
Abstract. We review various forms of dielectric ring-shaped
oscillating circuits excited by displacement currents due to the
grazing incidence of GHz microwaves. Such circuits with azi-
muth displacement currents form resonant dielectric magnetic
dipoles.We calculate and measure resonances in field spectra in
the near zone of such dipoles. We demonstrate the inversion of
the magnetic inductance flux and the formation of a negative
magnetic permeability in the resonant range of dielectric mag-
netic dipoles. We also investigate, both analytically and experi-
mentally, the resonant interaction spectra of a pair of magnetic
dipoles excited by displacement currents. Finally, prospects for
using these dipoles to model all-dielectric nanostructures with
alternating-sign magnetic permeability are discussed.

Keywords: displacement current, dielectric metamaterial, dielectric
magnetic dipole, interaction of resonant dipoles, negative magnetic
permeability

1. Introduction

This paper is concerned with the effect of resonance
electromagnetic induction in a nonconducting dielectric

medium. Variation in the magnetic field in such media excites
displacement currents, which, in contrast to conduction
currents, are proportional not to the electric field but to the
rate of its variation. Specifically, we discuss displacement
currents and microwave (MW) fields in all-dielectric sub-
wavelength structures devoid of free carriers and the possible
transfer of these effects to the optical region. The last 10±
15 years have witnessed a rapid growth of interest in these
phenomena, and investigations are stimulated by several
problems, both applied and academic.

(1) A trend has arisen to replace metallic radio electronic
elements with subwavelength low-loss dielectric structures of
artificial materialsÐmetamaterials. Fabricating these mate-
rials opens up the possibility to optimally combine electric
and magnetic parameters, including unusual effects like
controllable nonlocal dispersion [1], nonzero or negative
permittivity [2], and negative magnetic susceptibility [3].

(2) The exchange of concepts between radio engineering
and laser optics has led to the formation of a separate area of
wave physics, radio optics [4]. Following this trend, several
key components of MW electronics with capacitance and
inductance properties have been developed in the optoelec-
tronics of nanodimensional metamaterials in recent years.
This new area has received a special name: metatronics [5].
The generalization of electromagnetic induction effects,
which are traditionally associated with conduction currents
in metals, to the case of displacement currents in dielectrics
shows specific ways to minimize losses and miniaturize
optoelectronic systems: for a high permittivity and low
dielectric loss, the dimensions of dielectric resonators are
substantially smaller than those of metallic ones.

(3) A radically new problem has arisen: controlling the
magnetic components of the light field in the optical and
infrared (IR) ranges with the use of dielectric magnetic
structures: so-called optical magnetism [6]. The dielectric
magnets under consideration have nothing in common with
either the magnetic dielectrics [7] or the magnetooptics [8],
despite the likeness of the names: the task involves the
development of nanodimensional oscillatory systems and
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the generation of magnetic modes already proven in the GHz
range [9].

In this paper, we discuss the first group of results related
to the development of a new class of all-dielectric oscillatory
systems operating by displacement currents. Some charac-
teristic features of such currents and the generation of
magnetic modes in the resonance scattering of electromag-
netic waves by dielectric bodies (Mie scattering) are
discussed in Sections 2 and 3. Another resonance excitation
mechanism, which leads to the formation of a resonance
dielectric magnetic ring dipole and negative magnetic induc-
tion, is considered in Sections 4 and 5. The near-field
resonance interaction spectra of such dipoles are presented
in Section 6. Discussed in the concluding Section 7 are the
possibilities of using resonant magnetic dipoles for modeling
dielectric nanooptical structures.

2. Electrodynamics of displacement currents

The concept of the displacement current and the name itself
were introduced by Maxwell nearly 150 years ago when
explaining the operation of the Thomson oscillating circuit.
Early in his scientific career,WThomson, one of the founding
fathers of the first transatlantic telegraph and the originator
of the absolute temperature scale, who was conferred the title
of Baron Kelvin in recognition of his achievements, made the
first device for generating electric current oscillations. The
device was an electric circuit comprising a battery, a
capacitor, and an inductance coil. In the course of the
capacitor discharge, the electric current passed through the
coil to excite a magnetic field, and then the decay of the
magnetic field excited the current, which recharged the
capacitor. The energy of the system periodically transferred
from the capacitor to the coil and back. This `electric
pendulum' entered textbooks as the `Thomson oscillating
circuit'.

