human population exceeds 7 billion people [162, 163].
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tive behavior in response to environmental changes, remem-
bering them, and extensive exchange of experiences.

Is it possible to integrate the virtual model of the
surrounding world in the form of an algorithm into the AI
of a self-learning robot? It is thus far impossible.

To begin with, we do not know such a model in full
measure. The process of biological evolution remains to be
simulated and reproduced in experiment. It is an incorrect
inverse physical problem. Discussion of the origin of living
matter would be purely hypothetical after such matter came
into being. A peculiar feature of incorrect problems is the fact
that they imply restoration of a process dating far back into
the past based on present-day facts and events. Such problems
are highly sensitive to initial conditions, which we know only
in theory [166±168]. Thus far, we are aware (and then only
partly) of a single variant of evolution, i.e., the development
of living matter on Earth. It was shown above that the
significance of a single observation calculated using the
Bayes formula does not exceed 50%. This accounts for the
enormous controversy regarding panspermia (extraterrestrial
origin of life) [169, 170].

Second, robots have neither the genetic past nor cause-
and-effect relations with it. Suppose, however, that humans
created:

(1) a robot with a quantum computer-based `brain'
operating at the speed of light and a body packed full with a
variety of receptors;

(2) a closed-circuit operation system (functioning without
people) of self-reproducing robots (J von Neumann discussed
the theoretical possibility of such devices in the 1960s [171]).

What comes next? The robots will further develop in the
absence of humans provided there are sources of energy and
raw materials available to them. How many years would it
take their brains to go all the way (making use of the human
experience passed on to them) that the human brain covered
during its evolution till they are able to set their own goals?

Let us assume that the evolution from Homo habilis to
Homo sapiens took no more than 3.5 mln years and the
environmental conditions on Earth remained relatively stable
during this period; then, time DtR needed for the robots to
evolve the cognitive abilities of human beings in formulating a
goal is given by the proportion

v

c
� DtR

DtH
; �26�

where v is the maximum speed of information transfer
between human neurons along axons and dendrites
(25 m sÿ1), c is the maximum speed of information transfer
through the links between microprocessors of the CAR
`brain' (speed of light), c � 3� 108 m sÿ1, DtH is the time of
human brain formation under conditions on Earth's surface,
assuming DtH � 3:5 mln years� 1014 s, and DtR is the time of
formation of a creative robot capable of setting the goal for its
own existence and development. Proportion (26) yields the
value of DtR:

DtR 4
v

c
DtH � 9:2� 106 s � 3:7 months: �27�

Thus, a self-learning robot needs only 3±4 months to be able
to set the goal and act like a human. In this case, the
appearance of the CAR world should be regarded as the
continuation of biological evolution on a different basis. The
scenario of evolution depends on our belief (analogous to

calculating the probability using the Bayes formula without
repetition). However, humans do not need dangerous robots
capable of setting goals, feeling sorrow, loving, rejoicing,
envying, rage, fighting, doubting, revenge, and even going
mad. Such robots would treat humans as domestic animals.

6. Summary

Five concluding remarks follow from the foregoing:
I. In the near future, robotic engineering will develop along

the following lines as before: (1) formation of `clever space'
(robotized plants and areas); (2) creation of `clever and safe'
cities and regions; (3) expansion of human distribution area in
the third dimension (Sky City, Akva City, Cyber Village);
(4) gaining new knowledge, i.e., exploration and exploitation
of astroscales (robotized space missions) and nanoscales
(robotic `flights' inside the body).

II. The human brain generates a virtual model of the outer
environment based on deterministic logic even if it is actually
probabilistic, since it can err. The model is continuously
corrected based on genetics, the experience gained from the
totality of the sensor system of the organism and body
movements, memory of the past, and social relations.

III. The term `android' may imply superficial resemblance
of a robot to the human, but it is an unessential trait. The
design of a robot depends on its specific application. The
external similarity is just an exotic feature; in most cases, it is
unpractical.

IV. The artificial intelligence of robots must not be able to
formulate its own goals. The goal must always be set by the
human. This condition is the conventionally accepted limit to
similarity between the robot and the human. Programmers
must equipAI-powered robots only with such algorithms that
ensure the optimal choice of the pathway to reach the goal set
by the human creator of robots and the sole agent entitled to
formulate goals for them.

V. It is logical to assume that the creation of CARs is a
dangerous variant of the anthropogenic transformation of
nonliving matter by the human mind. It may happen to be the
last in the destiny of humankind in case of an error. A robot
capable of formulating its own goals can take any decision, up
to the temptation to annihilate its creator.
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