
Abstract. Theoretical and experimental results on excitonic
effects in monomolecular layers of transition metal dichalco-
genides are reviewed. These two-dimensional semiconductors
exhibit a direct bandgap of about 2 eV at the Brillouin zone
edges, and the binding energies of their neutral and charged
excitons are in the range of hundreds and tens of millielectron-
volts, respectively. This implies that electron±hole complexes
determine the optical properties of transition metal dichalco-
genide monolayers. Topics discussed in this review include the
band structure details needed to understand the excitonic effects
in these materials, the structure and fine structure of exciton
and trion energy levels, the features of the spin and valley
dynamics of Coulomb complexes, and how neutral and charged
excitons manifest themselves in linear and nonlinear optical
effects.

Keywords: transition metal dichalcogenides monolayers, Coulomb
interaction, exchange interaction, exciton, trion, spin dynamics,
valley dynamics, optical orientation, two-photon absorption,
second harmonic generation, Zeeman effect

1. Introduction

In recent years, interest has strongly grown in two-dimen-
sional semiconductor materials, the most prominent repre-
sentative of which proved to be grapheneÐa monolayer of

carbon atoms ordered into a hexagonal lattice [1±6]. Break-
through studies of graphene led to interest in other two-
dimensional systems as well, including the monolayers of
hexagonal boron nitride, black phosphorus, and monolayers
of transition metal dichalcogenides (TMDs) [7, 8]. Besides
the unusual physical properties of two-dimensional crystals,
the prospects of creating a new class of nanosystemsÐvan
der Waals heterostructures, in which the monatomic or
monomolecular layers of different materials are superim-
posed on each other in a given sequenceÐare actively being
discussed at present [9].

Among the wide family of two-dimensional semiconduc-
tors, a special place is occupied by the monomolecular layers
of TMDs described by the formula MX2, where M is a
transition metal, and X is a chalcogen. The most studied
representatives of this class of semiconductors are systems
based on group VI elements of the Periodic Table, where
M �Mo or W, and the chalcogens are represented by S, Se,
or Te. These materials were investigated in the bulk form in
the 1960s and 1970s [10±12]; such crystals demonstrate
semiconductor properties with an indirect band gap energy
on the order of 1 eV. The situation changes qualitatively when
going over from the bulk material to the monolayer. It turns
out that many two-dimensional TMDs, including their most
widespread representatives MoS2, WS2, MoSe2, and WSe2,
become direct-band semiconductors with a bandgap energy
of about 2 eV [13, 14]. This circumstance spurred the interest
of researchers inMX2 monolayers [15, 16].

Similarly to graphene, the atoms in the monolayers of
TMDs are ordered into a hexagonal lattice (Figs 1a, b). The
Brillouin zone of theMX2 monolayers is hexagonal and, just
as in graphene, the most interesting optical and transport
effects at present take place near the points K� at the corners
of the Brillouin zone (Fig. 1c). In contrast to graphene, where
the valence band and the conduction band merge at these
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points, a gap is opened in TMDs at the pointsK� and a direct
band gap is realized. Another important difference from
graphene consists in the extremely strong spin-orbit interac-
tion in MX2 caused by the large atomic weight of transition
metals. This circumstance leads to the removal of the spin
degeneracy of the states in the valence band and in the
conduction band in TMD monolayers at the points K� of
the Brillouin zone (Fig. 2); the spin splitting of the valence
band is hundreds of millielectron-volts, and that of the
conduction band from units to tens of millielectron-volts
[17±20]. The signs of the spin splitting in the K� and Kÿ
valleys are opposite; therefore, the ground states of the
electron and hole in each of the valleys possesses a specific
spin, whose direction is locked to a specific valley in the
energy spectrum. The competition of spin and valley degrees
of freedom in the electronic properties of crystals can lead to
unusual transport effects, for example, to the separation of
the electronic states in different valleys under the action of an
electric fieldÐ the valley Hall effect [21].

Monomolecular MX2 layers also demonstrate unusual
optical properties. First, by a normal incidence of radiation
onto amonolayer, interband optical transitions in theK� and
Kÿ valleys are excited by photons with different helicities: s�

in theK� valley, and sÿ in theKÿ valley [22±26], which opens
prospects for controling the valley degrees of freedom in these
materials by polarized light. Moreover, the optical properties
of the TMD monolayers are determined to a considerable
degree by the neutral and charged excitons, i.e., the electron±
hole complexes bound by Coulomb interaction. The binding
energy of a neutral exciton in the MX2 monolayer reaches
hundreds ofmeV, and that of the charged excitonÐ the trion,
which represents a three-particle complex consisting of two
electrons and one hole or two holes and one electronÐ is tens
of meV [27±32]. The Coulomb complexes are stable up to
room temperature and possess a significant oscillator
strength, and the analysis of the fine structure of their energy
spectrum and of its manifestations in linear and nonlinear
optical effects is one of the most urgent avenues of study
today in the physics of two-dimensional materials.

The purpose of this review is to describe the state-of-the-
art in the field of studies of electronic and exciton effects in
TMD monolayers. In Section 2, basic models of the band
structure of MX2 monolayers are described; in Section 3, the
structure of the exciton and trion is discussed, as is the fine
structure of exciton energy levels. Sections 4 and 5 are devoted
to manifestations of exciton properties in spin, valley,
magneto-optical, and nonlinear optical effects.

2. Electronic properties

Knowledge of the band structure ofMX2 monolayers is a key
to understanding the variety of exciton effects that appear in
two-dimensional semiconductors. In this section, we give the
minimum necessary information about the symmetry of
electronic states in the K� and Kÿ valleys of the Brillouin
zone, which is the most important in the phenomena
considered, give a brief review of atomistic methods, and
describe the effective Hamiltonian method (kp-method),
which makes it possible (with low computation costs, but
with the retention of acceptable accuracy) to describe the
details of the band structure and to take into account the
interaction of charge carriers with each other and with
external fields. A detailed analysis of the band structure of
TMDmonolayers can be found in review [17] and in a number
of original studies, references to which will be given when
necessary.

2.1 Band structure. Symmetry analysis
The symmetry of one monomolecular layer of a semiconduc-
tor belonging to the family of dichalcogenides of transition
metals (see Fig. 1) is described by the point groupD3h without
the center of inversion. This group contains the following
elements of symmetry: the horizontal reflection plane sh
passing through metal atoms; the axis of rotation of the
third order C3, perpendicular to the monolayer and passing
through the center of a hexagon;mirror rotation axisS3; three
rotation axes of the second orderC2, which lie in the plane sh,
and three reflection planes sv, which contain theC2 axes. The
unit cell of a two-dimensional crystal consists of one atom of
metal and two atoms of chalcogen, located in the planes lying
above and below the metal atom (Fig. 1a).

The Brillouin zone of theMX2 monolayer has the shape of
a regular hexagon; its high-symmetry pointsG, M, andK� are
shown in Fig. 1c. The direct energy gap is realized in the
nonequivalent valleys K� at the edges of the Brillouin zone,
which are connected via the operation of time inversion. The
symmetry of one valley is lower than the symmetry of the
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Figure 1. (Color online.) Schematic representation of the crystal structure

of an MX2 monolayer: (a) side view; (b) top view, and (c) Brillouin zone
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Figure 2. Schematic representation of the energy dispersion near the K
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monolayer on the whole; the symmetry group of the wave
vector at the points K� is C3h. First-principles calculations
show that the conduction band at the K points is mainly
formed by the orbitals of the metal atoms which have the
symmetry dz 2 , whereas the valence band is mainly contrib-
uted by d�x�iy�2 orbitals [20, 33], where x and y are the
Cartesian coordinates in the plane of the layer, the z-axis
coincides with the normal to the layer, and the designations
of the atomic orbitals that are standard in atomic physics are
used: s (angular momentum 0), p (angular momentum 1),
d (angular momentum 2), etc.

The symmetry of the electronic states in the C3h group of
the wave vector is defined by both the transformation of the
corresponding atomic orbitals and by the phase factor
exp �iK�Rj�, where Rj describes the positions of atoms in
the lattice. As a result, the Bloch functions of the valence
band at the K� points, whose periodic parts are composed by
d�x�iy�2 and d�xÿiy�2 orbitals, are invariants, which are
transformed according to the representation of the C3h

group denoted as A0 [18] or G1 [34]. The states of the
conduction band are transformed in the K� and Kÿ valleys
according to the representation E 01 �G2� as the function
x� iy, and according to the representation E 02 �G3� as the
function xÿ iy, respectively. It follows from the given
symmetry analysis that in the case of normal incidence of
radiation, the optical transitions from the valence band to
the conduction band occur under the action of circularly
polarized light; moreover, the transitions in the K� and Kÿ
valleys are active in the circular polarizations s� and sÿ,
respectively [22±26].

For the analysis of a wide range of physical phenomena in
the MX2 monolayers, extended models of the band structure
are constructed, which take into account, apart from the
lowest-energy conduction band and the highest-energy
valence band, a number of `remote' bands (see the diagram
in Fig. 3). The representations, according to which the
electronic states in the higher-energy conduction bands
(c� 1, c� 2) and in the lower-energy valence bands (vÿ 1,
vÿ 2, vÿ 3) are transformed, are given in Table 1. Notice
that the states in the c, v, c� 2, and vÿ 3 bands are even with
respect to the transformation of reflection from the plane sh,
whereas the states in the c� 1, vÿ 1, and vÿ 2 bands are
odd with respect to this operation. The corresponding
representations in Table 1 differ in the number of prime

symbols in the superscript (one for the even, and two for the
odd states).

When taking into account the electron spin, the states of
the valence band are transformed according to the spinor
representations G7 (spin up, sz � �1=2, where sz is the
projection of the spin onto the normal to the monolayer)
and G8 (spin down, sz � ÿ1=2) in each valley (see Fig. 2). The
states of the conduction band in the K� valley are trans-
formed according to the representations G11 (spin up) and G9

(spin down), and the states in the Kÿ valley according to G10

(spin up) and G12 (spin down). Since the electronic states with
different projections of the spin onto the z-axis are trans-
formed according to the different representations, the
corresponding spin sublevels at the K� points are split even
in the absence of an external magnetic field. Because of the
symmetry with respect to the time inversion, these splittings
have opposite signs at the points K� and Kÿ (see Fig. 2). The
magnitudes of the spin splittings amount to � 100 meV for
the valence band and increase with increasing atomic number
of the constituent elements [35]. The spin subbands of the
conduction band are split by � 1ÿ10 meV; the order of
magnitude of the splitting differs for the monolayers formed
on the basis of molybdenum (MoS2, MoSe2) and on the basis
of tungsten (WS2, WSe2) [19]. It should be emphasized that
the optical transitions in the electric dipole approximation
upon the propagation of light along the normal to a
monolayer occur with the conservation of the spin and are
determined only by the orbital component of Bloch functions;
therefore, the selection rules do not change when taking into
account spin: the transitions in theK� valleys are active in s�

polarizations. A detailed analysis of optical transitions in
different polarizations is given in Section 3.3.

2.2 Review of atomistic methods
The electronic structure of crystalline semiconductors is
usually calculated using `first-principles' (ab initio) methods
(for example, by the density functional theory (DFT)
method), which allow, using a minimum number of input
parameters, obtaining the dispersion of the energy bands and
the orbital composition of electronic states in the entire
Brillouin zone. The DFT method is widely used for calculat-
ing the band structure of both the bulk crystals of dichalco-
genides of transition metals and monolayers based on them;
however, its computation difficulties and the complexity of
taking into account external perturbations (such as magnetic
field) limit its applicability for calculating physical effects.