However, this novelty immediately revealed a paradox:
unlike the currents flowing through conductors, the alternat-
ing current penetrated through the empty gap between the
capacitor plates, and hence there was a break in the flow of
current. On the other hand, the current continuity, under-
stood by analogy with the continuity of liquid flow in a tube
seemed quite evident. Several years later, the conflict between
theory and experiment was resolved by Maxwell, who
surmised that a variation in the electric induction D in time
excited a magnetic field H. Calling the usual current in a
conductor the `conduction current', Maxwell endowed his
innovation with the name `magnetic displacement current'
and gave the formula for calculating the density of this
current:

j � 1

4p
qD
qt

: �1�

In the framework of the theory of ether accepted at the time,
the new term related the variation in the electric induction to
the displacement of ether particles. The new notion enabled
Maxwell, in his A Treatise on Electricity and Magnetism
(1873), to write the fundamental system of electrodynamic
equations and predict the existence of a special kind of
oscillationsÐelectromagnetic waves.

The notions of displacement currents and electromagnetic
waves did not immediately take root in the physical commu-
nity, and Maxwell himself did not live to witness the triumph

of his equations. We recall that at the end of the 19th century,
electric motors, lighting, and incipient telephony harnessed
usual conduction currents in metals, while the nonconductive
dielectrics were assigned the part of insulators. By contrast,
the `displacement current' seemed to be a mathematical
phantom inserted into one of Maxwell's equations to
maintain the continuity of alternating current lines in a
nonconductive medium. Actually, this new object of electro-
dynamics, although termed `current', had little in common
with the established laws of conduction currents, which were
the physical foundation of electrical engineering. Unlike the
conduction current, the displacement current was not
described by Ohm's law, was not localized in wires, and was
unusable for electric heating. Several years after the publica-
tion ofMaxwell's Treatise, Heinrich Hertz, when experiment-
ing on sparks in gaps, clearly demonstrated the propagation
of electromagnetic waves through empty space separating the
gaps. Furthermore, in another experiment, these waves
passed through a dielectric layer (a concrete plate). After the
discovery of electromagnetic wave propagation in noncon-
ductive media, the adjective `magnetic' fell away from the
definition of the displacement current and the concept itself
was universally recognized.

3. Resonance scattering from dielectric bodies
(Mie resonances)

The last decade has been marked by a rapid development of a
new area in the electrodynamics of continuummedia aimed at
the design of dielectrics with the desired spectral and spatial
characteristics of magnetic response in the GHz, THz, and IR
ranges. Apart from the magnetization problem of uniform
semiconductors with free electrons in the field of an electro-
magnetic wave [10], discussion is underway regarding ways of
developing inhomogeneous metamaterials whose magnetic
properties are provided by nanodimensional dielectric inclu-
sions of the requisite shape [11, 12]. These inclusions act as
resonators with their own eigenmodes. The spectra of such
modes are defined by Mie resonances.

A simple example of the formation of a Mie resonance is
provided by the problem of the scattering of a plane wave by
an infinite uniform dielectric cylinder [13]. We consider the
propagation of a linearly polarized wave along the z axis. The
magnetic components of the incident and scattered fields and
of the field inside the cylinder, H inc

z , H sc
z , and H int

z , are
solutions of the wave equation in the form of Bessel functions
Jm and zeroth-order Hankel functionsH

�1�
m :

H inc
z �kr� � H0

X
m

imJm�kr� exp �imf� ;

H sc
z �kr� � ÿH0

X
m

imamH
�1�
m �kr� exp �imf� ; �2�

H int
z �nkr� � H0

X
m

imcmJm�nkr� exp �imf� :

The coefficients am and cm in Eqns (2) are determined from
the boundary conditions of the wave field continuity on the
cylinder surface:

am � 1

D

�
Jm�x� dJm�nx�

dx
ÿ n Jm�nx� dJm�x�

dx

�
; �3�

cm � Jm�x� ÿ amH
�1�
m �x�

Jm�nx� ; �4�
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D � H �1�m �x�
dJm�nx�

dx
ÿ n Jm�nx� dH

�1�
m �x�
dx

;
�5�

x � 2pa
l

; m � 0; 1; 2; . . . :

In expressions (2)±(5), n and a are the refractive index and the
cylinder radius, and l is the wavelength of the incident wave.

Magnetic effects in this structure are due to displacement
currents jd. These currents, which are caused by the alternat-
ing electric induction D (1) inside the cylinder in the planes
perpendicular to the cylinder axis, can increase many-fold
when the geometric parameter x in Eqn (5) corresponds to one
of the eigenmodes of field oscillations inside the cylinder. By
equating the denominator in expression (3) for am to zero, we
obtain an equation for the Mie resonances of order m in the
scattering from the cylinder: D � 0. Under such a resonance,
the values of the coefficient cm in (4) increase as Dÿ1 and the
field inside the cylinder is defined by the function Jm�nkr�.
This resonance can enhance the magnetic effects of non-
magnetic dielectric inclusions. Such an increase in the
magnetic field inside a long hollow cylinder filled with
distilled water at a temperature of 363 K with a relative
permittivity of 58 was observed in [14]. However, the
magnetic flux does not concentrate entirely inside the
cylinder and, decaying outside the cylinder, makes a kind of
`halo' around it [15].

A similar consideration of the scattering of a linearly
polarized wave on a ball permits finding the eigenmode
spectrum of a uniform dielectric ball. The resonance fre-
quency of the mth mode is defined by the equation [16]

Jm�yx� dH
�1�
m �x�
dx

ÿ y 2pÿ3H �1�m �x�
dJm�yx�

dx
� 0 ; �6�

where Jm and H
�1�
m are the spherical Bessel and Hankel

functions, the value of p corresponds to the TM polarization
�p � 1� or the TE polarization �p � 2� of the wave, x is a
geometric parameter, and y is the relative refractive index:

x � 2panmed

l
; y � np

nmed
; �7�

where np and nmed are the refractive indices of the ball material
and the environment. The eigenmodes for silicon nanospheres
embedded in a silver matrix are described in Ref. [17]. For a
nonuniform sphere with a radially symmetric step-wise
profile of the refractive index, the resonance frequencies
were found in Ref. [18].

The exact analytic solutions of the wave equation for the
scatterer eigenmode spectra are known for an infinitely long
cylinder [13] and a sphere [19]. The resonance regimes of Mie
scattering by a disk and a cone were investigated numerically
in Ref. [20]. More general numerical techniques for the
analysis of magnetic modes in nonspherical axially sym-
metric bodies, which are based on an approximate solution
of integral equations, were developed in Ref. [21]. It is
noteworthy that some bodies of rotation, for instance open
dielectric resonators operating at gigahertz frequencies, have
long been used inmicrowave engineering. Specifically, given a
solution of the Maxwell equations in the diffraction approx-
imation, it was possible to determine the symmetric types of
the eigenmodes of different dielectric ring resonators in

relation to their dimensions and the permittivity e. In
particular, the number of lowest-mode radial eigen-oscilla-
tions for dielectric rings with high e values was shown to be
much smaller than for continuous dielectric cylindrical
resonators. In this case, the numerical solution of the
boundary value problem for the eigenfrequencies of a
dielectric ring resonator obtained for several sets of geo-
metric parameters is limited to the domain of positive
magnetic response. Solving the electrodynamic problem
exactly is hindered by the presence of open boundary
surfaces with abrupt changes in e at the interfaces between
the media and the necessity of including diffraction effects in
the scattering of waves at such interfaces. No solutions were
obtained for a thin dielectric ring, in which only azimuthal
oscillations are induced [22].

Below, we consider the resonance response in the case of
grazing incidence of a plane wave on a thin dielectric ring,
which corresponds to the geometry shown in Fig. 1b. In this
case, the fundamental azimuthal mode of field oscillations
and the azimuthal displacement current are excited in the ring
circuit. The circuit around which the displacement current
flows makes up a peculiar dielectric magnetic dipole. The
spectra of the fields of this dipole are distinguished by several
features:

(a) the dominant effect of the small radius of the ring on
its resonance properties;

(b) the inversion ofmagnetic induction and the emergence
of negative magnetic susceptibility of the ring circuit;

(c) the resonance interaction of a pair ofmagnetic dipoles.
In what follows, we discuss theoretical and experimental

investigations of these effects.

4. Dielectric magnetic dipole
and the Thomson oscillating circuit

In Thomson's oscillating circuit, the capacitance and the
inductance were formed by separate elements: a capacitor
and an inductance coil. A similar `separation of functions'
was also used in Pendry's split-ring resonator [23], which
consisted of two concentric metallic rings (inductor) with cuts
(capacitor). In contrast, below, we discuss the oscillation
modes of an uncut dielectric ring with e4 1, which combines
both indicated functions.

We consider the interaction of an electromagnetic wave
with a thin dielectric ring of circular cross section, whose
major andminor radiiR and r0 satisfy the conditionR4 r0. A
linearly polarized plane wave with a wave vector k is incident
in the x direction, such that the magnetic component of the

Ef
Jd

k

Hi

k

E0
H0

a b

Figure 1. Scattering geometry of a linearly polarized plane wave with

componentsE0 andH0 andwave vector k. (a) Normal incidence, the ring's

plane is perpendicular to vector k. (b) Grazing incidence, the ring's plane is

perpendicular to the magnetic component of the incident wave Hi. The

arrangement shown in Fig. 1b is used in experiments in the resonance

excitation of displacement current oscillations in the dielectric ring circuit.

Jd and Ef are the azimuthal displacement current and the vortical electric

field induced in the circuit.