At the same time, there is another class of methods, called
empirical. Within the framework of the approaches of this
class, the electronic states are described by the effective
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Table 1. Designations of electronic bands in TMD monolayers and the
irreducible representations (without taking into account spin) of the group
C3h according to which the corresponding orbital states in the K� and Kÿ
valleys are transformed.

Representation

K� Kÿ Band

E 02
A00

E 01
A0

E 002
E 001
E 02

E 01
A00

E 02
A0

E 001
E 002
E 01

c� 2

c� 1

c

v

vÿ 1

vÿ 2

vÿ 3
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multiband Hamiltonian, whose parameters are determined
empirically, i.e., via a comparison of the observed values,
obtained as a result of the diagonalization of a Hamiltonian,
with the results of ab initio calculations and experimental
data. The calculated dispersions of the bands and the orbital
composition of wave functions can be used as the compared
values, along with the experimental values of the effective
masses and of the g-factors of charge carriers at the high-
symmetry points of the Brillouin zone. The most common
empirical methods are the empirical tight binding (TB) model
and the kp-method of the perturbation theory.

Calculations of the energy dispersion of the bands by the
DFT method with a subsequent treatment of the results
obtained within the framework of the GW approximation to
more correctly take into account the electron±electron
interaction were performed in Refs [33, 36±40] (see also
review [41]). The result of this calculation for the WSe2
monolayer is illustrated in Fig. 3. The calculation was
performed taking into account the spin-orbit interaction.
The order of the bands corresponds to the designations in
Table 1 (direct energy gap Eg � 2:5 eV is opened at the points
K of the Brillouin zone between the bands c and v).

Let us now go over to a review of the empirical tight
binding methods that are used widely in describing the
electronic properties of MX2 monolayers. The minimum
tight binding model, which takes into account three d-type
orbitals �dz 2 , d�x�iy�2 , and d�xÿiy�2� of the metal atoms, was
developed in Ref. [20]. This three-band model makes it
possible to obtain the dispersion of the c and v bands near
theK points and the orbital composition of the corresponding
wave functions that are close to the results of calculations by
the DFT method.

In order to describe the electronic states in the entire
Brillouin zone in the c and v bands, and also in the other, more
distant conduction and valence bands, 11-band tight binding
models are invoked, which include five d-orbitals of the metal
atom and six p-orbitals of the chalcogen atoms [39, 42±44].
The effective Hamiltonian for these models is written out in
the basis

fj �
n
dz 2 ; d�x�iy�2 ; d�xÿiy�2 ; p

S
x ; p

S
y ; p

A
z ; dxz; dyz; p

A
x ; p

A
y ; p

S
z

o
;

�1�
where da denotes the d-symmetry orbital on the metal atom,
while pS

b � �pb; t � pb;b�=
���
2
p

and pA
b � �pb; t ÿ pb;b�=

���
2
p

are
the symmetric and antisymmetric combinations of the p-
orbitals of the upper (top) (t) and lower (bottom) (b) atoms
of the chalcogen in the unit cell of the crystal.

The freely suspended monolayer is symmetric relative to
the specular reflection z! ÿz; therefore, the effective
Hamiltonian H�q� of the multiband model for an electron
with wave vector q in the basis (1) is separated into two
independent blocks and takes on the form

H�q� � HE 0
0 HO

� �
: �2�

Here, HE is a block of size 6� 6, which acts on the orbitals
that are even with respect to the operation z! ÿz [first six
orbitals of the basis (1)], and HO is a block of the size 5� 5,
which acts on the odd orbitals. The concrete form of matrices
HE andHO depends on the details of themodel [39, 42±44]. As
was mentioned earlier, the Bloch functions of the bottom of
conduction band (c) and of the top of valence band (v) are

even with respect to the reflection operation z! ÿz and,
therefore, these bands (as well as bands c� 2 and vÿ 3) are
described by the blockHE. Bands c� 1, vÿ 1, and vÿ 2 (see
Table 1) enter into the composition of the block HO. It is
important to note that the magnetic field directed along the
normal to the monolayer does not break the parity of wave
functions; therefore, it is possible to limit oneself to only the
effective HamiltonianHE when calculating the Zeeman effect
in bands c and v (see Section 4.1). The dispersions of even
bands obtained within the framework of the tight binding
model presented in Refs [44] and [39] are given in Fig. 4.
Within this approach, the effects connected with the presence
of a substrate or of an electric field applied along the normal
to the MX2 monolayer can be taken into account using the
perturbation theory by mixing theHE andHO blocks.

2.3 Effective Hamiltonian method
The electronic states in the K valleys can also be described
within the framework of the effective kp Hamiltonian. The
simplest two-band kp model contains the states of bands v
and c, which, without taking into account spin at points K�,
transform as a scalar and as the x� iy functions, respectively.
The effective kp Hamiltonian H2;�, which describes states
near points K�, can be constructed by the method of
invariants, and in the linear approximation in wave vector k
counted from the corresponding point K� is written out as

H2;� � Eg g3kÿ
g3k� 0

� �
; H2;ÿ � Eg ÿg3k�

ÿg3kÿ 0

� �
: �3�

Here, the energy is counted off from the top of the valence
band, Eg is the energy gap, k� � kx � iky, k � �kx; ky� is the
two-dimensional wave vector of the electron counted off from
points K�, and g3 is the parameter proportional to the
interband matrix element of the momentum operator. Notice
that hereinafter parameter g3 is assumed to be real; it can be
reached by the selection of the phases of the Bloch functions.
Taking into account the electron spin, the effective Hamilto-
nian similar to that in formula (3) describes two independent
pairs of states: pairs �G7;G11� and �G8;G9� in the K� valley,
and pairs �G7;G10� and �G8;G12� in the Kÿ valley, while the
magnitude of Eg in this approach depends on the sign of the
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spin component sz and is equal to the energy difference
between the corresponding levels at k � 0. The diagonaliza-
tion of Hamiltonian (3) yields symmetric dispersions of the
conduction band and of the valence band with the effective
masses mc � ÿmv � m �, where

1

m �
� 2g 23

�h 2Eg

: �4�

Calculations using the DFT method give values m � � 0:5m0

and Eg � 2:5 eV for most MX2 monolayers investigated to
date; these datamake it possible to obtain a crude estimate for
the interband parameter g3 � 4 eV �A. The magnitude of g3 in
units of velocity corresponds to g3=�h � c=500, where c is the
speed of light, and in energy units to 2m0g 23 =�h 2 � 5 eV. The
values of the interband matrix element of the velocity
operator of this order of magnitude are characteristic of
other semiconductors as well [2, 46].

Although the two-band model (3) is sufficient for
calculating the rate of optical transitions and the fine
structure of the radiative exciton-doublet, it does not take
into account several important features of the systems under
consideration, including the asymmetry of the dispersion of
the electron and hole in the K valleys, and the absence of the
center of spatial inversion in the symmetry group C3h. As will
be shown further in Section 4.1, the two-band model also
leads to equal-in-magnitude g-factors of the conduction band
and valence band and, correspondingly, to the absence of
splittings of the spin levels of excitons in a magnetic field,
which contradicts experimental data. These features can be
taken into account by introducing into the effective Hamilto-
nian additional bands of the same parity, in particular, the
adjacent bands c� 2 and vÿ 3 (see Table 1 and Fig. 4). The
effective Hamiltonian of the obtained four-band model can
be found with the aid of the method of invariants and has the
following form in the K� valley [18]:

H4;��k� �
Evÿ3 g2k� g5kÿ 0

g2kÿ Ev g3k� g4kÿ
g5k� g3kÿ Ec g6k�
0 g4k� g6kÿ Ec�2

0BB@
1CCA ; �5�

where gj � j � 2ÿ6� are real (owing to the choice of the phases
of appropriate Bloch functions) parameters, and En is the
energy of the band with the number n at k � 0. The
corresponding Hamiltonian in the Kÿ valley is obtained via
the operation k� ! ÿk�. Hamiltonian (5) takes into account
the trigonal symmetry of the crystal lattice and the absence of
the center of spatial inversion. In order to illustrate this
property, let us calculate with the aid of a kp-method the
effective matrix element, which mixes the c and v bands and is
proportional to the second power of the wave vector. In the
second-order perturbation theory, we obtain

V �K��v; c � �
1

2
Ag3k

2
� / k 2

� ; �6�

where a parameter A was introduced according to the
relationship

A � 1

g3

�
g4g6

Ec�2 ÿ Ec
� g4g6
Ec�2 ÿ Ev

ÿ g5g2
Ev ÿ Evÿ3

ÿ g5g2
Ec ÿ Evÿ3

�
:

�7�

Thus, the mixing of the conduction band and of the valence
band is accomplished, apart from the linear-in-the-wave-

vector terms k�, also by quadratic contributions / k 2
�. This

fact reflects the absence of the center of inversion in the
material, as well as the trigonal symmetry of the K valleys,
since the symmetry group C3h contains the three-fold axis,
and the function �kx ÿ iky�2 / exp �ÿi2j�, where j is the
angle between k and the x-axis, is transformed in this group
just like the function kx � iky / exp �ij�.

The effective masses in the c and v bands are expressed
through the parameters of Hamiltonian (5) as follows [47]:

1

mc
� 2

�h 2

�
g 25

Ec ÿ Evÿ3
� g 23
Ec ÿ Ev

� g 26
Ec ÿ Ec�2

�
;

�8�
1

mv
� 2

�h 2

�
g 22

Ev ÿ Evÿ3
� g 23
Ev ÿ Ec

� g 24
Ev ÿ Ec�2

�
;

so that mc 6� mv. The Hamiltonian constructed above
makes it possible to calculate the g-factor of the exciton
(see Section 4.1) and to describe the effects connected with
the noncentrosymmetry of the monolayer, in particular, the
generation of the second optical harmonic (see Section 5.2).
For a number of applications, the symmetry of the crystal
lattice can also be reproduced by retaining, in the expansion
of the two-band kpHamiltonian in powers of the wave vector,
the nondiagonal contributions quadratic in k [see Eqn (6)]
and the diagonal contributions cubic in k, connected with
taking into account the remote bands according to the
perturbation theory [17]. The approach based on Hamilto-
nian (5) possesses the advantage allowing us to take into
account only interband matrix elements that are linear in k.

For the successful application of kp-models, it is necessary
to derive the parametrization of the effective Hamiltonian. In
concrete calculations, it is convenient to apply the approach
realized in paper [45]. Within the framework of this method,
the phenomenological parameters of Hamiltonian (5) can be
unambiguously determined using the expansion of the
effective Hamiltonian HE�q� of the tight binding model near
the K points �k � qÿ K��:

H4;��k� � HE�K�� �
X
a�x; y

qHE

qqa
�K��ka : �9�

Here, the first term of the expansion determines the diagonal
energies En, and the second term the contributions linear in
the wave vector, which are proportional to the coefficients gj.
The parameters of the tight binding model can be determined
by using it to fit the results of calculations of the energy
dispersion and orbital composition of the wave functions in
the DFT method over the entire Brillouin zone. Further, this
approach is used in analyzing the Zeeman effect in MX2

monolayers; the main parameters of the band structure of the
MX2 monolayers obtained are given in Table 2.

3. Coulomb complexes: excitons and trions

Exciton states in crystals have been studied since the 1930s
[48±51]. Special interest in exciton effects appeared in the
1950s, after Gross and Karryev [52] revealed a hydrogen-like
series of exciton states in cuprous oxide. As a result of
numerous experimental and theoretical studies, it was
established that many optical properties of semiconductor
crystals were caused by the presence of hydrogen-like
complexes, which consist of an electron and a hole bound by
Coulomb attraction. In this section, we discuss the specific
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features of exciton states in TMDmonolayers caused by both
the peculiarities of Coulomb interaction in thin films and by
the fine structure of electronic states (due to the presence of
two valleys and a strong spin-orbit interaction).

3.1 Coulomb interaction in thin films
In contrast to the widespread structures with quantum wells
consisting of III±V and II±VI semiconductors, the structures
based on TMDmonolayers are characterized by a significant
contrast in dielectric properties. Most vividly, this can be
manifested for freely suspended monolayers surrounded by
air or vacuum, since the dielectric constant of bulk MX2

crystals, according to different estimations, is on the order of
10 and in this case considerably exceeds the dielectric constant
of the environment.1

The potential of the electrostatic field created by a point
charge in a thin film placed between two bulk dielectrics was
calculated in Refs [53, 54], in which a film of a finite thickness
d prepared from a material with the dielectric constant E and
surrounded by media with the dielectric constants E1 and E2
was studied, and the approach was invoked based on the
application of the macroscopic equations of electrodynamics.
This approach cannot be directly applied to the monomole-
cular layers of TMDs, since it implies averaging over the
volume containing many unit cells of the crystal [55, 56].
However, a similar expression for the effective potential can
be obtained by analyzing the two-dimensional limit, in which
the thickness of the film is disregarded, and the dielectric
response of the film is characterized by the two-dimensional
susceptibility a2D according to the expression

P � d�z�a2DEk ; �10�

where P is the dielectric polarization, i.e., the dipole moment
of a unit volume,Ek is the two-dimensional vector comprising
the field components in the plane of the layer, and the Dirac
d function reflects the circumstance that the entire dipole
moment is induced in the two-dimensional film, which
occupies the plane z � 0. Following paper [57], let us
calculate the electrostatic potential induced by the point
charge e located in a film at the origin of the coordinates.

For this purpose, let us introduce the charge density
next�r� � ed�r�. The electrostatic potential j�r� created by
the charge in the entire space satisfies Poisson's equation

Dj�r� � ÿ4pn�r� ; �11�
where n � next � nind is the sum of the densities of the point
charge and the charge induced in the film, nind. The density of
the induced charge can be expressed through the polarization
vector P of the film as nind � ÿdivP. In turn, the polarization
vector is connected with the component of the electric field in
the plane of the film, Ek � ÿHHqj�q; z � 0�, in accordance
with expression (10). Taking into account the charge induced
in the film, namely

nind�r� � d�z�a2DDqj�q; z � 0� ; �12�

the equation for the potential j�r� takes on the form

Dj�r� � ÿ4ped�r� ÿ 4pa2Dd�z�Dqj�q; z � 0� : �13�

This equation is solved with the aid of the Fourier transform

j�q; kz� �
�
dz

�
dqj�q; z� exp �ÿikzzÿ iqq� ; �14�

where q and kz are the components of the wave vector in the
plane of the film and along the z-axis, respectively. From the
solution to equation (13), we obtain the Fourier component
j2D�q� � �2p�ÿ1

�
dkz j�q; kz� of the two-dimensional poten-

tial in the plane of the film:

j2D�q� �
2pe

jqjÿ1� 2pa2Djqj
� : �15�

Notice that the obtained potential coincides in form with the
potential of the point charge in a two-dimensional medium
with the effective dielectric constant ~E�q� � 1� 2pa2Djqj,
which depends on the wave vector.

The reverse transformation into the r space gives

j2D�q� � j�q; z � 0� � pe
2r0

�
H0

�
r
r0

�
ÿY0

�
r
r0

��
; �16�

where H0 and Y0 are the Struve and Neumann functions,
respectively, and

r0 � 2pa2D : �17�

Formula (16) describes the potential of the field of the point
charge screened by the two-dimensional film, with the
parameter r0 having meaning of the screening length (Fig. 5).
On the spatial scales that exceed the screening length,
r=r0 4 1, we have

j2D�q� �
e

r
; �18�

which coincides with the field of the unscreened charge. In the
opposite case, for r=r0 5 1, the potential has a logarithmic
asymptotic form:

j2D�q� � ÿ
e

r0

�
ln

r
2r0
� C

�
; �19�

where C is the Euler constant, which corresponds to the
effective screening of the external field by the film.

Table 2. Band parameters of TMD monolayers found in Ref. [45] on the
basis of calculations using the density-functional-theory method
(DFT+GW) and the tight binding method. Parameters from Ref. [17]
are given in parentheses for MoS2 (averaged values for different
DFT+GW realizations and, in the case of effective masses, averaged
over two spin subbands).

MoS2 MoSe2 WS2 WSe2

Eg, eV

Dv, meV*

Dc, meV*

mv=m0

mc=m0

gv

gc

gX0 � gc ÿ gv

2.49 (2.84)

148

3

ÿ0:56 (ÿ0:58)
0.37 (0.45)

5.59

1.77

ÿ3:82

2.32

185

21

ÿ0:57
0.52

5.83

3.21

ÿ2:62

3.01

427

ÿ32
ÿ0:49
0.40

5.96

2.11

ÿ3:85

2.43

464

ÿ37
ÿ0:58
0.46

4.08

0.24

ÿ3:84
* Adapted from Ref. [17].

1 Notice that in the bulk TMD crystals the tensor of the dielectric constant

has two independent components, Ek and E?, which describe the screening

of the fields parallel and perpendicular to the c-axis. The estimates

obtained in Ref. [27] for bulk MoS2 give Ek � 6:3 and E? � 13.
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In the more general case, when the film is placed between
two dielectrics with permittivities E1 and E2, potential (16) is
modified by the substitution of r 00 � 2r0=�E1 � E2� for r0 in the
arguments of the Struve and Neumann functions. For a film
of a finite (macroscopic) thickness dwith a dielectric constant
E, the parameter a2D is given by the expression

a2D � d
Eÿ 1

4p
; �20�

which allows, in the limiting case of E4 1, going over from
formula (16) to formula (2) from paper [54], and to formula
(8) from paper [53].

Calculations of a2D for the monolayers of different
TMDs, including MoS2, MoSe2, WS2, and WSe2, were
carried out in Ref. [30]. To this end, the first-principles
methods were applied to calculate the component E? of the
tensor of the dielectric constants in the direction perpendi-
cular to the c-axis of the bulk structure comprising periodi-
cally alternating monolayers and empty spaces of width L.
Using the obtained values of E?�L�, the parameter a2D can be
calculated as a following limit:

a2D � lim
L!�1

L
E?�L� ÿ 1

4p
: �21�

The calculated values vary in the range of a2D � 5ÿ8 �A for
different materials; the corresponding values of r0 lie in the
range of 30±50 �A. A crude estimate for a2D can be made via
formula (20) if we use the value of E? for the bulk crystal as the
value of E, and as the value of d the distance between the
atomic layers in the bulk crystal [30].

3.2 Binding energy of the exciton. `Rydberg' series
The optical properties of bulk semiconductors and semicon-
ducting nanostructures are to a considerable degree deter-
mined by the presence of exciton excitations, which are the
bound states of an electron and hole interacting according to
the Coulomb law [58, 59]. The binding energy of an exciton in
widespread bulk semiconductors (GaAs, CdTe, ZnO, Cu2O)
is on the order of units and tens of millielectron-volts [58]. In
low-dimensional structures, the binding energy increases
owing to the localization of an electron and hole in one or
several spatial directions and, correspondingly, to an increase
in the Coulomb attraction of charge carriers [60, 61]. In the
case of excitons in freely suspended crystalline monolayers,

their binding energy can be even larger due to the absence of
the electric field screening in a vacuum. Thus, the binding
energy of excitons in two-dimensional semiconductors can
reach already hundreds of millielectron-volts, which is
sufficient for investigating exciton effects at room tempera-
ture.

In this section, we will examine the states of a two-
dimensional exciton in monomolecular layers of TMDs. We
are interested in the excitons formed by an electron and hole
with thewave vectors near theK� points of the Brillouin zone.
In the smooth envelopes method, the wave function of an
exciton that is at rest as a whole can be written out in the first
approximation as follows [61±63]:

C�X �qe; qh� � c�qe ÿ qh�uc;K��qe�~uv;K��qh� ; �22�

where qe and qh are the coordinates of the electron and the
hole, c�q� is the smooth function of the relative motion of the
electron and the hole, uc;K��qe� and uv;K��qh� are the Bloch
functions of the conduction band and of the valence band at
the K� points of the Brillouin zone, and the tilde designates
that the function of the valence band is taken in the hole
representation. Hereinafter, for brevity, we omit the depen-
dence of the Bloch functions on the coordinate z along the
normal to the monolayer. It should be noted that the two-
particle Bloch function uc;K��qe�~uv;Kÿ�qh� in formula (22)
corresponds to the excited state of the crystal, wherein the
state of the conduction band in theK� valley is occupied, and
the state of the valence band in the sameK� valley is free. The
hole in this case is associated with the state in the Kÿ valley
that is connected with the initial state by the operation of time
inversion [64]. The spin indices of the electron and of the hole
are considered to be included in the subscripts c and v
numbering the bands.

In the effective mass approximation, the equation for the
c�q� function is written out as follows:

ÿ �h 2

2m
Dqc�q� � V�r�c�q� � Ec�q� ; �23�

where mÿ1 � mÿ1c �mÿ1v is the reduced mass of the electron
and hole, and V�r� � ÿej2D�r� is the electrostatic interac-
tion potential of the electron and hole (16), which takes into
account the specific character of screening by the material of
the film. Further, we will use the scale of length a0 � �h 2E=me 2

and the scale of energy E0 � me 4=2�h 2E 2, which correspond to
the Bohr radius and binding energy of a three-dimensional
exciton in a material with the averaged dielectric constant of
the environment E � �E1 � E2�=2. In these units, equation (23)
takes on the form

ÿDnc�n� ÿ pZ
�
H0�Zx� ÿY0�Zx�

�
c�n� � Ec�n� ; �24�

where the dimensionless parameter Z � Ea0=r0 is the only
parameter of the problem.

It follows from equation (24) that in the problem under
consideration two limiting cases can be separated. In the limit
of weak screening �Z4 1�, the potential of the interaction is
V�r� � ÿe 2=Er, and the problem is reduced to the determina-
tion of the states of the two-dimensional exciton in the
Coulomb potential. In this case, the characteristic size of the
wave function for the ground state is a0 and increases upon
increasing the principal quantum number n, and the energy of
the exciton is En � ÿ4E0=�2nÿ 1�2, n5 1. In the opposite
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Figure 5. (Color online.) Energy of interaction of two point charges of

opposite signs, which are located on a thin film at a distance r from each

other: V�r� � ÿej2D�r�. The dashed and dotted lines show the asympto-

tic forms of the potential at large and small distances.
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limit of the strong screening �Z5 1�, the spectrum of the
exciton energy levels takes on the form [54]

En � 2ZE0

�
1

2
ln Zÿ 3

2
ln 2� C� gn

�
; �25�

where the numbers gn are the eigenvalues of the equation

ÿDfc�f� � ln z c�f� � gc�f� ; �26�
satisfying the conditions of the finiteness of the function c as
jfj ! 0, and c! 0 as jfj ! 1. The characteristic size of the
exciton wave function of the ground state in this case is equal
to [54]

a � a0�����
2Z
p �

���������
a0r0
2E

r
�

�����������
�h 2r0
2me 2

s
; �27�

it is determined only by the polarizability of the two-
dimensional crystal [see formula (17)] and does not depend
on the quantity E, i.e., on the dielectric environment. From
equation (26), it follows that gn � 1; in this case,ÿ ln Z4 1 for
Z5 1; therefore, the energyEn is muchmore than the distance
between the adjacent energy levels. It follows from Eqn (25)
that in the limit Z! 0 the energy En tends to zero.