700 A B Shvartsburg, V Ya Pecherkin, L M Vasilyak, S P Vetchinin, V E Fortov Physics ±Uspekhi 61 (7)



wave field H0 exp �i�kxÿ ot�� is aligned with the z axis
perpendicular to the ring plane xy. The electric field E of the
wave is aligned with the y axis (Fig. 1b).

The magnetic flux of this component through the circular
circuit is expressed as

F0 � H0F exp �ÿiot� ; F �
�
exp �ikx� dS : �8�

The integral in expression (8) is taken over the area inside the
ring of the radius R and is expressed in terms of the Bessel
function J1 [24]:

F � pR 2 f �kR� exp �i�kRÿ ot�� ; f �kR� � 2J1�kR�
kR

: �9�

Induced in the ring is an azimuthal current I, which, in turn,
generates a magnetic induction flux Fi, with the total
induction flux through the ring given by F � F0 � Fi. The
vortical emfU and the electric field Ef induced in the ring are
defined by the variation in the flux F:

U � ÿ 1

c

qF
qt

; Ef � U

2pR
: �10�

A further analysis of the magnetic effects of a ring circuit
depends on the circuit conduction. These effects are con-
venient to illustrate by comparing the currents I induced by
the same alternating magnetic fluxes F0 in two similar thin
rings, one of which is made of a conductor with a conductivity
s and the other of a dielectric with a permittivity e (Fig. 1b).
The temporal and spectral dependences of the current I are
radically different in the cases of conductive and nonconduc-
tive circuits: the conduction current density jc depends on the
first derivative of the flux F, while the displacement current
density jd, which is induced in the nonconductive dielectric
circuit, is determined by the second derivative of F:

jc � ÿ s
2pRc

qF
qt

; jd � ÿ e
8p2Rc

q2F
qt 2

: �11�

Considering the residual conductivity of the dielectric and
using the expression for the self-induction L of a thin ring [8],
the magnetic induction flux Fi in the ring plane can be
represented as

Fi � LI

c
; L � 4pRl ; l � ln

�
8R

r0

�
ÿ 7

4
;

�12�
I � pr 20 � jc � jd� :

We substitute relations (12) in the expression for the total
magnetic induction flux F � F0 � Fi to obtain an equation
for the flux F through the circuit:

q2F
qt 2
� g

qF
qt
� o2

0F � o2
0F0 : �13�

The circuit eigenfrequency o0 and the damping decrement g
in Eqn (13) are defined by the formulas

o2
0 �

2c 2

elr 20
; g � 4ps

e
: �14�

The solution of Eqn (13) can be represented in the form

F � F0L�o� exp �ÿiot� ; L�o� � o2
0

o2
0 ÿ o2 ÿ iog

: �15�

Expression (15) for the magnetic flux suggests that the
dielectric ring with an azimuthal current (Fig. 1b) can be
regarded as a resonance magnetic dipole excited by the
displacement current, with the resonance effect near the
frequency o0 described by the factor L�o�. The displacement
current Id calculated by substituting formula (15) in expres-
sion (11) also contains the resonance factor L�o�:

Id � er 20o
2L�o�F0 exp �ÿiot�

8pRc
: �16�

From the known current Id, we can find the vector
potential Af of this current and express the components of
the electromagnetic field induced by the current Id in the near-
field zone of the ring in terms of Af:

Af � 2IR

c
Q ; Q �

� p

0

df
exp �ikr�

r
cosf : �17�

The variables r andf in integral (17) are the distance from the
ring center and the azimuthal angle in the ring plane. The
vortical electric field Ecurl and the magnetic field components
Hz andHr outside the ring are expressed in terms of Af as [8]

Ecurl � ÿ 1

c

qAf

qt
; Hz � qAf

qr
� Af

r
; Hr � ÿ qAf

qz
: �18�

The near-field �kr5 1� spectrum of Ecurl calculated from
expressions (16)±(18) is conveniently expressed in dimension-
less form as

Ecurl

H0
� iR 2o3L�o�Ql f

2co2
0

exp
�
i�kRÿ ot�� ; �19�

with the parameter f defined by (9). Both the fieldEcurl and the
magnetic componentsHz andHr determined from Eqns (18)
contain the resonance factor L�o�, the components Hz and
Hr being phase-shifted by 0:5p relative to Ecurl. In the case of
grazing incidence of a linearly polarized wave on a dielectric
ring, according to these relations, a standing wave forms in
the near-field zone of the ring, whose spectrum contains a
resonance frequency.

Experiment. In the formulation of experiments, we set
ourselves the task of discovering and directly investigating the
following main effects predicted by the theory:

(1) discovery of the resonance frequencies at the grazing
incidence of a linearly polarized TEM wave on a dielectric
ring;

(2) investigation of the effect of the material and object
geometry on the main resonance frequencies;

(3) excitation of a resonance magnetic response with a
phase change in the reradiated wave and inversion of the
resultant magnetic field;

(4) discovery of the resonance interaction of twomagnetic
dipoles of two dielectric rings.

As is noteworthy, in the fabrication of metamaterials with
a negative magnetic response, metallic elements of an
extremely small size are used; their characteristics are
incorporated into the mathematical model and the integral
field of the interaction with the incident wave is found by
calculations.

The aim of our investigations was to directly measure the
fields near the dielectric ring to obtain the information as
accurately as possible and compare it with the results of
theoretical calculations. For this, calculations were made of
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rings with different geometric dimensions and permittivities
in order to select a ring with a size, on the one hand, large
enough formeasuring the field near it and, on the other, much
shorter than the incident wavelength in the resonance
frequency domain. Furthermore, the frequency band under
study should be accessible and convenient enough for
measurements. As a result of several approximations, rings
with dimensions of 38� 28� 5 mm were made, which had a
relative permittivity � 200 and a calculated resonance
frequency of 1.32 GHz.

The formation of a linearly polarized plane wave in the
desired frequency range and the recording of the response of
the object under study were effected with an Agilent E5071C
ENA series network analyzer with a 300 kHz±20GHz band, a
transmitting horn antenna (3115Model of ETS Lindgren) for
a 0.75±18 GHz frequency band, and a horn antenna (3160-09
Model of ETS Lindgren) for the frequency band 18±
26.5 GHz. To improve the signal-to-noise ratio and mitigate
the influence of environmental radio noise in the frequency
band from 5 MHz to 6 GHz, an additional amplifier with a
gain of 20 dB was used. The electric field near the ring was
recorded with linear probes with a sensitive element 10 mm in
length. The magnetic field was measured with a screened
annular probe with a sensitive element 5 mm in diameter. In
some experiments, a second horn antenna was used for
recording the plane wave behind the ring. To measure the
field near the ring and the phase change in the scattered signal,
a Tektronix DPO73304DX four-channel pulsed oscilloscope
with a bandwidth of 33GHzwas used. To verify the reliability
of the data obtained, prior to every measurement, we
determined the noise level of the measuring path with
connecting cables without the probe in the presence of the
incident radiation and the background radiation level with
the probe in the presence of the incident radiation without test
objects.

To verify the correctness of the diagnostic systems, at the
first stage of experiments we studied the known resonance
frequencies of the dielectric ring in the arrangement shown in
Fig. 1a, when the ring plane was perpendicular to the wave
vector and the ring center was on the axis of antenna radiation
in the plane of peak emission. Apart from the dielectric ring, a
brass ring with the same dimensions was investigated in all
experiments.

In the spectral range 12.4±20 GHz, we discovered a
resonance frequency of 15.1 GHz, which agrees nicely with
the value calculated for this geometry in the framework of the
theory of dielectric coaxial resonators [22, 25]. Several
oscillation modes can be excited in dielectric rings. This
15.1 GHz frequency is associated with higher azimuthal
oscillations excited by the electric component of the incident
wave. These oscillations are widely used in variousmicrowave
devices. No resonances were found in this range for a brass
ring with the same dimensions.

Investigated next were the resonance properties of the
dielectric ring arranged according to Fig. 1b, when the ring
plane was parallel to the electric vector and perpendicular to
the magnetic vector, with the ring center on the axis of
antenna radiation. The distance between the antenna and
the sensor was 60 cm. The results of the measurements are
depicted in Fig. 2. For the dielectric ring, we discovered a
resonance frequency of 1.36 GHz, which is excited by the
magnetic component of the incident wave. The experimental
value of the resonance frequency is slightly different from the
theoretical one in (14), which is equal to 1.32 GHz. For the

brass ring, no resonances were discovered in this range.
Worthy of note is the small width of this resonance, equal to
20 MHz, which is indicative of the low loss in the dielectric
ring. This, in turn, provides the possibility of harnessing this
effect in the design of new metamaterials with a negative
magnetic permeability. We emphasize that so low a loss is
unattainable in split-ring metallic resonators [23].

In addition to the role of the material, an important point
for the observed resonance is the object shape, even if its
volume is kept constant. If we draw an analogy with
transmission lines, the geometric shape of the line determines
the types of transmitted waves. For the purpose of investiga-
tions, the above dielectric ring with a resonance frequency of
1.36 GHz was divided into two equal semirings. The
semirings were placed some distance apart and then brought
closer so as to form a full ring. Up to virtually a zero
separation, when a split ring with a gap of about 0.1 mm
was formed, the resonance did not manifest itself (Fig. 3). The
resultant resonance is characterized by a shift in the resonance
frequency in comparison with that of the initially whole ring.
These results can be interpreted using an analogy with the
Thomson oscillating circuit.