The result of the numerical solution to equation (24) in a
wide range of values of the parameter Z is shown in Fig. 6.
This figure plots the energy of the ls state of the exciton and
the relative splitting between the 2s and the 2p levels
�E2s ÿ E2p�=E2s as a function of Z. It can be seen that in the
limit of Z4 1, where the potential V�r� is Coulombic, the
energy of the ls state of an exciton takes on the value ÿ4E0,
and the states 2s and 2p are degenerate in energy. The
`accidental' degeneracy of the spectrum in terms of the value
of the angularmomentum, however, is lifted for finite Z, when
the potential of interaction differs from the Coulomb
potential. The absolute value of the binding energy of the
exciton states in this case is less than the two-dimensional
Coulomb potential, since the electrostatic field between the
electron and hole predominantly (for Z9 1) is screened by the
two-dimensional film.

A calculation of the binding energy of the ground state
of the exciton by the effective mass method was carried out
in paper [30] for different TMD monolayers. In that study,
a trial wave function c�q� � exp �ÿr=~a� with the variation
parameter ~a was used. The obtained values of the binding

energy and of the exciton radius for an MoS2 film freely
suspended in a vacuum �E � 1� are E1s � 0:54 eV and
a � 10:4 �A, respectively. In the calculation, the values of
m � 0:25m0 and r0 � 41 �A were utilized, so that a0 � 2:1 �A
and of Z � 0:05, which corresponds to the regime of strong
screening (see Fig. 6). The calculations for other systems
(MoSe2, WS2, and WSe2) also predict values of the binding
energy on the order of 0.5 eV.

Experimental studies of a Rydberg series inmonolayers of
different materials have been performed in a number of
papers, for example, in Refs [27±29]. In Ref. [27], the
spectrum of the reflection coefficient of WS2 monolayers on
a substrate of SiO2=Si was measured near exciton resonances.
The series of energy levels of ns excitons, Ens, for n � 1ÿ5,
obtained from the processing of experimental data, is given in
Fig. 7. This series is described well by the numerical solutions
of equation (23) with the potential (16) at m � 0:16m0 and
r0 � 75 �A. The corresponding binding energy of the 1s
exciton is E1s � 0:32 eV. It is worthwhile to note that the
value ofE1s obtained in the study is less than that calculated in
Ref. [30] for the WS2 monolayer in a vacuum. This can be
explained by the presence of a substrate with E > 1 in the
experiment, which leads to an additional screening of the
electric field [27]. For comparison, Fig. 7a also shows the
dependence of En for the case of a Coulomb potential. It can
be seen that for excited exciton states, whose size exceeds the
screening length �n � 3ÿ5�, the behavior of the energy levels
is described well by the model of a Coulomb potential, while
the binding energy of the ground state is substantially less
than that in the Coulomb potential model. For an approx-
imate description of the energies of a nonhydrogen-like series,
the authors of Ref. [27] introduced an effective dielectric
constant En of the sample, which depends on the energy of the
state (see the insets to Figs 7a and 7c).

The influence of the dielectric properties of the environ-
ment on the parameters of two-dimensional excitons was
experimentally investigated, for example, in Refs [65±67]. In
particular, in Ref. [66], the diamagnetic shift of the exciton
lower energy level was measured in aWSe2 monolayer placed
between media with different dielectric constants, and on the
basis of these measurements the dependences of the binding
energy and characteristic size of the wave function of exciton
on the parameter E were obtained. The results obtainedÐa
decrease in the binding energy and an increase in the size of
the exciton with the increase in EÐare in agreement with the
predictions of the model presented here.

The above approach to the description of exciton states in
monomolecular crystalline layers, based on the smooth
envelopes method, gives a qualitative and a quantitative
representation of the behavior of exciton energy levels, and
the results of calculations agree rather well with the experi-
mental values of the binding energy of excitons. On the other
hand, the measured values of the exciton binding energy and
of the exciton radius (E1s � 400 meV, a � 10 �A) lie on the
boundaries of the applicability of the smooth envelopes
method, which requires that the wave function of the exciton
cover a large number of unit cells in the crystal. The
calculations of the exciton spectrum taking into account the
electronic states in the entire Brillouin zone were performed
with the employment of atomistic methods, such as the DFT
method [33, 36, 37] and the tight binding method [68], in
combination with the Bethe±Salpeter equation, which takes
into account the electrostatic interaction between the electron
and hole. In the above-listed works, values were obtained for
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the binding energy and spatial size of the exciton that are in
agreement with those obtained in the effective mass approx-
imation. The model based on equation (23) does not take into
account the peculiarities of the electronic band structure
connected with the nonparabolicity of the electronic spec-
trum and symmetry of the crystal lattice either. These special
features, although only weakly influencing the binding energy
of the exciton, determine the fine structure of exciton states
and can be taken into account in terms of the atomistic
methods and multiband kp-model.

3.3 Fine structure of exciton energy levels
The selection rules for optical transitions with the participa-
tion of excitons, and also the fine structure of exciton energy
levels and the mixing of different exciton states, can
conveniently be analyzed using methods of symmetry
analysis. To this end, let us establish transformation rules of
the complete wave function of an electron±hole pair in a
crystal (22) upon transformations of the symmetry groupD3h

that describes the point symmetry of a monolayer.2 The

functionCX�qe; qh� is transformed according to the reducible
representation

DX � Dr �De �Dh �28�

equal to the product of representations that describe the
transformations of the envelope of function Dr and of the
Bloch functionsDe andDh of an electron and of a hole. In the
group D3h, any basis function of coordinates q � �x; y� in the
plane of the monolayer is transformed either according to the
one-dimensional representation Dr � G1 (invariant) or
according to the two-dimensional representation G6 (x; y
components of the vector) in the notations used in book
[34]. Thus, the envelope function c�q� of the relative motion
can have either s-type �G1� or p-type �G6� symmetry. The
other envelope functions, which correspond to the projections
of the angular momentum lz > 1 onto the normal to the
crystal, are transformed according to reducible representa-
tions [69]. In this section, we will analyze the fine structure of
the exciton 1s states, which are characterized by an invariant
envelope c�q�. The fine structure of the spectrum and the
mixing of excitons with envelopes of different symmetries is
analyzed in Section 3.4. The effects connected with the
propagation of an exciton in the plane of the monolayer are
discussed further in this section and in Section 4.2.

Subsequently, we will be interested only in the A-series
excitons, formed with the participation of a hole in the upper
spin subband of the valence band (see Fig. 2). Notice that the
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features in the reflection spectrum in the region of exciton resonances, and the corresponding calculation based on the solution to equation (23). The solid

line shows the spectrum of exciton states in the Coulomb-potential model; in the inset, the values of the effective dielectric constant En are given.

(b) Potential (16) screened by the film and the Coulomb potential � 1=r; in the inset, the same dependences are depicted on a semilogarithmic scale. In

addition, graphs of the wave functionscn�r� for the first three states of the exciton are given. (c) Schematic representation of 1s and 2s excitons and of the

lines of the field in an inhomogeneous dielectric medium. (Adapted from Ref. [27].)

2 Although the excitons consist of electrons and holes at the K� points on

the boundary of the Brillouin zone, the wave vector of the center of masses

of excitons excited in optical experiments is small in comparison with the

lattice parameter. This makes it possible to consider excitons only with the

wave vectors of the center of masses near the center of the Brillouin zone

and, correspondingly, to use for the analysis of their fine structure the

symmetry of a monolayer rather than of an individual valley.
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fine structure of the B excitons, in which the hole occupies the
lower spin subband, is similar to the structure of the A
excitons, and the mixing of A and B excitons can be, as a
rule, ignored because of a substantial, � 100 meV, spin
splitting of the valence band. The Bloch functions of the top
of the valence band are transformed according to the
irreducible spinor representations G7 (valley K�) and G8

(valley Kÿ) of the symmetry group C3h of the wave vector at
the K� points, which correspond to the two-dimensional
spinor representation G7 of the group D3h. In contrast to the
valence band, in the conduction band it is necessary to take
into account two closest-in-energy Kramers doublets
�"K�; #Kÿ� and �#K�; "Kÿ�. The first of these doublets, in
which the spin of the electron in the conduction band (lower
subbands in the materials based on Mo, and upper subbands
in the W-based materials) coincides with the spin of the
electron at the top of the valence band in the same valley,
corresponds to the representations G11 and G12 of the group
C3h, and transforms according to the representation G9 of the
group D3h. The second doublet, in which the spins of the
electron in the valence band and in the conduction band in the
same valley are opposite, corresponds to the representations
G9 and G10 of the group C3h and is transformed according to
the representation G8 of the group D3h [70]. The excitons
formed with the participation of the states of the conduction
band �"K�; #Kÿ� are transformed according to the reducible
representation

DX; k � G1 � G7 � G9 � G5 � G6 : �29�

Hence, it can be seen that the quadruplet of the exciton
states formed from the Bloch functions of the top of the
valence band and of the lower (upper) subbands of the
conduction band in MoX2 �WX2� monolayers is split into
two doublets, one of which is optically active for light
polarization in the plane of the monolayer �G6�, and the
other inactive in the electric dipole approximation �G5�. The
optically active excitons G6 are direct in the momentum space
in the sense that an electron in the conduction band and the
unoccupied site in the valence band are located in the same
valley, whereas the G5 excitons are indirect (Fig. 8).

The four exciton states formed with the participation of
the states of the conduction band �#K�; "Kÿ� are trans-
formed according to the rule

DX; "# � G1 � G7 � G8 � G3 � G4 � G 06 : �30�

Here, G 06 is a representation that is equivalent to G6.
According to formula (30), this quadruplet is split into
one forbidden state G3, one state G4, which is active in the
z-polarization of light along the normal to the layer, and a
doublet of indirect excitons G 06, which are active in light
polarization in the plane of the monolayer in processes with
the participation of intervalley phonons which are trans-
formed according to the invariant representation G1. The
schemes of energy levels of 1s excitons and corresponding
phononless optical transitions are represented in Fig. 8.

Exciton states whose wave functions are transformed
according to different irreducible representations of the
group D3h are generally split in energy. The microscopic
nature of these splittings is determined by three contribu-
tions. First, the single-particle spin splitting Dc of the
conduction band (see Fig. 8) leads to the splitting of
quadruplets (29) and (30). Second, the small difference in

the effective masses of electrons in the upper and lower
subbands of the conduction band, which appears in the kp-
model when taking into account the spin-orbit splitting of
the valence band, leads to a difference in the binding
energies of the corresponding excitons on the order of
�Dv=Eg�Eb, where Eb is the binding energy of an exciton.
The ratio Dv=Eg varies greatly for different materials: for
MoS2, it is � 0:06.

The third contribution to the fine structure of exciton
states is connected with the exchange interaction between the
electron and hole [61, 63, 64, 71], which is the consequence of
the antisymmetrization of the multiparticle wave function of
the excited electron in the conduction band and of the
remaining electrons in the Fermi sea of electrons. The
exchange interaction leads to additional contributions to
the energy of an electron±hole pair, which depend on the
spin and valley indices of charge carriers and is ignored in
the hydrogen-like SchroÈ dinger equation (23). The micro-
scopic calculation of the shifts of the exciton energy levels
due to the exchange interaction is based on the knowledge of
the Bloch functions of states in the conduction band and in
the valence band and must be carried out within the
framework of the atomistic methods. Calculations done
within the framework of the DFT method [72, 73] show
that the short-range exchange interaction of an electron and
hole increases the energy of bright states G6 in comparison
with the dark states G4 in materials such as MoS2, MoSe2,
MoTe2, WS2, and WSe2. Therefore, in Mo-based structures,
the single-particle and exchange contributions can partially
compensate for each other; in such systems, it is expected
that the states optically active for light polarization in the
plane of the monolayer and along the normal to it will be
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close in energy [72]. On the contrary, in W-based structures,
both contributions have the same sign, and the splitting
between the G6 and G4 excitons proves to be significant [72,
74]. This is confirmed by both indirect experimental data on
the temperature dependence of the intensity of luminescence
[75±77] and direct measurements of the spectra of photo-
luminescence for the light that propagates in the plane of the
monolayer [70].

The experimental data presented in Fig. 9b demonstrate
the splitting between the exciton states optically active for
light polarization in the plane of the structure (peak X0) and
along the normal to it (peak XD), whose value in the WSe2
monolayers is on the order of 40 meV. It should be noted that

in experiments the transition X0 is also observed in the case of
z-polarization, which is explained, apparently, by the finite
aperture of the objective that registers the emission [70].
Microscopically, the optical activity of the state G4 is
connected with the spin-orbit mixing of the states of the
conduction band and valence band with the states of the
remote bands odd with respect to the reflection: z! ÿz [70,
78]. Estimates performed in the kp-model [70] and within the
framework of the DFT method [72] give the ratio of the
oscillator strengths for the states XD and X0 on the order
of 10ÿ4 to 10ÿ2. Measurement of the radiation decay of the
G4-symmetry states is an urgent experimental issue.

Let us nowmove to the analysis of the fine structure of the
energy spectrum of a radiative doublet, the pair of G6-
symmetry states optically active in the x- and y-polarizations
or s� and sÿ in the plane of the layer. Specifically, it is
precisely this doublet that plays the determining role in the
optical properties of theMX2 monolayers. The analysis made
in Refs [63, 79±81] shows that the fine structure of the energy
spectrum of the radiative doublet is similar to the fine
structure of optically active exciton states in quantum wells
on the basis of the III±V and II±VI semiconductors [61, 82±
84]. Indeed, the direct product G6 � G6 � G1 � G2 � G6

contains, apart from the invariant representation G1 and the
representationG2, according to which the z-component of the
magnetic field is transformed, the two-dimensional represen-
tation G6, according to which the quadratic components of
the wave vector K of the center of masses of the exciton are
transformed in the plane of the structures, K 2

x ÿ K 2
y and

2KxKy. Therefore, the effective Hamiltonian of the radiative
doublet in the basis of the states active in the right-hand and
left-hand circular polarizations takes on the form

HG6
�K� � �h 2K 2

2M
Î� 0 a�Kx ÿ iKy�2

a�Kx � iKy�2 0

 !

� �h 2K 2

2M
Î� �h

2
�XKr� : �31�

Here, the reference point of the energy corresponds to the
energy of the doublet at K � 0, M � me �mh is the effective
mass of the translational motion of the exciton in the plane of
the monolayer, Î is the two-row unit matrix, and a � a�K� is
the mixing parameter. In the representation of the exciton
pseudospin, when the state active in the s� �sÿ� polarization
is associated with the projection of the pseudospin Sz � �1=2
�Sz � ÿ1=2� onto the normal to the structure, the effective
Hamiltonian (31) can be written out in a form similar to the
spin-orbital Hamiltonian for electrons [61, 85] [see the second
equality in formula (31)]. In this Hamiltonian, r� �sx; sy� is
the vector comprising Pauli matrices, and XK is the effective
frequency of the pseudospin precession, which is sometimes
called the effective magnetic field with nonzero components
�hOK; x � 2aK 2 cos �2#� and �hOK; y � 2aK 2 sin �2#�, where # is
the angle between K and the x-axis in the plane of the
structure. The effective field is described by the second
angular harmonics of the wave vector K, since the transfer
of the projection of moment 2 is necessary for a change in the
circular polarization from s� to sÿ. The operation of the
time inversion does not reverse the sign of matrices sx and sy
that act on the pseudospin of the exciton; therefore, the
Hamiltonian is invariant relative to this conversion. The
splitting between the eigenstates of Hamiltonian (31) is
�hOK � 2aK 2, and the eigenmodes are linearly polarized
along K (longitudinal exciton L) and across K (transverse
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exciton T). The splitting of the exciton states and the
orientation of the fieldXK are illustrated in Fig. 10.

Microscopically, the parameter a�K� in formula (31) is
determined by the long-range exchange interaction between
an electron and hole [61, 62, 71]. It can be calculated both
within the framework of the kp perturbation theory, which
takes into account the mixing of the states of the conduction
and valence bands in the calculation of the matrix element of
the Coulomb interaction, and within the framework of the
electrodynamic approach to the joint solution of theMaxwell
equation for the electromagnetic field generated by the
exciton and for its dielectric polarization [63, 79]. If we
assume that the coefficient of the reflection of light from the
monolayer far from the exciton resonance is equal to zero,
then, within the framework of the electrodynamic approach
to the parameter a�K� in the limit when the wave vector K of
the exciton is much more than the wave vector q of light at the
frequency of the exciton resonance, we have

a�K� � �hG0

2Kq
; �32�

where G0 is the radiative decay rate of the exciton. As can be
seen from formulas (31) and (32), the longitudinal±transverse
splitting of the exciton states in the region K4 q grows
linearly with increasing K. A rigorous analysis [63, 79, 84],
which takes into account the retardation of the Coulomb
interaction, shows that expressions (31) and (32) are applic-
able only for states of the exciton outside the light cone,
K4 q. The states of a two-dimensional exciton for K4 q
decay due to the emission of electromagnetic waves, and it
makes no sense to speak about a shift in the energy levels in
this case. In this case, the long-range exchange interaction
leads to a polarization-dependent renormalization of the
exciton radiative lifetime.

3.4 Mixing of exciton states with different parities
Let us now go on to effects caused by the absence of the
center of space inversion in the point group D3h. In order to
analyze the fine structure of exciton states and the mixing of
excitons with different parities, we will concentrate on the
states with two-particle Bloch functions uc;K��qe�~uv;K��qh�

[cf. formula (22)], which constitute the basis of the
representation G6. As was shown in Section 3.3, these states
are optically active for light polarization in the plane of
the monolayer. Let us now analyze the symmetry of
exciton p-states, i.e., the excitons, the envelope wave
function of which is also transformed according to the
representation G6. According to formula (28), the complete
wave function of the p-exciton is transformed according to
the reducible representation

Dp � G6 � G6 � G1 � G2 � G6 : �33�

It follows from expression (33) that, taking into account the
point symmetry of themonolayer, the group of four p-states is
split into two nondegenerate sublevels (representations G1,
G2) and into a doubly degenerate sublevel G6. The wave
functions of these states can be represented in the following
form [69]:

G1 : cpx
Ux � cpy

Uy ; �34a�
G2 : cpx

Uy ÿ cpy
Ux ; �34b�

G6 �1�
�
G6 �x�

�
: cpx

Uy � cpy
Ux ; �34c�

G6 �2�
�
G6 �y�

�
: cpx

Ux ÿ cpy
Uy : �34d�

Here, we omitted the normalization factors and introduced
the following notations: cpx

, cpy
are the envelopes that are

transformed as the x and y coordinates in the point groupD3h,
and

Ux � ÿ 1���
2
p �

uc;K��qe�~uv;Kÿ�qh� ÿ uc;Kÿ�qe�~uv;K��qh�
�
; �35a�

Uy � 1���
2
p �

uc;K��qe�~uv;Kÿ�qh� � uc;Kÿ�qe�~uv;K��qh�
� �35b�

are the linear combinations of the Bloch functions of the
excitons. The basis functions G6 (1) and G6 (2) are trans-
formed in the group D3h as the x and y components of the
vectors, respectively, and, therefore, the corresponding states
are optically active in x- and y-polarizations. The basis
functions (34) can be presented in an alternative form, going
over to the basis with a given z-component of the angular
momentum lz � �1. Then, the basis functions of the
representations G1 �G2� are cp�1Uÿ1 � cpÿ1U�1, and the
basis of the two-dimensional representation G6 are the
functions cp�1U�1, cpÿ1Uÿ1, where cp�1 / cpx

� icpy
and

U�1 � uc;K��qe�~uv;K��qh�.
The states which are transformed according to different

irreducible representations of the point symmetry group of
the system can be split. In particular, the splitting of the
2p-excitons that are transformed according to the representa-
tion G6 and to the reducible representation G1 � G2 was
discussed in Refs [68, 86±88]. The intravalley functions
cp�1Uÿ1 and cpÿ1U�1 can be chosen as the basis of the
reducible representation G1 � G2. Then, the splitting can be
obtained within the framework of the effective two-band
Hamiltonian (3) by taking into account the kp interaction in
the conduction band and in the valence band. It turns out that
in this valley the states with different projections of the
moment lz � �1, for example, the states cpÿ1U�1 and
cp�1U�1, become split. In this case, because of the symmetry
relative to the time inversion, the pairs of states in the
different valleys, cpÿ1U�1 and cp�1Uÿ1, as well as cp�1U�1

Light
cone

XK

KK � 0

T

L

EK

Ky

Kx

Figure 10. (Color online.) Schematic illustration of the dispersion of an

exciton and splitting of a radiation doublet into linearly polarized states;

pointK � 0 corresponds to the center of the Brillouin zone for the exciton.

The states inside the light cone are marked by red. In the inset, the

orientation of the effective fieldXK is shown as a function of the direction

of the wave vector K of the exciton.

836 M V Durnev, MMGlazov Physics ±Uspekhi 61 (9)



and cpÿ1Uÿ1, have the same energy. The estimate of this
intravalley splitting for the 2p-exciton is to an order of
magnitude E 2

2p=Eg.
It also follows from formula (34) that the doublet G1 � G2

can be split into two nondegenerate sublevels. More-
over, the pair of states G6 generated by p-excitons has
the same symmetry as the doublet G6 with the envelopes
of the s-symmetry [cf. formula (29)]. This indicates that the
p- and s-states of excitons can be mixed up in the TMD
monolayers. An illustration of the exciton states obtained on
the basis of group-theoretical analysis is given in Fig. 11,
where, as an example, the close-in-energy 2s and 2p states
with Bloch functions (35) are examined.

Let us analyze in more detail the mixing of exciton s-
and p-states. It follows from expression (34) that the
cpx
Ux ÿ cpy

Uy state of the p-exciton is mixed with the csUy

state of the s-exciton, and the cpx
Uy � cpy

Ux state is mixed
withcsUx. In the basis which is characterized by a given value
of lz, the following states are mixed [69]:

cp�1U�1 $ cs Uÿ1 ; cpÿ1Uÿ1 $ cs U�1 : �36�

If for each state we introduce the value of the total projection
of the angular momentum, which includes the orbital angular
momentum of the exciton envelope function and the projec-
tion�1 of the angularmomentumof Bloch functions, then, as
can be seen from formula (36), there are mixed states, whose
total momentum differs by �3. Thus, the mixing of states
according to Eqn (36) is a consequence of the trigonal
symmetry of the group D3h, namely, of the existence of a
three-fold axis of rotation.