If the quantity lÿ1 is expressed in terms of the ring self-
inductance L in (12) in expression (14) for the frequency o0

and the radius r0 in terms of the cross-sectional ring area
S0 � pr 20 , then expression (14) coincides with the classical
Thomson formula �o2

0 � c 2=�LC�� for the eigenfrequency of
an oscillating circuit with the self-inductance L and capaci-
tanceC � eS0=�4pd�, which coincides with the capacitance of
a plane capacitor with the plates area S0 and the gap between
the plates equal to the ring circumference d � 2pR.

By continuing this analogy, we can see how to increase the
resonance frequency of the ring dipole without changing
either the permittivity e or the radii R and r0: it would suffice
to divide the ring in halves by two thin radial cuts. By
considering the cuts of width s and the halves (with the
halves' arc length pRÿ s) to be series-connected capacitors
with the total capacitanceC, we can find the eigenfrequencyO
of this LC circuit by the Thomson formula. For a thin cut
�s5 pR�, we obtain

O � o0

�������������
1� ew

2

r
; w � s

pR
; �20�

a, dB

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
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1

Figure 2. Experimental spectra of the azimuthal vortical electric field

outside the ring. Spectra 1, 2, and 3 show the noise level, the field level

without the ring, and the field at the ring center. Spectrum 3 contains a

resonance at a frequency of 1.36 GHz. The spectrum of the metallic ring

(curve 4) is devoid of resonances.
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where o0 is the ring dipole frequency (14). Figure 3 shows the
experimentally measured frequency shift caused by the cuts.
For an estimate, we assume the values specified in the caption
to Fig. 3 to obtain O=�2p� � 1:49 GHz; therefore, the
difference from the measured value is within 1±2%.

5. Alternating-sign magnetic induction
of a ring displacement current

As the frequency o approaches o0, the oscillation amplitude
of the induced fluxFi through a nonconductive ring increases,
and in passing to the high-frequency domain o > o0, the
inducing, F, and induced, Fi, fluxes become oppositely
directed [24]. Expressing the relation between F and Fi as
Fi � mF, we can specify the frequency domain o > o0 with
m < 0, which corresponds to the inversion of the induction
flux and the negative magnetic susceptibility of the ring
element. This effect is attended by the indicated reverse
direction of the electric and magnetic components of the
scattered field, which manifests itself in the change in sign of
resonance factor (15) near the resonance frequency.

The phase shift of the resultant resonance oscillations was
determined in two ways: using an oscilloscope and two linear
electric probes by applying the signal at the resonance
frequency of the dielectric ring to an antenna, and using a
screened magnetic field probe. In the former case, one probe
was used as the reference and was located near the antenna
outside the zone of the dielectric ring. The other, measuring,
probe was positioned near the ring. The probes were fixed
immobile, parallel to vector E of the incident wave such that
no phase variation of the incident wave occurred between
them. In translating the ring relative to the second probe, we
directly recorded the signal phase variation relative to the
phase of the reference probe signal with the use of a fast-
response oscilloscope. The measurement data are depicted in
Fig. 4.

It is well known that the effect of resonance scattering of
an incident wave involves a phase shift of the scattered wave,
which is close to p because of the frequency passage through
the resonance value. This effect is attended by a change in the
direction of the electric and magnetic components of the
scattered field, which shows up in the change in sign of the
resonance coefficient L�o� in Eqn (15) near the resonance
frequency, thereby providing a resonance lowering of the

field. In moving the ring relative to the second measuring
probe, a phase shift close to p between the ring and reference
probe signals was discovered at the dielectric ring side distant
from the antenna (curve 2), which is indicative of the
formation of a negative magnetic response of the dielectric
ring with a displacement current. It is noteworthy that the
amplitude of the signal from the probe located near the front
side of the ring facing the antenna (curve 3) is higher than the
amplitude of the signal from the reference probe without the
ring (curve 1) due to the interference of the incident and
reflected waves.

In the second case, the change in the magnetic field
oscillation phase was recorded with a screened annular
magnetic field probe in moving the dielectric ring relative to
the probe in the direction of the k vector (Fig. 5). The probe
diameter was equal to 5 mm, and in measuring the phase shift
near the ring surface, the ring was shifted such that the
magnetic flux passing through the probe was not screened
by the ring surface in the measurements both inside and
outside the ring. The resultant data show a resonance
enhancement of the magnetic field inside the ring (curve 4 in
Fig. 5) and a resonance depression of the magnetic field
outside the ring (curve 3 in Fig. 5), which is also indicative
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Figure 3. Shift in the resonance frequency of the split-ringmagnetic dipole.
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of a phase change between the incident and scattered
radiation. The dielectric ring concentrates the magnetic field
at resonance. The shift in resonance frequency peaks in these
two cases is attributable to the capacitive coupling to the
sensor, which lowers the resonance frequency in the case of
resonance enhancement of the magnetic field inside the ring.