For the close-in-energy 2s and 2p levels, the effective
Hamiltonian which describes the mixing of exciton states
can be written out as follows:

H2sÿ2p �

E2s 0 b 0
0 E2s 0 b

b 0 E
�G6�
2p 0

0 b 0 E
�G6�
2p

0BBB@
1CCCA : �37�

Here, the order of the basis functions is the following: 2s;
G6�1�, 2s; G6�2�, 2p; G6�1�, 2p; G6�2�; the energies of states
without taking into account sÿp mixing, but taking into
account, for example, the lifting of the accidental Coulomb
degeneracy (see Fig. 6) are given on the diagonal of the
matrix, and b is the mixing parameter.

In the microscopic approach, the mixing of exciton s- and
p-states in the TMDmonolayers is caused by the combination
of the kp-admixture to the Bloch functions uc;K��qe�, ~uv;K��qh�

of the states from the remote bands [c� 2 and vÿ 3 in terms
of the HamiltonianH4;�; see formulas (5) and (6)] and of the
exchange interaction between an electron and hole, which
ensures the intervalley transfer of charge carriers. Estimates
made within the framework of the microscopic theory [69]
give for the constant b the values in the range from � 0:1 to
� 1 meV, depending on the material and on the parametriza-
tion of the kpHamiltonian.

The states of the p-excitons, whose wave functions are
transformed according to the representation G6, are optically
active for light polarization in the plane of the monolayer. In
this case, as can be seen from formula (36), the states with the
cp�1 envelopes are active in s�-polarizations. The nonzero
oscillator strength of the p-excitons is due to two factors.
First, this is the mixing of 2p and 2s states, which is
proportional to the parameter b. Second, as was shown in
formulas (6) and (7), the matrix element of the momentum
operator between the Bloch functions of the c and v bands
contains contributions linear in the wave vector k, which are
related to the mixing with remote bands in Hamiltonian (5):

p�cv; x � �
m0

�h
g3�1ÿ Ak�� ;

�38�
p�cv; y � i

m0

�h
g3�1� Ak�� :

Here, the superscripts � refer to the valleys in which the
matrix elements are considered. Taking into account
these two factors, the rate of the radiative recombination
of 2p-excitons takes on the following form:

G0; 2p � 2pa
g 23A

2
��c 02p�0���2

�h
ÿ
Eg ÿ jE2pj

� � 2pab 2

�E2s ÿ E2p�2
g 23
��c2s�0�

��2
�h
ÿ
Eg ÿ jE2pj

� ;
�39�

where a is the fine-structure constant, and the following
designation was introduced:

c 02p�r� �
�

q
qx
ÿ i

q
qy

�
c2;p�1 �

�
q
qx
� i

q
qy

�
c2;pÿ1 : �40�

The ratio ofG0; 2p to the rate of the radiative recombination of
2s-excitons is to an order of magnitude A2=a 2, where a is the
characteristic size of the exciton wave function, for the first
term in (39), and to b 2=�E2s ÿ E2p�2 for the second term. The
estimates made in Ref. [69] show that these ratios are
comparable in magnitude.

The described mixing of exciton states of different parities
appears to be due to the low symmetry of the MX2

monolayer. Notice that the presence of a disorder, which
leads to a local reduction in the symmetry, can also lead to
mixing of the exciton states with different parities [89].

3.5 Charged excitons (trions)
When free charge carriers are present in the system, the
electron±hole pair can become bound to a resident electron
or hole and form a three-particle complexÐa trion, or
charged exciton. There are X� and Xÿ trions, consisting of
two holes and one electron and one hole and two electrons,
respectively. These complexes are similar to hydrogen-like
ions H�2 and Hÿ. In bulk semiconductors, the binding energy
of trions is very small [90]; upon reducing the dimensionality
of the system and upon passage from the bulk material to
two-dimensional systemsÐquantum wellsÐ the role of the
Coulomb interaction increases [91]. This led to the detection

2s, 2p
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2p

b
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G1

Figure 11. (Color online.) Illustration of exciton 2s- and 2p-states whose

Bloch functions are transformed according to the representation G6 of the

groupD3h [see formula (35)]. Themagnitudes and the signs of splittings are

selected arbitrarily for illustrative purposes.

September 2018 Excitons and trions in two-dimensional semiconductors based on transition metal dichalcogenides 837



of trions in quantum wells on the basis of semiconducting II±
VI and III±V compounds in the 1990s, and to their
subsequent active experimental and theoretical studies [92,
93]. Nevertheless, the binding energies of the trion are rather
small in widely investigated semiconductor nanosystems and
are, as a rule, on the order of 1=10 of the binding energy of the
exciton [94, 95], i.e., units of millielectron-volts.

In TMD monolayers, a significant increase in the role of
Coulomb attraction between the electrons and holes entailed
a considerable increase in the binding energy of trions.
Positively and negatively charged excitons with binding
energies on the order of 30 meV were revealed in MX2

monolayers [31, 96]. The wave function of a trion in a two-
dimensional semiconductor can be represented in the form

Ci; j; k�qa; qb; qc� � exp �iKR�c�q1; q2� U �2�i j �qa; qb�u �1�k �qc� :
�41�

Here, the subscripts i and j stand for the states (a number
of the band, spin, and valley index) of two identical charge
carriers, namely, two electrons, e1 and e2, in an Xÿ trion,
or two holes, h1 and h2, in an X� trion; the superscript k
refers to an unpaired carrier; the subscripts a, b, and c
similarly designate the coordinates of charge carriers;
R � �ma�qa � qb� �mcqc�=M is the coordinate of the cen-
ter of masses of a trion; K is the wave vector of its motion
as a whole; ma �mc� is the mass of one of the identical
(unpaired) charge carriers; M � 2ma �mc is the total mass
of the trion; c�q1; q2� is the wave function of the relative
motion of the charge carriers; q1; 2 � qa; b ÿ qc are the
relative coordinates of the particles, and, finally, U �2�i j

�u �1�k � is the Bloch function of a two-particle pair
(unpaired particle). The normalization area, as before, is
assumed to be equal to unity. It should be noted that, as in
formula (22), the dependence of the Bloch functions of
electrons and holes on the coordinate z is omitted.
According to the general rules of quantum mechanics,
wave function (41) should be antisymmetrized with respect
to the permutations of identical particles a and b [97]. In
the effective mass method, the binding energies of a trion
and the envelope wave functions c�q1; q2� are found by
solving the SchroÈ dinger equation with the effective
Hamiltonian

Htr � ÿ �h 2

2m

�
D1 � D2 � 2s

s� 1
H1H2

�
� V�r1� � V�r2�

ÿ V
ÿjq1 ÿ q2j

�
; �42�

where Dl and Hl are the Laplace operator and gradient
operator acting on the coordinates ql �l � 1; 2�, m �
memh=�me �mh� is the reduced mass of an electron and
hole, s � ma=mc is the ratio of the effective masses of one of
the identical carriers to the mass of an unpaired carrier, e.g.,
s � me=mh for the X

ÿ trion, and s � mh=me for the X
� trion,

and, finally,V�q� � ÿej2D�q� is the effective potential energy
of interaction (16). Calculations of the binding energy of
trions in the monolayers of dichalcogenides of transition
metals were performed in a number of studies [30, 32, 98,
99]. The analysis shows that for an electron and hole with
close effective masses �s � 1� only those trions whose
envelope function is symmetrical (even) with respect to the
permutations of two identical particles, c�q1; q2� � c�q2; q1�,
prove to be stable [32, 100]. Taking into account the

requirement of the antisymmetrization of the total wave
function (41), we obtain for the Bloch function of the pair of
identical particles the following expression

U �2�i j �qa; qb� �
1���
2
p �

ui�qa�uj�qb� ÿ ui�qb�uj�qa�
�
: �43�

To illustrate, Fig. 12 presents the numerical calculation
(based on the variational method) of the ratio between the
binding energies of a trion (difference between the energy of a
trion and the exciton energy) and of an exciton with the
coinciding effectivemasses of the electron and hole depending
on the screening parameter r0 in formula (17) [32]. In the case
of s � 1, the binding energies of Xÿ and X� trions coincide.
In the limit r0 ! 0 of the weak screening, the ratio of the
binding energies of an exciton and trion tend to a constant
value of � 0:12; with increasing r0, when the potential
connecting the charged particles becomes weaker, the bind-
ing energy of trions decreases more rapidly than the binding
energy of the exciton. For the parameters of WSe2 mono-
layers, the calculation gives the binding energy of trions in the
range of 20±30meV, depending on themodel involved and on
the parameters of the dielectric environment.

Let us now analyze the fine structure of a trion energy
spectrum. As in Section 3.3, we will limit ourselves to the hole
states in the upper spin subbands of the valence band. In this
case, there are four opportunities for the X� trion, which
satisfy requirement (43): two holes are located in the states
that are antisymmetric with respect to spins and valleys, and
the unpaired electron occupies one of the four states (two spin
and two valley states) in the conduction band. From this
quadruplet, two states do not interact with radiation polar-
ized in the plane of theMX2 monolayer, but the two others are
optically active in s�- and sÿ-polarizations. The splitting
between the doublets is determined mainly by the spin
splitting of the conduction band. In the spectra of reflection,
absorption, and luminescence, the X� trion manifests itself as
a single line [32] (Fig. 13c), which is split into circularly
polarized components in the magnetic field.

In comparison with the X� trion, the negatively charged
exciton �Xÿ� exhibits a considerably richer fine structure [80,
101, 102]. The analysis made in Refs [32, 103] shows that there
are 12 states of the Xÿ trion that satisfy the requirements of
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antisymmetrization (43). In these states, the hole occupies the
upper spin subband in one of two valleys, and for the pair of
electrons there are six different options to occupy four states
in the conduction band: two valley states, and two spin states.
The energy positions of the trion energy levels and the
selection rules in optical transitions connected with the
excitation of a trion are determined by both the sign of the
spin splitting Dc of the conduction band and the short-range
exchange interaction between the electrons. For example, in
WSe2, where the spins of the electron in the upper subband of
the valence band and in the lower subband of the conduction
band are directed oppositely, the ground state of the trion,
without taking into account the short-range corrections, is
optically inactive in the light polarization in the plane of
structure [32, 103].3 Of the twelve states of the Xÿ trion, six
are optically active for the light polarization in the plane of
the monolayer: in these states, the electron and the hole have
the identical projection of the spin in one valley (Figs 13a,
13b).

In the spectra of reflection (Fig. 13c) and luminescence
(Fig. 13d) measured by Courtade et al. [32], two lines
connected with `intravalley' and `intervalley' trions are
observed in a zero magnetic field (cf. with Figs 13a, 13b).

Notice that one more pair of optically active Xÿ trions, in
which the electrons reside in the states "K� and #Kÿ, is not
observed in the reflection experiments, since the level of
doping of the sample investigated in Ref. [32] does not
make it possible to excite such states upon absorbing a
photon. The solution of the SchroÈ dinger equation with
Hamiltonian (42) gives an identical energy for all the
above-discussed states of a given trion and, moreover, an
identical energy of the X� and Xÿ trions at s � 1.
Therefore, splittings between the lines of the Xÿ trion and
the difference in the spectral positions of the X� and Xÿ

trions are connected mainly with the short-range electron±
electron exchange interaction [32].

Notice in the conclusion of this section that in the
structures that contain resident electrons correlations can
arise between the photo-induced electron and hole and the
Fermi sea of the resident charge carriers [104±107]. A detailed
analysis of this type of correlations is an interesting experi-
mental and theoretical problem which requires further study.

4. Magneto-optical effects
and spin dynamics of excitons

One of the most powerful experimental methods for studying
the fine structure of the energy spectrum is polarization-
resolved optical spectroscopy. The wide range of effects that
can be investigated by this method includes magneto-optical
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spectrum of photoluminescence upon transition from the neutral regime to the n-type doping with a change in the gate voltage. (Adapted from

Ref. [32].)

3 Due to the short-range exchange interaction, the ground state of the trion

can mix with the higher-in-energy optically active state and thereby

acquire a nonzero oscillator strength [32].
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effects connected with a change in the spectra of lumines-
cence, absorption, and reflection in the region of exciton
resonances under the action of an external magnetic field, and
also effects of the optical orientation of excitons, which
appear upon excitation of monolayers of transition metal
dichalcogenides by polarized light. In the two subsequent
sections, we describe the most outstanding effects that relate
to the above-indicated regions.

4.1 Zeeman effect
For the investigation of magneto-optical effects with the
participation of Coulomb complexesÐ excitons and
trionsÐ it is necessary first to determine the LandeÂ factors
of free charge carriers in MX2 monolayers. Among the wide
range of theoretical approaches, the effective Hamiltonian
method described in Section 2.3 makes it possible to most
efficiently calculate the splitting of the spin sublevels of an
electron in an external magnetic fieldÐ the Zeeman effect.
Let us examine the Zeeman splitting of electrons inK� valleys
in a magnetic field directed along the normal to the
monolayer, B � �0; 0;Bz�. In the approximation linear in Bz,
the Hamiltonian of an electron in a magnetic field contains
spin and valley contributions described by the g-factors g0
and gorb:

HB � g0
2

mBBzsz � gorb
2

mBBztz : �44�

Here, sz � �1 for electrons with spin up and spin down,
tz � �1 for electrons in theK� valleys, respectively, and mB is
the Bohr magneton. It follows from formula (44) that the
energy level of a K�-electron with spin up �"K�� is shifted in
the magnetic field by a value of 1=2�g0 � gorb�mBBz, whereas
the state #Kÿ connected with it by time inversion is shifted by
ÿ1=2�g0 � gorb�mBBz. Thus, the effective g-factors of the
"K�-electron and #Kÿ-electron can be defined as

g "K�c; v � gc; v � g c; v
0 � g c; v

orb ; g #Kÿc; v � ÿgK�
c; v ; �45�

where the super- and subscripts c and v denote an electron in
the conduction band or in the valence band.

The valley contribution g c; v
orb is of an orbital nature, and it

can be calculated within the framework of the effective kp
Hamiltonian (5). For this, it is necessary to make a standard
replacement k! kÿ �e=c�h�A in the Hamiltonian, where A is
the vector-potential of the magnetic field, and to calculate the
shift in the extremum of the band in the second-order
perturbation theory. As a result, we obtain [47]

g c
orb �

4m0

�h 2

�
ÿ g 25
Ec ÿ Evÿ3

� g 23
Ec ÿ Ev

ÿ g 26
Ec ÿ Ec�2

�
;
�46�

g v
orb �

4m0

�h 2

�
g 22

Ev ÿ Evÿ3
ÿ g 23
Ev ÿ Ec

� g 24
Ev ÿ Ec�2

�
:

The spin g-factor, g c; v
0 , involves two contributions: one from

the g-factor of a free electron �g0 � 2� and another small
contribution connected with the spin-orbit interaction. The
latter contribution can be estimated as� gorbDso=DEi j 5 gorb,
whereDso is the spin-orbit splitting of the band, andDEi j is the
characteristic value of the energy gap between the bands.

In magneto-optical experiments, shifts in the lines of
photoluminescence are observed for s-excitons optically
active in s�- and sÿ-polarizations in the plane of the layer
(the corresponding states are transformed according to the
two-dimensional representation G6; see Section 3.3). The

splitting of the s�- and sÿ-polarized lines is equal to
DZ � gX0mBBz, where gX0 is the effective g-factor of the
exciton, which, when disregarding the Coulomb interaction
and the nonparabolicity of the bands, is equal to

gX0 � gc ÿ gv : �47�
It should be noted that within the framework of the two-band
approximation (3) the parameter gX0 is equal to zero, since
the quantities gc and gv, which are given by formulas (45) and
(46) with the only nonzero parameter g3, coincide. The
measured values of gX0 in TMD monolayers vary in the
range from gX0 � ÿ2 to gX0 � ÿ4 (for example, see Refs [47,
108±112]).

Thus, the nonzero value of gX0 is connected with the
admixture of other electron bands to the v and c bands [47]. In
the model under consideration, the main contribution to gX0

comes from the bands c� 2 and vÿ 3, which are taken into
account in the four-band Hamiltonian (5) [45]. As was noted
in Section 2.3, the parametrization of the kp Hamiltonian
and, in particular, the parameters g2, g4, g5, and g6, can be
obtained with the aid of an expansion of the tight binding
Hamiltonian near the K� points [see formula (9)]. The
analysis performed in Ref. [45] shows that for a number of
systems in this approach both the parameters of the tight
binding method and the parameters of the kp Hamiltonian
can be optimized in order to obtain substantial �� 1� absolute
values of the g-factor of an exciton (see Table 2). Further
experimental and theoretical studies of magneto-optical
effects on trions and on the localized exciton states in MX2

monolayers will make it possible to ascertain the role of
Coulomb interactions in the renormalization of the g-factor
of individual charge carriers and electron±hole complexes.

4.2 Spin and valley dynamics of excitons
The presence of spin and valley degrees of freedom in the
excitons in TMD monolayers is manifested especially vividly
in experiments on the optical orientation and optical
alignment of excitons [22±24, 47, 113±116]. In the absence
of an external magnetic field, the excitation of MX2

monolayers by circularly polarized light leads to a prefer-
ential population of one of two states of the radiative
doublet: with the projection of the pseudospin Sz � �1=2
upon excitation by s�-polarized light, and with the projec-
tion of the pseudospin Sz � ÿ1=2 upon excitation by sÿ-
polarized light (see Section 3.3). The absorption of the
linearly polarized light leads to the excitation of coherent
superpositions of the states with Sz � �1=2, in which the
valley states of the electron and hole become entangled [63,
79, 117].

The model description of the spin and valley dynamics of
excitons can be conveniently carried out in the formalism of
the pseudospin, presented above in application to the
description of the fine structure of the energy spectrum of
the radiative doublet. The pseudospin densitymatrix %K of the
2� 2 dimension, which describes the states of the radiative
doublet in the basis of Sz � �1=2, can be written out in the
form [63, 79]

%K � nKÎ� SKr ; �48�
where nK � Tr f%K=2g is the spin-averaged distribution
function of the excitons, and SK � Tr f%Kr=2g is the pseudo-
spin. Its components describe the orientation of the micro-
scopic dipole moment of excitons, in particular, Sz=n
determining the degree of the circular polarization of the
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excitons (in the literature, the term `valley polarization' is also
used, which emphasizes the chiral selection rules in the
excitation of MX2 monolayers), and the ratios Sx=n and
Sy=n determining the degree of linear polarization of
excitons in the �x; y� and �x 0; y 0� axes rotated with respect to
each other by 45�. The components Sx and Sy determine the
degree of alignment of the excitons [118] or, as also said, their
valley coherence. The pseudospin vector SK and the scalar nK
satisfy the system of kinetic equations [63, 79, 82, 119]

qSK

qt
� SK �XK � SK

t0�K� � QfSK; nKg �G ; �49a�

qnK
qt
� nK
t0�K� � QfnK;SKg � g ; �49b�

where the XK vector is defined in formula (31); the collision
integrals QfSK; nKg and QfnK;SKg describe the redistribu-
tion of excitons in the momentum space due to their
interaction with defects, phonons, and each other; t0�K� is
the exciton lifetime (which takes into account both the
radiation and radiationless channels of recombination), and
the quantities G and g describe the rates of generation of
excitons due to, for example, photoexcitation or electrical
injection. The common form of the collision integrals for the
two-dimensional bosons is discussed in papers [120±123], and
in the simplest case the collision integral QfSK; nKg can be
written out in the approximation of the relaxation time as
follows:

QfSK; nKg � ÿSK ÿ SK

t
; �50�

where the over-bar designates averaging over the angle #
between the vectorK and the axis in themonolayer plane, and
t is the time of relaxation of the anisotropic part of the
distribution function. To describe the spatially inhomoge-
neous distribution of excitons, the left-hand sides of equa-
tions (49) should be supplemented with the gradient contribu-
tions �vKHH�SK and �vKHH�nK, where vK � �hK=M is the exciton
velocity in the K state.

Figure 14 presents experimental data (dots) on the
relaxation time of the z-component of the pseudospin of
excitons obtained by Zhu et al. [115] on a WSe2 monolayer
using the method of pump±probe time-resolved Kerr rota-
tion. The optical orientation of excitons was created by a

strong circularly polarized laser pulse, while the detection of
the Sz dynamics was carried out using a weaker linearly
polarized pulse by the rotation of the plane of polarization
in the geometry for the reflection (spin Kerr effect) [115, 124].
In the experiment, a rapid acceleration of the spin relaxation
of excitons with an increase in temperature was observed.
Qualitatively, this effect is connected with an increase in the
characteristic wave vectors of excitons and, correspondingly,
in the absolute value of the effective field OK with an increase
in temperature of the sample. In those cases where the inverse
relaxation time tÿ1 significantly exceeds the frequency of the
pseudospin precession in the effective field OK, for the rate of
the spin/valley relaxation of excitons we have [63, 79, 115] (cf.
Ref. [125])

1

ts;v
� hO 2

Kti / tT ; �51�

where the angle brackets designate averaging over the
Boltzmann distribution of excitons, and T is the temperature
of the exciton gas, which is assumed to be equal to the lattice
temperature. The calculation with the only adjustable
parameter t describes well the results of the experiment
[115]. At low temperatures, the time of the spin/valley
relaxation of excitons weakly depends on T ; apparently, this
is connected with the effects of exciton localization on the
monolayer defects.

It should be noted that, at present, studies of the kinetic
parameters of excitons are very sparse. In particular, the
measured recombination times of excitons with small wave
vectors (inside the light cone) are on the order of 1 ps [126,
127], which is in agreement with estimates made within the
framework of the two-band kp-model [63, 79]. The lifetime of
the entire ensemble of excitons is considerably longer and can
reach several nanoseconds, since radiative recombination for
dark exciton states (spin-forbidden states and states with K
lying outside the light cone) is limited, apparently, by
conversion into optically active states or by nonradiative
processes (for example, by the Auger recombination, which,
however, is suppressed in the case of small concentrations of
excitons) [128±131]. The scattering time t of excitons can vary
greatly, depending on the origin of a sample and temperature,
from units of picoseconds to ten femtoseconds [for the time
on the order of 10 fs, generally speaking, the criterion of the
applicability of kinetic equations (49) is violated] [132, 133].

Notice that a spin and valley orientation of resident
charge carriers was observed in a number of recent experi-
ments on the TMD monolayers [134±137].