6. Resonance interaction of magnetic dipoles

The approach developed for a solitary dipole in Sections 4
and 5 can be generalized to a system of dielectric circuits with
inductive coupling due to the interference of magnetic fluxes.
This interference is characterized by the mutual induction
coefficientM of displacement currents in these circuits. Some
features of this induction can be understood by considering
the magnetic interaction of a pair of similar thin dielectric
rings. As is well known [26], the coefficientM depends on the
relative position of the rings; in particular, in the simple case
of coaxial rings,

M � 4pRl2 ; l2 � 2}�q�
q

;

}�q� �
�
1ÿ q 2

2

�
K�q� ÿ E�q� ; �21�

q 2 � 1

1� Z2
; Z � b

2R
;

where K�q� and E�q� are the complete elliptic integrals of the
first and second kinds with the modulus q, and b and R the
central distance of the two rings and their radius.

The magnetic fluxes �Fi�1; 2 excited by the displacement
currents I1; 2 due to self-induction and mutual induction
effects can be represented as

�Fi�1; 2 �
1

c
�LI1; 2 �MI2; 1� : �22�

We let F01 exp �ÿiot� and F02 exp �ÿiot� denote the respec-
tive magnetic fluxes induced by the incidence wave in these
rings, and ignore the weak absorption �g! 0� to write the
system of equations for the resultant magnetic fluxes F1 and
F2 in each of the interacting rings:

1

o2
1

q2F1

qt 2
� 1

o2
2

q2F2

qt 2
� F1 � F01 exp �ÿiot� ; �23�

1

o2
1

q2F2

qt 2
� 1

o2
2

q2F1

qt 2
� F2 � F02 exp �ÿiot� : �24�

The characteristic frequencies of coaxially arranged similar
rings, which are defined by the self-inductance of each ring,
o1, and their mutual inductance, o1; 2, are expressed as

o1; 2 � c
���
2
p

r
���������
el1; 2

p : �25�

Dimensionless quantities l1 [see (12)] and l2 [see (21)] describe
the self-induction and mutual induction of the rings. The
resonance frequencies of coupled oscillations of the pair of
coaxial rings are found from system of equations (23), (24):

o� � o1������������������
1� l2=l1

p : �26�

For rings lying in a common plane such that their centers
are on the line coinciding with the direction of the incident
wave vector k (coplanar arrangement), the interaction of
magnetic dipoles is also described by system of equations
(23), (24). However, in this case, the mutual inductance
coefficient M is to be determined by numerical integration
or found from experiment. The expression for the resonance
frequencies of such a pair of dipoles is a generalization of
formula (26):

o� � o1�������������������������������
1�M=�4pRl1�

p : �27�

When the dipole parameters are known and the resonance
frequencies o� are known, formula (27) allows calculating
the mutual inductance coefficient M.

The appearance of two resonance frequencies (26) can be
considered a manifestation of the more general effect of the
splitting of the spectra of interacting LC circuits [8]. In the
special case where the magnetic coupling of the circuits
becomes weak �l2 ! 0�, the splitting vanishes: o� ! o1.

The experimental oscillation spectra of two magnetic
resonance ring dipoles in the form of coaxial dielectric rings
are plotted in Fig. 6. The electric field sensor is positioned on
the farthest (from the antenna) surface of the lower ring. The
upper ring is moved along the symmetry axis. The spectra of
the interacting dipoles are clearly seen.

Figure 7 displays the results of measurements for a pair of
dielectric rings located in a common plane along the wave
vector k. The electric field sensor was placed on the farthest
(from the antenna) external ring surface. The nearest ring was
moved along the k vector. As in Fig. 6, the spectra of the
interacting dipoles correspond to the oscillatory circuit
interaction models under consideration.

7. Dielectric magnetic dipole:
a promising element of nanophotonics?

The experiments on the excitation of displacement currents in
dielectric ring dipoles outlined in Sections 4±6 illustrate the
unusual properties of such dipoles in the case of grazing
incidence of exciting electromagnetic waves:

(1) the combination of capacitor and inductor functions
in one element;
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Figure 6.Oscillation spectra of the electric field in the coaxial arrangement

of a pair of magnetic resonant ring dipoles. 1Ðnoise level, 2 and 3Ð
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(2) the appearance of a resonance frequency and a narrow
resonance line in the dipole excitation spectrum;

(3) a nonuniformmagnetic induction field of the dielectric
ring;

(4) the formation of negative magnetic susceptibility
�m < 0� of the ring dipole;