5. Excitons in nonlinear optical effects

The investigation of the nonlinear optical and transport
responses of semiconductors and of semiconductor nanosys-
tems is a powerful tool for the study of the properties of
energy spectra and kinetic processes [61, 138±141]. This
section is devoted to a review of the basic effects showing
themselves in the nonlinear optics based on excitons in TMD
monolayers and of their connection with the fine structure of
exciton states.

5.1 Two-photon absorption
One of the simplest nonlinear optical effects is two-photon
absorption, in the course of which a semiconductor absorbs
two photons and the crystal turns out to be in an excited state.
Within the framework of the phenomenological approach,
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Figure 14. (Color online.) Temperature dependence of the measured

(circles) and calculated (solid curve) time of the spin/valley relaxation of

excitons depending on the lattice temperature in the WSe2 monolayer.

(Adapted from Ref. [115].)
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the two-photon absorption can be attributed to the third-
order nonlinear effects in terms of the complex amplitude Eo

of the electromagnetic field incident onto the sample [138,
141]:

Po; i � w �3�i jklEo; jEÿo; kEo; l � c:c: �52�

Here, the subscripts i; j; k; l � x; y; z denote Cartesian com-
ponents, w �3�i jkl is the corresponding nonlinear susceptibility,
and c.c. is the complex conjugate contribution; in this case,
the dielectric polarization Po and the electric field Eo are
defined in the complex form according to

P � Po exp �ÿiot� � Pÿo exp �iot� ;
E � Eo exp �ÿiot� � Eÿo exp �iot� :

Below, we will ignore the effects of spatial dispersion, i.e., the
presence of coordinate dependence of the electric field and
polarization. In the exciton part of the spectrum, this is
justified when the wave vector q of light is small in
comparison with the inverse Bohr radius of the exciton and
with the reciprocal lattice parameter, except, perhaps, a
narrow region near the very resonance [56, 142].

Usually, exciton two-photon absorption in semiconduc-
tors is studied in the regime where the total energy 2�ho of the
light quanta is close to the excitation energy of some exciton
state. For the exciton state to be active in two-photon
absorption, its wave function must transform as some
quadratic combination of the fields Eo; i Eo; j. On the
contrary, for single-photon absorption, the wave function of
the exciton must transform as the Eo; i component of the field
vector. In centrosymmetrical crystals, this condition imposes
the requirement of an alternative prohibition: any given state
of an exciton is active either in the single-photon or in the
two-photon process. In particular, it is the p-states of the
exciton that are active in two-photon absorption [86, 143].
Their excitation occurs via a two-stage process, where states
in the conduction band or in the valence band come out as
intermediate states. The matrix element of the two-photon
excitation of mp-excitons �m � 2; 3; . . .� is calculated within
the framework of the two-band model (3) and can be written
out as follows [69, 143]:

M �2;��
mp � 
C�mpjV̂ �2�ph j0

� � � e

o

�2�
� ig3

�hom

��
c 0mp�0�

��
E 2
s� :

�53�

Here, j0i denotes the ground state of the crystal, V̂
�2�
ph is the

operator of a two-photon transition, the superscript �
designates the valley wherein the exciton is formed, m is the
reduced mass of the electron and hole, Es� are the circularly
polarized components of the incident field, and c 0mp�0�
denotes the derivative of the radial function of the mp-
state with respect to the coordinate r of relative motion [cf.
formula (40)]. In deriving formula (53), it is assumed that the
light frequency is o � Eg=2�h, and the binding energy of the
exciton is disregarded in comparison with �ho.

Upon two-photon absorption, p-excitons that are trans-
formed according to the representation G6 are generated (see
Section 3.4): in the case of s�-polarized light, a 2p�-exciton
in the K� valley, and in the case of the sÿ-polarized light, a
2pÿ-exciton in the Kÿ valley. A schematic representation of
this process is given in Fig. 15a: upon absorption of the first
photon, an excitation of the ls-exciton occurs due to the

interband matrix element g3 of the velocity operator; the
second photon causes transitions between 1s- and 2p-states of
the exciton due to the velocity operator �hk�=m inside the
band.

Measurements of photoluminescence under the condi-
tions of the two-photon absorption [40, 65, 144] make it
possible to experimentally estimate the energy gap between
the 1s- and 2p-excitons in MX2 monolayers, and also to
investigate the details of the generation of the valley
coherence of excitons and of the exciton±phonon interaction.

A special feature of the monolayers of dichalcogenides of
transition metals is that these systems are noncentrosymme-
trical and allow, as was discussed in Section 3.4, mixing of
exciton states of different parities. Therefore, s-excitons can
participate in two-photon absorption as well. The quadratic
combination Eo; i Eo; j of the fields that lie in the plane of the
monolayer is transformed according to the reducible repre-
sentation G6 � G6 � G1 � G2 � G6, which contains G6 Ð the
representation according to which the components ofEo; i are
transformed.Hence, s-excitons can participate in two-photon
absorption as well; in this case, the absorption of two s� �sÿ�
photons is equivalent to the absorption of one sÿ �s��
photon.

Microscopically, the s-excitons can be excited due to the
two-photon transitions that occur through the remote c� 2
and vÿ 3 bands. The corresponding contribution to the
matrix element of an ns-exciton excitation is written down as

M �2;��
ns �

�
e

o

�2 g3
�h 2

Ac �ns�0�E 2
s� ; �54�

where the parameter A defined in formula (7) is respon-
sible for the absence of the center of inversion. In the
language of excitons, this two-stage process corresponds
to the generation of a 2p-exciton due to the linear-in-k
terms � g3Ak�=�h in the matrix element of the velocity
operator [see formula (6)] and to its further transition into
the 1s-state (see Fig. 15b). This process can be described as
a two-stage transition with intermediate states in the remote
c� 2 and vÿ 3 bands. The analysis performed in Ref. [69]
shows that there is one additional contribution to the matrix
element of s-exciton two-photon absorption, which is
connected with the mixing of s- and p-excitons in the
different valleys (see Section 3.4). The mixing of 1s- and
mp-excitons, described by the parameters b1m [cf. formula
(37)], leads to a contribution � b1m=�E1s ÿ Emp�M �2;��

mp to
the matrix element from the two-photon excitation of an
ls-exciton.

� �hk�
m

� �hk�
m

� g3
�h

� g3
�h
Akÿ

a b
K� Kÿ

2p�

1s

0

2pÿ

1s

0

Figure 15. (Color online.) Illustration of two-photon absorption in MX2

monolayers. Upon absorption of two s�-polarized photons, a 2p�-
exciton is generated in the K� valley (a), and an 1s-exciton in the Kÿ
valley (b). The corresponding matrix elements of the velocity operator are

indicated near the transitions.
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One more experimentally investigated configuration of
two-photon absorption in TMDmonolayers is realized when
�ho is close to the excitation energy of the exciton. In that case,
an intermediate state in the two-photon process proves to be
real, and the efficiency of two-photon absorption strongly
enhances in comparison with the nonresonance process. This
effect can be responsible for summing up the radiation quanta
(upconversion) in the WSe2 monolayers observed in experi-
ments [145].

In concluding this section, note that, as in many other
semiconductors, a linear-circular dichroism of multiphoton
absorption is expected in MX2 monolayers [146±148]. For
example, in ignoring the transitions through the remote vÿ 3
and c� 2 bands, the three-photon absorption coefficient is
finite in the case of linear polarization, and it becomes zero in
the case of circular polarization.

5.2 Generation of a second harmonic
The simultaneous optical activity of excitons in TMD
monolayers in one- and two-photon processes leads to the
efficient generation of a second optical harmonic [69, 149±
151]. Phenomenologically, this effect at the normal incidence
of light onto a monolayer of point symmetry D3h is described
by the following relationship [40, 69, 141, 152, 153]:

P �2o�x � 2w �2�ExEy ; P �2o�y � w �2��E 2
x ÿ E 2

y � ; �55�

where w �2� is the only nonzero component of the second-
order nonlinear susceptibility. Microscopically, the gen-
eration of the second harmonic arises as a result of the
excitation of an exciton in a two-photon process and its
subsequent recombination with the emission of a photon.
The microscopic theory developed in paper [69] shows that
the basic contribution to the generation of the second
harmonic comes from the 1s-exciton state. For the mechan-
ism of this effect connected with the two-photon excitation

of a 1s-exciton, shown in Fig. 15b, the expression for the
resonance contribution to w �2� can be written out as [69]

w �2�1s � ÿ
e 3
��c1s�0�

��2
o2o1s

A

�
g3
�h

�2
1

2oÿ o1s � iG1s
; �56�

where G1s is the decay rate of the exciton, o1s is the frequency
of the excitation of a 1s-exciton, and the parameter A is
introduced in formula (7). Thus, the second-order suscept-
ibility has a resonance ato � o1s=2, when the real part of the
denominator in formula (56) becomes zero. It is interesting
that within the framework of the samemechanism the second-
order nonlinear response of p-excitons has a smallness of
� Enp=Eg, where Enp is the binding energy of the p-exciton
with the principal quantum number n.

Experimentally, the generation of the second optical
harmonic on the excitons in the monolayers of dichalcogen-
ides of transition metals has been investigated in a number of
studies [40, 154, 155]. Figure 16 presents experimental data
on the excitation spectrum of the second harmonic taken
from Refs [40, 69], where the enhancement of the generation
of the second harmonic at the exciton resonances in a WSe2
monolayer was studied. In this sample, the 2s- and 2p-
exciton states were indistinguishable in the spectrum of the
signal of the second harmonic, in spite of the fact that the
calculations within the framework of the model of screened
Coulomb interaction (Section 3) predicts their splitting equal
to � 10 meV. An analysis of the experimental data shows
that the main contribution to the generation of the second
harmonic comes from the 1s-exciton state; its contribution
integrally exceeds the contribution from the 2s=2p states by
approximately an order of magnitude. This is in agreement
with the model predictions of the microscopic theory
presented above and in Ref. [69]. Detailed experimental
and theoretical studies of the generation of the second
harmonic and other nonlinear optical effects in TMD
monolayers are among the most important problems for
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Figure 16. (Color online.) Spectrum of the generation of the second harmonic depending on the double energy of the quantum of radiation incident on the
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future studies into the electronic and optical properties of
such systems.

6. Conclusion

The physics of two-dimensional semiconductor crystals, in
particular, of transition-metal dichalcogenides, is actively
being developed. In this review, a description is given of the
basic exciton properties common to the MoS2, MoSe2, WS2,
and WSe2 monolayers, including largeÐon the order of
several hundred millielectron-voltsÐbinding energies of
excitons, the deviation of an exciton series from the hydro-
gen-like one, and the unusual fine structures of exciton and
trion energy levels connected with the presence of two valleys
in the energy spectrum and spin-orbit splitting of bands. In
these two-dimensional semiconductors, the excitons and
trions play the key role in the formation of optical spectra
and vividly manifest themselves in nonlinear optical effects.
Many of the phenomena described in the review have already
been discovered experimentally.

As further promising avenues of study, it is possible to
choose a more detailed study of the fine structure and the
effects of mixing the exciton states, the study of exciton
transport [156], and the physics of exciton polaritons in
van der Waals structures with microcavities [157±159]. There
are a number of pioneering results in these areas; however, no
detailed studies exist thus far. Furthermore, in our opinion,
questions on the details of differences in the exciton effects
showing themselves in similar at first glance two-dimensional
semiconductors on the basis of molybdenum and tungsten are
interesting and are still open.
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