(5) the resonance interaction of a pair ofmagnetic dipoles.
We note that the effect of alternating-sign magnetic

susceptibility is shown in Fig. 5 for a GHz range wave in
empty space, where the permittivity e is constant and equal to
unity. However, the waveguide propagation of waves makes
it possible to investigate the combined action of alternating-
sign parameters m and e. Specifically, in a nonuniform
waveguide containing a tapered section with a critical
frequency oc, the wave field with a frequency o < oc decays
exponentially in the tapered section. For low-frequency
waves, o < oc, this section simulates a medium with an
effective negative permittivity eeff < 0 [27]. If this element
contains elements with m < 0, this structure corresponds to a
metameterial with a negative refractive index [28]

n1 � ÿ
������������������������������ÿÿjeeffj�ÿÿjmj�q

< 0 : �28�

The transmission spectrum of GHz radio waves tunneling
in the waveguide through an aperture of a metamaterial as
in (28) was measured in Ref. [29]. In this case, values m < 0
were produced by Pendry's split metallic resonators consist-
ing of two concentric open metallic rings [23] (with inevitable
ohmic loss). By contrast, a system of dielectric magnetic
dipoles located in the waveguide permits simulating low-
absorption metamaterials using a microwave transmission
line.

It is significant that the theoretical concept of dielectric
magnetic dipoles reliant on Faraday's magnetic induction
(see Section 3) [30] is not limited, as with metallic resonance
elements, to radio frequencies and can be extended to higher
frequencies, in particular to the IR range, and ultimately to
the visible range of the spectrum. In this case, the passage
from theGHz range to the optical one should be attended by a
decrease in sizes of the subwavelength transmitting and
receiving devices. However, optical elements whose size is
comparable to the wavelength of light cannot be produced by
scaling down radio engineering devices. Such nanodimen-

sional elements require new physical principles and a new
technology: specifically, the subwavelength oscillating circuit
described in [15] consists of a glass ball 20 nm in radius
(capacitor) coated with a thin silver shell (inductor). A
resonator for IR waves in the form of a 20 nm thick metallic
horseshoe 300±400 nm in size, deposited on a quartz
substrate, was developed in [31]. These elements make up
three-dimensional periodic structures with periods of several
hundred nanometers; the Q factor of such elements is limited
by the ohmic loss in their metallic parts.

The development of new low-loss all-dielectric oscillatory
circuits of the optical range has aroused growing interest in
the electrodynamics of displacement currents [32]. The use of
metamaterials has opened a new path for introducing
nanooptical structures into electronics. Optical analogues of
GHz dielectric resonance magnetic dipoles, which combine
the properties of a nanocapacitor and nanoinductor in one
element, appear to be promising elements of such structures.
The main geometric parameter determining the eigenfre-
quency o0 of this nanodimensional ring dipole is, according
to formula (14), its short radius r0. For instance, setting
r0 � 40 nm and R � 400 nm for a dielectric ring with e � 5,
we obtaino0 � 2:9� 1015 sÿ1, which corresponds to a visible-
range wavelength l � 650 nm in empty space. A three-
dimensional periodic lattice of magnetic dipoles can be
regarded as a model of a dielectric metacrystal with alternat-
ing-sign magnetic response in the optical and infrared ranges.

Direct experimental investigations of separate units of
the nanodimensional lattice are difficult to perform. But
these investigations are central to the optimization of the
physical and geometrical parameters of large nanocell
arrays. This optimization is of interest from the standpoint
of the development of artificial optoelectronic materials, in
particular, for optical magnetic dipole radiators [33],
dielectric antennas [34], and nanosystems characterized by
the simultaneous excitation of electric and magnetic reso-
nance modes [35]. The electromagnetic properties of these
optical structures can be conveniently simulated using radio
frequency oscillatory systems containing solitary resonant
dipoles of the GHz range [36].

The advent of nanoelectronics has made it possible to
employ the notion of displacement currents in so rapidly
developing an area as applied optics. This development has
drawn attention to new, so far purely academic, problems;
one of them follows directly from formula (1), which
relates the displacement current to the fast change in the
electric induction D � eE in the medium. Still being
discussed is the generation of displacement currents
caused by variations in the electric field E for a stationary
value of the permittivity e. Another mechanism of generat-
ing this current is also possible, via the transient permittiv-
ity described by the derivative qe=qt in the displacement
current definition, Eqn (1). In particular, discussed in the
literature is the mechanism of eigenmode generation in a
resonator filled with a dielectric with a time-dependent e.
This dependence can be caused, for instance, by fast
permittivity modulation induced by a laser pump, which
results in a resonator spectrum transformation [37].
Attention is also drawn to suggestions to use rapid e
variations to imitate relativistic effects predicted by
quantum electrodynamics: the transformation of quan-
tum fluctuations of the vacuum to observable photons
[38] and the dynamic Casimir effect [39]. However, these
problems are still to be solved.
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